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A B S T R A C T   

Mycotoxins threaten global food safety, public health and cause huge socioeconomic losses. Early detection is an 
effective preventive strategy, yet efficient biomarkers for early detection of aflatoxigenic Aspergillus species are 
lacking. Here, we proposed to use untargeted metabolomics and machine learning to mine biomarkers of afla-
toxigenic Aspergillus species. We systematically delineated metabolic differences across 568 extensive field 
sampling A. flavus and performed biomarker analysis. Versicolorin B, 11-hydroxy-O-methylsterigmatocystin et.al 
metabolites shown a high correlation (from 0.71 to 0.95) with strains aflatoxin-producing capacity. Molecular 
networking analysis deciphered the connection of aflatoxins and biomarkers as well as potential emerging 
mycotoxins. We then developed a model using the biomarkers as variables to discern aflatoxigenic Aspergillus 
species with 97.8% accuracy. A validation dataset and metabolome from other 16 fungal isolates confirmed the 
robustness and specificity of these biomarkers. We further demonstrated the solution feasibility in agricultural 
products by early detection of biomarkers, which predicted aflatoxin contamination risk 35–47 days in advance. 
A developed operable decision rule by the XGBoost algorithm help regulators to intuitively assess the risk pri-
oritization with 87.2% accuracy. Our research provides novel insights into global food safety risk assessment 
which will be crucial for early prevention and control of mycotoxins.   

1. Introduction 

Mycotoxins are toxic secondary metabolites produced by fungi dur-
ing infection of peanuts, corn, cotton, tree nuts, and other susceptible 
crops both pre- and post-harvest (storage and processing) (T. Wang 
et al., 2017; B. Wang et al., 2017). Mycotoxin contamination of food and 
feed is not only high in incidence and prevalence worldwide, but also 
extremely harmful, as these mycotoxins cause a variety of health prob-
lems for humans and domestic animals (Roze et al., 2013). For instance, 
they possess carcinogenic (Huang et al., 2017), immunosuppressive, 
hepatotoxic, nephrotoxic, and neurotoxic properties (Chawanthayat-
ham et al., 2017). They also cause huge economic losses annually 

(Mitchell et al., 2016). The most serious producer of carcinogenic my-
cotoxins is Aspergillus flavus, which is deemed one of the world’s ten 
most feared fungi (Hyde et al., 2018). This fungus overwinters in the soil 
or plants debris as conidia or sclerotia, which germinate to produce 
additional hyphae and conidia to initiate new food infections in the 
spring (Hedayati et al., 2007). As a result, many countries set strict 
standards for the maximum allowable levels of aflatoxin in food and 
feed. A series of management strategies to mitigate aflatoxin contami-
nation are being developed, which include efforts in reducing 
pre-harvest aflatoxin contamination through enhancing host resistance 
(Sharma et al., 2018), optimizing cultural practices (Ndemera et al., 
2018), applying atoxigenic biocontrol strains of A. flavus (Atehnkeng 
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et al., 2014), or improving storage conditions (Pietsch et al., 2020), and 
detoxifying contaminated grains to reduce post-harvest contamination 
(Adebo et al., 2017). 

It is of major importance to develop a reliable prediction method, 
which contributes to preemptively prevent mycotoxins contamination. 
Currently, mycotoxin risk prediction includes macro- and micro-risk 
prediction. Macro-risk prediction is applied in modeling approaches to 
predict mycotoxin contamination using climate, soil, and crop physio-
logical (in the pre-harvest) (Dovenyi-Nagy et al., 2020) or moisture 
content, the temperature, and carbon dioxide content (in the storage) 
(Jiang et al., 2019) as input variables. For example, the Battilani’s group 
developed the AFLA-Maize model to predict aflatoxin contamination 
risk in maize, and wheat in Europe by hourly temperature, relative 
humidity, and precipitation et.al climate factors. They predicted that 
Aflatoxin B1 will become a food safety issue in Europe under climate 
change expected for the next years (Battilani et al., 2016). In the storage, 
Garcia-Cela reported that carbon dioxide production was an indicator of 
A.flavus colonization and aflatoxins/cyclopiazonic acid contamination 
in peanuts stored (Garcia-Cela et al., 2020). However, these models have 
certain limitations due to regional climatic differences, soil types, and 
cultivars of crops and are not sufficiently accurate to predict specific 
batches of samples. Micro risk prediction focuses on the development of 
sensitive and rapid methods for the early detection of pathogenic fungi 
to indicate mycotoxins contamination. The presence of toxin-producing 
fungi will cause the production of mycotoxins once the moisture con-
tent, temperature, and humidity are suitable for microbial growth. 
Micro-risk predictions complement macro-risk predictions, providing 
more accurate and direct risk assessment results for specific batches of 
samples. The micro-risk predictions strategy was mainly used in the 
post-harvest stage. Some methods for early detecting A. flavus in agri-
cultural have been developed, such as detection of the expression of 
aflatoxin biosynthetic pathway genes (Peromingo et al., 2017), proteins 
(B. Wang et al., 2017; T. Wang et al., 2017), or chemical markers (Saldan 
et al., 2018). There are also disadvantages to the current micro-risk 
prediction method. For example, the prediction accuracy is much 
influenced by the representativeness of the sampling. At this point, 
macro-risk prediction provides complementary evidence for micro-risk 
prediction. 

Furthermore, aflatoxin biosynthesis is affected by genetic and envi-
ronmental factors and, as a result, a lot of A. flavus strains do not produce 
aflatoxin under natural conditions (Keller, 2019). Therefore, it is not 
sufficient to merely detect the presence of the fungus-based on Asper-
gillus-specific biomarkers, which do not always provide a good indica-
tion of aflatoxin-producing capacity (APC). Currently, biomarkers for 
effective discrimination of the high- and low-virulent A. flavus are not 
available. Therefore, the major objectives of our study were to: (1) 
develop biomarkers, for identifying aflatoxigenic strains with high 
aflatoxins-producing capacity (APC) from agricultural products and (2) 
monitor these biomarkers during food storage to predict the severity of 
aflatoxin contamination. 

We hypothesize that (i) there are metabolites whose presence or 
abundance can distinguish between high- and low-virulent strains, 
which can be called aflatoxins-producing capacity (APC)-associated 
metabolites. The presence of a higher concentration of these metabolites 
can indicate the presence of aflatoxigenic Aspergillus species in agricul-
tural products; and (ii) the onset of aflatoxin contamination can be 
predicted by aflatoxin biosynthetic pathway precursors or other me-
tabolites, which can be called aflatoxin contamination severity (ACS)- 
associated metabolites. To test these hypotheses, here, we systematically 
compared the metabolic profiles from a large A. flavus population to 
discover biomarkers. 

2. Materials and methods 

2.1. A. flavus isolates and study design 

Rhizosphere soil and peanut isolates of A. flavus were gathered from 
extensive field sampling samples, ranging from southern Zhanjiang, 
Guangdong province, to northern Tailai, Heilongjiang province, and 
from eastern Lianyungang, Jiangsu province, through Hongan, Hubei 
province, to western Chayu Tibet, from 2013 to 2018. A library of over 
2000 A. flavus isolates was created by isolating strains, single-spore 
culturing, and species identification by ITS sequencing coupled with 
morphological identification. The overall experimental workflow for 
this study was constructed, which is shown in Fig. 1a. Firstly, 568 iso-
lates of A. flavus from the above library random sampling to obtain a 
representative subset were used to comparative metabolomics studies. 
Specifically, 568 representative strains isolated from 16 peanut- 
producing provinces. The detailed strain information was listed in the 
supplementary sheet(strains-metadata). Among them, 54 strains were 
selected from the northern areas, 395 strains were selected from the 
central areas, and 119 strains were selected from the southern areas 
(Figs. 2a and S1). 

2.2. Fungal culture and metabolites extraction 

A. flavus was incubated into a Potato Dextrose Agar (PDA) medium in 
the dark at 29 ± 1 ◦C for 8–10 days. Conidia were suspended in a 0.1% 
tween-80 solution and were quantified by a hemocytometer. 50 mL of 
autoclaved liquid medium, containing 0.25% yeast extract, 0.1% 
K2HPO4, 0.05% MgSO4–7H2O, and 10% glucose (pH = 6.0) were inoc-
ulated with 2.5 × 105 conidia/mL. We set up three biological replicates 
for the training dataset samples. Conidia of A. flavus was cultured with 
shaking (180 rpm) at 29 ± 1 ◦C for 5 days in the dark. Subsequently, we 
collected the mycelium at 5 days by filtering the culture from the flasks 
with four layers of cheesecloth and washed it with 10 mL of 4 ◦C saline 
solution (0.9% NaCl). Then, mycelium was quickly transferred into a 
50 mL centrifuge tube and quenched with liquid nitrogen. The myce-
lium samples were freeze-dried, and then 50 mg per sample was 
extracted by vortexing vigorously for 1 min with 1 mL of extraction 
solutions 1 (methanol: acetonitrile: water 2:2:1 v/v/v), which contained 
the internal standard of 2-chlorophenylalanine (20.0 µg/mL) and cam-
phanic acid (25.0 µg/mL). The mycelia were homogenized in a ball mill 
for 4 min at 45 Hz, then it was treated for 5 min with ultrasound of 
700 W (incubated in ice water). This process was repeated one more 
time using solution 2 (methanol: dichloromethane: ethyl acetate 
1:1:1 v/v/v). The proteins were precipitated by incubating the homog-
enate for 1 h at − 20 ℃ followed by centrifugation at 20,000 g/min for 
10 min at − 20 ◦C. 1 mL of the resulting supernatant was transferred into 
a fresh 2 mL LC-MS/MS glass vial for the UPLC-HRMS (Ultra perfor-
mance liquid chromatography-tandem high-resolution mass spectrom-
etry) analysis. Quality control (QC) samples were prepared by pipetting 
10 µL from each sample extracts into a QC injection vial using a 100 µL 
pipette. Blank samples were prepared by pipetting 1 mL of pure meth-
anol solvent (99.99%) into the injection vial named “blank”. 

2.3. Metabolomics data acquisition by UPLC-HRMS 

Raw metabolomics data for all the isolates were acquired via a 
standardized metabolomics platform based on UPLC-HRMS. An Ulti-
mate 3000 system (Dionex, Sunnyvale, CA, USA) and a C18 column 
(Hypersil Gold, 100 mm × 2.1 mm (i.d.)) with 3 µm pore size (Thermo 
Fisher Scientific, USA) was used for LC separation. Mobile phase A is 
H2O: MeOH (95:5, v/v) containing 0.1% HCOOH, and 10 mM 
HCOONH4 and mobile phase B is composed of MeOH: H2O (95:5, v/v) 
containing 0.1% HCOOH and 10 mM HCOONH4. They were mixed 
following the program below at a flow rate of 300 µL/min as a gradient 
mobile phase in the separation by UPLC. The elution gradient was 
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programmed as: 0–1 min: 85% A (mobile phase A), 1–3 min: 85–50% A, 
3–5 min: 50–30% A, 5–10 min: 30–0% A, 10–13 min: 0% A, 15 min: 
0–85%A, and from 15 to 20 min: 85% A. Data were acquired by 2 µL of 
the extracted metabolites was injected into Orbitrap Fusion mass spec-
trometer (Thermo, USA). 

We used a full-scan MS coupled with data-dependent fragmentation 
(DDA) mode to acquire the mass spectrometry data(Xie et al., 2018). The 
positive and negative ionization mode data were separately acquired. 
UPLC-HRMS was equipped with the HESI (Heated Electron Spray Ioni-
zation) ion source. The capillary voltage was set at − 1.9 kV and the ion 
transfer tube temperature was set at 320 ◦C. Ion source working 
parameter settings were as follows: heater temperature 320 ◦C, spray 
voltage: static, positive ion: 3.5 kV, negative ion: 3.0 kV, sheath gas 
(Arb): 40, aux gas (Arb): 5, and sweep gas (Arb): 0. The main parameter 
settings for the full-scan MS experiment were identical as for the positive 
model and negative model except for polarity. The main parameters 
were as follow: detector type: Orbitrap, Orbitrap resolution: 12,000, 
scan range (m/z): 100–1200, RF lens (%): 60, AGC target: 3.0e5, 
maximum injection time (ms): 100, and source fragmentation: disabled. 
Filter parameters include setting intensity threshold at 1.0e4, charge 
state: 1–2, and dynamic exclusion after 1 time. The exclusion duration 
was the 60 s. Top speed was selected in the data dependent mode and 
the number of scan event types was set at 1 s. The main parameter 
settings for the DDA experiment were identical as for positive mode and 
negative mode except for the high-energy collision-induced dissociation 
(HCD). In positive mode, a type stepped collision energy in HCD acti-
vation was set at 40 ± 5 eV and 33% for fragmentation of the isolated 
precursor ions, and HCD cell pressure was 8 mTor. However, in negative 
mode, the value of HCD was set at 30 ± 5 eV. Other parameters included 
detector type: Orbitrap, a mass resolution of 30000 FWHM, AGC target: 
5.0e4, and maximum injection time was 100. Ions for MS2 were isolated 
using the quadrupole with a narrow isolation window of ±1 Th. In-
strument control and data processing were carried out by Xcalibur 4.0 
software (Thermo Fisher Scientific). 

2.4. Metabolomics data preprocessing 

2.4.1. Data quality control. Three methods used for data quality control. 
Firstly, two internal standards were added to the extraction solvent to 
monitor experimental deviations in the sample pre-treatment process to 
ensure the quality of the data. Meanwhile, a widely used assessment 
criterion was employed to assess the quality of metabolomic data. 
Namely, If the data from quality control (QC) samples were all closely 

clustered to the origin in the PCA scores plot, indicating that the quality 
of data was suitable for subsequent analysis (Hu et al., 2019). Further-
more, we inserted a sample of blank solvent per 10 samples to monitor 
the cross-contamination between samples. A diagram of the sample run 
sequence shown in Fig. S2h. 

2.4.2. Peak extraction, alignment, filter and gap-filled. Metabolomics raw 
data files were converted from the.raw data format to.mzXML format by 
the ProteoWizard software (Chambers et al., 2012). All.mzXML file were 
then imported into MZmine 2v53(Linux version) (Pluskal et al., 2010) 
and processed using the following procedure: ① We extracted the MS1 
and MS2 mass information by setting the noise level at 1E5 and 0, 
respectively. ② In the ADAP chromatogram builder, a minimum group 
size of scans set 5, a minimum highest intensity set 2E5, and an m/z 
tolerance set 0.01 Da. ③ The baseline cut-off deconvolution algorithm 
was selected with the following settings: min peak height: 2.0E5, peak 
duration range(min): 0.05–3.0, Baseline level: 2E5, m/z range for MS2 
scan pairing(Da): 0.01, RT range for MS2 scan pairing(min): 0.2. ④ We 
set the isotopic peaks grouper algorithm with an m/z tolerance of 
0.01 Da (or 10 ppm) and an RT tolerance of 0.2 min to group isotopes. 
⑤ Peak alignment used the join aligner module (m/z tolerance =
0.01 Da, weight for m/z = 2, weight for RT = 2, absolute retention time 
tolerance = 0.2 min). ⑥ Feature filtering was performed by feature list 
rows filter selection, minimum peaks in a row = 2, minimum peaks in an 
isotope pattern = 2. ⑦ The peak gap was filled with the same RT and 
m/z range gap filler module (m/z tolerance of 0.01 Da). ⑧ Eventually, a. 
csv quantitative file was exported using the option of “Export”. 

2.4.3. Metabolomics data matrix preprocessing. Metabolomics data ma-
trix preprocessing included missing value processing and normalization. 
Missing value processing involved removing features with > 50% 
missing values, estimating the missing values of remaining features via 
replacing them with a small value (half of the minimum positive value in 
the original data). The normalization was performed in three steps: 
sample normalization, data transformation, and data scaling. The sam-
ple normalization allows general-purpose adjustment for differences 
among samples. We selected internal standard intensity as a normali-
zation factor to remove the batch effect and mitigate the measurement 
deviation of the UPLC-HRMS across samples. Data transformation and 
scaling are two different approaches to make individual features more 
comparable. Log transformation and Pareto scaling were selected in this 
metabolomics study. All the data preprocessing was done in Metab-
oAnalyst 4.0 (Chong et al., 2018). 

Fig. 1. (a) Experiment workflow of this study. (b) biomarker analysis pipeline.  
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Fig. 2. (a) Mapping the aflatoxins-producing capacity of aflatoxin B1(AFB1) on the map; (b) Aflatoxins-producing capacity and proportions of A. flavus isolates 
belonging to non-, low-, middle-, high-, or extremely high-aflatoxic groups; (c) Boxplot visualizing the regional differences of Aflatoxin B1(AFB1), Aflatoxin B2(AFB2), 
cyclopiazonic acid (CPA), kojic acid (KA); (d) High/low aflatoxin-producing capacity strains metabolites abundance heatmap. (e) Overview of Aspergillus flavus 
population metabolites pathway enrichment analysis. 
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2.5. Univariate and multivariate statistical analysis for screening 
differential metabolites 

The pipeline for biomarker analysis was shown in Fig. 1b. Univariate 
data analysis, (such as fold change, t-tests) was used to perform differ-
ential metabolites statistical tests. P < 0.05 and 0.05 < P < 0.10 was 
considered as statistical significance. Multiple testing corrections were 
checked based on a significance threshold FDR-adjusted P values 
< 0.05. Fold change, t-tests, and principal component analysis (PCA) 
was carried out in different analysis modules within MetaboAnalyst 4.0 
(Chong et al., 2018). The partial least squares discriminant analysis 
(PLS-DA) model, a multivariate statistical analysis method, was 
employed to screen differential metabolites (Xie et al., 2021) by Simca 
14.1 (Umetrics, Umea, Sweden) software. A variable influence on pro-
jection (VIP) value ≥ 1.0 was used as a reference threshold to select the 
differential metabolites. Finally, we compared the results of univariate 
and multivariate statistical tests for comparison of their screening 
effectiveness and then we took the intersection of the metabolites 
screened by the different methods as biomarker analysis input dataset. 

2.6. Metabolites annotation 
Metabolomics raw data were imported into the software of Com-

pound Discovery (CD) 2.1(Thermo Fisher Scientific, USA) to generate a 
data matrix that consists of the retention time (RT), mass-to-charge ratio 
(m/z) values, peak intensity, and annotation of metabolites. Metabolite 
annotation consists of the following steps: ① Unknown peaks were 
aligned and detected with the parameters of RT tolerance of 0.8 min and 
5 ppm mass deviation. Minimum peak intensity set to 10,000 and S/N 
threshold = 3. ② The compounds were annotated with different types of 
databases. Among them, the mzCloud database was used to identify 
compounds on MS/MS level with a mass tolerance of 10 ppm. Com-
pound class set to All, Match ion activation type = False. Chemspider, 
BioCyc, and KEGG database were used to annotate features based on 
exact mass (MS1) with a mass tolerance of 5 ppm. An endogenous me-
tabolites database of 4400 compounds embedded in the CD internal 
database also was used to annotate metabolites. In addition, an in-house 
mass spectral library of > 3384 microbial natural products and myco-
toxin reference standards was used to search by the search mass lists 
module in CD. ③mass tolerance set to 5 ppm, RT tolerance(min) = 0.05, 
S/N threshold = 1.5 infill gaps (missing values) module. We used Xca-
liber 4.0 (Thermo Fisher Scientific, USA) to manually check and identify 
the metabolites identified above. Genesis peak detection method was 
selected to detect the peak area. Minimum peak height(S/N) set to 3. 
Metabolic features(m/z) with peak intensity greater than 1E4 in QC raw 
data files were retained. The metabolites that did not meet the re-
quirements were discarded. Finally, compounds were identified and 
selected by integrating positive and negative ion mode to build a peak 
list for subsequent biomarker analysis. 

2.7. Biomarker analysis by Random Forests (RF) model 
Univariate and multivariate statistical analysis exists in poorly 

screening ability. There was a need to build more powerful models based 
on these differential metabolites to screen for the most taxonomically 
effective metabolites as biomarkers. For this reason, a supervised 
Random Forests (RF) classifier was trained to screen the potential bio-
markers. Specifically, biomarker analysis was performed by Multivar-
iate Exploratory ROC Analysis Module in MetaboAnalyst 4.0 (Chong 
et al., 2018). Firstly, we selected the Random Forest classifier and 
Random Forest feature ranking method to construct the Random Forests 
(RF) model. Then, confusion matrix (cross-validation) as a measure for 
internal evaluation of the models was also conducted using the 
biomarker analysis function in MetaboAnalyst 4.0. The exploration and 
validation of biomarkers stemmed from metabolic profiling comprised 
of three stages: (i) generating signatures (machine learning models) 
based on two thirds (2/3) training set of the samples that were only used 
to evaluate the feature importance; (ii) using the top 2, 3, 5, 10.100 
(max) important features to build classification models, which were 

validated on the 1/3 the samples that were left out; and (iii) further 
validating the potential biomarkers using independent data sets. Finally, 
the ROC curve was generated in MetaboAnalyst 4.0 for evaluating the 
model performance by Monte-Carlo cross-validation (MCCV) using a 
balanced sub-sampling. We evaluated the model’s performance by 
calculating the classification precision (ratio of true positive samples 
overall positive samples) and accuracy (ratio of true predictions overall 
predictions). The precision indicates the proportion of examples classi-
fied as actually positive samples overall positive samples. which is 
defined as 

Precision =
TPi

(TPi + FPi)

and the accuracy denotes the number of correctly classified samples 
divided by the number of all samples, which is calculated as 

Accuracy =
(TP + TN)

(TP + TN + FP + FN)

where N is the number of samples. TP, TN, FP and FN stand for true 
positive, true negative, false positive and false negative rates, 
respectively. 

2.8. Designing an early detection solution by pooled testing and accelerated 
growth incubator 

Pooling subsamples and testing them in groups proved a useful 
strategy to reduce the cost and minimize test time (Mercer and Salit, 
2021). Here we proposed a pooled testing strategy for different risk level 
samples to identify individuals contaminated with aflatoxigenic Asper-
gillus species in a small number of tests and few rounds of testing, which 
is shown in Fig. 5a. Once aflatoxins contamination risk was predicted by 
the macro-risk prediction model, geographic areas will be classified as 
regions at low-, medium-, or high-risk areas. Samples from high-risk 
areas were tested individually. In the medium- and low-risk areas, a 
5:1 and 10:1 pooled sampling method was used to reduce the number of 
tests (Li et al., 2021). The first step was to group all samples. Then the 
samples within the group were mixed into a sample by taking equal 
parts. The first round of testing was performed on these pooled samples. 
For pooled samples that test positive, went back to the corresponding 
group, and tested the members in the group one by one. As we know, the 
Aspergillus species spores that were dormant in agro-products for days 
even months before the mycotoxin contamination. Minimizing the latent 
period will buy time for taking mycotoxin control measures. For this 
purpose, we designed an early detection of aflatoxigenic Aspergillus 
species workflow by detection of biomarkers and accelerated growth 
incubator. Firstly, we selected different tests strategy according to the 
risk level of the sample source (Fig. 5a). Before performing the test, the 
sample was incubated in an incubator until the filamentous fungi was 
observed. Sample preparation and biomarker assays were then per-
formed according to Methods 2.2 and 2.3. The workflow is shown in 
Fig. 5b. 

2.9. Development of an operable decision rule by XGBoost model 
Despite the high predictive power of Random Forests, However, 

Random Forests model usually does not explain their predictions pro-
cess. For this reason, we used the XGBoost software library (Chen and 
Carlos, 2016) couple with 180 actual peanut samples as a training 
dataset to train an XGBoost model (a state-of-the-art decision trees al-
gorithms) and then obtained some single-XGBoost tree by simplifying 
the complexity of the model. XGBoost model was trained with the 
following parameters as described previously (Chen and Carlos, 2016; 
Yan et al., 2020): number of tree estimators set to 1, values of the reg-
ularization parameters α and β both set to 0. The detailed run process, 
code of the XGBoost model were available in (https://github.com/ 
jeep3/AFbiosignature-file). 
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3. Results 

3.1. Aflatoxins-producing capacity (APC) and metabolic diversity across 
A. flavus isolates 

Out of the 568 A. flavus isolates in the dataset, 349 isolates had 
nontoxigenic or low aflatoxins-producing capacity (with APC of 
0–1.0 mg/kg mycelia). Another 114 isolates were attributed to the 
medium APC group, whereas the remaining 87 and 18 isolates belonged 
to the high-APC and extremely high-APC groups, respectively (Fig. 2b). 
The medium and high APC strains account for 38.5%, which is the main 
source of aflatoxin menace in China. APC data of isolates from different 
regions were significantly different. 395 strains originated from the 
central areas, with 31.4% being high APC strains and 68.6% being low- 
APC or atoxigenic strains. 119 strains with varying virulence levels were 
selected from southern areas, with 52.1% and 47.9% of them being high 
and low-APC strains, respectively. The average APC in the southern 
region was significantly higher than that in the central region 
(p = 0.0092) and significantly higher than in the northern region 
(p = 0.001). The average APC of AFB1 was significantly higher in the 

central region than in the northern region (p = 0.00044) (Fig. 2c1). This 
trend was also observed for aflatoxin B2 (AFB2) production by isolates 
from different regions (Fig. 2 c2). For other toxins simultaneously pro-
duced by Aspergillus flavus, the regional differences were relatively small 
for cyclopiazonic acid (CPA), a neurotoxin alkaloid produced by many 
Aspergillus or Penicillium species (Chang et al., 2009). The isolates from 
the northern region had the lowest levels of CPA, which were signifi-
cantly different from those in the central and southern regions 
(p = 0.041 and 0.021, respectively) (Fig. 2c3). No clear regional dif-
ferences in the level of kojic acid (KA) (Terabayashi et al., 2010) pro-
duced among the isolates were observed (Fig. 2c4). 

We also found that the A. flavus population possesses rich secondary 
metabolic diversity within the species. The presence of subpopulation- 
specific metabolites can be observed from the heatmap (Fig. 2d). 
Enrichment analysis revealed that most primary metabolites are 
enriched in a variety of amino acid biosynthetic and metabolic path-
ways, such as D− glutamine and D− glutamate metabolism, histidine 
metabolism, lysine degradation, beta− alanine metabolism and phenyl-
alanine, tyrosine, and tryptophan biosynthesis et.al pathways (Fig. 2e). 

Fig. 3. Screening and validating biomarker of aflatoxigenic A.flavus via Random Forests algorithm. (a) Total receiver operating characteristic curve (ROC) of random 
forests algorithms in training dataset; (b) The list of top important metabolites identified in training dataset by Random Forests model; (c) ROC curve of random 
forests model was constructed by five biomarkers panel; d. Principal Component Analysis (PCA) of A. flavus strains belonging to the high and low aflatoxin-producing 
capacity groups. 
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Active primary metabolisms provided a rich substrates flux for second-
ary metabolism differentiation. The metabolic diversity underlies the 
basis for screening biomarkers of aflatoxigenic Aspergillus species. 

3.2. Biomarkers analysis of aflatoxigenic Aspergillus species 
Fig. 3a shown that the best classifier (based on AUC score) was the 

Random Forests model that was generated with the top five classifica-
tion variables (AUC: 0.999, Cl: 0.996–1, Cl indicates the confidence 
intervals). Metabolites were ranked according to their importance. 
Fig. 3b shown that top five variables stemmed from BioM174 (un-
known21), BioM8 (11-hydroxy O-methylsterigmatocystin (HOMST)), 
BioM175 (unknown22), BioM-18 (Versiconol), BioM-36 (Versicolor-
in_B). The predictive accuracy and precision with these top 5 biomarkers 
amounted to 97.6% and 97.1%, respectively. The performance of the 
model did not improve significantly in the area under the curve (AUC) 
scores when the number of metabolites was increased to one hundred 
(Fig. S5a). Hence, the top five biomarkers were selected as potential 
biomarkers panels in this study. The performance of this model was 
cross-validated (Fig. S5b), which revealed that an excellent classifica-
tion performance by predicting class probabilities. Fig. S5b points out 
that the classification accuracy for the group of high-APC isolates was up 
to 97.6% (326/334). Therefore, this model was selected to perform the 
automated selection of important metabolites. To better evaluate the 
predictive power of the single biomarkers, classical univariate ROC 
curve analyses for individually selected biomarkers were also analyzed. 
The AUC score of five biomarkers ranged from 0.999 to 0.958 (Fig. S6). 

3.3. Validation of potential biomarkers 
Two hundred and thirty-four isolates were randomly selected from 

the library as an independent validation dataset to confirm the robust-
ness of the potential biomarkers. Fig. 3c revealed that the Random 
Forest model achieved similar performance (AUC: 0.972, Cl: 
0.954–0.989) using the validation dataset. This model was then used to 
again generate a list of important biomarkers (Fig. S5c), which appeared 
the same top 5 metabolites compare with the one produced with the 
training dataset, suggesting that this model captures the key biomarkers. 
The principal component analysis (PCA) demonstrated a clear separa-
bility for discerning the high-APC and low-APC strains, which is shown 
in Fig. 3d. The total contribution rate of the first and second principal 
components reached 88%. The above results had shown that these 
biomarkers possess high robustness and repeatability. Fig. S5d shown 
that the predictive accuracy and precision of the Random Forests clas-
sifiers reached 97.8% and 95.4%, respectively. Finally, we demonstrated 
the reliability of biomarkers structural annotation by the mass spec-
trometry information of the biomarkers (Table 1), the mirror plot of MS/ 
MS mass spectra by matching standards, and samples (Fig. S7) and the 
MS/MS fragmentation trees (Fig. S8). 

3.4. The sensitivity and specificity of biomarkers 
The sensitivity and specificity of the biomarkers are two important 

aspects that must be examined for biomarker analysis methods. The 
sensitivity of biomarkers was measured via the parameters of linear 
range, the limit of detection (LOD), the limit of quantification (LOQ), 
precision, and specificity. The results from Table S1 shown that LOD and 
LOQ ranged from 0.003 to 0.20 and 0.012− 0.50 µg/mg(mycelia), 
respectively. Good linearity was observed with correlation coefficients 
(R2) higher than 0.9993 for all biomarkers, which is shown in Fig. S9. 
The intra- and inter-day precisions were 0.02− 0.56 and 0.06− 0.44 (%), 
respectively. The results demonstrated that this method was robust and 
highly sensitive for detecting biomarkers. The specificity of these bio-
markers was confirmed by checking the presence/absence of biomarkers 
in different rhizosphere soil fungal species metabolome. As we expected, 
the biomarkers were found in Aspergillus parasiticus and Aspergillus 
tamarii (two known aflatoxin-producing fungi), but not found in non- 
aflatoxigenic A. flavus or other rhizosphere soil fungal species, which 
is shown in Table 2. The above results revealed that these biomarkers are 
specific for the aflatoxigenic Aspergillus species and had highly sensitive. 

3.5. The correlation between biomarkers and APC 
Fig. 4a revealed that positively correlated compounds with APC had 

higher correlation coefficients and lower correlation coefficients for 
negatively correlated metabolites. Speradine A is derivatives of cyclo-
piazonic acid (CPA), which was shown a negative correlation with APC 
(Pearson’s r = − 0.35), which was shown in Fig. 4b. Chrysophanic acid, 
an anthraquinone metabolites, shown a negative correlation coefficient 
with APC (Pearson’s r = − 0.48), which was shown in Fig. 4c. 
Conversely, the correlation coefficient of unkown21 with the APC was 
0.95 and those for the other four biomarkers ranged from 0.92 to 0.71, 
which was shown in Fig. 4d-i, respectively. The correlation coefficient 
between the average value of the five biomarkers and the APC reached 
0.87 (Fig. 4i). We finally selected BioM174 (unknown21), BioM175 
(unknown22), BioM8 (11-hydroxy O-methylsterigmatocystin 
(HOMST)), BioM-18 (Versiconol), BioM-36 (Versicolorin_B) as APC- 
associated biomarkers panel based on the result above. BioM-18 (Ver-
siconol) and BioM-36 (Versicolorin_B) are early intermediates in afla-
toxin biosynthesis and are thus considered to be aflatoxins 
contamination severity (ACS)-associated metabolites. 

3.6. The structural relationship between biomarkers and aflatoxins 
A global molecular networking (Wang et al., 2016) map of the 

detectable metabolites visualized in Fig. S10a and a partially enlarged 
schematic diagram (Fig. S10b) shows the aflatoxins molecular family 
network that contains 26 metabolite features. We found that the struc-
tural similarity of aflatoxin B1(node N1), aflatoxin B2(N2), aflatoxin 
G1(N3), aflatoxin G2(N4), sterigmatocystin(N5), and 11-hydroxy 
O-methylsterigmatocystin (HOMST)(N6) was reflected by a high spec-
tral similarity (cosine value > 0.8). The actual structures of aflatoxin 

Table 1 
UPLC-HRMS information of biomarkers and aflatoxin B1.  

Name Molecular formula Ion mode Accurate mass Mass deviation(ppm)    
Theoretical Experimental 

Aflatoxin B1 C17 H12 O6 [M+H]+ 313.07066  
313.07012  

1.73 

HOMST C19 H14 O7 [M+H]+ 355.08122  
355.08068  

1.52 

unknown21 C34 H24 O12 [M+Na]+ 647.11147  
647.11479  

5.13 

unknown22 C21 H12 O7 [M+H]+ 377.06289  
377.06218  

-1.88 

Versicolorin B C18 H12 O7 [M-H]-  339.05102  
339.05096  

0.17 

Versiconol C18 H16 O8 [M-H]-  359.07724  
359.07733  

0.25 

HOMST: 11-hydroxy O-methylsterigmatocystin. 
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B1(node N1), aflatoxin B2(N2), aflatoxin G1(N3), aflatoxin G2(N4), 
sterigmatocystin(N5), 11-hydroxy O-methylsterigmatocystin (HOMST) 
(N6) were shown in Fig. S10b. Interestingly, biomarkers of 
m/z = 647.11147 (unknown21) and m/z = 377.06289 (unknown22), 
unidentified metabolites, were also members of this molecular family. 
Unexpectedly, some precursors in the aflatoxin biosynthesis pathway, 
such as versicolorin B (m/z 359.0767), did not appear in this molecular 
family, most likely because these compounds had a low response in-
tensity in positive ion mode and were more suitable for mass spec-
trometry data acquisition in negative ion mode. In brief, the structural 
relationships between aflatoxins and biomarkers were to some extent 
explained by feature-based molecular networking analysis (Nothias 
et al., 2020). 

3.7. An early detection solution for predicting aflatoxin contamination risk 
We designed an early detection solution by pooled testing and 

accelerated growth incubator, which is shown in Fig. 5a,b. 426 peanut 
samples sampling from nationwide mycotoxins monitoring programs 
were checked by a thermostatic incubator. We found that out of 86 
suspected samples being contaminated by fungi. Of these, we discovered 
that 39 suspected samples were contaminated with aflatoxigenic 
Aspergillus species and the other 47 samples were infected by non- 
aflatoxigenic fungi, which is shown in Fig. 5c. 97.4% positive samples 
were accurately classified by early detecting the APC-associated bio-
markers. To quantify the early-warning time window, peanut samples 
contaminated with aflatoxigenic Aspergillus species and non- 
contaminated samples were cultured in an incubator (1–13 days) and 
warehouse (1–60 days) to obtain a series of time-course samples. 
Phenotype change over time of aflatoxigenic Aspergillus species 
contaminated and non-contaminated samples in an incubator were 
shown in Fig. S11. Fig. 5d shown that the timeline of aflatoxins 
contamination risk in the warehouse (upper section) and the thermo-
static incubators (bottom section). In the incubator environment, the 
biomarker of Versicolorin B was detected on day 5, when the concen-
tration of aflatoxin B1 was still very low and the peanut samples 
appeared clean without visible fungal mycelia (Fig. S11). On day 7, the 
aflatoxin concentration exceeded the maximum allowable threshold of 
5 µg/kg, and the Versicolorin B concentration at this moment was 13.8 
times that of aflatoxin B1(Fig. S12). The early warning window is longer 
in the warehouse, which provides 35–47 days to take management ac-
tions in advance if high levels of versicolorin B are found in early 
detection (Fig. 5d). 

3.8. An operable decision rule intuitively discerns aflatoxigenic Aspergillus 
species 

The resulting performance of the XGBoost model is shown, 

respectively, in Table S2 and Figs. S13− S19. 11-hydroxy O-methyl-
sterigmatocystin (HOMST) and versicolorin_B were selected to generate 
a single-tree XGBoost model based on the performance of various single- 
tree XGBoost models generated. These two trees (Figs. S14 and S15) 
were further trimmed to simplify the decision-making process to 
generate a practical operable decision tree (Fig. 6) with a slight reduc-
tion in accuracy from 95.4% to 87.2%. The decision rule used two key 
features, and their thresholds of 11-hydroxy O-methylsterigmatocystin 
(HOMST) > 34.7 µg/kg and versicolorin_B > 96.35 µg/kg were 
computationally selected and validated using the training and test 
datasets, which is shown in Fig. 6. The overall accuracy rate of using this 
decision tree reached 87.2%. We divided the data into subcategories, the 
prediction accuracy of low-APC aflatoxigenic Aspergillus species samples 
reached 94.9% and the prediction rate of high-APC aflatoxigenic 
Aspergillus species samples reached 100%. However, the prediction ac-
curacy rate of medium-APC aflatoxigenic Aspergillus species was only 
39.5%. Therefore, in the actual application process, the prediction ac-
curacy of low- and high-APC samples were very high, however, further 
assessment is still required for medium-APC samples. 

4. Discussion 

Mycotoxins pose a global food safety and public health threat, with a 
worsening trend under global warming (Battilani et al., 2016). Early 
detection proved an effective strategy to control and mitigate this issue 
(Jiang et al., 2019). We presented a roadmap from discovering bio-
markers to design early detection solutions using population metab-
olomics and machine learning. Novel biomarkers of aflatoxigenic 
Aspergillus species performed better than previously reported (Fig. S20a, 
b). The early detection solution designed by pooled testing and accel-
erated cultivating reduced the cost, test time, and maximized warning 
time compared to previous researchers who directly detected samples in 
the warehouse (Jiang et al., 2019). Our study confers regulatory bodies 
with the ability to smart govern the mycotoxin contamination risk and to 
timely take measures to inhibit fungal growth or discard samples to 
safeguard consumer health, while reducing economic losses. 

The survey data revealed that 38.5% of all isolates harbor medium or 
high aflatoxin-producing capacity, which is the main source of aflatoxin 
menace, especially in the south and central area of China (Fig. 2b,c). 
Therefore, early detection of aflatoxigenic Aspergillus species together 
with effective monitoring of moisture content (e.g. <15% maize; <7.5% 
peanuts) et al. measures before entering the warehouse, that plays a 
crucial role in mycotoxin risk assessment. The Liu’s group predicted the 
risk of aflatoxin contamination 18 days (mean value) in advance by 
detection of versicolorin A concentration in maize at warehouse con-
dition (Jiang et al., 2019). It was worth noting that versicolorin A 

Table 2 
Specificity assessment by 16 different fungal strains isolated from rhizosphere soil.  

Strains Species HOMST Unknown21 Unknown22 Versiconol Versicolorin B 

AnHHF-33 Aspergillus oryzae – – – – – 
HeBHD-1 Aspergillus oryzae – – – – – 
HuBLT-3 Aspergillus oryzae – – – – – 
CJ-3–3 Aspergillus ochraceus – – – – – 
BNCC336184 Aspergillus ochraceus – – – – – 
HuBzhx-43 Aspergillus fumigatus – – – – – 
LNCT-4 Aspergillus parasiticus þ þ þ þ þ

AHTL-15 Aspergillus tamarii þ þ þ þ þ

BNCC340687 Fusarium moniliforme – – – – – 
FJQ2H-4 Rhizopus oryzae – – – – – 
GDHZ-1 Pichia guilliermondii – – – – – 
GXWM-1 Penicillium janthinellum – – – – – 
D83 Trichoderma spp. – – – – – 
XZ-2–9 Trichoderma spp. – – – – – 
XZ-11–5 Trichoderma spp. – – – – – 
BNCC143078 Fusarium oxysporum – – – – – 

- Absence + Presence. 
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(bioM-37) also had predictive power in this study (Fig. 3b), which 
proved the powerfulness of our approach. However, Versicolorin A is the 
first intermediate metabolite in the aflatoxin biosynthetic pathway with 
a furofuran (bisfuran) structure, whose chemical structure shares many 
features with AFB1. Recent research reported that Ver A was a food 
contaminant toxic to human intestinal cells (Gauthier et al., 2020). VerB 
and versiconol lack the furofuran (bisfuran) C––C double bond structure 
and are more upstream in aflatoxin biosynthesis, which implied that 
their toxicity was lower (Budin et al., 2021). In addition, we found that 
the correlation between VerB and APC was 0.78, which was higher than 
that between VerA and APC (0.71) (Fig. S20a,b). These biomarker 
assessment results suggested that VerB and versiconol are more suitable 

as (ACS)-associated biomarkers. 11-hydroxy O-methylsterigmatocystin 
(HOMST) was structurally closely related to sterigmatocystin (ST). 
Metabolomics data revealed that the abundance of HOMST in the ma-
jority of A.flavus isolates was higher than that of ST. We also observed a 
higher correlation between HOMST (Pearson’s = 0.92) and APC than 
for ST (Pearson’s = 0.43) (Fig. S20c, d). In addition, Feature-based 
molecular network analysis revealed that some new metabolites, such 
as m/z = 341.0663 and m/z = 657.1323, were aflatoxin-like metabo-
lites, as they grouped in the same molecular family with them. The re-
sults elucidated that those of aflatoxin-like metabolites as emerging 
co-occurrence mycotoxins should be brought to the attention of risk 
regulators. 

Fig. 4. Correlation analysis of the identified biomarkers and the aflatoxins-producing capacity (APC) of the individual isolates. (a) Pearson correlation analysis 
results of different compounds. (b-i) visualizing the correlation of speradine A, chrysophanic_acid, 11-hydroxy O-methylsterigmatocystin (HOMST), unknown22, 
unknown21, versicolorin_B, versiconol, and 5 biomarkers average values with the APC by scatter plot, respectively. 
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To quantify the warning time, we compared the time course differ-
ence of aflatoxins and biomarkers production in warehouse and incu-
bator conditions based on a proposed early detection solution. The 
entire early detection process was completed within 6–8 days from 
hidden fungi grow in an incubator (5–7 days), to sample pre-treatment 
and UPLC-HRMS analysis time(6–8 h) per 10 samples. Ver B was 

detected two days earlier than AFB1 under incubator conditions. In 
contrast, Ver B was first detected under warehouse conditions with a lag 
of 35 days. After 12 days, we found that AFB1 exceeded the maximum 
acceptable level. In terms of time spent on analysis methods, our method 
takes 6–8 h from metabolites extraction to mass spectrometry analysis 
per 10 samples. Gene marker-based approach takes 4–5 h from DNA 

Fig. 5. (a) A pooled testing strategy for identifying contaminated samples by aflatoxigenic Aspergillus species. (b) A recommended workflow of early detection by 
incubator accelerated growth and detection of biomarkers. (c) A heatmaps that show contaminated and non-contaminated samples by aflatoxigenic Aspergillus species 
in 86 suspected samples. (d) Timeline of aflatoxins occurrence risk in warehouse (upper section) and timeline of early detection of aflatoxigenic Aspergillus species in 
thermostatic incubators (bottom section). 
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extraction to PCR test per 10 samples (Ren et al., 2020). The protein 
marker-based early detection method takes 18–24 h from protein 
extraction to immunoassay test per 10 samples (B. Wang et al., 2017; T. 
Wang et al., 2017). Despite the speed of nucleic acid sequence-based 
detection methods, no aflatoxigenic Aspergillus species-specific se-
quences at the subspecies level are currently available. The good news is 
that the development of rapid detection methods for testing small 
molecules at a comparable speed is not difficult to achieve. In terms of 
warning time windows, the incubator accelerated the germination and 
growth of aflatoxigenic Aspergillus species spores that are dormant in the 
agro-products. If we use the incubator as an accelerator, this warning 
time window can be increased to more than 35 days (Fig. 5d). Liu’s 
group reported that the time interval (warning time windows) between 
detection of VerA and aflatoxin contamination was 18 days (mean 
value) in the warehouse (Jiang et al., 2019). Hence, our proposed so-
lution possesses a longer warning time window and saves more time on 
mycotoxin risk assessment compared to directly test biomarkers of 
aflatoxigenic Aspergillus species in warehouses. Because the accelerated 
incubator accelerates the production of mycotoxins. It should be noted 
that the warning time window was influenced by the moisture content of 
the agro-product, the temperature of the warehouse, water activity et al. 
environmental factors. 

Some limitations in this study warrant a discussion. The current use 
of high-resolution mass spectrometry is expensive, which hinders the 
widespread use of this method. For widely applying this risk assessment 
strategy, it should be necessary to develop fast, simpler, and cheaper 
analysis tools to monitor the biomarkers, for example, rapid immuno-
assay methods (Matabaro et al., 2017), biosensors (Xu et al., 2018), and 
low-resolution mass spectrometry methods (Medina et al., 2021). In 
addition, climate change has profoundly affected many aspects of agri-
cultural production, including food safety (Medina et al., 2015). It was 
difficult to predict the risk of mycotoxin contamination with high ac-
curacy using a technique. We envisage a future where we can integrate 
macroclimate data and micro biomarkers of aflatoxigenic Aspergillus 
species data, mycotoxins level, moisture content of agricultural products 
et al. factors as variables to construct more accurate early warning 
models using artificial intelligence. 

5. Conclusion 

In summary, metabolic diversities of a natural collection of the 
A. flavus population were systematically delineated using high- 
resolution mass spectrometry. We discovered five novel biomarkers 
associated with aflatoxigenic Aspergillus species by population metab-
olomics and machine learning. We demonstrated that these biomarkers 
discern aflatoxigenic Aspergillus species with 97.8% accuracy in the early 
stages of aflatoxin contamination and predicted the onset of aflatoxin 
contamination severity 35–47 days in advance using our proposed so-
lution. An operable decision workflow developed by a state-of-the-art 
XGBoost algorithm provided an intuitive test to quantify the risk pri-
oritization. The study provided a novel insight for risk assessment of the 
agricultural product to ensure food safety and public health. 
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Medina, Á., Rodríguez, A., Magan, N., 2015. Climate change and mycotoxigenic fungi: 
impacts on mycotoxin production. Curr. Opin. Food Sci. 5, 99–104. 

Medina, D.A.V., Borsatto, J.V.B., Maciel, E.V.S., Lancas, F.M., 2021. Current role of 
modern chromatography and mass spectrometry in the analysis of mycotoxins in 
food. Trac-Trend Anal. Chem. 135. 

Mercer, T.R., Salit, M., 2021. Testing at scale during the COVID-19 pandemic. Nat. Rev. 
Genet. 22, 415–426. 

Mitchell, N.J., Bowers, E., Hurburgh, C., Wu, F., 2016. Potential economic losses to the 
US corn industry from aflatoxin contamination. Food Addit. Contam. A 33, 540–550. 

Ndemera, M., De Boevre, M., De, S., 2018. Saeger, Mycotoxin management in a 
developing country context: a critical review of strategies aimed at decreasing 
dietary exposure to mycotoxins in Zimbabwe. Crit. Rev. Food Sci. Nutr. 60, 529–540. 

Nothias, L.F., Petras, D., Schmid, R., Duhrkop, K., Rainer, J., Sarvepalli, A., Protsyuk, I., 
Ernst, M., Tsugawa, H., Fleischauer, M., Aicheler, F., Aksenov, A.A., Alka, O., 
Allard, P.M., Barsch, A., Cachet, X., Caraballo-Rodriguez, A.M., Da Silva, R.R., 
Dang, T., Garg, N., Gauglitz, J.M., Gurevich, A., Isaac, G., Jarmusch, A.K., 
Kamenik, Z., Kang, K.B., Kessler, N., Koester, I., Korf, A., Le Gouellec, A., Ludwig, M., 
Martin, H.C., McCall, L.I., McSayles, J., Meyer, S.W., Mohimani, H., Morsy, M., 
Moyne, O., Neumann, S., Neuweger, H., Nguyen, N.H., Nothias-Esposito, M., 
Paolini, J., Phelan, V.V., Pluskal, T., Quinn, R.A., Rogers, S., Shrestha, B., 
Tripathi, A., van der Hooft, J.J.J., Vargas, F., Weldon, K.C., Witting, M., Yang, H.J., 
Zhang, Z., Zubeil, F., Kohlbacher, O., Bocker, S., Alexandrov, T., Bandeira, N., 
Wang, M.X., Dorrestein, P.C., 2020. Feature-based molecular networking in the 
GNPS analysis environment. Nature Methods 17, 905–908. 

Peromingo, B., Rodriguez, M., Delgado, J., Andrade, M.J., Rodriguez, A., 2017. Gene 
expression as a good indicator of aflatoxin contamination in dry-cured ham. Food 
Microbiol. 67, 31–40. 

Pietsch, C., Müller, G., Mourabit, S., Carnal, S., Bandara, K., 2020. Occurrence of fungi 
and fungal toxins in fish feed during storage. Toxins 12, 171. 

Pluskal, T., Castillo, S., Villar-Briones, A., Oresic, M., 2010. MZmine 2: modular 
framework for processing, visualizing, and analyzing mass spectrometry-based 
molecular profile data. Bmc Bioinforma. 11. 

Ren, X.F., Yue, X.F., Mwakinyali, S.E., Zhang, W., Zhang, Q., Li, P.W., 2020. Small 
molecular contaminant and microorganism can be simultaneously detected based on 
nanobody-phage: using carcinogen aflatoxin and its main fungal Aspergillus Section 
Flavi spp. in stored maize for demonstration. Front. Microbiol. 10. 

Roze, L.V., Hong, S.Y., Linz, J.E., 2013. Aflatoxin biosynthesis: current frontiers. Annu. 
Rev. Food Sci. Technol. 4, 293–311. 

Saldan, N.C., Almeida, R.T.R., Avincola, A., Porto, C., Galuch, M.B., Magon, T.F.S., 
Pilau, E.J., Svidzinski, T.I.E., Oliveira, C.C., 2018. Development of an analytical 
method for identification of Aspergillus flavus based on chemical markers using 
HPLC-MS. Food Chem. 241, 113–121. 

Sharma, K.K., Pothana, A., Prasad, K., Shah, D., Kaur, J., Bhatnagar, D., Chen, Z.-Y., 
Raruang, Y., Cary, J.W., Rajasekaran, K., Sudini, H.K., Bhatnagar-Mathur, P., 2018. 
Peanuts that keep aflatoxin at bay: a threshold that matters. Plant Biotechnol. J. 16, 
1024–1033. 

Terabayashi, Y., Sano, M., Yamane, N., Marui, J., Tamano, K., Sagara, J., Dohmoto, M., 
Oda, K., Ohshima, E., Tachibana, K., Higa, Y., Ohashi, S., Koike, H., Machida, M., 
2010. Identification and characterization of genes responsible for biosynthesis of 
kojic acid, an industrially important compound from Aspergillus oryzae. Fungal 
Genet. Biol. 47, 953–961. 

Wang, M.X., Carver, J.J., Phelan, V.V., Sanchez, L.M., Garg, N., Peng, Y., Nguyen, D.D., 
Watrous, J., Kapono, C.A., Luzzatto-Knaan, T., Porto, C., Bouslimani, A., Melnik, A. 
V., Meehan, M.J., Liu, W.T., Criisemann, M., Boudreau, P.D., Esquenazi, E., 
Sandoval-Calderon, M., Kersten, R.D., Pace, L.A., Quinn, R.A., Duncan, K.R., Hsu, C. 
C., Floros, D.J., Gavilan, R.G., Kleigrewe, K., Northen, T., Dutton, R.J., Parrot, D., 
Carlson, E.E., Aigle, B., Michelsen, C.F., Jelsbak, L., Sohlenkamp, C., Pevzner, P., 
Edlund, A., McLean, J., Piel, J., Murphy, B.T., Gerwick, L., Liaw, C.C., Yang, Y.L., 
Humpf, H.U., Maansson, M., Keyzers, R.A., Sims, A.C., Johnson, A.R., Sidebottom, A. 
M., Sedio, B.E., Klitgaard, A., Larson, C.B., Boya, C.A., Torres-Mendoza, D., 
Gonzalez, D.J., Silva, D.B., Marques, L.M., Demarque, D.P., Pociute, E., O’Neill, E.C., 
Briand, E., Helfrich, E.J.N., Granatosky, E.A., Glukhov, E., Ryffel, F., Houson, H., 
Mohimani, H., Kharbush, J.J., Zeng, Y., Vorholt, J.A., Kurita, K.L., Charusanti, P., 
McPhail, K.L., Nielsen, K.F., Vuong, L., Elfeki, M., Traxler, M.F., Engene, N., 
Koyama, N., Vining, O.B., Baric, R., Silva, R.R., Mascuch, S.J., Tomasi, S., Jenkins, S., 
Macherla, V., Hoffman, T., Agarwal, V., Williams, P.G., Dai, J.Q., Neupane, R., 
Gurr, J., Rodriguez, A.M.C., Lamsa, A., Zhang, C., Dorrestein, K., Duggan, B.M., 
Almaliti, J., Allard, P.M., Phapale, P., Nothias, L.F., Alexandrovr, T., Litaudon, M., 
Wolfender, J.L., Kyle, J.E., Metz, T.O., Peryea, T., Nguyen, D.T., VanLeer, D., 
Shinn, P., Jadhav, A., Muller, R., Waters, K.M., Shi, W.Y., Liu, X.T., Zhang, L.X., 
Knight, R., Jensen, P.R., Palsson, B.O., Pogliano, K., Linington, R.G., Gutierrez, M., 
Lopes, N.P., Gerwick, W.H., Moore, B.S., Dorrestein, P.C., Bandeira, N., 2016. 
Sharing and community curation of mass spectrometry data with Global Natural 
Products Social Molecular Networking. Nat Biotechnol 34, 828–837. 

H. Xie et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref1
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref1
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref2
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref2
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref2
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref3
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref3
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref3
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref4
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref4
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref4
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref4
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref5
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref5
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref5
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref5
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref5
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref5
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref5
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref5
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref5
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref6
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref6
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref7
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref7
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref7
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref7
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref8
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref8
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref8
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref9
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref9
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref9
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref10
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref10
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref10
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref10
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref11
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref11
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref11
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref11
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref12
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref12
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref12
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref13
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref13
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref13
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref14
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref14
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref14
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref14
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref14
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref15
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref15
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref15
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref15
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref15
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref16
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref16
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref16
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref16
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref17
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref17
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref18
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref18
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref18
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref19
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref19
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref19
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref20
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref20
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref21
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref21
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref21
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref22
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref22
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref23
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref23
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref24
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref24
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref24
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref25
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref25
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref25
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref25
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref25
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref25
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref25
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref25
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref25
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref25
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref25
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref25
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref26
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref26
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref26
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref27
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref27
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref28
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref28
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref28
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref29
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref29
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref29
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref29
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref30
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref30
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref31
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref31
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref31
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref31
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref32
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref32
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref32
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref32
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref33
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref33
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref33
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref33
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref33
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref34


Journal of Hazardous Materials 424 (2022) 127173

13

Wang, B., Han, X.Y., Bai, Y.H., Lin, Z.G., Qiu, M.G., Nie, X.Y., Wang, S., Zhang, F., 
Zhuang, Z.H., Yuan, J., Wang, S.H., 2017. Effects of nitrogen metabolism on growth 
and aflatoxin biosynthesis in Aspergillus flavus. J. Hazard. Mater. 324, 691–700. 

Wang, T., Li, P., Zhang, Q., Zhang, W., Zhang, Z., Wang, T., He, T., 2017. Determination 
of Aspergillus pathogens in agricultural products by a specific nanobody-polyclonal 
antibody sandwich ELISA. Sci. Rep. 7, 4348. 

Xie, H.L., Wang, X.P., Zhang, L.X., Wang, T., Zhang, W., Jiang, J., Chang, P.K., Chen, Z. 
Y., Bhatnagar, D., Zhang, Q., Li, P.W., 2018. Monitoring metabolite production of 
aflatoxin biosynthesis by orbitrap fusion mass spectrometry and a D-optimal mixture 
design method. Anal. Chem. 90, 14331–14338. 

Xie, H.L., Jallow, A., Yue, X.F., Wang, X.P., Fu, J.Y., Mwakinyali, S.E., Zhang, Q., Li, P. 
W., 2021. Aspergillus flavus’s response to antagonism bacterial stress sheds light on a 

regulation and metabolic trade-off mechanism for adversity survival. J. Agric. Food 
Chem. 69, 4840–4848. 

Xu, L., Zhang, H.Q., Yan, X.W., Peng, H.Y., Wang, Z.X., Zhang, Q., Li, P.W., Zhang, Z.W., 
Le, X.C., 2018. Binding-induced DNA dissociation assay for small molecules: sensing 
aflatoxin B1. ACS Sens. 3, 2590–2596. 

Yan, L., Zhang, H.-T., Goncalves, J., Xiao, Y., Wang, M., Guo, Y., Sun, C., Tang, X., 
Jing, L., Zhang, M., Huang, X., Xiao, Y., Cao, H., Chen, Y., Ren, T., Wang, F., Xiao, Y., 
Huang, S., Tan, X., Huang, N., Jiao, B., Cheng, C., Zhang, Y., Luo, A., Mombaerts, L., 
Jin, J., Cao, Z., Li, S., Xu, H., Yuan, Y., 2020. An interpretable mortality prediction 
model for COVID-19 patients. Nat. Mach. Intell. 2, 283–288. 

H. Xie et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref35
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref35
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref35
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref36
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref36
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref36
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref37
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref37
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref37
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref37
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref38
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref38
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref38
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref38
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref39
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref39
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref39
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref40
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref40
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref40
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref40
http://refhub.elsevier.com/S0304-3894(21)02141-5/sbref40

	Fungi population metabolomics and molecular network study reveal novel biomarkers for early detection of aflatoxigenic Aspe ...
	1 Introduction
	2 Materials and methods
	2.1 A. flavus isolates and study design
	2.2 Fungal culture and metabolites extraction
	2.3 Metabolomics data acquisition by UPLC-HRMS
	2.4 Metabolomics data preprocessing
	2.4.1 Data quality control
	2.4.2 Peak extraction, alignment, filter and gap-filled
	2.4.3 Metabolomics data matrix preprocessing

	2.5 Univariate and multivariate statistical analysis for screening differential metabolites
	2.6 Metabolites annotation
	2.7 Biomarker analysis by Random Forests (RF) model
	2.8 Designing an early detection solution by pooled testing and accelerated growth incubator
	2.9 Development of an operable decision rule by XGBoost model

	3 Results
	3.1 Aflatoxins-producing capacity (APC) and metabolic diversity across A. flavus isolates
	3.2 Biomarkers analysis of aflatoxigenic Aspergillus species
	3.3 Validation of potential biomarkers
	3.4 The sensitivity and specificity of biomarkers
	3.5 The correlation between biomarkers and APC
	3.6 The structural relationship between biomarkers and aflatoxins
	3.7 An early detection solution for predicting aflatoxin contamination risk
	3.8 An operable decision rule intuitively discerns aflatoxigenic Aspergillus species

	4 Discussion
	5 Conclusion
	Author contributions

	Declaration of Competing Interest
	Data Availability
	Acknowledgments
	Supporting information
	References


