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A B S T R A C T   

This paper develops a multi-objective modeling approach for the scheduling of harvesting resources in the Thai 
sugar industry, in which different objectives stemming from different industry stakeholders are concurrently 
optimized with the overall goal to create a more sustainable sugar supply chain. In addition to traditional 
economic objectives, the environmental impact of sugarcane farm burning is included into the model to better 
reflect the current harvesting practice, where sugarcane growers often resort to burning their fields due to the 
lack of available harvesting resources during the season. An evolutionary algorithm based on a variant of Particle 
Swarm Optimization (PSO) is also devised to help solve the resulting Multi-Objective Harvesting Resource 
Scheduling Problem (MOHRSP), which normally becomes intractable for real-life problem instances. We find 
that the proposed PSO framework is notably efficient as it provides diverse sets of non-dominated solutions with 
markedly low coefficients of variation in a reasonable amount of time. We also find that, by sacrificing a slight 
amount of sugar production volume, the whole sugar supply chain could be largely improved, especially for the 
sugarcane growers, whose profitability turns out to be sensitive in the trade-offs with other objectives.   

1. Introduction 

In Thailand, sugarcane is one of the major agricultural crops that 
annually generates more than 6 billion US dollars, according to a report 
by the Office of Cane and Sugar Board (OCSB). Based on this figure, 
Thailand has been ranked fourth in the list of the world’s largest sugar 
producers in 2019; and, it is even ranked second in terms of the world’s 
largest sugar exporters, due to a comparatively low domestic demand 
(International Sugar Organization). 

Compared to other sugar-producing countries, the structure of the 
Thai sugar supply chain is relatively unique, as it involves many 
smallholder sugarcane growers (around 400,000 households), a limited 
number of highly regulated sugar mills, and complex harvesting regu
lations with many governing bodies. For instance, the sugarcane har
vesting (milling) period in Thailand is fixed and controlled by the OCSB, 
where growers (mills) may start harvesting (milling) as early as late 
November, but no later than early May of the subsequent calendar year. 
The exact time period may, however, vary from region to region 

depending on the end of the rainy season. Furthermore, field-by-field 
harvesting practice is commonly exercised by most sugarcane growers 
in order to prevent harvest mixing; but, due to their limited small farm 
areas, these sugarcane growers may need to collaborate with other 
growers so that the mill’s transportation requirements are satisfied. To 
ensure that all members within a grower group will be equally paid 
based on their sugarcane yields, while satisfying transportation quotas 
set by the mills, some growers may need to sacrifice their own benefits 
by harvesting their fields long before or after the optimal harvesting 
periods, which, in turn, leads to disputes among involved growers 
(Thuankaewsing et al., 2015). 

The performance of the Thai sugar supply chain is further affected by 
the current cultivation practice, where cultivation patterns across 
parties are approximately the same in terms of timeline. This results in 
significant supply fluctuations – and so production problems from the 
sugar mill’s perspective. On the one hand, when sugarcane supply is 
low, milling activities might be interrupted since a constant minimum 
feed of sugarcane must be maintained to avoid stoppages (Kadwa & 
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Bezuidenhout, 2015). On the other hand, when sugarcane supply is 
excessive, long queues of transporting trucks might be formed, requiring 
additional time for it to be milled. However, since sugarcane quality, as 
measured by the Commercial Cane Sugar (CCS) value, gradually drops 
after harvesting, the longer the sugarcane waits in queues, the less sugar 
is extracted (Larrahondo et al., 2006). 

Another problem that often arises during sugarcane harvesting sea
sons in Thailand is the environmental problem caused by the harvesting 
(mal)practice, known as sugarcane farm burning. Sugarcane farm 
burning is a common pre-harvesting process in Thailand – and some 
other countries, including the United States – where sugarcane fields are 
set on fire in order to remove leaves and tops of sugarcane before har
vesting (Pongpat et al., 2017). While sugarcane farm burning helps save 
scarce labor forces and speed up the harvesting process, it unfortunately 
creates environmental issues, such as the emissions of greenhouse gases 
(GHG) and the spread of fine particulate matter (PM2.5 for short), not 
only in the immediate vicinity of the field but also in the whole region 
(Yuttitham et al., 2011). Although, the Thai government prohibits sug
arcane farm burning, the amount of sugarcane burnt in 2019 as reported 
by the OCSB was still far too high – about 61.11% of the total sugarcane 
supply, or 80 out of 130 million tons. 

To reduce the amount of burnt sugarcane, along with its adverse 
environmental effects, more efficient harvesting machinery has recently 
been promoted by a number of government agencies, as well as com
mercial sugar mills (Amaruchkul, 2021). Unfortunately, most sugarcane 
growers in Thailand are incapable of owning such machinery due to its 
relatively high upfront investment costs. Rather, the machinery is often 
rented by groups of growers and shared during the harvesting season 
(Pitakaso & Sethanan, 2019). Since the available harvesting machinery 
is practically limited and insufficient for all grower demands, especially 
in the peak harvesting periods, sugarcane farm burning is inevitably 
adopted. Efficient harvesting resource scheduling is therefore crucial not 
only for the improvement of related parties’ performance but also for the 
reduction of sugarcane farm burning occurrences, which will, in turn, 
promote sustainability within the Thai sugar supply chain. 

Notwithstanding such a fact, the efficiency of harvesting resource 
scheduling is not straightforward, as there are still conflicts among 
supply chain actors. For instance, grower’s benefits are generally worse 
off when the mill’s benefits are emphasized (Jarumaneeroj et al., 2021). 
In order to create a more sustainable sugar production environment, 
collaborative practices that take into account conflicting objectives of 
different supply chain actors are therefore needed. To this end, Thuan
kaewsing et al. (2015) proposed a collaborative framework that let a 
mill centrally decide harvesting periods of all contract growers, i.e. 
harvesting plans, so that the amount of sugar produced was maximized, 
while growers were equally paid based on yield proportion. The authors 
found that, with this collaborative scheme, harvesting operations could 
be significantly improved at both mill’s and grower’s ends. Their result 
was in-line with previous works by Kaewtrakulpong (2008) and Kumar 
et al. (2021), where centralized planning was one of the key success 
factors for improving supply chain efficiency. 

Grunow et al. (2007), however, pointed out that these optimal long- 
term harvesting plans were rarely executable throughout the season as 
there were a number of uncontrollable factors that might affect har
vesting activities in future periods, e.g. the variability of available har
vesting resources or weather conditions. To better address these issues, 
Jarumaneeroj et al. (2021) suggested that a more detailed operational 
decision framework should be constructed and executed alongside long- 
term harvest planning so that proper recourse actions could be promptly 
devised and executed. Furthermore, this framework should focus not 
only on the economic objectives of growers and mills but also on other 
key environmental objectives due to the ever-increasing urgency of 
environmental concerns (He et al., 2020; Kumar et al., 2020). 

Considering these findings, this paper aims to contribute to these 
developments by introducing the Multi-Objective Harvesting Resource 
Scheduling Problem (MOHRSP): an operational modeling approach that 

concurrently considers four different objectives of different sugar supply 
chain stakeholders – namely (i) the total amount of sugar produced at 
the mill, (ii) the average profit of growers from selling sugarcane and its 
byproducts, (iii) the industrial opportunity loss, and (iv) the environ
mental impact resulting from the current harvesting practice. Further
more, a heuristic solution methodology based on Particle Swarm 
Optimization (PSO) is devised to help solve intractably large MOHRSP 
instances. With this proposed framework, planners would be able to 
create well-balanced harvesting schedules that meet the needs of 
different supply chain actors. It also allows planners to explore the 
feasibility of such schedules based on the current harvesting conditions, 
which is of paramount importance to the development of proper 
recourse actions throughout the planning horizon. 

The remainder of this paper is organized as follows. In Section 2, 
related literature concerning decision problems in the sugar supply 
chains and the multi-objective modeling approaches is thoroughly dis
cussed, followed by the formal description of the MOHRSP in Section 3. 
Section 4 then introduces the proposed PSO-based solution methodol
ogy, while Section 5 subsequently presents all computational results. 
Finally, Section 6 concludes our work and discusses further research 
directions. 

2. Related literature 

2.1. Managing operations in sugar supply chains 

While the supply chains of world sugar producers may vary 
depending on local restrictions and practices, their operational settings 
are, however, similar, especially the costly inbound logistical processes 
from which sugarcane is cultivated, harvested, and transported to sugar 
mills (Morales Chavez et al., 2020). Related to these activities, previous 
research has focused mostly on three important issues: (i) yield fore
casting, (ii) harvest planning, and (iii) transportation scheduling. 

Yield forecasting is among the most fundamental issues in sugar 
supply chains as it significantly affects the economic performance of 
both growers and mills. This is due to the fact that sugarcane prices 
predominantly depend on the sugar content of sugarcane, as measured 
by the Commercial Cane Sugar (CCS) value. Reliable CCS value fore
casting thus provides a good basis for timing decisions related to har
vesting and milling. While more accurate CCS forecasting techniques are 
desirable for both players, most are naturally imprecise due to several 
uncontrollable factors, including weather and cultivation conditions 
(Som-ard et al., 2018). Traditionally, CCS values – and so the optimal 
harvesting periods of sugarcane fields – are estimated based on the 
elapsed time after a predefined date, coupled with some simulation and 
statistical models as demonstrated by Jiao et al. (2005) and Pagani et al. 
(2017). Apart from these approaches, more advanced prediction 
methods that rely on image processing techniques have also been 
explored (see Zhao et al. (2016) and Som-ard et al. (2018), for example). 

Harvest planning is another operational issue in sugar supply chains 
that has been widely studied in the literature. Thuankaewsing et al. 
(2015), for instance, addressed the harvest scheduling problem in 
Thailand, whose objective was to maximize the total amount of sugar 
produced while equalizing grower equity (as measured by yield pro
portion) based on a tabu search heuristic. Florentino et al. (2018) and 
Jarumaneeroj et al. (2021), on the other hand, proposed genetic 
algorithm-based approaches for their respective harvest scheduling 
problems with multiple conflicting objectives in two different supply 
chain settings. Particularly, Florentino et al. (2018) established har
vesting plans that maximized the quality of sugarcane supply and, at the 
same time, minimized the movement of mechanical harvesters across 
harvesting periods in the Brazilian sugar supply chain, while Jar
umaneeroj et al. (2021) further included supply variability to better 
reflect the fluctuation of sugarcane supply for the Thai context. 

Apart from tactical harvest planning, more detailed transportation 
scheduling of harvesting resources, such as mechanical harvesters, was 
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also explored by Sethanan and Neungmatcha (2016), Cerdeira-Pena 
et al. (2017), and Pitakaso and Sethanan (2019) – each with different 
objectives and different solution methodologies. In this regard, Sethanan 
and Neungmatcha (2016) explored and solved the so-called Harvester 
Route Planning Problem (HRPP) in the Thai sugar supply chain by a 
variant of PSO so that sugarcane yields and total traveling distance of 
harvesters were concurrently optimized. Pitakaso and Sethanan (2019) 
later extended this work by combining the Harvester Assignment 
Problem (HAP) with the HRPP. The resulting problem was then solved 
by means of an Adaptive Large Neighborhood Search (ALSN) heuristic 
so that the harvested sugarcane farm areas were maximized. Cerdeira- 
Pena et al. (2017), on the contrary, regarded the HRPP as a variant of the 
Traveling Salesman Problem (TSP), and subsequently developed a 
Simulated Annealing (SA) algorithm to solve such a problem. 

In addition to the three main problems discussed above, some 
research has specifically focused on the impacts of sugarcane quality 
dynamics on the logistics of harvested sugarcane. Satidnuwat (2005), for 
example, evaluated three different queuing systems in the Thai sugar 
supply chain so that the arrival streams of transporting trucks at mills 
became more stable. They found that different queuing systems should 
be adopted according to sugarcane output and a higher proportion of 
fixed queues typically resulted in lesser waiting times. Likewise, Lamsal 
et al. (2016) determined the optimal fleet size of sugarcane trans
portation in the United States that minimized the cumulative deviation 
between unloading targets and actual deliveries to the facility. 

More elaborate sugar supply chain problems that integrated two or 
more supply chain activities were also investigated in the literature. For 
instance, Grunow et al. (2007) explored the production of sugar in 
Venezuela by disintegrating the whole decision framework into three 
different planning processes, starting from long-term cultivation plan
ning to weekly harvest scheduling and crew dispatching at operational 
levels. In addition to the production of sugar, Paiva and Morabito (2009) 
included the production of other sugarcane byproducts, such as ethanol 
and molasses, into consideration, with the overall goal to maximize the 
entire agro-industrial contribution. The Harvest Front Scheduling 
Problem (HFSP) that combined harvest planning and resource sched
uling was also studied by Junqueira and Morabito (2019), based on the 
operations of the Brazilian sugar supply chain. 

It should be remarked that the work presented here has a similar 
scope as that of Junqueira and Morabito (2019) in terms of operational 
setting, as both focus on the detailed operations of harvesting resource 
scheduling in sugar supply chains. Nonetheless, our problem setting – 
and so our proposed solution methodology – entails not only economic 
benefits of growers and mills but also social benefits from the deploy
ment of various harvest fronts that differ greatly in terms of availability, 
harvesting efficiency, and environmental impacts. Furthermore, two 
different sets of harvesting resources, namely harvest fronts and trans
porting trucks, are separately tracked at a more granular level so that the 
quality dynamics of harvested sugarcane are properly captured. 

2.2. Multi-objective modeling approaches 

Multi-objective optimization is one of the multi-criteria decision- 
making approaches that concerns the determination of solutions to 
problems with two or more conflicting objectives. Solving multi- 
objective optimization problems is ordinarily challenging, especially 
when a large number of objectives are concurrently optimized, as each 
of these objectives generally differs in terms of measurement. Although, 
it is possible to combine different objectives into one single expression 
by means of scalarization or goal programming techniques (see e.g. 
Florentino et al., 2018; Tiammee and Likasiri, 2020), the practicality of 
such techniques is limited as they could provide only one Pareto optimal 
solution at a time. Also, their solution quality largely depends on the 
weight at which decision-makers assign to each objective (Khorram
shahgol & Hooshiari, 1991). 

To better avoid subjectivity of parameter weighing, multi-objective 

optimization problems are often solved by means of Multi-Objective 
Evolutionary Algorithms (MOEAs), or nature-inspired search heuris
tics, whose concepts are based on the evolution of solution populations 
(Coello et al., 2007). Prominent examples of MOEAs that have been 
widely studied in the literature include the Reference-Point Based Many- 
Objective NSGA-II – or NSGA-III, for short – and Particle Swarm Opti
mization (PSO). 

NSGA-III is a Pareto dominance-based algorithm that allows only 
elite populations (solutions) to reproduce, while maintaining the di
versity of non-dominated solutions by relative distances between such 
solutions and predefined reference points (Emmerich & Deutz, 2018). 
According to Deb and Jain (2014) and Li et al. (2019), the performance 
of NSGA-III was superior to that of other MOEAs, as it better explored 
multi-dimensional solution spaces – and so trade-offs between objectives 
– especially in higher dimensional problems. PSO, on the other hand, is a 
nature-inspired search heuristic that mimics the food-finding behavior 
of animal flocks (Kennedy & Eberhart, 1995). The fundamental concept 
of PSO is rather simple and intuitive, as it iteratively adjusts the posi
tions of solutions – or particles in the PSO context – based on both in
dividual and social learning mechanisms until a predefined stopping 
criterion has been met (see Freitas et al. (2020) for a review of PSO). 

While both NSGA-III and PSO have been successfully applied to 
various single- and multi-objective optimization applications (see e.g. 
Chutima and Chimklai (2012); Sheikh et al. (2018); Dehghani et al. 
(2019); Mahmud et al. (2019); Worasan et al. (2020); Jarumaneeroj 
et al., (2021); and Hop et al., (2021)), the implementation of PSO is 
relatively simpler, with less computational requirements (Sethanan & 
Neungmatcha, 2016). Accordingly, PSO is adopted as a solution meth
odology in this research; and, the detailed implementation of our pro
posed PSO framework is described in Section 4. 

3. Problem Definition 

3.1. Multi-Objective harvesting resource scheduling problem (MOHRSP) 

Consider a number of sugarcane fields to be harvested and all 
available harvesting resources, namely transporting trucks (T) and 
harvest fronts (R), in a particular harvesting period (p). Let J = {1,2, ...
, |J|} denote a set of such fields, each of which may be owned by the same 
or different growers in I – and, when grower i ∈ I owns multiple sug
arcane fields, the expression J(i) describes the set of sugarcane fields in J 
that belongs to grower i. Besides ownership, sugarcane fields j1 and j2 ∈

J may also differ in terms of location (f), estimated sugarcane yield (μ, in 
ton), and estimated sugarcane quality (π, in CCS). 

All of these sugarcane fields are inter-connected with one another, 
and with the contracted mill (∅) whose crushing capacity is m tons/ 
hour, by an arc set A. The distance (d, in km), along with the traveling 
time (τ, in hour) required by harvesting resources to traverse between a 
pair of locations, is a priori knowledge that has been embedded within 
the arc set A. For simplicity, we assume that there is only one type of 
transporting trucks (T), all of which are equivalent in terms of efficiency 
– i.e. loading capacity (l, in ton), fuel consumption rate (gu, in liter/km), 
and CO2 emission rate (ge, in kgCO2/liter) – and, the fuel price is 
assumed to be constant at gc Baht/liter. 

In addition to the set of transporting trucks (T), let R = {R1 ∪ R2 ∪

R3} be the set of harvest fronts to be deployed according to the current 
Thai harvesting practice. To be precise, we denote R1, R2, and R3 as the 
sets of mechanical harvester-based, labor-based, and sugarcane burning- 
based harvest fronts, respectively. Similar to transporting trucks, harvest 
fronts of the same class (r in Ri) are equivalent in terms of operational 
efficiency and characteristics, including (i) harvesting speed (hs

r, in ton/ 
hour), (ii) harvesting cost (hc

r , in Baht/ton), (iii) fuel consumption rate 
(hg

r , in liter/ton), (iv) CO2 emission rate (he
r , in kgCO2/ton), (v) sugar loss 

ratio due to sugarcane trash (hd
r ), (vi) sugarcane loss ratio (hl

r), (vii) cane 
leaf/bract or byproduct ratio (hu

r ), (viii) soil recovery cost (hi
r, in Baht/ 
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plot), (ix) penalty (incentive) for burnt sugarcane (green sugarcane) as 
stipulated by the OCSB (hf

r , in Baht/ton), (x) daily cropping capacity (δr,

in plot), and (xi) loss of sugarcane quality (φr, in %CCS/hour). 
As harvesting resources are typically rented and shared by grower 

groups within the same area, the main decision that needs to be made is 
how to allocate and route these limited harvesting resources such that 
the following objectives are concurrently optimized.  

• Maximizing sugar production at the mill.  
• Maximizing average grower profit from selling sugarcane and its 

byproducts.  
• Minimizing opportunity loss from harvesting.  
• Minimizing CO2 emissions from the overall inbound logistical 

processes. 

In terms of modeling, this Multi-Objective Harvesting Resource 
Scheduling Problem (MOHRSP) might be regarded as a variant of the 
Multiple Traveling Salesman Problem (mTSP), with additional con
straints related to harvesting, transporting, and milling activities, in 
which harvesting resources and sugarcane fields correspond to sales
persons and customers in the context of mTSP, respectively. 

For ease of modeling, we also assume that each sugarcane field leads 
to harvests that fit within the truck loading capacity. Larger fields are 
thus split into smaller sub-fields or plots, each with a yield close to the 
truck loading capacity. For example, given a truck loading capacity of 25 
tons, a sugarcane field whose estimated sugarcane output is 47 tons will 
be split into two sub-fields, one with an output of 25 tons and the other 
with 22 tons, respectively. Once split, these sugarcane plots will be 
further grouped into clusters (G), whose number is equally set to the 
number of machine-based harvest fronts to better reflect the current 
harvesting practice, in which harvesting machinery is rented and shared 
within a group of growers during the season. Based on this setting, each 
plot will be visited by a pair of harvesting resources only once; and, if a 
mechanical harvester is deployed, its respective routing must be within 
the same cluster. 

Finally, we assume that sugarcane cultivating cost (v, in Baht/ton), 
the minimum CCS value of sugarcane fields to be harvested (q, in CCS), 
the average prices of sugarcane (s, in Baht/ton-CCS), raw sugar (ϑ, in 
Baht/ton), and sugarcane leaf/bract (ε, in Baht/ton), as well as the 
incentive (fine) for higher (lower) sugarcane quality (b, in Baht/CCS), 
are the same across sugarcane plots. Please refer to Table A.1 in Ap
pendix A for the summary of all MOHRSP parameter values and their 
data sources. 

3.2. Mathematical formulation 

3.2.1. Sets and parameters  

• I is a set of sugarcane growers.  
• J(i) is a set of sugarcane plots that belong to growers i ∈ I.  
• R is a set of harvest fronts {R1 ∪ R2 ∪ R3}, where R1, R2, and R3 

denote the sets of mechanical harvester-based, labor-based, and 
sugarcane burning-based harvest fronts, respectively.  

• T is a set of transporting trucks. 
• G is a set of harvesting clusters for mechanical harvester-based har

vest fronts.  
• ∅ denotes the sugar mill.  
• A is a set of arcs connecting sugarcane plots in J and the sugar mill ∅.  
• da denotes the traveling distance of arc a ∈ A (in km).  
• τa denotes the traveling time required by harvesting resources to 

traverse arc a ∈ A (in hour).  
• fj denotes the location of sugarcane plot j ∈ J(i) in a two-dimensional 

plane.  
• πj denotes the estimated CCS value of sugarcane plot j ∈ J(i).  
• μj denotes the estimated yield of sugarcane plot j ∈ J(i) (in ton).  

• gu denotes the fuel consumption rate of transporting trucks (in liter/ 
km).  

• ge denotes the emission rate of CO2 from diesel fuel (in kgCO2/liter).  
• gc denotes the diesel fuel price (in Baht/liter).  
• hs

r denotes the harvesting speed of harvest front r ∈ R (in ton/hour).  
• hc

r denotes the variable cost of harvest front r ∈ R (in Baht/ton).  
• hg

r denotes the fuel consumption rate of harvest front r ∈ R (in liter/ 
ton).  

• he
r denotes the emission rate of CO2 from harvest front r ∈ R (in 

kgCO2/ton).  
• hd

r denotes the estimated ratio of sugarcane trash from harvest front 
r ∈ R.  

• hl
r denotes the estimated ratio of yield loss from harvest front r ∈ R.  

• hf
r denotes incentive or penalty from deploying harvest front r ∈ R (in 

Baht/ton).  
• hi

r denotes estimated soil recovery cost caused by harvest front r ∈ R 
(in Baht/plot).  

• hu
r denotes the estimated ratio of sugarcane leaf and bract that can be 

retrieved from harvest front r ∈ R.  
• δr denotes the maximum harvesting capacity of harvest front r ∈ R 

(in plot).  
• φr denotes the estimated deterioration rate of sugarcane quality after 

harvesting by harvest front r ∈ R (in %CCS/hour).  
• m denotes the sugarcane crushing rate of sugar mill (in ton/hour).  
• l denotes the loading capacity of transporting trucks (in ton).  
• v Denotes average sugarcane cultivation cost (in Baht/ton).  
• s denotes the average selling price of sugarcane (in Baht/ton-CCS).  
• ε denotes the average selling price of sugarcane leaf and bract (in 

Baht/ton).  
• ϑ denotes the average selling price of raw sugar (in Baht/ton). 
• q denotes the minimum CCS value for sugarcane plots to be har

vested (in CCS).  
• b denotes incentive or penalty from supplying sugarcane with CCS 

value greater or lower than q to the mill (in Baht/CCS).  
• p denotes the final timestamp of the current harvesting period (in 

hour). 

3.2.2. Decision variables  

• xra is a binary decision variable indicating whether harvest front r ∈
R is assigned to sugarcane plot j ∈ J(i) based on the traversal of arc 
a ∈ A, where j ∈ J(i) is the head of a.  

• yta is a binary decision variable indicating whether transporting 
truck t ∈ T is assigned to sugarcane plot j ∈ J(i) based on the 
traversal of arc a ∈ A, where j ∈ J(i) is the head of a.  

• θrj is a non-negative decision variable indicating the arrival time of 
harvest front r ∈ R at sugarcane plot j ∈ J(i), or equivalently the time 
period at which harvesting activity can commence.  

• σtj is a non-negative decision variable indicating the arrival time of 
transporting truck t ∈ T at sugarcane plot j ∈ J(i).  

• ρtj is a non-negative decision variable indicating the arrival time of 
transporting truck t ∈ T at the mill for the delivery of harvests from 
sugarcane plot j ∈ J(i), or equivalently the time period at which 
unloading activity can commence.  

• αa is a binary decision variable indicating unloading sequences of 
sugarcane plot j ∈ J(i) based on the traversal of arc a ∈ A, where j ∈
J(i) is the head of a.  

• kx
jr, ky

jt, and kα
j are counter decision variables that help eliminate 

subtours of all harvesting resources. 

In addition to the above decision variables, the following is a list of 
auxiliary decision variables required for the MOHRSP. 
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• ωtjr is a non-negative decision variable indicating the total time spent 
by transporting truck t ∈ T assigned to a pair of sugarcane plot j ∈
J(i) and harvest front r ∈ R, right after cropping until unloading.  

• βtjr is a non-negative decision variable indicating the waiting time of 
transporting truck t ∈ T assigned to a pair of sugarcane plot j ∈ J(i)
and harvest front r ∈ R. 

3.2.3. Objective functions 
Equations (i) - (iv) are the objective functions of the MOHRSP. The 

first two expressions aim to maximize economic benefits of the mill and 
the growers, while the last two aim to minimize opportunity loss and 
environmental impact from the deployment of all harvesting resources 
during the planning horizon. 
Maximize: 

z1 :
∑

j∈J
πjμj −

∑

t∈T

∑

j∈J

∑

r∈R
ωtjrφrπjμj −

∑

r∈R

∑

a∈A
xrahd

r πjμj (i)  

z2 :avg
i∈I

⎛

⎜
⎝

∑

r∈R

∑

a∈A
xraμj

(
b
(
πj − q

)
+s − v − hf

r +εhu
r

)
−
∑

t∈T

∑

j∈J

∑

r∈R
ωtjrπjμjφrb

−
∑

r∈R

∑

a∈A
xra
(
hc

rμj+dagugc) −
∑

j∈J

(
d(∅,j)+d(j,∅)

)
gugc

⎞

⎟
⎠

(ii)  

Minimize:   

z4 :
∑

r∈R

∑

a∈A
xra

(
daguge + μjh

g
r ge + μjh

e
r

)
+
∑

j∈J
(d(∅,j) + d(j,∅))guge (iv) 

From the mill’s perspective, the total amount of sugar produced 
could be maximized by reducing the loss of CCS from harvesting and 
waiting, along with the sugarcane trash that has been mixed with the 
sugarcane supply, as computed by Expression (i). Regarding the 
grower’s perspective, Expression (ii) maximizes average grower profit 
from the selling of sugarcane and its byproducts, less all the costs 
incurred from related activities. Opportunity loss from CCS decay and 
byproducts when compared to the best harvesting practices, together 
with soil recovery cost, is expressed by Equation (iii). The overall CO2 
emissions from the resulting schedule is computed by Equation (iv), 
which includes the emissions of CO2 from both sugarcane farm burning 
and the routing of all harvesting resources. 

3.2.4. Constraints 
Similar to the mTSP, Constraints (1) – (4) state that, over a har

vesting period p, a pair of harvest front and transporting truck could be 
assigned to at most one tour, while the flow of these harvesting resources 
is preserved by Constraints (5) and (6). Since we divide all sugarcane 
fields into plots whose sugarcane yields are close to the truck loading 
capacity, each plot will be then visited by a pair of harvesting resources 
only once according to Constraints (7) and (8). Furthermore, Constraints 
(9) – (12) ensure that there will be no route reversal or subtour in the 
schedules of these harvesting resources, while Constraint (13) limits the 
total number of plots to be visited by each harvest front during the 
planning period p. 

∑

i∈J
xr,(i,∅) ≤ 1 ;∀r ∈ R (1)  

∑

j∈J
xr,(∅,j) ≤ 1 ;∀r ∈ R (2)  

∑

i∈J
yt,(i,∅) ≤ 1 ;∀t ∈ T (3)  

∑

j∈J
yt,(∅,j) ≤ 1 ;∀t ∈ T (4)  

∑

i∈J
xr,(i,j) =

∑

n∈J
xr,(j,n) ; ∀r ∈ R,∀j ∈ J (5)  

∑

i∈J
yt,(i,j) =

∑

n∈J
yt,(j,n) ; ∀t ∈ T,∀j ∈ J (6)  

∑

r∈R

∑

i∈J:i∕=j

xr,(i,j) = 1 ;∀j ∈ J (7)  

∑

t∈T

∑

i∈J:i∕=j

yt,(i,j) = 1 ; ∀j ∈ J (8)  

kx
jr ≥ kx

ir + xr,(i,j) − M(1 − xr,(i,j)) ;∀r ∈ R, ∀i, j ∈ J : i ∕= j (9)  

kx
jr ≥ xr,(∅,j) − M(1 − xr,(∅,j)) ;∀r ∈ R,∀j ∈ J (10)  

ky
jt ≥ ky

it + yt,(i,j) − M(1 − yt,(i,j)) ; ∀t ∈ T,∀i, j ∈ J : i ∕= j (11)  

ky
jt ≥ yt,(∅,j) − M(1 − yt,(∅,j)) ; ∀t ∈ T, ∀j ∈ J (12)  

∑

a∈A
xra ≤ δr ; ∀r ∈ R (13) 

In addition to harvesting resource scheduling, we also need to cap
ture unloading sequences of transporting trucks at the mill, i.e. α(i,j), 
which are modeled through Constraints (14) – (19). 
∑

i∈J
α(i,∅) = 1 (14)  

∑

j∈J
α(∅,j) = 1 (15)  

∑

i∈J
α(i,j) =

∑

n∈J
α(j,n) ; ∀j ∈ J (16)  

∑

i∈J:i∕=j

α(i,j) = 1 ;∀j ∈ J (17)  

kα
j ≥ kα

i +α(i,j) − M(1 − α(i,j)) ;∀i, j ∈ J : i ∕= j (18)  

kα
j ≥ α(∅,j) − M(1 − α(∅,j)) ;∀j ∈ J (19) 

Since a pair of harvest front and transporting truck must be present at 
a sugarcane field before harvesting starts, the arrival time for both at a 
sugarcane plot j ∈ J(i), as denoted by θrj and σtj, must therefore be the 

z3 : ϑ

⎛

⎜
⎜
⎝

∑

t∈T

∑

j∈J

∑

r∈R
πjμj

[
ωtjr

(
φr − φr(green)

) ]

+
∑

r∈R

∑

a∈A
xraπjμj

[(
hd

r − hd
r(burnt)

)
+
(

hl
r − hl

r(burnt)

) ]

⎞

⎟
⎟
⎠+

∑

r∈R

∑

a∈A
xraμj

[
ε
(

hu
r(green)

− hu
r

) ]
+
∑

r∈R

∑

a∈A
xrahi

r (iii)   
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same as stated by Constraint (20). The dynamics of these arrival times 
must also follow Constraints (21) – (24), which could be regarded as a 
variant of time window constraints in the classical Vehicle Routing 
Problems with Time Windows (VRPTW). More specifically, the arrival 
time of harvest front r ∈ R at sugarcane plot j ∈ J must be at least the 
arrival time at its previously visited sugarcane plot i plus (i) the har
vesting time and (ii) the traversal time from sugarcane plot i to j; and, the 
sum of these time quantities must not exceed the latest time that a 
harvest front is allowed to visit such a plot (Inequalities (21) and (23)). 
Likewise, the arrival time of transporting truck t ∈ T at sugarcane 
plotj ∈ J must be at least the arrival time at its previously visited sug
arcane plot i plus (i) the harvesting time that depends on the assigned 
harvest front, (ii) the traversal time from sugarcane plot i to the mill, (iii) 
the unloading time, and (iv) the time required for traversing back to 
sugarcane plot j; and, the sum of these time quantities must not exceed 
the latest time that a transporting truck is allowed to visit such a plot 
(Inequalities (22) and (24)). 
∑

r∈R
θrj =

∑

t∈T
σtj ; ∀j ∈ J (20)  

θrj ≥ θri +
μi

hs
r
+ τ(i,j) − M(1 − xr,(i,j)) ; ∀r ∈ R,∀i, j ∈ J : i ∕= j (21)  

σtj ≥

⎛

⎜
⎜
⎝

σti +
∑

r∈R

∑

n∈J
(xr,(n,i)

μi

hs
r
)

+τ(i,∅) +
μi

m
+ τ(∅,j) − M

(
1 − yt,(i,j)

)

⎞

⎟
⎟
⎠ ; ∀t ∈ T, ∀i, j ∈ J : i ∕= j

(22)  

θrj ≤ p −
μj

hs
r
− τ(j,∅) ;∀r ∈ R,∀j ∈ J (23)  

σtj ≤ p −
∑

r∈R

∑

i∈J
(xr,(i,j)

μj

hs
r
) − τ(j,∅) ; ∀t ∈ T, ∀j ∈ J (24) 

As there is typically one unloading station at a mill, we need Con
straints (25) – (27) to help control unloading sequences. Technically 
speaking, the arrival time of transporting truck t ∈ T must follow Con
straints (25) and (26), while the difference between arrival times of any 
two consecutive trucks at the mill must be at least the time required for 
unloading activity of the first arriving truck, as stated by Constraint (27). 
It is worth remarking that Constraint (27) holds true only when trans
porting truck t is unloaded right after transporting truck t’, i.e. α(i,j) =

yt’(k,i) = yt(k,j) = 1, or else it would provide no additional information for 
unloading time of transporting truck t. Based on these arrival time dy
namics, we can then define the total time spent by transporting truck t ∈
T assigned to a pair of sugarcane plot j ∈ J and harvest front r ∈ R, right 
after cropping until unloading, as well as its waiting time, by Equations 
(28) and (29). Lastly, Constraints (30) – (40) define the boundary of all 
predefined decision variables. 

ρtj ≥

⎛

⎜
⎜
⎜
⎜
⎝

σtj +
∑

r∈R

∑

i∈J
xr,(i,j)

μj

hs
r

+τ(j,∅) − M

(

1 −
∑

i∈J
yt,(i,j)

)

⎞

⎟
⎟
⎟
⎟
⎠

;∀t ∈ T, ∀j ∈ J (25)  

ρtj ≤ p ; ∀t ∈ T, ∀j ∈ J (26)  

ρtj − ρt’ i ≥

⎛

⎜
⎜
⎜
⎝

μi

m

− M

(
3 − α(i,j)

− yt’(k,i) − yt(k,j)

)

⎞

⎟
⎟
⎟
⎠

;∀t, t’ ∈ T : t ∕= t’,∀i, j, k ∈ J

(27)  
∑

r∈R
ωtjr = (ρtj − σtj) ;∀t ∈ T,∀j ∈ J (28)  

Fig. 1. Overview of the proposed PSO framework.  
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∑

t∈T
βtjr =

⎛

⎜
⎝

∑

t∈T
ωtjr

−
∑

r∈R

∑

a∈A
xraμj

(
hs

r + τ(j,∅)

)

⎞

⎟
⎠ ; ∀j ∈ J,∀r ∈ R (29)  

xra ∈ {0, 1} ;∀r ∈ R,∀a ∈ A (30)  

yta ∈ {0, 1} ;∀t ∈ T,∀a ∈ A (31)  

αa ∈ {0, 1} ; ∀a ∈ A (32)  

θrj ≥ 0 ;∀r ∈ R, ∀j ∈ J (33)  

σtj ≥ 0 ;∀t ∈ T,∀j ∈ J (34)  

ρtj ≥ 0 ;∀t ∈ T, ∀j ∈ J (35)  

ωtjr ≥ 0 ; ∀t ∈ T, ∀j ∈ J, ∀r ∈ R (36)  

βtjr ≥ 0 ;∀t ∈ T,∀j ∈ J,∀r ∈ R (37)  

kx
jr ≥ 0 and kx

jr is Integer ; ∀j ∈ J,∀r ∈ R (38)  

ky
jt ≥ 0 and ky

jt is Integer ; ∀j ∈ J,∀t ∈ T (39)  

kα
j ≥ 0 and kα

j is Integer ;∀j ∈ J (40)  

4. Proposed methodology 

The MOHRSP in this paper is solved by means of PSO, where the 
solutions, or particles, in a swarm are iteratively improved based on 
learning mechanisms until one of the stopping criteria has been met. The 
structure of our proposed PSO is provided in Fig. 1 and Algorithm B.1 in 
Appendix B, while sub-computational modules required for such a 
framework are listed below (please refer to Algorithms B.2 – B.8 for 
more details). 

• Preprocessing (Prep): this module is initially called for the initiali
zation of all PSO inputs.  

• Initial Solution Generation (IntGen): this module is called for the 
generation of initial PSO solutions.  

• Particle Reposition (ParRep): this module is one of the PSO 
improvement instruments that relies on the particle’s learning 
mechanisms, in which particle positions are iteratively adjusted 
based on the global best solution (gbest) and their velocity.  

• Particle Regeneration (ParRegen): this module contains another PSO 
improvement mechanism, intermittently called every fixed number 
of iterations to avoid being stuck at local solutions.  

• Local Search (LocalSearch): this module contains the last PSO 
improvement mechanism that helps guide the algorithm towards the 
optimal solutions and, at the same time, avoid being stuck at local 
solutions.  

• Schedule Adjustment (SchedAdj): this module is one of the repairing 
mechanisms called whenever a sugarcane plot is infeasibly paired 
with the selected harvesting resources due to insufficient harvesting 
and unloading times.  

• Repair (Repair): this module is another repairing mechanism that 
helps maintain solution feasibility when schedule conflicts occur. 

It is worth noting that, when PSO is applied to the Single-Objective 
Harvesting Resource Scheduling Problems (SOHRSP), gbest is defined 
as the solution that provides the best objective value pertaining to that 
domain. However, when PSO is applied to the MOHRSP, gbest is reported 
as a set of non-dominated solutions that form a Pareto-front rather than 
a more limited set of optimal solutions from the individual SOHRSP. In 
addition, the proposed PSO framework restarts every fixed number of 

iterations so that the MOHRSP solution space is better explored. 

4.1. Preprocessing (Prep) 

When Prep is called, all MOHRSP inputs concerning sugarcane 
growers, sugarcane fields, and harvesting resources, along with other 
MOHRSP and PSO parameters, will be imported into the PSO frame
work. Once completed, sugarcane fields whose yields are greater than 
the truck loading capacity will be divided into sub-fields, or plots, and 
later grouped into clusters based on the K-mean clustering algorithm. To 
better reflect the current harvesting practice, the number of clusters in 
each instance will be equally set to the number of machine-based harvest 
fronts. 

Based on this setting, Prep will greatly help reduce the PSO search 
space while generating efficient schedules for machine-based harvest 
fronts as they are assumed to be routed within their respective clusters. 

4.2. Initial solution generation (IntGen) 

Similar to other population-based algorithms, we need to define the 
PSO solution structure so that solution attributes related to harvesting 
schedules are adequately recorded and maintained. To do so, we will 
represent each MOHRSP solution – or a PSO particle – as a vector of 
length 4 N, where N denotes the number of sugarcane plots to be har
vested and the multiplication of four indicates the four main information 
dimensions of completed harvesting schedules. More specifically, for 
each sugarcane plot j ∈ J, a PSO particle will record the information of 
harvest front and transporting truck assignments, together with their 
respective start times and completion times according to particular 
harvesting and unloading sequences. For ease of encoding and decoding, 
each of these four information dimensions will be stored in each array as 
a real number between 0 and 1. 

The initial PSO solutions will be generated under this particle 
structure based on a simple prioritization scheme that gives more weight 
to green harvesting practices. To be precise, labor-based harvest fronts 
will be first assigned, followed by machine-based then sugarcane 
burning-based harvest fronts, respectively. Every time a harvest front is 
assigned to a sugarcane plot, IntGen will create a possible harvesting 
time slot with respect to the current schedule. If the front is feasibly 
paired with the selected sugarcane plot, the schedule will be updated; 
else, SchedAdj will be called, or a new harvest front will be selected, as 
the remaining working time of the current front is insufficient for any of 
the remaining sugarcane plots. 

Once a front is feasibly paired with a sugarcane plot, IntGen will then 
select a transporting truck and pair it with the current schedule. This 
whole process is continually repeated until all the plots are assigned, or 
there is no available harvesting resources for the remaining plots (i.e. the 
current harvesting plan cannot be successfully executed). 

IntGen will terminate once a predefined number of feasible solutions, 
denoted by NumPar, has been successfully generated. Once terminated, 
each of these solutions will be further assessed and randomly assigned 
an initial velocity (vel0), which will be subsequently updated along with 
the individual and global best solutions, as denoted by pbest and gbest, 
during the search. 

It is worth noting that, while updating the harvesting schedule, none 
of the MOHRSP constraints can be violated. For instance, when a 
machine-based harvest front is assigned, it must be assigned to only one 
cluster. 

4.3. Particle Reposition (ParRep) 

ParRep is one of the PSO improvement mechanisms that is repeatedly 
called during the PSO execution in order to improve the fitness of cur
rent solutions. But, in order to avoid excessive repairing, harvesting 
resources of all particles will be fixed according to gbest, while the 
remaining attributes will be updated based on their velocity. The 

P. Jarumaneeroj et al.                                                                                                                                                                                                                         



Computers & Industrial Engineering 162 (2021) 107694

8

detailed implementation of ParRep is quite similar to that of IntGen, 
except for the assignment of harvesting resources to plots, which is a 
priori knowledge from gbest. During ParRep execution, SchedAdj might 
be called if the resulting harvesting schedule is found infeasible; else, the 
resulting solution will be updated with a new particle’s velocity ac
cording to the update formulae proposed by Eberhart and Shi (2000) 
(see Appendix C). 

4.4. Particle Regeneration (ParRegen) 

As we observe that PSO solutions converge relatively quickly in the 
preliminary experimental runs, another improvement mechanism, 
namely ParRegen, is therefore embedded in the PSO framework to avoid 
getting stuck at local optima. In terms of algorithmic setting, ParRegen 
will be called every fixed number of iterations (RegenIters). When Par
Regen is called, the solutions will be ranked and regenerated according 
to their fitness values. More specifically, particles that provide the 
lowest 20% of fitness values will be eliminated and replaced with newly 
generated particles by IntGen, while the velocity of those belonging to 
the next 30% will be adjusted based on the Bożena’s method (Borowska, 
2017) (see Appendix D). 

4.5. Local search (LocalSearch) 

LocalSearch is the last regularly called improvement mechanism. It is 
called every time a solution is found feasible in order to guide the al
gorithm towards Pareto-optimal solutions, and, at the same time, help it 
avoid being stuck at local optima. When LocalSearch is called, a com
bination of the following local search operators will be called according 
to a random number LS_Random. 

Table 1 
Summary of the MOHRSP information for each instance size.  

Instance size Number of 

Sugarcane 
Plot 

Sugarcane 
Grower 

Machine Based Harvest 
Front 

Labor-Based Harvest 
Front 

Sugarcane Burning Based Harvest 
Front 

Transporting 
Truck 

Small 20 4 1 2 3 9 
Moderate 50 8 1 8 11 30 
Large 150 24 3 24 33 90 
Practical 300 50 6 48 66 180  

Table 2 
Summary of the proposed PSO parameter settings.  

Parameters Values 

Number of particles 15 
Particle’s information dimension 4 N 
Value of each information dimension [0,1] 
PSO iterations 1000 
Number of iterations before calling ParRegen 5 
Number of iterations before restarting 50 
Maximum number of local search iterations 50 
Maximum search velocity 10% of the particle position, or ±0.1  
Inertia coefficient (w)  0.729 
Acceleration coefficients (cp,cg)  1.49455 
Inertia Damping Ratio 0.95  

Table 3 
Computational results of PSO when compared to the time-restricted CPLEXa, in terms of solution quality and computational timeb, for four SOHRSP settings.  

Problem Size Values Sugar Production (Ton-CCS) Grower Profit (Baht/Field) Opportunity Loss (Baht) Environmental Impact (KgCo2) 

Small Solution Deviationc (%) 0%  2.42%  0.28%  0.13% 
Coefficient of Variation 8.63× 10-6   1.61× 10-3   4.04× 10-5   5.48× 10-3  

CPU Time (sec) 7.56  16.09  7.81  17.33 
Moderate Coefficient of Variation 7.14× 10-5   5.49× 10-3   5.48× 10-5   7.58× 10-5  

CPU Time (sec) 41.18  25.05  21.38  27.48 
Large Coefficient of Variation 3.01× 10-4   8.63× 10-3   6.95× 10-4   2.12× 10-3  

CPU Time (sec) 306.9  63.79  151.96  303.35 
Practical Coefficient of Variation 6.93× 10-4   1.13× 10-2   4.98× 10-3   2.81× 10-2  

CPU Time (sec) 1,418.62  263.56  219.09  1,014.08  

a The computational time of CPLEX is limited to three hours. 
b The reported solution deviations, coefficients of variation, and CPU times are averaged over 10 experimental instances, each with 10 PSO replications. 
c The time-restricted CPLEX could only solve small instances while it terminates with a “run-out-of-memory” error for larger instances. 

Table 4 
Computational results of the proposed PSO in terms of average percentage differences between the best and the worst PSO solutions with respect to each domain and 
problem size.  

Problem Size % Difference between the best and the worst solutions in each domaina 

Sugar Production (Ton- 
CCS) 

Grower Profit (Baht/ 
Field) 

Opportunity Loss 
(Baht) 

Environmental Impact 
(KgCo2) 

Average Computational Timeb 

(Seconds) 

Small  4.98%  43.30%  14.75%  83.04% 7.56 – 17.14 
Moderate  3.76%  51.09%  13.76%  47.94% 47.07 – 62.86 
Large  3.42%  45.75%  12.84%  50.51% 274.59 – 786.08 
Practical  3.33%  42.57%  11.65%  49.57% 946.94 – 3,208.46  

a The percentage differences between the best and the worst PSO solutions with respect to each domain are averaged over 10 experimental instances, each with 10 
PSO replications. 

b The ranges of average computational time reported are based on average computational times over 10 experimental instances, each with 10 PSO replications. 
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• FrontRelocation: a randomly selected sugarcane plot will be relocated 
from one harvest front to another until an improvement is found or 
the maximum number of local search iterations is reached.  

• PlotSwap: two sugarcane plots assigned to different harvest fronts 
will be swapped until an improvement is found or the maximum 
number of local search iterations is reached.  

• PlotRelocation: two sugarcane plots assigned to a harvest front will be 
internally swapped until an improvement is found or the maximum 
number of local search iterations is reached. 

It is worth remarking that, during the execution of LocalSearch, none 
of the MOHRSP constraints can be violated. And, if the resulting solution 
to LocalSearch is infeasible due to schedule conflicts, the Repair module 
will be subsequently called. 

4.6. Schedule adjustment (SchedAdj) 

SchedAdj is one of the repairing mechanisms called whenever the 
remaining operational times of harvesting resources are insufficient for 
harvesting and unloading activities (i.e. the completion times of such 

Table 5 
Fitness values of best PSO solutions across domains, where (Best) denotes the best objective value found and the remaining are the average solution deviations when 
compared to the best objective value in such a domain.  

Problem Size Values Sugar Production (Ton-CCS) Grower Profit (Baht/Field) Opportunity Loss (Baht) Environmental Impact (KgCo2) 

Small Sugar Production (Ton-CCS) (Best) − 30.28% − 9.34% − 541.84% 
Grower Profit (Baht/Field) − 4.31% (Best) − 1.32% − 24.72% 
Opportunity Loss (Baht) − 4.44% − 9.45% (Best) − 1.86% 
Environmental Impact (KgCo2) − 4.47% − 5.92% − 0.27% (Best) 

Moderate Sugar Production (Ton-CCS) (Best) –33.07% − 11.26% − 114.16% 
Grower Profit (Baht/Field) − 3.04% (Best) − 2.00% − 9.76% 
Opportunity Loss (Baht) − 3.27% − 27.13% (Best) − 0.71% 
Environmental Impact (KgCo2) − 3.32% − 25.49% − 0.47% (Best) 

Large Sugar Production (Ton-CCS) (Best) − 39.17% − 13.52% − 102.29% 
Grower Profit (Baht/Field) − 3.21% (Best) − 1.46% − 6.63% 
Opportunity Loss (Baht) − 3.37% –22.98% (Best) − 0.88% 
Environmental Impact (KgCo2) − 3.41% − 21.98% − 0.33% (Best) 

Practical Sugar Production (Ton-CCS) (Best) − 37.49% − 12.54% − 98.45% 
Grower Profit (Baht/Field) − 3.11% (Best) − 1.34% − 7.45% 
Opportunity Loss (Baht) − 3.28% − 20.17% (Best) − 0.97% 
Environmental Impact (KgCo2) − 3.33% − 21.06% − 0.15% (Best)  

Fig. 2. Pareto-optimal plane of a practical size instance that illustrates conflicts among the four objectives.  
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resources exceed the predefined planning horizon). When SchedAdj is 
called, the sequences of all previously assigned plots to such resources 
will be adjusted, one at a time, according to the resources’ buffer times 
until the plot is feasibly assigned; else, SchedAdj terminates and returns 
the adjusted harvesting schedule for further harvesting resource 
scheduling. 

4.7. Repair (Repair) 

Repair is another repairing mechanism called whenever the gener
ated harvesting schedule is infeasible due to schedule conflicts (i.e. there 
is a time period at which a harvesting resource is assigned to multiple 
harvesting/unloading tasks). The detailed implementation of Repair is 
quite similar to that of SchedAdj, where we adjust the timing of con
flicting tasks, one at a time, until the conflicts are settled. However, if 
Repair fails, such a change will not be applied to the current harvesting 
schedule, and the change will be added to a Tabu list to prevent it from 
being selected in subsequent iterations. 

5. Results & discussion 

5.1. Instance generations 

The proposed PSO framework has been tested on four different 
instance sizes that greatly differ in terms of numbers of growers, sug
arcane plots, and harvesting resources. All parameters related to these 
instances are generated based on the sugarcane growing area in the 
North-Eastern region of Thailand, where the majority of growers 
generally own between 2 and 50 rai (1 rai = 0.395 acres) of sugarcane 
fields (Kaewtrakulpong, 2008). 

The sugarcane field’s attributes, as well as the availability of each 
harvest front, are generated according to surveys from the OCSB and the 
Department of Agriculture (publicly available at www.ocsb.go.th and 
www.doa.go.th), while the number of transporting trucks is set at 150% 
of all harvest fronts combined as there are typically a large number of 
trucks available in the industry. 

For each instance size, 10 different experimental instances with 
similar problem characteristics are created, resulting in a total of 40 test 
instances. Table 1 below, together with Table A.1 in Appendix A, sum
marizes all of the information required for each of the MOHRSP in
stances and data sources. 

In addition to the MOHRSP parameters, the PSO parameters, as 
shown in Table 2, are set based on either previous literature or results 
from preliminary experimental runs that provide the best solutions to 
the SOHRSP that maximizes the first MOHRSP objective, i.e. total 
amount of sugar produced. Lastly, all experiments are conducted on a 
computer with an Intel® CoreTM i7-9750H processor and a memory of 
16 GB, for computational consistency. 

5.2. PSO results for single-objective problems 

To assess the performance of our proposed solution methodology, we 
first apply the PSO framework to the four SOHRSPs. We then compare 

the PSO results with those of the time-restricted CPLEX, in terms of both 
solution quality and computational time, as reported in Table 3. 

In terms of solution quality, the proposed PSO framework is 
comparably efficient, as it could find solutions that are relatively close to 
the optimal solutions for small instances. However, since no optimal 
solutions are reported for larger instances due to problem complexity, 
we can only assess the PSO solution quality based on the coefficients of 
variation. According to Table 3, the coefficients of variation among the 
PSO solutions are exceptionally low indicating that there is not much 
variability within the PSO solution pools. 

Although, the computational time of PSO varies greatly across 
problem sizes and the underlying objectives, it well terminates within an 
acceptable time period for all four SOHRSP instances, considering that 
the problem of this magnitude is repeatedly solved on a daily basis. 

5.3. PSO results for the MOHRSP 

To better explore the multi-dimensional solution space of the 
MOHRSP, the proposed PSO has been applied to the underlying problem 
in a two-phase fashion, where the Pareto-optimal solutions to each of the 
four SOHRSPs are first determined as initial solutions for the MOHRSP in 
the second phase. It should be remarked that, while this solution 
approach is somewhat computationally expensive, especially when 
there are more objectives to be optimized, the coverage of resulting 
solutions is superior, as all extreme solutions in each domain are well 
explored and used as initial solutions for the MOHRSP in the latter 
phase. 

When the proposed PSO terminates, all of the remaining non- 
dominated solutions will be reported and summarized in terms of so
lution ranges and fitness values across all domains, as shown in Tables 4 
and 5, respectively. 

According to Table 4, the average percentage differences in sugar 
production at the mill do not differ much across problem settings, as the 
gaps between the best and the worst PSO solutions are less than 5%. 
Nonetheless, from Table 5, we find that the solutions with higher sugar 
production tend to significantly underperform in the other three ob
jectives, mainly because of the increased use of sugarcane farm burning. 
The rationale behind this is due to the fact that sugarcane farm burning 
provides relatively low yield losses, when compared to other greener 
harvesting practices. Thence, solutions that prioritize sugar production 
are more likely to adopt such fronts prior to the remaining. However, 
since sugarcane farm burning reduces the amount of sugarcane 
byproducts that can be sold to bioelectricity plants for energy genera
tion, while requiring additional soil recovery costs, the solutions that 
maximize sugar production are therefore the worst from other stake
holder’s perspectives. 

Although, sugarcane farm burning may seem to be the best in terms 
of sugar production in this computational setting, the mills, in practice, 
ordinarily prefer fresh sugarcane over the burnt one due its purity and 
risk of losing quality from the CCS decay. If these indirect factors are 
considered, mills might be better off foregoing the additional amount of 
sugar produced by farm burning, as they will benefit from better sugar 
quality, while government agencies and communities will also benefit 

Table 6 
Average objective values of the remaining PSO solutions to one practical instance, when compared to the best objective values (in bold) across all domains.  

Objective Sugar Production (Ton-CCS) Grower Profit (Baht/Field) Opportunity Loss (Baht) Environmental Impact (KgCo2) 

Sugar Production (Ton-CCS)  77,291.79  3,123.46  1,239,933.71  1,112,963.90 
Grower Profit (Baht/Field)  75,100.56  4,994.35  1,137,928.28  644,120.88 
Opportunity Loss (Baht)  75,075.71  3,978.55  1,120,854.66  626,135.01 
Environmental Impact (KgCo2)  74,926.72  4,124.83  1,121,664.38  597,121.85 
Average Objective Values of the Pre-screened Solutions  75,947.63  4,424.23  1,156,982.44  870,233.54 
%Differencea  − 1.74%  + 41.65%  + 6.69%  + 21.81% 
Evaluation (Baht)  − 216,851.32  +390,231.00  +82,951.27  +48,546.07  

a The reported values are based on the differences between the average objective values of the pre-screened solutions and those of the SOHRSP that maximize the 
total amount of sugar produced (i.e. the first row). 
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from the greener production activities. 
Also seen from Table 5, sugarcane growers are the most vulnerable 

actors in the Thai sugar supply chain, as their average profits are heavily 
affected in the trade-offs with other objectives. This is due to the dif
ferences in harvest fronts deployed across problem settings. To be pre
cise, sugarcane farm burning is only emphasized in the mill-oriented 
solutions, while the remaining solutions tend to favor green harvesting 
practices; and, labor-based harvesting is the most ideal practice in terms 
of both economic and social benefits, due to its cheaper operating cost 
and lower CO2 emissions. Unfortunately, the number of labor-based 
harvest fronts is, in practice, limited and thus insufficient to satisfy all 
sugarcane plots in any harvesting period during the season. Subse
quently, machine-based harvest fronts are deployed, followed by sug
arcane burning-based harvest fronts – each of which generates more 
economic losses and higher sugar (CCS) deterioration rates. While so
lutions that optimize the last three objectives (i.e. grower profit, op
portunity loss, and environmental impact) are similar in terms of 
harvesting resource preference, the routing of these resources, however, 
differs, where the least CO2 emission routing typically leads to a situa
tion with lower average grower profits and higher yield losses, due to the 
negligence of sugarcane field’s attributes, such as field ownership and 
the CCS value of such fields. 

The conflicts among these objectives could also be visualized by 
Fig. 2 that illustrates the Pareto-front of one practical size instance in a 
three-dimensional plane. Based on Fig. 2, it is evident that the mill’s 
objective (denoted by cane input) indeed conflicts with other objectives, 
while average grower profit shows positive correlations with opportu
nity loss and environmental impact, as they all prioritize green har
vesting practices over sugarcane farm burning. 

Considering these findings, we can infer that, without proper oper
ational scheduling that concurrently considers different objectives of 
different supply chain actors, some or all members of the supply chain 
will be worse off, and no sustainability would be created within the 
whole industry. In addition to these direct benefits, the proposed PSO 
framework also supports planners in exploring the feasibility of various 
harvesting schedules taking into account current harvesting conditions 
so that proper recourse actions could be devised and executed in a timely 
fashion. 

5.4. Implementation of the PSO in practice 

Although, the proposed PSO could provide a diverse pool of well- 
balanced solutions to the MOHRSP, the number of non-dominated so
lutions is far too great for planners to decide which harvesting plans 
should be selected and executed according to current harvesting con
ditions. We therefore adopt a simple pre-screening procedure similar to 
that of Jarumaneeroj et al. (2021) to help planners select solutions that 
best suit current conditions for further evaluation. Technically speaking, 
this procedure applies a criterion for each of the objectives set by the 
mill and growers to remove the solutions that are less likely to be 
accepted by these key supply chain actors. 

Based on this pre-screening procedure, we can significantly reduce 
the excessive number of PSO solutions from over 15,000 to about 40 
solutions. Table 6, for instance, shows the average objective values of 
the remaining solutions to one practical instance, when compared to the 
best objective values across all domains. 

From Table 6, it could be seen that, with a slight decrease in sugar 
production volume, average grower profit, opportunity loss, and envi
ronmental impact, could be largely improved; and, if we convert these 
improvements into monetary units, based on raw sugar and carbon 
credit selling prices, the total surplus is clearly more than the loss in 
sugar production. 

Considering all the supply chain improvements that our proposed 
PSO offers, and the forthcoming regulations that will further stress the 
environmental concerns of sugar production-related activities (Yusup 
et al., 2015), we expect that our proposed PSO framework will be of 

paramount importance to not only the improvement of key supply chain 
actor’s performances but also the development of a more sustainable 
sugar-production environment in the long term. 

6. Conclusions 

The upstream logistics of the Thai sugar industry is rather complex as 
it involves many small sugarcane growers that operate and compete for 
limited harvesting resources in an uncoordinated, decentralized fashion. 
This eventually leads to inefficient schedules that negatively affect not 
only the economic performance of both growers and mills but also the 
environmental performance due to the current harvesting malpractice, 
known as sugarcane farm burning. To enhance the efficacy of the Thai 
sugar supply chain as a whole, while reducing the environmental impact 
from the current harvesting practice, the Multi-Objective Harvesting 
Resource Scheduling Problem (MOHRSP) is herein introduced and 
solved by means of Particle Swarm Optimization (PSO). 

We have assessed the performance of the proposed PSO framework 
based on the SOHRSP and the MOHRSP of various sizes, where the 
largest instances comprise of around 50 sugarcane growers and 300 
sugarcane plots, with over 200 harvesting resources combined. 
Regarding the SOHRSP, we find that the performance of our PSO 
approach is comparable to that of the commercially available solver 
with time restrictions, as it could provide solutions that are relatively 
close to the benchmark solutions, with exceptionally low coefficients of 
variation. Although, PSO computational times may vary, it terminates 
well within an acceptable period of time, while CPLEX generally ter
minates with a “run-out-of-memory” error in all of the larger instances. 
The proposed PSO approach also performs well in solving the MOHRSP, 
as it could provide sets of well-balanced solutions with an average 
percentage difference of less than 5% in terms of sugar production. 

Based on our computational results, we find that mill-oriented so
lutions (which maximize sugar production volume) tend to underper
form in other three objectives – namely, grower profit, opportunity loss, 
and environmental impact – due to a preference for sugarcane farm 
burning over greener harvesting practices. However, with a slight sac
rifice of sugar production volume, the other objectives gain substantial 
benefits, and the whole sugar supply chain could be significantly 
improved – even without indirect benefits from better sugar quality and 
incentives for greener production activities. 

Considering these findings and the existence of negative externalities 
(e.g. the decline of world sugar prices and the expected increase in 
environmental regulations for greener production activities), there is 
clearly a need for efficient decision support tools that take into account 
conflicting objectives of different supply chain actors. Without these 
tools, additional surplus would be futile, and the Thai sugar industry 
would be more vulnerable, especially the sugarcane growers whose 
average profits are sensitive in the trade-offs with other objectives. 

It should be remarked that, while our focus lies on the sustainability 
of the Thai sugar supply chain, we expect that our proposed PSO 
framework would be able to serve as a stepping stone for the develop
ment of sustainability in the supply chains of other agricultural crops, or 
products, that share similar traits with sugarcane. It is also possible to 
extend our work by including other relevant objectives into the 
computational settings, or even compare the performance of various 
supply chain settings, which are all worth exploring in subsequent 
studies. 
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Appendix A. The MOHRSP parameter settings 

See Table A1. 

Table A1 
Values of all MOHRSP parameters and their respective data sources.  

No. Parameter Definition Value Unit Source 

1 gu  Fuel consumption rate 0.25 Liter/km Naparswad (2013) 
2 ge  CO2 emission rate from diesel fuel 2.7446 kgCO2/liter Thailand Greenhouse Gas Management 

Organization 
3 gc  Diesel fuel price 28 Baht/liter PTT Public Co., Ltd 
4 hs

r  Harvesting speed of harvest front R1 = 25 
R2 = 6.25 
R3 = 13.5 

ton/hour Opanukul et al. (2012) 

5 hc
r  Operating cost of harvest front R1 = 280 

R2 = 250 
R3 = 220 

Baht/ton Opanukul et al. (2012) 

6 hg
r  Fuel consumption rate of harvest front R1 = 1.5 

R2 = 0 
R3 = 0 

liter/ton Opanukul et al. (2012) 

7 he
r  CO2 emission rate of harvest front R1 = 0 

R2 = 0 
R3 = 219.5 

kgCO2/ton Pongthornpruek and Pampasit (2017) 

8 hd
r  Sugarcane trash ratio of harvest front R1 = 13.98 

R2 = 11.04 
R3 = 8.73 

% Opanukul et al. (2012) 

9 hl
r  Yield loss ratio of harvest front R1 = 3.5117 

R2 = 3.0565 
R3 = 2.8269 

% Opanukul et al. (2012) 

10 hf
r  Incentive/fine from deploying harvest front R1 = 30 

R2 = 30 
R3 = − 30 

Baht/ton The Bank of Thailand 

11 hi
r  Soil recovery cost from deploying harvest front R1 = 0 

R2 = 0 
R3 = 1000 

Baht/plot Mitr Phol Modern Farm 

12 hu
r  Ratio of cane leaf and bract retrieved from harvest front R1 = 17 

R2 = 17 
R3 = 0 

% Opanukul et al. (2012) 

13 δr  Maximum capacity of harvest front R1 = 14 
R2 = 2 
R3 = 3 

plot Opanukul et al. (2012) 

14 φr  Deterioration rate of CCS by harvest front R1 = 0.10834 
R2 = 0.04114 
R3 = 0.06488 

% CCS/ 
hour 

Singh et al. (2008) 

15 m  Sugar mill’s crushing capacity 500 ton/hour Buriram Sugar Public Co., Ltd 
16 l  Truck loading capacity 25 ton Department of Highways 
17 v  Sugarcane cultivating cost 665 Baht/ton Chamneansuk (2019) 
18 s  Sugarcane selling price (CCS = 10) 900 Baht/ton Office of the Cane and Sugar Board 
19 ε  Sugarcane leaf and bract selling price 1,000 Baht/ton Mitr Phol Modern Farm 
20 ϑ  Raw sugar selling price 16,132.85 Baht/ton Office of the Cane and Sugar Board 
21 q  Minimum quality of sugarcane supply 10 CCS Office of the Cane and Sugar Board 
22 b  Incentive/fine from supplying sugarcane with CCS greater/lower than 

q  
42 Baht/CCS Office of the Cane and Sugar Board  
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Appendix B. Pseudocode of the proposed PSO framework 

In this Appendix, pseudocode for the proposed PSO framework, along with its sub-computational modules, described in Section 4, is provided.   

Algorithm B.1 The proposed PSO framework 

1: Input: Information related to the MOHRSP, along with the pre-specified PSO parameters. 
2: Initialization: Initialize all parameter values. 
3: Preprocessing: Call Prep for field clustering. 
4: For each of the SOHRSP comprising the MOHRSP do 
5: Create: Create the initial particle swarm by IntGen until a predefined number of particles (NumPar) have been 

successfully generated. 
6: While one of the stopping criteria has not been met do 
7: Improve: Improve the solutions by ParRep, ParRegen, and LocalSearch. 
8: Restart: Restarting every fixed number of iterations (multi-starting strategy). 
9: end While 
10: Non-dominated sorting: Sort and collect non-dominated solutions found so far. 
11: end For 
12: While one of the stopping criteria has not been met do 
13: Improve: improve the non-dominated solutions found so far by ParRep, ParRegen, and LocalSearch. 
14: Restart: Restarting every fixed number of iterations (multi-starting strategy). 
15: end While 
16: Return: Pareto-optimal solutions to the MOHRSP.    

Algorithm B.2 Preprocessing Module (Prep) 

1: Input: Information regarding sugarcane fields and harvesting resources. 
2: For each sugarcane field do 
3: Create: Create sub-fields or plots according to the truck loading capacity. 
4: Index: Re-index the sugarcane plots. 
5: end For 
6: Cluster: Cluster the sugarcane plots by K-mean clustering approach, where the number of clusters is equally set to the 

number of machine-based harvest fronts. 
7: Return: A set of sugarcane plots, along with their respective clusters.    

Algorithm B.3 Initial Solution Generation Module (IntGen) 

1: Input: Updated information related to the MOHRSP, along with the pre-specified PSO parameters. 
2: Initialize: Initialize the particle structure as a vector of length 4N, i.e. each sugarcane plot is attached with four 

information dimensions. 
3: While the number of generated particles is less than NumPar do 
4: While the set of available harvest fronts or remaining sugarcane plots is not empty do 
5: Select: Randomly select the harvest front according to a simple prioritization scheme. 
6: Pair: Randomly select the sugarcane plot and pair it with the selected harvest front. 
7: If the plot is feasibly paired with the harvest front then 
8: Update: Update the schedule and further determine the transporting truck, as well as its respective unloading 

time according to the current schedule. 
9: Repeat: Return to Line 6 for another pairing. 
10: Else call SchedAdj for schedule adjustment; and, if SchedAdj fails, update the schedule and return to Line 4. 
11: end If 
12: end While 
13: If the set of remaining sugarcane plots is empty then 
14: Evaluate: Evaluate the fitness of such solution and assign the initial velocity (vel0). 
15: Encode: Encode the solution with respect to the predefined particle structure. 
15: Else discard the incomplete solution. 
16: end If 
17: end While 
18: Return: An initial particle swarm, along with pbest and gbest.    

Algorithm B.4 Particle Reposition Module (ParRep) 

1: Input: A swarm of particles, along with pbest and gbest. 
2: Initialize: Initialize the harvesting resources (harvest fronts and trucks) of all particles according to gbest and place 

them into unscheduled lists. 
3: For each particle do 
4. While the set of unscheduled harvest fronts is not empty do 
5. Reposition: Randomly select the unscheduled harvest front and determine the starting times, completion times, 

and unloading times of all plots based on the particle velocity. 
6: If the schedule of a front is infeasible due to insufficient operational time then 
7: Adjust: Call SchedAdj for schedule adjustment and remove all resources from the unscheduled lists; but, if 

SchedAdj fails, reset the schedule of such a front and return to Line 4. 
8: end If 

(continued on next page) 
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(continued ) 

Algorithm B.4 Particle Reposition Module (ParRep) 

9: End While 
10: Evaluate: Evaluate the fitness of the returning solution. 
11: Update: Update particle velocity based on Eberhart and Shi (2000), as well as the pbest. 
10: end For 
11: Update: Update gbest. 
12. Return: An updated swarm of particles, along with new pbest and gbest.    

Algorithm B.5 Particle Regeneration Module (ParRegen) 

1: Input: A swarm of particles, along with pbest and gbest. 
2: Sorting: Sort the particles according to their fitness values. 
3: If the particle belongs to the last 20% of the swarm then 
4: Regeneration: Remove the particle and regenerate a new particle by IntGen. 
5: Else If the particle belongs to the next 30% of the swarm then 
6: Regeneration: Remove the particle and regenerate a new particle based on Bożena’s method (Borowska, 2017) 

(see Appendix D). 
7: Evaluate: Evaluate the fitness value of regenerated solutions and assign their initial velocity (vel0). 
8: end If 
9: Update: Update pbest and gbest. 
10: Return: An updated swarm of particles, along with new pbest and gbest.    

Algorithm B.6 Local Search Module (LocalSearch) 

1: Input: A swarm of particles, along with pbest and gbest. 
2: While one of the stopping criteria has not been met do 
3: Create: Create a random variable LS_Random within the range between 0 and 1. 
4: Apply: Apply one of the following local search routines based on the value of LS_Random. 
5: Routine 1: FrontRelocation → PlotRelocation. 
6: Routine 2: PlotSwap → PlotRelocation. 
7: Routine 3: FrontRelocation → PlotSwap → PlotRelocation. 
8: If the resulting solution is feasible and its fitness value is better than the current one then 
9: Update: Update the particle position, pbest, and gbest. 
10: Else If the solution is infeasible then 
11: Repair: Call Repair and/or SchedAdj for particle repairing; but, if both fail, add such a move into a tabu list (this 

tabu list will be reset when a new feasible solution is found). 
12: end If 
13: end While 
14: Return: An updated swarm of particles, along with new pbest and gbest.    

Algorithm B.7 Schedule Adjustment Module (SchedAdj) 

1: Input: An incomplete harvesting schedule, where harvesting resources could not be assigned to a plot due to insufficient 
operational time. 

2: Calculate: Calculate the buffer times of the previously assigned harvesting/transporting tasks. 
3. While there is room for adjustment do 
4: Adjust: Adjust the current schedule based on the buffer times of harvesting resources, one at a time. 
5: If the harvesting resources are feasibly paired with the plot then 
6: Update: Update the schedule and terminate. 
7: Else Update the buffer times. 
8: end If 
9: end While 
10: Return: An updated harvesting schedule.    

Algorithm B.8 Repair Module (Repair) 

1: Input: An incomplete harvesting schedule with schedule conflicts. 
2: Identify: Identify the overlapping tasks. 
3: Calculate: Calculate the buffer times of the overlapping tasks, and their neighborhood. 
4: While there is room for adjustment do 
4: Adjust: Adjust the current schedule based on the buffer times of overlapping tasks, and their neighborhood, one at a 

time. 
5: If the conflicts are settled then 
6: Update: Update the schedule and terminate. 
7: Else Update the buffer times. 
8: end If 
9: end While 
10: Return: An updated harvesting schedule.  
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Appendix C. The update formulae of particle’s velocity 

Let x⇀i(t) and v→i(t) be the position and velocity of particle i in iteration t, the update formulae proposed by Eberhart and Shi (2000) could be defined 
by Equations (C1) and (C2) as follows. 

χ =
2

φ − 2 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
φ2 − 4φ

√ , (C1)  

v⇀i(t + 1) = χ

⎛

⎜
⎜
⎜
⎝

v⇀i(t)
⏟̅⏞⏞̅⏟
Inertia

+ cpr1

(

x⇀pbesti − x⇀i(t)
)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Cognitive Learning

+ cgr2

(

x⇀gbesti − x⇀i(t)
)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Social Learning

⎞

⎟
⎟
⎟
⎠

, (C2)  

where φ = cp + cg > 4,
cp, cg = acceleration coefficient of pbest and gbest,
r1, r2 = vectors of uniform random variable within the range [0,1], whose sizes are equal to the particle dimensions.

Appendix D. The Bożena’s method 

Let v→i(t) be the velocity of particle i in iteration t, the Bożena’s method will update the velocity of particle i based on its velocity in the previous 
iteration, as shown in Equations (D1) and (D2); however, it will only select the one that provides better objective value. 

v⇀i,1(t+ 1) =
v⇀i(t)

v⇀i(t) − v⇀i(t − 1)
, (D1)  

v⇀i,2(t+ 1) =
v⇀i(t − 1) − v⇀i(t)

v⇀i(t − 1)
, (D2)  

where v⇀i,1(t + 1) = the first updated velocity of particle i in iteration t + 1,
v⇀i,1(t + 1) = the second updated velocity of particle i in iteration t + 1,
v⇀i(t − 1) = the velocity of particle i in iteration t − 1.
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