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Abstract: Butyrate is considered the primary energy source of colonocytes and has received wide
attention due to its unique health benefits. Insight into the mechanistic effects of butyrate on
cellular and metabolic function relies mainly on research in in-vitro-cultured cells. However, cells
in culture differ from those in vivo in terms of metabolic phenotype and nutrient availability. For
translation, it is therefore important to understand the impact of different nutrients on the effects of
butyrate. We investigated the metabolic consequences of butyrate exposure under various culturing
conditions, with a focus on the interaction between butyrate and glucose. To investigate whether
the effects of butyrate were different between cells with high and low mitochondrial capacity, we
cultured HT29 cells under either low- (0.5 mM) or high- (25 mM) glucose conditions. Low-glucose
culturing increased the mitochondrial capacity of HT29 cells compared to high-glucose (25 mM)
cultured HT29 cells. Long-term exposure to butyrate did not alter mitochondrial bioenergetics,
but it decreased glycolytic function, regardless of glucose availability. In addition, both high- and
low-glucose-grown HT29 cells showed increased lipid droplet accumulation following long-term
butyrate exposure. Acute exposure of cultured cells (HT29 and Caco-2) to butyrate increased their
oxygen consumption rate (OCR). A simultaneous decrease in extracellular acidification rate (ECAR)
was observed. Furthermore, in the absence of glucose, OCR did not increase in response to butyrate.
These results lead us to believe that butyrate itself was not responsible for the observed increase in
OCR, but, instead, butyrate stimulated pyruvate flux into mitochondria. Indeed, blocking of the
mitochondrial pyruvate carrier prevented a butyrate-induced increase in oxygen consumption. Taken
together, our results indicate that butyrate itself is not oxidized in cultured cells but instead alters
pyruvate flux and induces lipid accumulation.
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1. Introduction

Butyrate is a short-chain fatty acid (SCFA) that, in humans, is mostly produced through
fiber fermentation by microbiota in the colon. Butyrate is mainly known as the primary
source of energy for healthy colon cells [1] and has also been found to have beneficial
health effects. In the colon, it is found to protect against colorectal cancer [2], and evidence
from pre-clinical models shows that butyrate can be used as a treatment for intestinal
bowel diseases (IBD) [3] and even diarrheal diseases [4]. Apart from local effects in the
colon, butyrate was also found to affect whole-body metabolism, such as the prevention of
high-fat-diet-induced obesity [5] and fatty liver disease caused by obesity and a high-fat
diet [5].

Butyrate exerts its beneficial effects through various mechanisms, of which the most
interesting one is by serving as a direct mitochondrial substrate. Apart from thermo-
genic effects in adipocytes [6] and effects on colonocyte-neighboring immune cells [7],
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effects of butyrate have prominently been studied in colonocytes. As an energy source
in colonocytes, butyrate provides cellular energy in the form of adenosine triphosphate
(ATP) [8]. Germ-free mice lack butyrate-producing bacteria, and their colonocytes were
found to be energy deprived [9]. Re-administration of butyrate restored colonic energy
levels, indicating that butyrate is indeed a crucial energy source [9]. Because butyrate
catabolism in mitochondria utilizes oxygen for oxidation in colonocytes, it lowers oxygen
levels, which prevents vascular oxygen from leaking into the anoxic colonic lumen [10]. In
some diseases, such as IBD, butyrate oxidation is decreased, especially during phases of
active disease [11–13]. The mechanistic explanation for the decrease in butyrate oxidation
is likely the ongoing inflammation, which alters the ability of colonocytes to take up and
metabolize butyrate [14], highlighting that butyrate metabolism is central to many of its
physiological functions.

Studies that aim to identify mechanisms for how butyrate affects metabolic and cel-
lular functions often rely on in-vitro-cultured colonic cell lines. However, the metabolic
phenotype of cultured cells often differs from that of cells in vivo [15,16]. Cells in the
physiologic context of the human body are exposed to different and changing nutrient and
oxygen levels, whereas in vitro cultured cells are typically grown in culture medium that is
rich in nutrients and oxygen. Interestingly, the in vitro effects of butyrate were found to be
influenced by the culture medium composition, showing the importance of understanding
how different nutritional factors impact the outcome of butyrate exposure [17,18]. In addi-
tion, cultured colonic cells display the Warburg effect, which means that they preferentially
oxidize glucose as an energy substrate in normoxic conditions, instead of butyrate, which
is typically highly available in situ in the colon and preferred by in vivo colonocytes [16].
Nutritional conditions and consequential nutrient interactions thus differ from the in vivo
situation, which may impact the effects of butyrate exposure and therefore pose limitations
to the translatability of the in vitro findings to in vivo human physiology.

Cultured cells can be steered towards oxidative metabolism, making them more com-
parable to the oxidative phenotype of in vivo colonocytes. Attempts at more physiological
culturing of colonic cells have been performed extensively, by changing the medium nu-
trient composition [19–21], as well as by co-culturing with other cell types or by growing
cells as spheroids or organoids. Supplying low glucose levels or replacing glucose with
galactose stimulates mitochondrial metabolism because of the lower ATP yields in the gly-
colytic pathway [19–22]. The obtained increased mitochondrial metabolism could increase
mitochondrial butyrate oxidation, but other metabolic routes of butyrate utilization have
also been described. For example, butyrate was shown to be incorporated into lipids in
cultured colonic cells [23]. Butyrate can also be used as a substrate for post-translational
protein acylation modification, either when converted to acetyl-CoA as a source for protein
acetylation or more directly via butyryl-CoA as a source for protein butyrylation [24,25].

An important remaining question is how different metabolic phenotypes, i.e., gly-
colytic or oxidative, and nutritional environments influence the effects of butyrate exposure.
In particular, we are interested in the interaction between butyrate and glucose, since cul-
tured cells are often cultured in media containing high levels of glucose. Interestingly,
glucose was found to dictate whether butyrate was able to induce apoptosis in cultured
colonocytes [26]. In addition, butyrate exposure led to increased glucose uptake in Caco-2
cells [27], but decreased glucose uptake in HT29, HCT116 and LoVo cells [28,29]. In con-
trast, butyrate was also found to impact the oxidation of glucose, although the direction of
this effect differed between studies [30–34]. To better understand the fate of butyrate under
different metabolic and nutritional conditions, we studied butyrate utilization in colonic
cells in detail. We used a panel of colonic cell lines as well as colon-derived primary cells
to demonstrate that butyrate is likely not oxidized by mitochondria but instead rewires
pyruvate flux and fuels lipid droplets, even in conditions of high mitochondrial oxidative
metabolism.
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2. Results
2.1. Long-Term Exposure to Butyrate Decreases Glycolytic Function of Both High- and
Low-Glucose-Cultured HT29 Cells

To investigate whether the long-term effects of butyrate on mitochondrial function
were affected by glucose, we cultured HT29 cells using standard high-glucose medium
(25 mM) or custom low-glucose medium (0.5 mM glucose). HT29 cells cultured in 0.5 mM
glucose had higher basal oxygen consumption rate (OCR; increase of 9.9 ± 2.7 pmol/min/
1× 105 area, p = 0.0067), higher maximal oxidative capacity (increase of 32.3 ± 6.4 pmol/min/
1 × 105 area, p = 0.001), higher spare respiratory capacity (increase of 38.4 ± 14% of basal
OCR, p = 0.0026) and lower basal extracellular acidification rate (ECAR; reduction of
2.1 mpH/min/1 × 105 area, p = 0.0012) as compared to cells cultured in 25 mM glucose,
which indicated that our low-glucose-cultured HT29 cells relied more on mitochondrial
metabolism than high-glucose cultured HT29 cells (Figure 1). In addition, 0.5 mM glucose-
cultured cells had lower lipid levels than 25 mM glucose-cultured HT29 cells (reduction
of ±10.8 ORO-stained pixels/cell; Figure 2). Since butyrate is a short-chain fatty acid
that can be converted to acetyl-CoA in the mitochondria, we expected that long-term
butyrate exposure would affect mitochondrial parameters. Surprisingly, butyrate did not
alter mitochondrial parameters but changed glycolytic parameters significantly. Butyrate
lowered basal ECAR by 36% in 25 mM glucose-cultured HT29 cells and by 38% in 0.5 mM
glucose HT29 cells (p = 0.0023; Figure 1B) and maximal ECAR by approximately 20% in
both culture conditions (p = 0.0025). Although 25 mM and 0.5 mM glucose-cultured cells
had significantly different mitochondrial functions, the effect of butyrate on metabolic flux
was not different between these conditions. We hypothesized that instead of increased
mitochondrial flux, de novo lipogenesis could be affected by butyrate exposure. We did not
observe altered gene expression of two de novo lipogenesis-related genes (Supplementary
Figure S1), indicating that lipogenesis upon butyrate exposure is likely not regulated on the
gene expression level but instead could be regulated on the enzymatic or post-translational
level. Remarkably, exposure to butyrate increased lipid accumulation to the same extent
in 25 mM and 0.5 mM glucose-cultured HT29 cells (in both cases, a significant increase of
approximately 150%, p < 0.0001; Figure 2). In the literature, it is often suggested that the
pentose phosphate pathway (PPP) is increased following butyrate exposure to regenerate
NADPH for lipogenesis [23,28]. However, we did not observe altered gene expression of
key PPP genes after 72 h butyrate exposure, in either the 25 or the 0.5 mM glucose-cultured
HT29 cells (Supplementary Figure S1). Thus, long-term exposure to butyrate reduced the
glycolytic function of HT29 cells without affecting mitochondrial flux parameters. The
effect of butyrate was independent of culture conditions, since there was no difference
between 25 and 0.5 mM glucose-cultured HT29 cells. To ensure that our findings were not
affected by altered cell viability or cell death following butyrate exposure, we investigated
cell viability and cell counts in response to 1 mM butyrate exposure. Cell viability was
not changed in high-glucose-cultured HT29 cells after 48 h exposure to 1 mM butyrate
(Supplementary Figure S2A), and the cell count in high- and low-glucose-cultured HT29
cells was also not significantly affected by 48 h exposure to 1 mM butyrate (Supplementary
Figure S2B).

2.2. Butyrate Acutely Lowers Glycolytic Function in Multiple Colon-Derived Cell Lines

Since we observed a decrease in glycolytic function only after longer-term butyrate
exposure, we went on to investigate the acute effects of butyrate on metabolic flux. To inves-
tigate this, we exposed high-glucose-cultured HT29, Caco-2 and HCT116 cells to an acute
injection of butyrate during the Seahorse Extracellular Flux analysis. The 25 mM glucose-
cultured HT29 cells and Caco-2 cells responded to acute butyrate exposure with increased
OCR in a dose-dependent manner (Figure 3A,B,E,F). Given that 2DG (2-deoxyglucose)
blocks glycolysis, which necessitates the sole use of mitochondria for ATP generation, we
expected that 2DG would further increase the butyrate-induced OCR. Strikingly, OCR was
attenuated by subsequent 2DG injection (Figure 3A,B,E,F). The decrease in OCR following
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2DG injection suggests that butyrate is not the only substrate responsible for the increase in
OCR, and that at least part of the observed increase in oxidation rate is fueled by glucose.
This notion is strengthened by the observation that acute exposure to butyrate strongly
reduced ECAR in a dose-dependent manner in the 25 mM glucose-cultured HT29 and
Caco-2 cell lines (Figure 3C,D,G,H). Interestingly, the HCT116 cells did not respond to the
acute butyrate exposure by increasing their OCR, but there was also an inhibitory effect on
ECAR, significant at the highest butyrate concentration of 10 mM (Figure 3I–L).
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Figure 1. Metabolic flux analysis of high- and low-glucose-cultured HT29 cells following 72 h exposure to 1 mM butyrate. 
(A) Basal OCR. (B) Basal ECAR. (C) Maximal oxidative capacity. (D) Maximal glycolytic capacity. (E) SRC (%) and (F) 
Proton leak. (N = 3. Data are presented as mean ± SD; significance was determined using two-way ANOVA with factors 
culturing (25 mM or 0.5 mM glucose level in culture medium) and treatment (only medium or butyrate exposure), 
followed by Bonferroni post-hoc analysis. * = p < 0.05, ** = p < 0.01). 

Figure 1. Metabolic flux analysis of high- and low-glucose-cultured HT29 cells following 72 h exposure to 1 mM butyrate.
(A) Basal OCR. (B) Basal ECAR. (C) Maximal oxidative capacity. (D) Maximal glycolytic capacity. (E) SRC (%) and (F) Proton
leak. (N = 3. Data are presented as mean ± SD; significance was determined using two-way ANOVA with factors culturing
(25 mM or 0.5 mM glucose level in culture medium) and treatment (only medium or butyrate exposure), followed by
Bonferroni post-hoc analysis. * = p < 0.05, ** = p < 0.01).
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Figure 2. Lipid accumulation in high- and low-glucose-cultured HT29 cells following 72 h exposure to 1 mM butyrate. (A) 
Representative images showing brightfield (BF), nuclear (DAPI) and Oil-Red-O (ORO) staining in 25 mM and 0.5 mM 
glucose-cultured HT29 cells following 72 h exposure to 1 mM butyrate. Red and white stars (*) indicate lipid droplets 
stained using Oil-Red-O. (B) Representative bar graph showing quantification of ORO-stained image area in pixels 
corrected for cell number. (Images and bar graph are from a representative experiment of a total of N = 2. Data are 
presented as mean ± SD; significance was determined using two-way ANOVA followed by Bonferroni’s post-hoc analysis. 
p < 0.001 = ***). Scale bar = 70 µM. 
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deoxyglucose) blocks glycolysis, which necessitates the sole use of mitochondria for ATP 
generation, we expected that 2DG would further increase the butyrate-induced OCR. 
Strikingly, OCR was attenuated by subsequent 2DG injection (Figure 3A,B,E,F). The 
decrease in OCR following 2DG injection suggests that butyrate is not the only substrate 
responsible for the increase in OCR, and that at least part of the observed increase in 
oxidation rate is fueled by glucose. This notion is strengthened by the observation that 
acute exposure to butyrate strongly reduced ECAR in a dose-dependent manner in the 25 

Figure 2. Lipid accumulation in high- and low-glucose-cultured HT29 cells following 72 h exposure to 1 mM butyrate.
(A) Representative images showing brightfield (BF), nuclear (DAPI) and Oil-Red-O (ORO) staining in 25 mM and 0.5 mM
glucose-cultured HT29 cells following 72 h exposure to 1 mM butyrate. Red and white stars (*) indicate lipid droplets stained
using Oil-Red-O. (B) Representative bar graph showing quantification of ORO-stained image area in pixels corrected for cell
number. (Images and bar graph are from a representative experiment of a total of N = 2. Data are presented as mean ± SD;
significance was determined using two-way ANOVA followed by Bonferroni’s post-hoc analysis. p < 0.001 = ***). Scale
bar = 70 µM.

To verify whether the effect of butyrate on OCR and ECAR was not limited to merely
cultured cell lines, we isolated primary pig colonocytes and analyzed mitochondrial and
glycolytic parameters in response to an acute butyrate injection in these primary cells.
Similar to HCT116 cells and different from Caco-2 and HT29 cells, primary pig colonocytes
did not show any changes in OCR upon acute exposure to 5 mM of butyrate (Figure 4A,B).
However, as with all cultured cell lines tested, upon injection of butyrate, pig colonocytes
showed reduced glycolytic flux by approximately 50% of the total inhibition that was
achieved by 2DG (Figure 4C,D). This indicates that the acute effects of butyrate on glycolysis
are not restricted to cultured cells.
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Figure 3. Metabolic flux analysis of multiple colon-derived cell lines following acute butyrate exposure. (A–D) 25 mM
cultured HT29 cells (representative experiment of N = 4 independent experiments consisting of n = 5–6 wells). (E–H) Caco-2
cells (representative experiment of N = 3 independent experiments consisting of n = 9–15 wells). (I–L) HCT116 cells
(representative experiment of N = 3 independent experiments consisting of n = 12 wells; significance was determined for
one representative experiment using repeated-measures ANOVA followed by Bonferroni’s post-hoc analysis. p < 0.01 = **,
p < 0.001 = ***, p < 0.0001 = ****).
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and away from lactate production, we inhibited the mitochondrial pyruvate carrier (MPC) 
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pyruvate can no longer directly enter the mitochondria and is therefore converted into 
lactate. When MPC was blocked with UK5099, the increased OCR (Figure 5E,F) and 
decreased ECAR (Figure 5G,H) following acute butyrate exposure were no longer 
observed. We therefore believe that the increase in OCR observed in the cultured cell lines 
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Figure 4. Metabolic flux analysis of primary pig colonocytes following acute butyrate exposure in the presence of 2.5 mM
glucose. (A,B) Time-course and bar graph showing acute effect of control or butyrate injection and subsequent injection of
2DG and Antimycin A/Rotenone on OCR. (C,D) Time-course and bar graph showing acute effect of control or butyrate
injection and subsequent injection of 2DG and Antimycin A/Rotenone on ECAR in primary pig colonocytes. (n = 3. Data
are shown for a colonocyte isolation of one representative pig and are presented as mean ± SD for n = 12 wells; significance
was determined using the replicates of one individual using repeated-measures ANOVA followed by Bonferroni’s post-hoc
analysis. p < 0.001 = ***).
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2.3. Butyrate Alters Pyruvate Flux in Cultured Colon Cell Lines

Our results suggest that at least part of the increased oxidation rate is due to the
oxidation of substrates other than butyrate. Glucose-derived pyruvate seems to be the most
likely substrate for two reasons. Firstly, acute butyrate exposure increased OCR, which was
at least partly reversed by exposure to 2DG, as 2DG inhibits glycolysis and thus pyruvate
production. This decreased pyruvate supply for mitochondrial oxidation is the most likely
cause for the decrease in OCR observed upon 2DG injection. Secondly, acute butyrate
exposure led to a simultaneous increase in OCR and decrease in ECAR. Altered pyruvate
flux seems to be the most likely cause, since pyruvate can either enter the mitochondria,
which contributes to OCR, or be converted into lactate, which contributes to ECAR.

To test our hypothesis that glucose-derived pyruvate flux is altered by acute exposure
to butyrate, we exposed 25 mM cultured HT29 cells to butyrate in the presence or absence
of 2.5 mM glucose. We observed that the increase in OCR upon butyrate exposure did
indeed not occur when there was no glucose present in the medium (Figure 5A,B). In
addition, the decrease in ECAR upon acute butyrate exposure was less apparent when no
glucose was available (Figure 5C,D). These results show that glucose is required to achieve
the acute increase in OCR and decrease in ECAR upon butyrate exposure. To confirm that
butyrate specifically alters pyruvate flux toward mitochondrial oxidation and away from
lactate production, we inhibited the mitochondrial pyruvate carrier (MPC) with UK5099.
Exposure to UK5099 induced a slight but significant (p < 0.0001) decrease in OCR and
increase in ECAR. This confirms that UK5099 indeed inhibits MPC, since pyruvate can
no longer directly enter the mitochondria and is therefore converted into lactate. When
MPC was blocked with UK5099, the increased OCR (Figure 5E,F) and decreased ECAR
(Figure 5G,H) following acute butyrate exposure were no longer observed. We therefore
believe that the increase in OCR observed in the cultured cell lines HT29 and Caco-2, as
well as the decrease in ECAR that could be seen in HCT116 and primary pig colonocytes,
was not due to direct oxidation of butyrate but instead resulted from a rerouting of the
pyruvate away from lactate production and towards mitochondrial oxidation.
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response following butyrate exposure in absence or presence of 2.5 mM glucose in the medium (representative experiment
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or presence of 2.5 mM glucose in the medium (representative experiment of N = 2 independent experiments consisting
of n = 6 wells). (E,F) OCR response upon inhibition of pyruvate oxidation using 8 µM UK5099 in the presence of 2.5 mM
glucose (representative experiment of N = 3 independent experiments consisting of n = 13–15 wells). (G,H) ECAR response
upon inhibition of pyruvate oxidation using 8 µM UK5099 (representative experiment of N = 3 independent experiments
consisting of n = 13–15 wells; significance was determined for one representative experiment using repeated-measures
ANOVA followed by Bonferroni’s post-hoc analysis. p < 0.01 = **, p < 0.001 = ***, p < 0.0001 = ****).
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3. Discussion

Although butyrate is considered the main energy source for in vivo colonocytes [1], it
is unclear whether ex vivo and cultured colonocytes are able to oxidize butyrate. Whether
or not oxidation can take place in a certain cell is an important issue with regard to the
usability of these models when investigating butyrate’s translatable mechanisms of action.
In this study, we have used both cultured and primary cells, as well as high- and low-
glucose culturing conditions, to show that butyrate does not seem to be primarily oxidized
in cultured cells but instead fuels lipid droplets and alters pyruvate flux away from lactate
production and towards mitochondrial oxidation. These findings imply that the nutritional
environment is an important determinant for the effects of butyrate in cultured cells. Our
research shows that a better understanding of the in vivo nutrient composition, and how
different nutritional environments may affect the impact of butyrate, is needed to further
study the effects of butyrate on colonocyte metabolism.

We hypothesize that the effects that we observed on pyruvate flux and lipid accumu-
lation are intertwined. Even though butyrate oxidation is sometimes even observed in
cultured cells [35], we observed that butyrate primarily alters the flux of pyruvate towards
mitochondrial oxidation. We conclude this based on four main findings: (1) increased
OCR upon butyrate exposure elicits a simultaneous decrease in ECAR, indicating that less
lactate is being produced; (2) the increased OCR following butyrate exposure is largely
blunted by the addition of 2DG, indicating that part of the OCR is derived from glucose;
(3) the absence of glucose in the medium prevented the butyrate-induced increase in OCR;
(4) UK5099, which blocks pyruvate entry into mitochondria, likewise largely prevents
the butyrate-induced increase in OCR. At the same time, we saw a clear increase in lipid
droplets, even in the more oxidative low-glucose-cultured HT29 cells, indicating that this
was not solely due to diminished mitochondrial capacity of the cells. Likely, butyrate is
directly incorporated into lipids, because it does not have to be broken down completely
into acetyl-CoA but can be directly elongated from butyryl-CoA [36]. As others have
suggested before us, we hypothesize that mitochondrial pyruvate oxidation is increased
to generate the NADPH and acetyl-CoA that are needed to convert butyryl-CoA into
lipids. There are multiple pathways through which NADPH can be generated. One is
through the PPP, which has been observed to be upregulated upon butyrate exposure by
some [23,28–30], but not by us and others [29]. NADPH can also be generated through
the cytosolic conversion of malate to pyruvate or citrate to oxoglutarate, which regenerate
cytosolic NADPH. For this, pyruvate would need to be (partially) oxidized in the TCA cycle
first, which would explain the need for the increased pyruvate oxidation observed in our
experiments. Mechanistically, butyrate possibly alters pyruvate flux by post-translationally
inhibiting pyruvate dehydrogenase kinase (PDK), which alleviates the inhibition of PDK
on pyruvate dehydrogenase (PDH) [37]. Butyrate was also shown to inactivate SIRT3,
resulting in increased acetylation and activation of PDH [38]. In this way, more pyruvate is
able to be converted into acetyl-CoA and enter the TCA cycle. Butyrate was also shown to
increase the expression of pyruvate kinase M2 (PKM2), which stimulates the conversion of
phosphoenolpyruvate (PEP) to pyruvate [39]. Another possibility is that butyrate directly
interacts with the PDH complex through butyrylation or crotonylation, but we have not
yet found any clear evidence for this, neither in our own experiments nor in the literature.
Although it remains unclear by which means, our data clearly indicate the upregulation of
pyruvate oxidation, which is possibly driven by an increased need for NADPH.

Butyrate is already known to be incorporated into lipids [40]. Butyrate possibly
contributes to de novo lipogenesis through a shared pool with ketone bodies that is separate
from that of acetate and propionate [41]. Interestingly, the degree to which butyrate
contributes to de novo lipogenesis seems to be largely dependent on substrate availability.
The presence of glucose in the medium was found to greatly increase the amount of
butyrate that is converted into lipids [40,41]. Corresponding with our findings, butyrate
was found to increase lipogenesis in cultured colonocytes [23]. However, on a whole-body
level, butyrate administration mainly decreased lipid accumulation in the liver [42,43].
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The decreased lipid storage in the liver upon butyrate exposure could be due to increased
lipolysis in hepatocytes themselves and other cells such as adipocytes [44–47], but possibly
also because of increased lipid storage in other organs, such as the muscle [45] or even
intestine. Nonetheless, it is unclear whether butyrate can induce lipid storage in vivo in the
colon, and how the nutritional environment affects the outcome of butyrate exposure in
the colon. In our experiments, there was no difference in lipogenesis between high- and
low-glucose-cultured cells, but the low-glucose-cultured cells still had sufficient pyruvate
and glutamine available to them, which could partly replace the role of glucose breakdown
as a source for NADPH generation. Our experiments thus show that it is important to
further investigate the impact of metabolic phenotype as well as nutritional environment
to better understand the effects of butyrate.

In our experiments, it remains undetermined whether the lipids are directly derived
from butyrate, or perhaps originate from other substrates. We therefore propose to perform
isotope-tracing studies for future experiments to deepen our understanding of the fate
of butyrate under different nutritional environments and metabolic phenotypes. Never-
theless, our experiments have already generated novel insights into the role of butyrate
in regulating colonocyte metabolism. An interesting proposition for why cultured cells
store butyrate as lipid droplets, instead of oxidizing this substrate, is that these cells are
maintained in a nutrient-rich environment, and butyrate is an excess nutrient that can be
stored for later use.

4. Materials and Methods
4.1. Cell Culture

The human colorectal (adeno)carcinoma cell lines HT29 (HTB-38), Caco-2 (HTB-
37) and HCT116 (CCL-247) were originally obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA). The 25 mM glucose-cultured HT29, Caco-2 and
HCT116 cells were maintained in 25 mM glucose Dulbecco’s Modified Eagle’s Medium
(DMEM) (42430-025, Thermo Fisher Scientific, Pittsburgh, PA, USA, 227289), supplemented
with 10% v/v fetal bovine serum (FBS), 25 mM HEPES (15630-056, Thermo Fisher Scientific,
Pittsburgh, PA, USA, 227289), 1 mM sodium pyruvate (11360-039, Thermo Fisher Scientific,
Pittsburgh, PA, USA, 227289), 1% v/v glutamax 100× (35050-038, Thermo Fisher Scientific,
Pittsburgh, PA, USA, 227289) and 1% v/v antibiotic–antimycotic (15240-062, Thermo Fisher
Scientific, Pittsburgh, PA, USA, 227289). The 0.5 mM glucose-cultured HT29 cells were
cultured in DMEM (11966-025, Thermo Fisher Scientific, Pittsburgh, PA, USA, 227289)
supplemented with 0.5 mM glucose, 10% v/v FBS, 25 mM HEPES, 1 mM sodium pyruvate,
1% v/v glutamax 100× and 1% v/v antibiotic–antimycotic. The 0.5 mM glucose cells were
passaged at least 10 times before being used for experiments. All cell cultures were grown
in T75 flasks and kept in a humidified incubator at 37 ◦C in 95% air and 5% CO2. Cells
were passaged or used for experiments when a confluency of 80–90% was reached.

4.2. Intestinal Colon Cell Isolation

Colon samples were obtained from slaughterhouse material of approximately 10-week-
old piglets. A 20 cm section of mid-sigmoid colon was obtained immediately after slaughter,
and intestines were placed in aerated Krebs Henseleit Buffer containing 5 mM glucose
(hereafter referred to as modified-KHB, K3753, Sigma-Aldrich, St. Louis, MO, USA) sup-
plemented with 2.5 g/L Bovine serum albumin (BSA, A7906, Sigma-Aldrich, St. Louis,
MO, USA). After this, the intestines were flushed with modified-KHB. Then, they were
inverted, and a sac was created using dialysis clamps by filling them with modified-KHB.
The sacs were incubated for 20 min in Ca2+-free KHB buffer containing 20 mM EDTA and
10 mM DTT in a shaking 37 ◦C water bath. Following this washing step, intestines were
re-verted and filled with an isolation buffer containing Ca2+-free KHB buffer, 2.5 g/L BSA
and 400 U/mL hyaluronidase type IV (3884, Sigma-Aldrich, St. Louis, MO, USA). After a
fifteen-minute incubation, the intestines were gently massaged and cells were collected,
washed and counted using a Cellometer K4 (Nexcelom Bioscience, Lawrence, MA, USA),
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and viability was simultaneously assessed by staining with ViaStain (CS2-0106, Nexcelom
Bioscience, Lawrence, MA, USA). Cells were taken up in KHB medium containing 1 mM
HEPES (4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid) and 2.5 mM glucose, pH 7.4.

4.3. Metabolic Flux Analysis with Seahorse XFe96 Analyzer

To investigate the long-term metabolic consequences of butyrate, both the 25 mM
and 0.5 mM glucose-cultured HT29 cells were exposed to 1 mM butyrate for 72 h prior
to metabolic analysis. Cells were first exposed for 48 h in a T75 flask, after which they
were detached and taken up in fresh medium containing 1 mM butyrate. Then, cells were
counted and seeded in a XF96 cell plate at 3× 104 cells/well (25 mM glucose-cultured cells)
or 3.5 × 104 (0.5 mM glucose-cultured cells). After an additional 24 h of exposure to 1 mM
butyrate, medium was switched to XF DMEM assay medium supplemented with either
25 or 0.5 mM XF glucose (for the 25 and 0.5 mM glucose-cultured HT29 cells, respectively),
2 mM XF glutamine and 1 mM XF pyruvate. In addition, 1 mM sodium butyrate was
added to the exposed cells. XF96 cell plates were kept in a non-CO2 incubator set to 37 ◦C
for one hour prior to metabolic flux analysis.

To assess the acute metabolic consequences of butyrate, 25 mM glucose-cultured HT29,
Caco-2 and HCT116 cells were plated in a XF96 cell plate at 3 × 104 cells/well and left to
attach overnight. One hour prior to the metabolic analysis, culture medium was replaced
with bicarbonate-free KHB supplemented with 2.5 mM glucose and 1 mM HEPES, set at
pH 7.4 at 37 ◦C. XF96 cell plates were kept in a non-CO2 incubator set to 37 ◦C for one hour
prior to metabolic flux analysis.

The primary isolated colonocytes were taken up in KHB medium containing 1 mM
HEPES and 2.5 mM glucose set at pH 7.4, and plated at a concentration of 9× 104 cells/well
in a XF96 cell plates that were coated with Cell-Tak (354240, Corning, New York, NY, USA),
according to the manufacturer’s protocol. XF96 cell plates were kept in a non-CO2 incubator
set to 37 ◦C for one hour prior to metabolic flux analysis.

A Seahorse Extracellular XFe96 analyzer (Seahorse Bioscience, Agilent Technologies,
Santa Clara, CA, USA) was used to assess the metabolic consequences of butyrate pre-
treatment or acute exposure. To assess the metabolic consequences of 72 h exposure to
butyrate, extracellular flux analyses (XF assays) were performed using serial injections of
1.5 µM Oligomycin (O4875), 1.5 µM carbonyl cyanide-p-trifluoromethoxyphenylhydrazone
(FCCP; C2920), a combination of 1.25 µM Rotenone (R8875) and 2.5 µM Antimycin A
(A8674), all purchased from Sigma-Aldrich. The XF assay protocol typically consisted of
12 measurement cycles of 3 min, with 2 min of mixing between measurements. To measure
the acute effects of butyrate, XF assays were performed using serial injections of 0, 0.5, 5
or 10 mM sodium butyrate, 50 mM 2-deoxyglucose (2DG) and a combination of 1.25 µM
Rotenone and 2.5 µM Antimycin A. To block the mitochondrial pyruvate carrier, 8 µM
UK5099 (PZ0160, Sigma-Aldrich, St. Louis, MO, USA).

4.4. Imaging Procedure

Following the XF analysis, cells were fixed using 4% neutrally buffered formalin
solution (NBF, 252549, Sigma-Aldrich, St. Louis, MO, USA). Nuclei were stained using 4′,6-
diamidino-2-phenylindole (DAPI, Sigma-Aldrich, St. Louis, MO, USA), and images were
taken of the middle of each well using the Cytation 1 (Nexcellom Biosciences, Lawrence,
MA, USA). Images were processed in ImageJ (Win64, version 1.52, NI, USA). First, the
background was subtracted. Then, the nucleus-covered area was determined by setting
an automatic threshold, and the number of nucleus-covered pixels was determined. The
number of pixels covered with nuclei was then used to normalize the XF assays.

4.5. Oil-Red-O Staining and Image Processing

To assess lipid accumulation following 72 h butyrate exposure, 0.5 mM and 25 mM
glucose-cultured HT29 cells were exposed to 1 mM butyrate in a T75 flask for 48 h. Then,
they were plated in tissue-culture-treated 12-well plates for an additional exposure of 24 h
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to 1 mM butyrate, after which they were stained with Oil-Red-O (ORO, O0625, Sigma-
Aldrich, St. Louis, MO, USA). A working solution of 0.3% v/v ORO in 60% isopropanol
was used to stain lipid droplets. First, cells were fixed using 4% NBF, followed by ORO
and DAPI staining to stain lipid droplets and cell nuclei, respectively.

Images were obtained using the Leica DM8 inverted microscope, using a 40×magnifi-
cation. Gain, image intensity and exposure time were kept equal for all images obtained.
ImageJ was used to quantify areas covered by lipid droplets. First, the image was converted
to an 8-bit image and inverted. Then, the background was subtracted using a rolling ball
algorithm. The threshold was then manually set and kept the same for all images, and the
selected area was measured. In addition, the DAPI images were used to count the number
of nuclei, and the area covered was corrected for the number of cells in the picture.

4.6. WST-1 Cell Viability Assay

To assess cell viability following 48 h butyrate exposure, 25 mM glucose-cultured HT29
cells were seeded at 30,000 cells/well. Following overnight attachment, cells were exposed
to only medium or 1 mM butyrate for 48 h. Then, WST-1 reagent (5015944001, Roche, Basel,
Switzerland) was added according to the manufacturer’s protocol, and absorbance was
read using the Synergy™ HT Multi-Detection Microplate Reader (BioTek Instruments, Inc.,
Winooski, VT, USA) at 450 nm. Cell viability is reported as percentage of control.

4.7. RNA Extraction and Semi-Quantative Real-Time Polymerase Chain Reation (qPCR)

Cells were washed with cold Hanks’ Balanced Salt Solution (HBSS) and directly
scraped using RLT buffer supplemented with 1% β-mercaptoethanol. RNA was then
isolated using the RNeasy mini kit (74106, Qiagen, Hilden, Germany). The quality and
quantity of purified RNA was determined using a NanoDrop spectrophotometer (ND-
1000). cDNA was synthesized with the iSCRIPT cDNA synthesis kit (170-8891, BioRad,
Hercules, CA, USA) in the Eppendorf-Master cycler (5′ 25 ◦C, 30′ 42 ◦C, 5′ 85 ◦C, 10 ◦C
∞). Gene expression was measured using the CFX96 Touch Real-Time PCR Detection
System (BioRad, Hercules, CA, USA) and SYPBR green master mix (1725006CUST, BioRad,
Hercules, CA, USA). The cycling program was set as follows: 3′ 95 ◦C, 40 cycles of 15” 95
◦C and 45” 60 ◦C, 1′ 95 ◦C and 1′ 65 ◦C, followed by melt curve analysis by increasing
temperature every 10” with increments of 0.5 ◦C. Primers were designed using NCBI
Primer BLAST. Normalized expression was calculated according to the ∆∆Cq method, by
making use of multiple reference genes (rsp15 and B2M), using the CFX maestro software
(BioRad, Hercules, CA, USA). An overview of the primers used can be found in Table 1.

Table 1. Details of primers.

Symbol RefSeq Forward Primer * Reverse Primer * bp

RSP15 NM_003194.5 AGAAGCCGGAAGTGGTGAAGAC AGAGGGATGAAGCGGGAGGAG 220

B2M NM_004048.4 TGCCGTGTGAACCATGTG GCGGCATCTTCAAACCTC 92

ACLY NM_001096.3 GGACTTCGGCAGAGGTAGAG TGATCAGCTGGTCTGGCTTG 227

ACACA NM_198834.3 GGGCTAGGTCTTTTTGGAAGTG GGCCAAGGGAGATGGTTCAT 104

G6PD NM_001360016.2 AAGCGCAGACAGCGTCAT TGAAGGTGTTTTCGGGCAGA 215

PGD NM_002631.4 TGTGACTGGGTGGGAGATGA TCCCTGATCTTTGGCAGCAG 257

* from 5′ to 3′, bp = fragment length.

4.8. Statistical Analysis and Data Representation

Data are presented as mean ± SD, unless stated otherwise. Statistical analyses and
data visualizations were performed using GraphPad Prism v.9 (GraphPad Software, CA,
USA). Statistical testing was performed using Student’s t-test and two-way or repeated-
measures ANOVA, followed by Bonferroni’s post-hoc analysis when appropriate and as
stated in the figure legends. A p-value of <0.05 was considered statistically significant.
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5. Conclusions

Butyrate is not oxidized to a great extent in high- and low-glucose-cultured HT29 cells,
but instead accumulates in lipid droplets. Acute exposure to butyrate directly increases
the OCR of various cultured cells; however, the increase in OCR observed is not caused by
butyrate oxidation but reflects increased pyruvate oxidation. These findings are important
for interpreting the role of butyrate in regulating colonic metabolism in health and disease.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms222010937/s1, Figure S1: Relative gene expression of key pentose phosphate pathway
genes in long-term butyrate-exposed high- and low-glucose HT29 cells; Figure S2: Viability and cell
count of HT29 cells after 48 h exposure to 1 mM butyrate.
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