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FLOCponics is an alternative type of aquaponics that integrates biofloc technology
(BFT) with soilless plant production. The aims of this paper are to present a detailed
overview of the FLOCponics system's designs and performance, discuss their sustain-
ability, highlight the current challenges, and give directions for future research. Data
sources include papers containing the keywords bioflocs and hydroponics, aquapon-
ics and/or plant production. In view of the small number of publications and the lack
of standardization in experimental design and system setup, it was concluded that
FLOCponics is still in its initial research stage. With respect to the animal and plant
yields in FLOCponics, inconsistent results were found. Some investigations presented
better or similar yield results in this system compared to traditional cultures, while
others found the opposite. One of the key challenges of using FLOCponics is the
effective control of solids. Refining the system's design was the main recommended
improvement. Moreover, this paper highlights that the commercial application of
FLOCponics will require extensive research that clarifies its technical and economic
aspects, originating from experimental or pilot-scale setups with characteristics simi-
lar to commercial production. This review provides and discusses information that can
be useful for the effective development of FLOCponics, guiding further research to
make FLOCponics commercially feasible and thus contributing to sustainable aqua-

culture production.
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1 | INTRODUCTION

The global demand for safe and healthy food has increased sig-
nificantly in the last few years due to world population growth,
projected to reach 9.7 billion people in 2050.1 Providing them with
healthy food is a major global challenge, especially in the current
scenario of natural resource scarcity.z'3 Many countries still face
problems with hunger while others are trying to address their high
rates of population obesity and malnutrition.* Hence, investment
and research into sustainable food production technologies that
produce nutritious food and consume fewer natural resources are
needed.’” Modern aquaculture systems, for example, can contrib-
ute to the production of fish for a healthy human diet in a more
sustainable way.?

In recent years, aquaculture has been the fastest growing ani-
mal production activity and has increasingly contributed to the fish
supply worldwide.? There are several ways to classify aquaculture
systems, ranging from the degree of intensification and the use of
feed, to water renewal or the environment where the farm is in-

stalled.*®

Most of the global aguaculture volume is produced in semi-
intensive pond systems or intensively in cages.9 The pond and cage
systems in general require a low degree of technology and, when
well-managed, are efficient for fish production.!**? However, in
some situations where proper management is not carried out, that is,
no treatment of the effluents occurs or the carrying capacity of the
environment is neglected,”*3"> eutrophication of waterbodies might
result.!® In addition, these traditional pond and cage aquaculture
systems depend on large volumes of water, extensive areas of land,
and/or in some critical scenarios the use of antibiotics to achieve
high productivity.””*8 All these environmental problems undermine
aquaculture's sustainability.!?2°

In order to ensure that the growth of aquaculture does not occur
in a disordered way, which will consequently affect its full develop-
ment, new technologies and management strategies have been pro-
posed to adapt aquaculture to sustainable production methods.'*?*
Sustainable aquaculture systems are those that enable maximum
production per volume with minimum negative environmental im-
pact and less use of resources.?? In this sense, in the last decade
an increased number of studies have been seen which focused on
closed aquaculture systems which require low volumes of water and
minimize effluent discharge. Examples of these types of systems
are the recirculating aquaculture systems (RAS) and those using
biofloc technology (BFT).2>?* RAS is a filter-based aquaculture sys-
tem where water is constantly recirculated and partially reused.?
For this, mechanical filters are used to remove the solid wastes and
biofilters, colonized by nitrifying bacteria, are required to convert
the toxic metabolic wastes from fish (ammonia is oxidized into ni-
trite and then to nitrate) and to purify the water.?>2° BFT is a closed
aquaculture system based on the microbial-loop concept, where the
growth of a specific microbial community, such as heterotrophic and
nitrifying bacteria, is stimulated in the fish and/or shrimp tanks.”272?
Compared to the traditional low-technology aquaculture systems,

RAS and BFT offer the advantage of producing aquatic animals in

a controlled environment, with a high degree of water reuse and
predictable harvesting schedules.?®?” However, these systems are
highly dependent on electricity for adequate operation, and spe-
cialized labour. Besides that, RAS and BFT are usually employed
in monocultures and do not reuse the leftover nutrients to nourish
other species in traditional configurations.3%3

Integrated multi-trophic aquatic systems are recognized as a
modern and more sustainable production method.”*2 Multi-trophic
systems combine the culture of fed species with extractive species,
aiming to simulate a natural ecosystem. By this mix of species, the ac-
cumulated nutrients and by-products from the fed culture are used
by the extractive species for their own growth.”*® Nutrient reuse al-
lows the minimization of the environmental impacts of food produc-
tion, reduction of the costs of fertilizers and water, and contributes
to the development of circular food production.34’35 Moreover, the
integration of systems and species with different trophic functions
increases the variety of products offered and provides food security
for local consumers.3¢%7

Aquaponics is an example of an integrated agri-aquaculture sys-
tem which combines aquatic animal and vegetable production.®® The
most common and traditional aquaponics system configuration in-
tegrates freshwater RAS and hydroponics systems in one Ioop.39*40
However, aquaponics is a research field under development and
variations on the common one-loop configuration are frequently
being proposed to improve the efficiency in the food production
process.*! Examples of different system designs are: decoupled

42,43 4445 o)

aquaponics systems, multi-loops aquaponics systems,
gaeponics systems,*® maraponics systems,*” and the use of biofloc
technology41 or FLOCponics systems, as recently named by Pinho
etal.*8

FLOCponics is defined as the integration of biofloc-based aqua-
culture with hydroponics.*® Thus, FLOCponics is an alternative type
of aquaponics system where RAS is replaced by a system based on
BFT. Kotzen et al.*! presented a brief overview of the research car-
ried out on the integration of BFT and plant production. However,
they do not provide detailed information about the productive re-
sults reached or a critical discussion of the challenges and contribu-
tions of such integration to sustainable food supply. The aims of this
paper are to: (i) present FLOCponics systems, the justifications for
its employment, and an overview of the technical results that have
been achieved so far; (ii) discuss the economic and environmental
aspects of these systems and the relevance of its development to
the food supply; and (iii) highlight current FLOCponics challenges
and give directions for further research.

To achieve the aforementioned aims, this review is struc-
tured into a further six sections. Firstly, a brief overview of bio-
floc technology and aquaponics is given in sections 2 and 3. Then,
FLOCponics systems are presented in section 4. This section is di-
vided into subsections in which a theoretical background is intro-
duced, and information regarding the system setups, water quality
and nutrient recycling, and productive results of plant and fish
achieved in FLOCponics research are detailed. The main poten-

tial technical-economic, social and environmental characteristics
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of FLOCponics are shown in section 5. Lastly, the challenges of
FLOCponics are discussed in section é and the final remarks are

presented in section 7.

2 | BIOFLOC TECHNOLOGY

Biofloc Technology (BFT) was developed in the 1970s, by the French
Research Institute for Exploitation of the Sea (IFREMER).”’49 Their
aim was to improve the productive performance of aquatic animals
and solve problems of disease outbreaks in marine shrimp farm-
ing.2%*’ The promising results of BFT were disseminated and, due to
its flexibility, such technology is also currently applied in fish farms.
Biofloc-based culture is characterized by the presence of specific
microbial communities, which enable the intensive and biosafe cul-
ture of aquatic organisms.?”°%%! The growth of heterotrophic bac-
teria is stimulated by the manipulation of the carbon:nitrogen (C:N)
ratio, normally ranging from 10 to 20:1, with constant water move-
ment and aeration and minimal water exchanges.?”>? In addition to
heterotrophic bacteria, chemoautotrophic bacteria and planktonic
organisms, mainly microalgae, copepods, cladocera, protozoa and
rotifers, are also frequently reported in biofloc cultures.’®>> The
predominance of each group of microorganisms will depend on the
target shrimp/fish species, the productive management, and the in-
puts used.?®>* Such predominance will define the BFT trophic level,
usually categorized as photoautotrophic (algae-based system), che-
moautotrophic (based on nitrifying bacteria), heterotrophic (based
on heterotrophic bacteria), or mixotrophic systems.”’29

Under proper operation of the system, biofloc microbial aggre-
gates confer several benefits to aquaculture production. Suitably
operating a biofloc-based system means, in general, providing the
water quality and nutrients required for the growth of the target
species and microorganisms.“ In in situ BFT, the microorganisms
are constantly available, rich in nutrients, and complement the nu-
tritional requirements of the reared animals.’’>° Consequently,
BFT allows for the application of nutritional management strategies
which reduce expenses and the negative impacts of aquaculture, for
instance, the reduction of fish meal and protein levels in the diets
used.®%-%% The biofloc microbiota also confers stability on the system
and maintains water quality by recycling the nutrients, incorporating
ammonia excreted by organisms into bacterial biomass and promot-
ing the microbial-loop.?8%* In addition, BFT contributes to minimiz-
ing the occurrence of diseases. An improvement in the nutritional
and immunological status of the animals through the consumption of
bioactive compounds in the bioflocs, and a reduction in the presence
of pathogens, has already been reported.52'65 Recent research has
also demonstrated the positive effect of BFT on gut microbiota®®
and on health and enzymatic activity.®”

Biofloc technology has been employed in aquaculture farms and
research centers worldwide. In recent years, the number of publica-
tions has significantly increased. A total of 138 articles about ‘biofloc’
were published between 2001 and 2010, and this number increased
to 635 between 2011 and 2019 (source: ScienceDirect 2020). There
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are already several reviews and overviews on this topic. The papers
range from the definition and detailed explanation of BFT?/°1¢8 to
more specific subjects, such as the profile of microorganisms usu-

28,7071 gnimal

ally found®? and their positive effect on water quality,
health®® and nutrition.**>*377273 Most research articles on BFT
evaluate the production of Pacific white shrimp Litopenaeus vanna-

+29,59,64,74 67,75,76

mei and tilapia Oreochromis spp., although some stud-

ies have already shown the suitability of BFT for other species.®*
The benefits of BFT are numerous and well known. However, it is
a complex system,27 not applicable to all aquaculture species,”” and
commercially should be applied with proper technical supervision.
Some examples of BFT disadvantages in relation to other aquaculture
technologies are: (i) the need for intensive monitoring of the physical-
chemical parameters of the water; (ii) continuous dependence on
electricity; and (iii) the need for specialized labour.”3! Moreover, the
accumulation and high (toxic) concentration of nutrients, such as ni-
trate and phosphate as a result of high fish/shrimp stocking density
and low water renewal,’>”® may affect the efficiency and stability of
the system in the long-term. In this sense, its integration with hydro-
ponic vegetable production (in a FLOCponics system) could be an

alternative to minimize these problems.41

3 | AQUAPONICS

In aquaponics systems, aquaculture effluents are transformed by
nitrifying bacteria into bioavailable nutrients for plants, support-
ing almost full feed utilization and plant growth.””®! In aquaponics,
nutrients are recycled and low volumes of water are used,*® which
reduces the negative environmental impacts usually associated with
low efficiency in the use of natural resources in conventional food
production.®?

To make agri-aquaculture integration viable, a basic layout in-
cluding some indispensable components is required. An aquaponics
system basically consists of aquatic organism tanks and filters (me-
chanical and biological), which make up the recirculating aquacul-
ture system, connected to hydroponic beds.®® Changes in this layout
can be found depending on the adopted production scale, that is,
whether it is for hobby, small-scale (semi-commercial) or large-scale
(commercial) production. Small-scale production is usually low-cost
and flexible in terms of materials used and species produced, while
commercial aquaponics needs high investment, labour and upgrad-
ing.84 Different designs, greenhouse environment, management and
type of hydroponic bed are often reported for large production sys-
tems.848 The objective of the entrepreneur and the requirements
of the reared species will define which layout should be used.

Many potential species can be produced in aguaponics depend-
ing on the employed system design.86 For the success of aquapon-
ics, the aquaculture species must have suitable characteristics for
production in intensive recirculating aquaculture systems. They
should be rustic and tolerate high stocking densities, handling, and
a wide range of physical-chemical water parameters.40 Although
there are some reports on the culture of other aquatic organisms,
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the production of fish, mainly tilapias (Oreochromis spp.), catfish
(order Siluriformes) and salmonids, are predominant in aquapon-
ics farms.0.85.87.88 Regarding the plants, in general, those that are
produced in hydroponics systems thrive in aquaponics. Plant pro-
duction in aquaponics is directly related to the nutritional charac-
teristics of fish/shrimp feed and the rate of nutrient mineralization
by microorganisms.???° Besides that, plant growth frequently de-
pends on extra fertilization to better meet its nutritional require-
ments.”®? In contrast to coupled systems, meeting the nutritional
requirements and water conditions for each loop (aquaculture,
hydroponics and filters) is possible in decoupled systems due to
the individualization of the productive units.**2 It is worth noting
that the terms coupled and decoupled aquaponics systems were
recently renamed as ‘permanent coupled’ and ‘on-demand cou-
pled’ systems, respectively.93 However, even though these new
nomenclatures should be used in further studies, in the present
paper, the system layouts were referred coupled and decoupled as
labelled in the reviewed papers. Regardless of the design employed
or species grown, aquaponics is recognized as offering a wide va-
riety of products that ensure safe and healthy food. This is mainly
because minimal or no chemicals such as pesticides and antibiotics
are used.1%3¢

Although aquaponics is an emerging food production technol-
ogy, several articles have already been published about it. Goddek
et al.®? presented a detailed review on the characteristics and op-
portunities of aquaponics. They also discussed the challenges for
commercial aquaponics production and the trade-offs between the
needs of fish, filter-bacteria and plants in a coupled system. These
trade-offs and the dynamics of the decoupled system were dis-
cussed in depth by Goddek et al..*® After the publication of 160 arti-
cles between 2015 and 2019, Yep and Zheng*® updated the general
trends of aquaponics and showed that research focused on system
design, hydroponics components, fish species, plant species and mi-
croflora has increased. Besides these topics, others relating to and
focused on aquaponics production have also been investigated and

94-97

reviewed. For example, studies on economic viability, sustain-

ability,”81%9 simulation and predictions through mathematical mod-

101-104 | 105
s ’

els use of aquaponics as an educational too

106,107

applicability
of multi-loop aquaponics systems and application of other
aquatic animal species*! are also found in the literature. In most of
these papers, it is emphasized that aquaponics systems carry great
potential to overcome some of the technical and environmental
challenges of the agricultural and aquaculture sector.

Some fields of aquaponics still require research and must be im-
proved in order to exploit their full potential. For example, a few
studies have recently been developed on how the nutrients of RAS
water-sludge can be recycled and used for plant production.1%81%?
Each aquaponics system and species reared need specific water
parameters, nutrient balance and pest management. Meeting these
specifications is usually the main technical challenge faced by tradi-
tional coupled systems.“o'111 In addition, commercial aquaponics is
highly dependent on specialized labour, due to the need for multi-

disciplinary knowledge to run the system.3>878

PINHO ET AL.
4 | FLOCponics
41 | Background
Aquaponics and biofloc-based aquaculture are considered

environment-friendly approaches to food production. Both are in-
tensive aquaculture systems with a strong focus on nutrient recy-
cling and water saving.”*'2 FLOCponics shares these characteristics.
By adopting the principles of aquaponics and bioflocs, FLOCponics
can become an additional means to reduce the challenges of the
global sustainable food supply. Recently, the term ‘FLOCponics’ was
proposed by Pinho et al.*® to identify and unify the systems that have
been called ‘BFT+hydroponics’, ‘BFT+aquaponics’ or ‘BFT+plant
production’. All these terminologies were used in the search for pa-
pers in the ScienceDirect, Google Scholar and Scopus databases,
and papers published until September 2020 were considered. The
reference lists presented in the articles found were cross-referenced
in our review, that is, these lists were checked in order to find the
papers that were not discovered at first. In total, twenty-two pa-
pers were found and reviewed, of which 4 were theses and 18 were
articles published in peer-review journals (3 of them were found by
cross-referencing).

In general, the 22 papers found theoretically justified the use of
FLOCponics systems by their potential to combine and maximize the
advantages of BFT and traditional aquaponics using RAS and/or to
minimize their limitations. High nutrient use efficiency and reduction
of waste are examples of strengths of aquaponics that can be poten-
tialized in FLOCponics systems.'?!2 Furthermore, the FLOCponics
researchers usually state that adding hydroponics production to a
BFT farm may expand economic diversity by producing additional
value-added products (plants) and reduce the negative environmen-
tal impacts of biofloc-based production, such as the accumulation of
nitrate and phosphorus in BFT culture and its discharge through sol-
ids management.”%7¢1% From an agri-aquaculture production point
of view, it is also expected that BFT brings relevant benefits. For
example, the improved zootechnical performance reported in BFT

compared to RAS cultures'!>116

héS

and the positive effects of BFT on
animal nutrition and health® suggest that FLOCponics may offer an
advantage. Regarding plant growth, the main characteristics that
make BFT effluent a promising fertilizer are: (i) the high concentra-
tion of nutrients; (ii) the diversity of microorganisms, which are con-
stantly recycling nutrients and may increase their availability or help
their absorption by the plants; and (iii) the low investment in filters
for water treatment.*>’®17 Although the authors presented many
theoretical advantages of using FLOCponics, some of them were not
yet fully proved.

The overview of the objectives and general findings of these
papers are described in Appendix |. The details and specific results
related to plant and animal growth as well as the system designs and
nutrient insights are described in the next subsections. In addition
to the 22 papers found, three other peer-review articles that re-
ported on the use of BFT effluent for the production of plants in soil
were found.*812° However, they do not fit the definition proposed
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here for FLOCponics (BFT +hydroponics). Because of this, these
articles were not considered in the descriptions and discussions of

the system.

4.2 | System setups

The employed designs of FLOCponics systems are summarized in
Table 1. Most of the experiments were run in coupled system con-
figurations and only 30% used decoupled (on-demand coupled) sys-
tems (Figure 1). In coupled configuration, the water and nutrients
are fully recirculated between all subsystems (BFT, optional filters
and hydroponics). For decoupled FLOCponics systems, the respec-
tive subsystems are seen as stand-alone systems and the water and
nutrients are directed from BFT, to filters (optional use) and end-up
in the hydroponics subsystem. No study compared or evaluated the
possible effects of coupled and decoupled configurations on produc-
tion in FLOCponics systems. Different types of hydroponics subsys-
tems are employed, in which the Nutrient Film Technique (NFT) and
Deep Water Culture (DWC) were mostly used (Figure 1). NFT com-
prises shallow channels where the plants are allocated. A thin layer
of nutrient solution flows through these channels to partially irrigate
the roots of the plants. In DWC plants are produced in floating sup-
ports on tanks filled with nutrient solution.®??* No experiment was
reported that assessed whether the type of hydroponics system af-
fects the efficiency of FLOCponics systems in terms of food produc-
tion and nutrient use. In view of this lack of data, it is still unknown
which type of hydroponics subsystem works better in FLOCponics.

With respect to the aquaculture subsystem, tanks with differ-
ent volumes have been used, varying from 125 to 1000 L to more
than 100,000 L. The high volumes of fish tanks (>100 m®) were
reported by Rahman,'?! Blanchard et al.,**? Pickens et al.'*® and
Doncato and Costa.'?* These authors took the effluent from BFT
tanks daily or weekly, streaming the water for plant production in
decoupled systems. In addition, a remarkable feature was the use of
artificial substrates in the shrimp tanks by Silva,*?> Neto,*?¢ and Poli
et al..1¥ These authors did not test the effects of the substrates on
FLOCponics production, they were used as a management usually
recommended for shrimp growth in BFT.'2712% The adoption of sub-
strates has been proposed to increase the surface area of the tank
and favour the growth of periphyton.>* Periphyton-based aquacul-
ture brings advantages such as serving as a complementary food for
the cultivated animals and assisting in the cycling of nutrients.!%°
Studies on the use of substrates in FLOCponics systems should
be carried out to better understand its effect on animal and plant
growth, as well as on the quality and amount of nutrients available
for the hydroponics subsystem.

In BFT production, the use of simple settling tanks is often
needed to control the solids concentration in the fish/shrimp
tanks.?”131132 A high concentration of solids can negatively impact
the operation of the system since it can result in higher oxygen de-
mand. The recommended range of solids concentration for the pro-
duction of tilapia and shrimp in biofloc-based systems are 5 to 50
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and 5 to 15 ml L', respectively, usually measured as volume of bio-
flocs in Imhoff cones.?®>” The use of filters in FLOCponics research
seems to be optional and varies according to each investigation. In
total, 65% of FLOCponics systems employed some type of filters
between the BFT and hydroponics subsystems (Figure 1). Settling
tanks were always present in the filter systems and extra biological
filters in 23% (Table 1). In general, only information about the total
volume and type of filter used in the FLOCponics filter system has
been reported so far. Unlike in biofloc-based systems without inte-
gration, the use of filters in FLOCponics was intended to try to avoid
the flow of particulate matter to the hydroponics subsystems as such
particulates may impair plant growth. Except for the systems run by
Fimbres-Acedo et al.,'*3134 Doncato and Costa,'?* all the others con-
stantly recirculated the water through the filters and 46% of them
used some mechanisms to return the decanted biofloc/sludge to the

BFT subsystem. Fimbres-Acedo et al.}?¥3134

employed a decoupled
system where the hydroponics subsystems received water from the
BFT subsystem only in the beginning and middle of the experiment.
At these moments, the water from the BFT subsystem was pumped
to the 300 L settling tank and left to settle for 24 h. Subsequently,
the supernatant was transferred to a 1000 L aerobic mineralization
bioreactor (AEMBR), filtered with a 5 um bag filter and then directed
to the hydroponics subsystem. Doncato and Costa'?* directed the
water from the BFT tanks to the settling tank and bag filters and then
to the hydroponics subsystems once a week. With this procedure,
the authors managed to reduce the concentration of suspended
solids between the affluent and effluent of the filters by 71%. The
frequent use of filters in FLOCponics indicates that the BFT manage-
ment should focus on providing inorganic nutrients to the hydropon-
ics subsystem instead of directing the microbial flocs to it.

A lack of standardization in the proportions of water volumes
of the hydroponics, BFT, and filter subsystems was detected among
the reviewed papers (Table 1). A wide variation was also observed in
the water flow through the hydroponic beds, varying from 0.06 to
13.1 L min%, and in the strategies to direct the water from BFT to
hydroponics subsystems in decoupled systems. The lack of a stan-
dard among the system setups points out that FLOCponics is still
in its initial stage. It further indicates a research gap related to the
dimensioning of hydroponics and filter subsystems in relation to the
BFT tanks. The implications of this lack of standardization are dis-
cussed in section 6.

In general, simple greenhouses covered with transparent plas-
tic polyethylene and a shading net (20-50% of light retention) were
home to most of the experimental FLOCponics systems. These
structures tend to have low effectiveness in climate control. Rocha
et al.,''? Castro-Mejia et al.,'®° Castro-Castellén et al.,'3¢ Martinez-

.27 and Pickens et al.1®®

Meingler et a reported different structures.
Castro-Mejia et al.,*®> Castro-Castellén et al., 3¢ Martinez-Meingtier
et al.*¥ carried out the experiments in an indoor lab using LED
light to support plant growth. Pickens et al.'?® used greenhouses
equipped with environmental controls for year-round production.
Rocha et al.*? did not use a greenhouse or any covered structure to

run their low-cost FLOCponics systems.
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FIGURE 1 Proportion of the use of different system setups in
FLOCponics research. DWC: Deep Water Culture. NFT: Nutrient
Film Technique

4.3 | Water quality and nutrient recycling

One of the main characteristics of biofloc-based systems is the abil-
ity of BFT microorganisms to recycle nutrients and maintain ideal
water quality for the reared animal species.?® Phytoplankton, nitri-
fying bacteria and heterotrophic bacteria contribute to ammonia-
nitrogen cycling by converting the toxic ammonia-nitrogen to
nitrate or assimilating it into bacteria biomass.?”**® All these types
of nitrogen conversion usually happen at the same time and the
predominance of one depends on the nutrient management of the
system.®>%8 Additionally, the physical-chemical parameters of the
water must meet the requirements of these microorganisms. In par-
ticular, high levels of dissolved oxygen (DO) and alkalinity, as well
as a high C:N ratio, should be provided. Detailed information about
the water quality required for BFT microorganism growth and the
standard values of water parameters that must be maintained in the
fish or shrimp tanks in BFT systems can be found in Avnimelech,?’
Emerenciano et al.?® and Samocha and Prangnell.*®?

The results of the experiments run in FLOCponics systems and
focused on animal production (Appendix |) showed that most of the
physical-chemical water quality parameters remain within the ac-
ceptable ranges for fish or shrimp production. An exception was the
volume of bioflocs (total suspended solids), which was lower than

1.9 and Pinho et al.#81%”

recommended. For example, Lenz et a re-
ported, respectively, 2.6 to 4.9 mI L%, 0.2 mlI L and 0.2 t0 0.95 mI L™
as mean values of volume of bioflocs in tilapia culture, which are
below the minimum recommended of 5 ml L'2.°” However, these low
values seemingly did not affect the maintenance of water quality
and nitrogen recycling by the microorganisms. Based on that, it is

reasonable to state that the relation between microbial activity and

volume of biofloc in FLOCponics, and even in BFT monocultures, is
highly variable and still unclear.

For plants, some physical-chemical parameters of water often
seem to be non-ideal, mainly regarding the pH and suspended solids
values in the coupled FLOCponics systems. The recommended pH
range for hydroponics production is generally between 5.5 and 6.5
to ensure high nutrient availability for plant uptake.’*! Despite that,
most of coupled FLOCponics systems reported so far were run with
pH close to neutrality. In a decoupled system, Blanchard et al.t??
evaluated the effect of four pH levels (5.0, 5.8, 6.5 and 7.0) on nutri-
ent availability in the hydroponics subsystems. The authors showed
there were no overarching effects on plant growth that would de-
mand pH regulation in the FLOCponics system. With respect to
suspended solids in water, a very low concentration of solids must
be maintained in the hydroponics subsystems to avoid the deposit
of bioflocs in the plant roots and consequently the impairment of
the breathing process and the absorption of nutrients by plants.**?
However, high solids concentration in the hydroponics tanks have
been reported in FLOCponics systems.*>76143 Keeping biofloc con-
centration in the fish tanks at appropriate levels for animal produc-
tion and at the same time maintaining low solids concentration in
the hydroponics subsystems seems to be one of the trade-offs of
coupled FLOCponics.

The input of nutrients and their transformation by microorgan-
isms are as important as providing ideal conditions of water quality
for all subsystems. In traditional aquaponics, most of the nutrients
that nourish plants are expected to come from the RAS effluent,®*
and should also be the case in FLOCponics. The addition of organic
and inorganic carbon sources to regulate the heterotrophic com-
munity and water alkalinity, respectively, may offer extra nutrients
in FLOCponics as compared to RAS, where feed is commonly the
only source of nutrients in the aquaculture subsystem. Both proce-
dures are often required to promote the growth of BFT microorgan-
isms.?”28 Table 2 compares the nutritional management and sources
of nutrients used in FLOCponics research. No standardization of
these factors among the studies was found, probably due to the dif-
ferent species used, animal size, maturation stage of the bioflocs,
and carbon source. Hydroponic fertilizers were used only in four
studies. 21124135187 |t should be noted that little data is provided
on the profile of macro- and micro-nutrients of the nutrient sources.
The information is usually limited to the dietary protein content and
the type of carbon source used.

Given the aforementioned lack of detailed information on the
characteristics of the source of the nutrients fed to the FLOCponics
systems it is hard to predict how many nutrients will be available for
plant production. In addition, the rate of nutrient recycling and nutri-
ent uptake by the BFT microorganisms are still unclear, which makes
predictions very uncertain. Analysing nutrient content on the plant
biomass is a way to estimate which nutrients have been minimally
provided. Additionally, recent studies have evaluated the macro- and
micro-nutrients available in the water and the solid portion (visible
biomass) of FLOCponics systems, in an attempt to minimize uncer-
tainty in predictions.*8123124134 |4 general, lower concentrations of
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nutrients in FLOCponics water as compared to hydroponic solutions
have been found.'®® On the other hand, when compared to tradi-
tional aquaponics using RAS, higher concentrations of P, K, Ca, S
and Fe were found and seem to be associated with the practice of
external carbon addition.*®12* Moreover, high concentrations of nu-
trients in the solid portion of the decanted bioflocs, which are not
bioavailable for plants, was also reported.}?*122134 Fimbres-Acedo

etal.t®*

suggested that these solids could be mineralized, enhancing
nutrient availability. Studies have recently been carried out to miner-
alize RAS-sludge via bioreactors and successfully use its effluent as
fertilizer in multi-loop aquaponics.*® The use of mineralized solids/
bioflocs biomass to nourish plants in FLOCponics has not yet been
well reported.

Using plants as a filter to remove nutrients from BFT water is
one of the approaches related to nutrient recycling that has been
investigated in FLOCponics research. In these studies, the focus
has been on N and P recovery and their transformation into plant
biomass. Silva,*?° Pinheiro et al.”®!% and Poli et al.*** analysed the
recovery of N and P from marine BFT effluent by halophyte plants.
Their results showed that 24.1-39.3% of N and 14.8-19.4% of P from
the total feed input can be removed as a result of the integration of
shrimp and plant production. It is important to mention that both
nutrients normally accumulate in BFT water.”%'® At high concen-
trations, they can be toxic for the reared animal or, when discharged
into natural water bodies, they can be potential causes of water

eutrophication.'**

4.4 | Productive results

Only the experiments that statistically analysed the plant and fish
or shrimp growth and provided sufficient data to compare the pro-
ductive performance were considered in the descriptions below. In
general, the FLOCponics studies were conducted mainly by aquacul-
ture researchers. Despite this, twenty-four trials were performed to
evaluate plant production (Table 3) and twelve trials tested animal
growth (Table 4) in FLOCponics systems.

441 | Plant production

The use of nutrient-rich effluents from BFT to nourish hydroponic
plants is a key point in FLOCponics systems. However, the stud-
ies carried out so far have not reached a consensus as to whether
FLOCponics has a positive or negative effect on plant yields. To
achieve conclusive results on the effect of BFT effluent on plant pro-
duction, plant growth in this system should be compared with crops
in hydroponics, traditional aquaponics using RAS and/or soil-based
agricultural methods. At the same time, standardizing the composi-
tion of nutrients inputted in all systems might also be done during this
comparison. Some of the reviewed papers compared FLOCponics
to hydroponics and/or traditional aquaponics, but none of them to
soil-based methods. In the studies that compared FLOCponics with

11
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other systems, the amount and composition of nutrients offered to
the hydroponics subsystem were not the same in all treatments/sys-
tems. Eight trials were conducted to evaluate a type of management
in FLOCponics and did not compare it to other production systems.
Table 3 gives an overview of the experimental design and general
results related to plant growth in FLOCponics.

Most of the FLOCponics research evaluated the production of
lettuce or salicornia (Table 3). Leafy vegetables such as lettuce have
also been widely used in traditional aquaponics systems, mainly due
to their low nutritional requirement and fast production cycle.}4%14
Among the trials that cultured lettuce and compared their growth in
FLOCponics to other production systems, 19% found better results
in FLOCponics, 13% in traditional aquaponics, 25% in hydroponics,
and in 44% of the trials no differences between the systems were ob-
served. For those that evaluated a specific factor in the FLOCponics
systems, the results of Barbosa'*® and Rahman*?* should be high-
lighted. They evaluated lettuce production using BFT effluents ei-
ther treated with filtering devices or not, and no differences in plant
growth were found in either study. However, the authors empha-
sized the presence of solids/bioflocs on plant roots, mostly when
filters were not used, and suggested that efficient mechanical fil-
ters should be developed to avoid this solids accumulation. In this

same study, Rahman*?!

also evaluated the effect on lettuce growth
of adding fertilizer supplementation to the hydroponics subsys-
tems of the FLOCponics treatments. The author reported that due
to the extra fertilizer supplementation the lettuces grew similarly
in the hydroponics and FLOCponics systems. Salicornia is a halo-
phyte plant with high market value.}*” The studies that cultured this
species did not compare FLOCponics to other production systems.
Most of them focused on the benefits of integrating salicornia pro-
duction and BFT. It is important to mention that findings reported

124 \vere not considered in Table 3, since the

by Doncato and Costa
authors did not provide sufficient numerical data. Despite this, their
findings bring useful insights about the use of fertilizers in marine
FLOCponics, by showing that plants grown with mineral fertilizers
added to the water outperform those where mineral fertilizers were
added directly to the leaves, or were not added at all.

With respect to other plant species, Fimbres-Acedo et al.'3
demonstrated that plant performance (lettuce, pak-choi, rocket,
basil and spinach) can be affected by the BFT trophic level. Their
results highlighted the importance of investigating how suitable the
species are for a given production situation. Tomato and cucumber
were also reported in FLOCponics studies (Table 3). For tomato,

Pickens et al.*?

compared its growth in FLOCponics to hydropon-
ics and also before and after fish harvest, that is, in one treatment
fish and tomatoes were harvested at the same time (117 days) and
in the other tomato cultivation continued for another 40 days after
harvesting the fish, and consequently with no more feed intake. The
authors showed that, after harvesting the fish, the nutrients in the
water were not sufficient to nourish the tomatoes remaining in the
FLOCponics system, resulting in lower tomato yield compared to the
hydroponics system. For cucumber, Blanchard et al.*?? showed that

the leaf elemental composition was within the recommended ranges
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(Continued)

TABLE 3

Yield

Density

Period

General results

(kgm™)

(plant m2) Treatments

(days)

Species

Trial

Reference

Two proportions of feed per m™2 of plant: 0.9 - 1.14 Statistical difference was found for final

100

83

Sarcocornia ambigua

Neto?¢

biomass with better results in the

50 vs 100 g feed per m™

treatment with 50 g feed per m™. No

difference was found for final yield.

No statistical difference was found

0.38 - 0.61

Four water salinities: 8, 16, 24 vs 32 ppt

40

57

1 Sarcocornia ambigua

Pinheiro et al.”®

between the treatments.

11-1.9 No statistical difference was found

Four different periods of water pumping

100

70

Sarcocornia ambigua

Silva*?®

PINHO ET AL.

between the treatments for lettuce

growth.

in the hydroponic beds over a day: 6,

12,18 vs 24 h

TWhen FLOCponics is not mentioned in the treatments column, it indicates that this was the only system used.

*Yield was calculated as a sum of marketable fruit. f Extra fertilizer was added into the hydroponics subsystems in the FLOCponics systems.

even though the nutrient concentrations in the BFT effluent would
be considered low. The production of aromatic herbs and pepper
was also investigated in a FLOCponics system, but only preliminary
results have been published so far.13>148

In addition to the yields presented in Table 3, special attention
should also be paid to crop quality due to its key role in market com-
petitiveness and consumer perception.®? Additional analysis such
as visual characteristics, composition of nutrients, and indicators of
stress were carried out in FLOCponics studies and demonstrated

1.78113 3nd Silva'?® evaluated the total

promising results. Pinheiro et a
phenolic compounds and antioxidant activity of Sarcocornia ambi-
gua and, according to their results, FLOCponics culture conditions
did not induce high plant stress. For the visual characteristics of the
plants, some investigations showed positive effects of BFT or no

117123 \while others found

visual symptoms of nutrient deficiencies,
the opposite.*814014¢ visual symptoms of nutrient deficiencies are
usually identified by irregular leaf development, discoloured leaves
or burned leaves.

In general, the undesirable visual characteristics or poor plant
growth sometimes found in FLOCponics research have been re-
lated to: (i) the presence of solids/bioflocs on plant roots; (ii) high
water pH (>7), affecting the bioavailability of nutrients in the form
absorbable by plants; (iii) nutrient imbalance; (iv) the consumption
of available nutrients in water by the BFT microorganisms, even
though there is a lack of precise information regarding their role
on nutrient recycling/removal; and (v) lack of waste management
and nutrient optimization through solids/bioflocs reuse or rem-
ineralization.#8112123134140 Al of these constraints relating to
FLOCponics must be addressed and taken into account in further
research. Some alternative solutions for these problems are dis-
cussed in section 6.2.

4.4.2 | Animal production

The main zootechnical parameters evaluated in FLOCponics ex-
periments, as well as the species, duration and densities used,
are presented in Table 4. Most studies were conducted with Nile
tilapia (O. niloticus) or Pacific white shrimp (L. vannamei), except in
those of Castro-Castellén et al.**¢ and Rocha et al.}*? who cultured
Melanochrimis sp and South American catfish (Rhamdia quelen), re-
spectively. Tilapia and Pacific white shrimp are the most popular spe-
cies in biofloc-based cultures.?” This is mainly because both species
show tolerance to less than ideal environmental conditions, such as a
high concentration of suspended solids and nitrogenous compounds
in water, and due to morphological adaptations, which allow them
to take advantage of bioflocs as a complementary food.®>*’ Tilapia
in the nursery phase with initial weight varying between 0.3 and
4.1 g was the most used.***33 Only Fimbres-Acedo et al.!®® reared
fish in growth-out phase, harvesting tilapia between 445 and 520 g.
However, in shrimp culture, the growth-out phase was carried out,
where shrimps with an initial weight of 1.4 g were produced until
they reached approximately 12 g.
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The investigations on the growth performance of aquatic organ-
isms in FLOCponics have evaluated diverse variables (Appendix I).
The treatments have tested, for instance: (i) different input of nu-
trients by varying the carbon source®® or the trophic levels of the
BFT®; (i) different water salinities’®%; (iii) the influence of the

integration of BFT with hydroponics!*®!4; (iv) the effect of specific

management for plant production on shrimp performance125'126;
and (v) the effect of traditional aquaponics using RAS compared to
FLOCponics systems on fish and plant growth.“s’112 Within these
studies (Table 3), only Fimbres-Acedo et al.,'*® Martinez-Meinguér
et al.,®” Martinez-Cordova et al.**® and Pinho et al.*® found sta-
tistical differences in animal growth between the treatments.

Fimbres-Acedo et al.'®®

observed a positive effect of algae-based
photoautotrophic treatment over chemotrophic and heterotro-
phic treatments in both nursery and growth-out phases. Martinez-
Meinguér et al.’® observed that tilapia fed with 35% crude protein
and no fertilizer supplementation outperformed those using higher
dietary protein (47.5% crude protein) and fertilizer supplementation
in FLOCponics system. Martinez-Cordova et al.**® showed benefits
for tilapia yield and feed conversion ratio when received bioflocs

from an ex situ BFT. Pinho et al.*®

compared the production of tila-
pia juveniles in traditional aquaponics and FLOCponics systems and
found higher final weight, higher specific growth rate and lower feed
conversion ratio in FLOCponics. Interestingly, the authors pointed
out that the mean volume of bioflocs in the fish tank was lower than
the recommended for BFT culture and potentially impacted the fish
performance, which could have been even better if the in situ natural
food availability was higher. The same trend of a low volume of bio-

flocs and its impact on fish growth was observed by Rocha et al.,}*?

also running coupled systems. However, in contrast to Pinho et al.,*®
the authors did not find statistical differences between aquaponics
and FLOCponics for Rhamdia quelen production. Both investigations
suggested that improvements in system design could optimize BFT
and hydroponics integration.

In terms of yields, the current studies revealed that the system's
carrying capacity needs to be optimized in FLOCponics. For exam-
ple, for tilapia, the 23 kg m™ reported by Fimbres-Acedo et al.*®% is
far below the 70 kg m™3 able to be produced in the growth-out phase

512 or the maximum of 50 kg m™

in commercial aquaponics with RA
in BFT.”® Meanwhile, in the nursery phase, the values between 7.8 to
8.7 kg m™2 achieved*®!° are within the expected range in BFT sys-
tems, that is, between 8 and 10 kg m™.7¢ For shrimp culture, the rec-
ommended initial densities for the growth-out phase are 270 to 530
juveniles per m™ to achieve marketable shrimp (>18 g) and yields
of 5to 9 kg m™=. The experiments with shrimp in FLOCponics used
similar stocking densities; however, the yields obtained were lower,
ranging from 2.1 to 2.8 kg m~2.11312¢ As mentioned above and in the
previous sections, when a hydroponics system is connected to BFT
tanks the solids/bioflocs in the system are affected. Reducing the
volume of bioflocs makes scarce the in situ natural food and might
change the microbial activity, which is probably the reason for the
reported lower yields in FLOCponics compared to biofloc-based
monoculture. The current results suggest that improvement of

carrying capacity and system design could solve both yield perfor-
mance and solids management, boosting FLOCponics outcomes, and

making them more comparable to commercial aquaponics with RAS.

5 | SUSTAINABILITY ASPECTS

New technologies have recently been developed to lead aquaculture
to more sustainable practices. Being sustainable means that aqua-
culture systems must be technically viable and economically profit-
able, aiming to supply human needs with respect to safe and healthy
food for present and future generations.”**'5° Economic assess-
ments of medium and long-term aquaculture projects can provide
data for the implementation of management strategies that will con-
tribute to the resilience and longevity of the business.*®* In addition
to biological, technical, and economic aspects, understanding the
social and environmental impacts of a new production system from
a systemic point of view through sustainability assessments is im-
portant to provide a basis for the development of appropriate public
policies fostering a sustainable growth of the activity.!?°0:152153

Sustainability assessment methodologies such as the ecologi-

t,15415¢ emergy synthesis,'*1°3157157 Jife cycle analysis

cal footprin
(LCA)*01%* and indicators of sustainability’*® have been used to
measure the sustainability of aquaculture. For aquaponics produc-
tion, studies using LCA have shown that the main environmental
impacts of aquaponics are related to infrastructure, electricity and
feed.”®7716> Low water use and the possibility to be adopted as a
tool to promote educational, cultural, leisure and tourism values, and
landscape improvement are positive aspects usually linked to aqua-
ponics systems.3?1% For biofloc-based production, Belettini et al.*%®
evaluated the carbon footprint of commercial shrimp production
using LCA and showed that electricity is also a key impacting factor
in BFT, while feed has a minor impact. Sustainability assessments of
FLOCponics systems were not found in the literature. The lack of
these analyses is probably due to their need for a large and detailed
database, which is not yet available for FLOCponics systems.

Even though no results from a sustainability assessment are
available, FLOCponics has been presented as an example of a new
technology with the potential to minimize some unsustainable char-
acteristics of conventional aquaculture.”® By replacing the RAS by
BFT in a food production system already known to be eco-friendly,
some positive aspects of biofloc-based systems and traditional
aquaponics can be maximized and some of their limitations reduced.
Moreover, the possibility of producing a mix of food products in a
small urban area and close to the consumer, causing low environ-
mental impact and generating social benefits, are the main sustain-
able advantages of the FLOCponics systems. In addition, the fact
that these foods are healthy, free of pesticides, and offered to the
consumer in a wide variety (fish and vegetables), makes FLOCponics
a highly relevant system on the food production field. The main
technical-economic, social and environmental characteristics that
may justify the recognition of FLOCponics as a sustainable system
are summarized in Table 5.
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TABLE 5 Main potential technical-economic, social and environmental characteristics of FLOCponics

Characteristic

Positive

Low water use
Diversification of production
Efficient use of feed

Constant nutrient recycling

X X X X X

Low or zero effluent disposal
Educational and leisure tool
Promotion of the local economy
Prevents species escape

No use of pesticides

Reduced land use

Use of non-productive areas
Proximity to the consumer

Diluted cost per biomass produced

Low investment in filters

X X X X X X X X X

Improved animal nutrition and health
Negative

Need for skilled labour

High cost of equipment

High dependence on electricity

Low generation of direct jobs

Low widespread technology

Intensive control of water parameters

X X X X X X X

Unpredictability of available nutrients

Table 5 reveals that most of the characteristics of FLOCponics
are related to the technical-economic category. At this moment,
the main focus of FLOCponics research has been on technical
aspects and only one study evaluated the economic feasibility
of this system. Castilho-Barros et al.'®” simulated a theoretical
commercial-scale FLOCponics system with shrimp (Litopenaeus
vannamei) integrated with halophyte S. ambigua and calculated its
profitability. According to these authors, the high market value of
these species made the system economically viable, even in pes-
simistic business plans. They also identified that FLOCponics re-
quires high implementation costs, expensive operating equipment,
and highly skilled labour. It is hasty to draw conclusions about the
profitability of FLOCponics based only on hypothetical results with
specific scenarios, products and markets. However, the three items
with the highest costs identified by these authors seem to com-
pose a pattern as they are also the main weaknesses identified for
traditional aquaponics,’®*%” biofloc-based monocultures”®* and
FLOCponics (Table 5). It should be noted that, if the productive po-
tential of FLOCponics is proved, all these costs may be diluted by
the highest biomass produced and then this economic issue can be
tackled. For example, the electricity cost per kg of food produced
in FLOCponics systems will certainly be lower than in biofloc-
based monoculture. In addition, the adoption of renewable energy

Technical-economic

Social Environmental
X
X
X

X

X X

X X
X

X X
X

X

X
X

X

sources such as wind, solar and biogas produced through biodigest-
ers, and the use of infrastructures and equipment with a long useful
life would be viable alternatives to further improve the sustainable
characteristics of the FLOCponics systems.

Food production systems will always somehow impact the en-
vironment, thus those that achieve high yield with minimal nega-
tive impact should be encouraged.’® Determining the trade-off
between the benefits and costs of FLOCponics and evaluating the
sustainability of real systems are still needed. For these purposes,
a larger technical and economic database of FLOCponics must be
produced and then analysed through sustainability assessments.

6 | CHALLENGES OF FLOCponics SYSTEMS

FLOCponics is a complex and multidisciplinary food production sys-
tem, which requires in-depth knowledge in diverse areas such as mi-
crobiology, limnology, ecology, aquaculture, engineering, agronomy
and hydroponics. Given this complexity, and due to the fact that only
a few investigations have been conducted so far, information gaps
on FLOCponics need to be addressed by new research. At this initial
stage of scientific research, identifying and discussing the challenges
and pointing out the opportunities of FLOCponics may guide future
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studies and then lead to the efficient development of this system.
Currently, the challenges of FLOCponics are technical issues, which
affect its sustainable and economic aspects. The same trend oc-
curred in BFT, but nowadays it has been fully developed and com-
mercially applied. The main identified challenges and opportunities
of FLOCponics are outlined and described below.

6.1 | System setup

The crucial points that need to be adjusted in FLOCponics are the
design and engineering of the systems. The layout of FLOCponics
systems must be designed to provide the best conditions possible
for the production of aquatic animals and plants and the mainte-
nance of BFT microorganisms. The main issue identified is related
to keeping suspended solids in the water at suitable concentrations
for plant and fish production. As stated in the sections above, plant
growth seems to be limited by the excess of solids in FLOCponics
systems. Trying to avoid solids in the hydroponics subsystem has
resulted in a decrease in the amount of in situ food/bioflocs for the
animals. Alternatives to solve this problem are the development of
mechanical filters that efficiently separate the solids and the liquid
fraction of the BFT effluent, and then return the bioflocs to the
aquaculture subsystem and direct the water and nutrients to the
hydroponics subsystem. Examples of filters that need to be inves-
tigated in FLOCponics are bag-filters with backwash technology,
drum filters, or even sedimentation tanks with well-planned biofloc
return flow. Additionally, the frequency of their use and the water
flow into these filters should be set. It is necessary to highlight that
all these filters can be used in coupled FLOCponics systems as well.
However, as in all coupled systems there will always be trade-off

between plant and animal requirements,*>%2

so the employment of
a decoupled layout is highly recommended.

Another challenge of FLOCponics systems that needs to be ad-
dressed is the high variation of the setups used. For instance, the
wide range of water flow rates and volumes of the subsystems
(Table 1) indicate that the water velocity and dilution of nutrients
available for the plants are totally different among the investigated
FLOCponics systems. It could generally be said that the BFT tank
can have any dimension, while the hydroponics and filters subsys-
tem should be carefully designed according to the amount of nu-
trients and solids that will come from the BFT tank. Because of the
lack of standardization in the system setups, it is hard to compare the
results found and reach concrete conclusions about the efficiency of
FLOCponics in producing food.

Based on the findings pointed out in this paper, further studies
should focus on: (i) improving the mechanical filters; (ii) defining the
ideal proportion of the subsystem volumes based on the nutritional
needs of the targeted plant species; (iii) setting the water flow rate in
order to promote greater nutrient uptake and recycling, by adjusting
it to the hydroponics subsystem; (iv) assessing the differences be-
tween the coupled and decoupled layout with reference to the pro-
ductive capacity of FLOCponics; and (v) understanding whether the

type of hydroponic bed, that is, NFT and DWC, affects plant growth
in FLOCponics. All of these investigations must be conducted to de-
velop systems with the potential to be applied commercially. The
economic viability of the proposed solutions should also always be
considered.

6.2 | Plant nutrition, health and production

The success of soilless plant production is directly dependent on
the optimal quantity and quality of the nutrients being available in
the water. The physical-chemical parameters of the water and the
quantity of each macro- and micro-nutrient must be in accordance
with the requirement of each plant species. In addition to nutrients,
other variables also influence plant growth, for example, environ-
mental parameters such as irradiance, photoperiod, temperature,
and humidity.2??! Meeting plant needs is generally a challenge in
coupled aquaponics using RAS®? and seems also to be the case in
FLOCponics. The critical points related to plant growth identified
in the FLOCponics research were outlined in the section 4.3.1. All
of them somehow affect the uptake of nutrients by plants and can
reduce plant quality.

The improvement of the engineering aspects of FLOCponics sys-
tems should minimize or even solve some of these problems, which
are mainly related to solids control. Furthermore, the use of decou-
pled layouts will certainly enable pH regulation at ideal levels for
each subsystem and the addition of specific minerals directly into
the hydroponics subsystem. In contrast to commercial hydroponics
which utilize fully formulated fertilizers, in FLOCponics the pro-
duction costs might be reduced as only specific nutrients would be
required due to a wide range of nutrients already available in BFT
effluent. For this purpose, detailed information on the quantity of
nutrients in the feed and carbon source are required. Additionally,
it is highly recommended to deepen the studies on the profile of
micro-nutrients present in the process water of the BFT system,
given their effect on plant biological processes such as photosyn-
thesis.”* Comparing the differences in the quality and diversity of
the micro-nutrients in the FLOCponics systems and those used in
balanced hydroponic fertilizer will clarify whether there is deficiency
of specific nutrients. This may enable the design of specific supple-
mentation protocols for each plant species, and, thus, achieve high
productivity and quality of vegetables.

Recovering and transforming nutrients from solid biofloc frac-
tions into bioavailable forms through a mineralization process may
change future perspectives about the need for extra fertilization
in FLOCponics.'??1%4 Since a minimum concentration of bioflocs
should be kept in the aquaculture subsystem to promote animal
growth, the amount and frequency of solids/biofloc removal that
will be directed to the remineralization unit, as well as which pro-
cess will be used, need to be precisely defined. Defining an efficient
biofloc remineralization process might be a win-win situation for
fish/shrimp production and water treatment research fields. This
is mainly because high animal growth performance is reached by
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constantly removing excess bioflocs/solids,
bioflocs may be relatively carbon-rich, and consequently a desirable
substrate for anaerobic bioreactors.

For those that wish to run a coupled FLOCponics system, the tol-
erance intervals of water quality and overall nutrients concentration
for the cultured animals, biofloc microorganisms, and vegetables
must be investigated. A key variable in coupled layouts that needs
attention is the pH.**®” While BFT microorganisms work properly
at neutral pH,28 the plants commonly cultured in hydroponics sys-
tem (e.g. lettuce, basil, tomato and cucumber) grow better at pH
ranging between 5.5 and 6.5.#98%1%1 The effect of neutral pH on
plant growth was poorly evaluated and discussed by the studies that
ran coupled systems. Finding alternative plant species that required
neutral-alkaline pH conditions may be a way to minimize pH issues
and run a coupled FLOCponics system successfully. From this per-
spective, examples of crops that could be investigated in further re-
search are swiss chard, broccoli, head cabbage, and mint.1¢®

The influence of nutrient uptake by BFT microorganisms on the
availability of nutrients for plant production is yet unclear. At this
moment, the results have indicated that running a mixotrophic or
chemoautotrophic BFT would be the best option for FLOCponics
systems'®+140 due to the expected predominance of nitrifying
communities (higher concentration of nitrate in water) instead of a
heterotrophic-based medium. Another approach related to BFT mi-
croorganisms that must be clarified is whether a thin flocs biofilm on
plant roots has the potential to boost or harm the nutrient uptake by
the plants. The effect of BFT microorganisms on FLOCponics pro-

duction clearly needs further investigation.

6.3 | Animal nutrition and production

The main issue for animal production in FLOCponics is to main-
tain an optimum amount of in situ food/bioflocs in the aquaculture
tanks. Once the aforementioned improvements in the system design
are implemented, the full nutritional advantages of flocs would be
achieved. Some of the reported nutritional advantages of using BFT
instead of RAS are: (i) reduced feed conversion ratio’*%7%, (ii) re-
placement of fish meal by alternative protein sources’¥173; and (iii)
a reduction of dietary protein content.8%7>74175 stydies aiming to
assess the applicability of these nutritional strategies should be car-
ried out, since they may reduce feed costs and the environmental
footprint of FLOCponics. Moreover, these studies should be run in
intensive densities to achieve higher yields.

Only a few animal species have suitable characteristics to be
intensively produced in BFT and consequently in FLOCponics sys-
tems. Although several studies have shown the viability of other
species,®! biofloc technology is commonly applied to Nile tilapia
and Pacific white shrimp culture. Both species are widely reared
and contribute to the food supply worldwide. On the one hand, the
scarce production of other species with high market value is a limita-
tion of FLOCponics, on the other hand, it is always good to produce
well-known products when new technologies are being developed.
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6.4 | Practical applicability of FLOCponics

To date, FLOCponics research has been mainly led by aquaculture
researchers who normally seek to find solutions to problems directly
related to biofloc-based monocultures, that is, the accumulation of
nutrients in water and high production costs. The authors have justi-
fied using FLOCponics as a way to reuse these nutrients, increase
farm profitability by growing other products with market value,
and dilute the costs with inputs, electricity and labour. Thus, at first
glance, FLOCponics seems to be more applicable for farmers who
already apply BFT. A practical example of this is the fact that some
commercial BFT farmers have been testing and applying the princi-
ples of FLOCponics. Unfortunately, the results held by the private
sector are often not shared with the general public.

FLOCponics will probably be an alternative option for the tradi-
tional aquaponists or the investor who wants to start an integrated
agri-aquaculture farm only when the technical barriers are solved.
For instance, a broad range of knowledge is still required to under-
stand the best way to run a FLOCponics system and to maximize its
results. Moreover, the choice of the food production system that will
be used must take into account several factors, such as market de-
mand, climate, producer experience, technical knowledge, the cost
and availability of inputs, among others. Even if the expected pos-
itive potential of FLOCponics is proved, a systemic analysis of the
whole production scenario should be done aiming to provide guid-
ance as to which system will be most suitable for a given situation.

Most of traditional aquaponics systems are operated at a small-scale
run for personal hobby or family subsistence.}® FLOCponics tends to
be the opposite of this. To support the complexity of BFT, a basic infra-
structure and a significant investment are likely suited to only medium
and large commercial-scale scenarios. Based on that, it is reasonable to
state that FLOCponics will rarely be employed as a backyard system.
This highlights the necessity to improve and standardize system designs
for real production situations. Moreover, technological management
supported by studies of modelling and forecasting inputs and outcomes
will play an important role in developing FLOCponics, especially in me-
dium to larger scaled farms. Modelling FLOCponics systems is a subject
to be investigated; then, it was not explored in this paper.

Finally, it should be mentioned that as FLOCponics is a novel and
emergent system, some papers were published after the settled litera-

176178 3nd many others are expected

ture search period for this review
to be published in the next few years. It is, however, noteworthy that
our group has been advancing research in this field and recently pub-
lished the results of a study in which decoupled layout allowed reduc-
tion of critical issues related to FLOCponics systems, leading to similar
lettuce growth and an 8% reduction in the Nile tilapia dietary crude

protein compared to decoupled aquaponics using RAS.Y”

7 | FINAL REMARKS

This review has identified that FLOCponics research is still in its in-
itial stage, which is shown by the small number of papers published
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so far and the lack of standardization in experimental designs and
system setups. At this stage, there are still some inconsistencies
regarding the results of animal and plant yields in the FLOCponics
systems. For example, 38% of the studies showed worse plant
growth in FLOCponics compared to hydroponics or traditional
aquaponics. The other 62% highlighted that improvements in the
system design are necessary to achieve better plant yields, even
though they reported higher or similar results in FLOCponics. An
important contribution of this paper was examining the main chal-
lenges of FLOCponics systems and suggesting future research
to tackle them (sections 4 to 6). Among the points discussed, the
effective control of solids in order to guarantee a suitable con-
centration for the hydroponics and aquaculture subsystems was
highlighted as the main challenge. For this purpose, it is highly rel-
evant that further investigations determine the ideal management
and design of the filtering systems, and the feasibility of decoupled
FLOCponics systems.

In terms of applicability, the FLOCponics system is likely to be
applied in the short-term by farmers who already operate BFT,
adapting their structures to receive the hydroponics subsystem.
For BFT production, FLOCponics seems to primarily increase the
sustainable character of biofloc-based monocultures by recovering
nutrients and expanding product diversity, rather than promoting
higher animal growth performance. The integration of BFT with
plant production fits with the circular economy concept and might
contribute to social licenses and farm diversity. The further com-
mercial application of FLOCponics requires research that provides a
solid database, originating from experimental setups with character-
istics similar to those of commercial production. In future research,
assessing the economic, social-educational and environmental
impacts of FLOCponics in an urban setting should be considered,
making easier the delivery of products from producer to consum-
ers, with a minimum of middlemen. Lastly, it is expected that the
data presented and discussed in this paper will provide guidance and
technical support for further FLOCponics development, boosting
both research and commercial application, and thus contributing to

sustainable aquaculture and plant production.
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APPENDIX I.

Overview of FLOCponics papers

Reference Animals species
Barbosa'*® Tilapia (Oreochromis
niloticus)
Blanchard Tilapia (Oreochromis
et al.1?? niloticus)

Castilho-Barros
etal.®’

Pacific white shrimp
(Litopenaeus
vannamei)

African cichlid
(Melanochromis sp.)

Castro-Castellon
et al. 1%

Tilapia (Oreochromis
niloticus)

Castro-Mejia
etalt®®

Doncato and
Costa*?*

Pacific white shrimp
(Litopenaeus
vannamei)

Plant species

fTwo varieties of lettuce
(Lactuca sativa L.)

fCucumber (Cucumis sativus
L. ‘Delta Star’)

Sarcocornia ambigua

Cherry tomato (Lycopersicon
esculentuim var.
cerasifonne)

Coriander (Coriandrum
sativum), Dill (Anethum
graveolens), Parsley
(Petroselinum crispum)

tSarcocornia neei Lag.,
Apium graveolens L.,
Paspalum vaginatum Sw.

Objective

Evaluate the effect of using
filters (mechanical
and biological) on the
production of lettuce
and tilapia in FLOCponics
during two 14-day trials.

Determine the effects of
pH (5, 5.8, 6 and 7) on
nutrient concentrations
in water and leaves and
cucumber growth in a
decoupled FLOCponics
system with minimal
solids removal during two
seasonal 60-day trials

Perform a commercial-scale
economic assessment
by using a theoretical
model to evaluate marine
FLOCponics production
in Brazil.

Evaluate four different
carbon sources (coffee,
moringa, macroalgae
and yucca) on plant and
fish production in the
FLOCponics system for
120 days.

A preliminary evaluation
of tilapia and aromatic
plants production in the
FLOCponics system for
160 days.

Evaluate the effects
of micronutrient
supplementation, directly
in the water and by
foliar spraying, on the
growth and biomass
production of different
halophyte plants in saline
FLOCponics.

Main outcomes

The use of filters interconnecting
the BFT and hydroponics
subsystems did not affect plant
growth in the first trial, while in
the second their use benefited
plant growth by reducing the
amount of solids in the lettuce
roots.

Availability of macro- and micro-
nutrients were affected by
pH levels. However, they
did not have a practical
effect on cucumber growth
rate over the two growing
seasons. Elemental analysis
of leaf tissues was within the
recommended ranges even
though nutrient concentrations
in the BFT effluent would be
considered low compared to
hydroponic solutions.

The economic indices showed
that the integrated production
of shrimp and S. ambigua in
FLOCponics is economically
viable for the specific
conditions evaluated.

Fish and tomato produced using
coffee and moringa were
the ones that presented
greater lengths and weights,
respectively.

Preliminary insights about the
management and production of
aromatic plants in FLOCponics.

Water from a FLOCponics
system provides the required
micronutrients for S.neei
growth. Micronutrient
supplementation in water
positively affected the
concentrations of iron,
manganese and molybdenum,
and increased P. vaginatum
growth. Due to the
poor development of A.
graveolens, the responses to
micronutrient additions were
not evaluated. Foliar spraying
was not effective in improving
halophyte growth.

(Continues)
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APPENDIX 1 (Continued)

Reference Animals species Plant species Objective

Fimbres-Acedo TTilapia (Oreochromis TLettuce (Lactuca sativa), Evaluate the production The effluents generated in BFT

et a|_133,134

Lenz et al.}*°

niloticus)

Tilapia (Oreochromis
niloticus)

pak-choi (Brassica rapa
subsp. Chinensis), rocket
(Eruca sativa), basil
(Ocimum basilicum),
spinach (Spinacia
oleracea)

Three varieties of lettuce
(Lactuca sativa L.)

of five plant species in
different biofloc trophic
levels (chemotrophic,
heterotrophic and
photoautotrophic) in
decoupled FLOCponics.

Evaluate the use of

effluents from brackish
BFT (3 ppm) for the
production of lettuce in
FLOCponics for 28 days.

culture at different trophic
levels were able to produce
all tested plant species. Pak-
choi was the more suitable
for heterotrophic BFT
effluents, while rocket and
basil for chemotrophic and
photoautotrophic effluents.

The yield of lettuces grown in
freshwater FLOCponics was
higher than in brackish water.
Crisp and red varieties showed
tolerance to salinity, which
did not occur with the smooth
variety. In relation to plant
visual characteristics, red
variety produced in brackish
FLOCponics had the highest
score, presenting leaves with
higher integrity and intense
coloration.

Martinez- Tilapia (Oreochromis tJalapefo pepper (Capsicum A preliminary comparation of ~ The productive performance of
Cordova niloticus) annum) tilapia-pepper production tilapia was better in biofloc-
etal.}8 in FLOCponics and based tanks. For the peppers,

aquaponics system for no differences in plant yield
56 days. Additionally, were observed between the
the final effluent of both evaluated systems.

systems were used to

fertilizer a soil-based

culture of bell pepper.

Martinez- Tilapia (Oreochromis TTomato (Lycopersicon A preliminary evaluation The use of extra fertilizer and the
Meingtier niloticus) esculentum) of the use of two diet with 35% of crude protein
etal.r¥’ commercial diets and (CP) resulted in higher tomato

extra fertilizer to produce growth. For fish production,
tilapia and tomato in the higher tilapia weight was found
FLOCponics system for when fed with 35% of CP and
140 days. no use of fertilizer.

Neto'? Pacific white shrimp tSarcocornia ambigua Assess the FLOCponics The proportion of 50 g feed per m®

(Litopenaeus
vannamei)

production of S. ambigua
and L. vannamei under
different ratios of feed
per m? of plant (50 and
100 g per m?) and its
influence in the quality
of the culture's water
and in the productive
performance of the
cultivated organisms.

of plants was recommended for
the FLOCponics production,

as it resulted in higher

final biomass of S. ambigua
compared to 100 g feed per

m? In addition, the growth of
shrimp did not differ between
the proportions of feed tested.

(Continues)
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APPENDIX 1 (Continued)
Reference Animals species
Pickens et al.*?®>  Tilapia (Oreochromis

niloticus)

Pinheiro et al.**®  TPacific white shrimp
(Litopenaeus

vannamei)

tPacific white shrimp
(Litopenaeus
vannamei)

Pinheiro et al.”®

| 117

Pinho et a Tilapia (Oreochromis

niloticus)

TTiIapia (Oreochromis
niloticus)

Pinho et al.*®

Plant species

fCherry tomato cvs.
“Favorita” and “Goldita”
(Solanum lycopersicumva
r.cerasiforme)

Sarcocornia ambigua

Sarcocornia ambigua

Three varieties of lettuce
(Lactuca sativa L.)

TLettuce (Lactuca sativa L.)

Objective

Evaluate the FLOCponics
effluent as a nutrient
solution for cherry
tomato culture and
compare its production
with a hydroponics
system, before and after
fish harvest.

Evaluate the use of nitrogen
and production of the
halophyte S. ambigua and
shrimp in a FLOCponics
system compared to
shrimp reared in BFT, as
well as the antioxidant
activity and total
phenolic compounds in
plants.

Evaluate the relation of
water salinity (8, 16,
24 and 32 psu) in the
productive performance
of Pacific white shrimp
and S. ambigua cultured
in a FLOCponics system.

Assess the use of BFT
effluent to nourish three
varieties of lettuce (red
crispy, butter and crispy)
produced in FLOCponics
during a 21-day period
compared to those grown
in traditional aquaponics.

Compare the productive
parameters of Nile
tilapia juveniles and
butter lettuce grown in
FLOCponics to those
grown in a traditional
aquaponics system
during two 23-day trials.

Main outcomes

Before fish harvest, few
differences in plant yield were
observed between those
produced in FLOCponics or
hydroponics for the cherry
tomato ‘Favorita’, while
differences were seen between
treatments for the tomato
‘Goldita’ with greater results
in hydroponics system. After
fish harvest, both cultivars
grew better in the hydroponics
system. Low concentration
of nutrients were seen in
FLOCponics effluents, despite
no visual symptoms of nutrient
deficiencies being observed
throughout the experiment.

The integration of shrimp and S.
ambigua production improved
the use of nitrogen in the
system and did not affect
shrimp growth. The results
also showed that S. ambigua
culture in FLOCponics may
be a promising source of
natural antioxidants for human
consumption.

The salinity between 16 and
24 psu was recommended for
the integrated production of
L. vannamei and S. ambigua
in FLOCponics, since the
performance of the shrimp was
not impaired, and the growth
of the plants and the removal
of nitrogen and phosphate
compounds were favoured in
this salinity range.

The productive performance of
lettuce cultured with BFT
effluent was better than
in traditional aquaponics.
Regarding the lettuce
varieties tested, butter lettuce
presented the best growth
results.

The visual characteristics and
growth performance of
lettuce grown in FLOCponics
were lower than those grown
in traditional aquaponics,
mainly in the second trial. The
zootechnical performance of
the tilapia juveniles was better
in FLOCponics.

(Continues)
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APPENDIX 1 (Continued)

Reference Animals species Plant species Objective Main outcomes

Poli et al.1* Tilapia (Oreochromis Sarcocornia ambigua Evaluate the water The IMTA in the FLOCponics
niloticus) quality parameters system resulted in a higher
and pacific and production of an yield of all products than in

white shrimp
(Litopenaeus

integrated multitrophic
aquaculture (IMTA)

BFT. However, the presence
of S. ambigua did not affect

vannamei) system applied to nitrogen and phosphorus use,
shrimp, tilapia and despite reducing the amount of
Sarcocornia ambigua in nitrate.
FLOCponics compared to
a polyculture of shrimp
and tilapia in BFT.

Rahman*?* Tilapia (Oreochromis fLettuce (Lactuca sativa L. Compare the production Plants cultured with a commercial

niloticus) of lettuce nourished by hydroponics solution
BFT effluent without grew better than those in
solids management, FLOCponics systems. The
BFT effluent with solids presence of suspended solids
management, and was a limiting factor for lettuce
commercial hydroponic growth.
solution during four 28-
day trials.

Rocha et al.**? T Silver catfish T Lettuce (Lactuca sativa L.) Evaluate the production of The use of silver catfish effluent to

(Rhamdia quelen) L. sativa in hydroponics, nourish lettuces, in traditional
traditional aquaponics, aquaponics and FLOCponics,
and FLOCponics using improved their growth when
minimum infrastructure compared to those produced in
during a 46-day period. hydroponics.

Silva*?® Pacific white shrimp tSarcocornia ambigua Evaluate the production of S. ambigua cultured with 12 h
(Litopenaeus phenolic compounds and of daily irrigation resulted in
vannamei) antioxidant activity of higher production of bioactive

S. ambigua exposed to compounds without affecting
different periods of water the productivity of plants and
stress, that is, irrigation shrimp.

periods of 6, 12, 18

and 24 h per day, in a

FLOCponics system.

Zidni et al.”? Catfish (Clarias Water spinach Determine the effect of The results presented were
gariepinus) different proportions not sufficient to show a
and tilapia of catfish and tilapia relationship between fish
(Oreochromis densities on water quality densities and water quality.
niloticus) when integrated with

 Main product focused on the experiment.

water spinach production
in a FLOCponics system.



