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Abstract

Motivation: The investigation of quantitative trait loci (QTL) is an essential component in our understanding of how
organisms vary phenotypically. However, many important crop species are polyploid (carrying more than two cop-
ies of each chromosome), requiring specialized tools for such analyses. Moreover, deciphering meiotic processes at
higher ploidy levels is not straightforward, but is necessary to understand the reproductive dynamics of these spe-
cies, or uncover potential barriers to their genetic improvement.

Results: Here, we present polyqtlR, a novel software tool to facilitate such analyses in (auto)polyploid crops. It per-
forms QTL interval mapping in F1 populations of outcrossing polyploids of any ploidy level using identity-by-
descent probabilities. The allelic composition of discovered QTL can be explored, enabling favourable alleles to be
identified and tracked in the population. Visualization tools within the package facilitate this process, and options to
include genetic co-factors and experimental factors are included. Detailed information on polyploid meiosis includ-
ing prediction of multivalent pairing structures, detection of preferential chromosomal pairing and location of dou-
ble reduction events can be performed.

Availabilityand implementation: polyqtlR is freely available from the Comprehensive R Archive Network (CRAN) at
http://cran.r-project.org/package¼polyqtlR.

Contact: peter.bourke@wur.nl or chris.maliepaard@wur.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Polyploids, which carry more than two copies of each chromosome,
are an important group of organisms that occur widely among plant
species, including several domesticated crops (Salman-Minkov et al.,
2016). Many theories to explain their prevalence among crop spe-
cies have been proposed, identifying features which may have
appealed to early farmers in their domestication of wild species.
Such features include their larger organs, such as tubers, fruits or
flowers (the so-called ‘gigas’ effect) (Sattler et al., 2016), phenotypic
novelty (Udall and Wendel, 2006), their ability to be clonally propa-
gated (Herben et al., 2017), increased seedling and juvenile vigour
(Levin, 1983) and the possibility of seedlessness which accompanies
odd-numbered ploidies (Bradshaw, 2016). From a functional

perspective, these features may be associated with factors such as
increased heterosis (Comai, 2005), a greater level of genomic plasti-
city (te Beest et al., 2012) or a masking effect of deleterious alleles
(Renny-Byfield and Wendel, 2014). It is currently believed that all
flowering plants have experienced at least one whole genome dupli-
cation (WGD) during the course of their evolution, with many line-
ages undergoing multiple rounds of WGD followed by re-
diploidization (Vanneste et al., 2014). Polyploidy may also be
induced deliberately [through species hybridization with associated
unreduced gametes, or through the use of some chemical cell div-
ision inhibitor, such as colchicine (Blakeslee and Avery, 1937)],
often to combine properties of parents that could not otherwise be
crossed (Van Tuyl and Lim, 2003), or to benefit from some of the
other advantages listed above.
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Polyploids are generally divided into two groups: autopoly-
ploids, with multiple copies of the same homologous chromosomes
derived from a single progenitor species, and allopolyploids, with
multiple copies of homoeologous chromosomes from multiple pro-
genitor species that continue to pair and recombine within but not
between homoeologues. Allopolyploids are said to exhibit ‘disomic’
inheritance, i.e. genetically speaking they are equivalent to diploids.
Autopolyploids are, on the other hand, genetically distinct from
allopolyploids in that they exhibit ‘polysomic’ inheritance, a prop-
erty that emerges from random pairing and recombination between
homologues during meiosis. As most software and methodology for
genetic analyses has traditionally been developed for diploid organ-
isms, progress in autopolyploid breeding and research has been
slower. In recent years this has gradually changed, as more tools be-
come available for autopolyploids too (Bourke et al., 2018c).

One of the greatest difficulties in autopolyploid cultivation and
breeding is the constant re-shuffling of alleles in each generation, a
consequence of polysomic inheritance. Breeders would like to be
able to identify genomic regions that contribute favourable alleles to
a particular trait of interest [quantitative trait loci (QTL)] and pre-
dict which offspring in a population carry favourable combinations
of parental alleles. Understanding how genes and their alleles are
transmitted from one generation to the next, or identifying potential
barriers to recombination that might restrict allelic combinations
from arising can provide insights into designing crosses and identify-
ing favourable offspring from these crosses. The use of genomic in-
formation can greatly assist in these efforts. Particularly for
polyploid species, specialized software tools are required for this
purpose.

Polyploid genotyping involves the estimation of dosage [counts
of the alternative allele at a polymorphic site, usually bi-allelic sin-
gle nucleotide polymorphisms (SNPs)]. In an autotetraploid for
example, the possible dosages range from nulliplex (0 copies of
the alternative allele), simplex (1 copy), duplex (2 copies), triplex
(3 copies) to quadruplex (4 copies). The assignment of marker
dosage in polyploids is a non-trivial problem in itself, but there is
an increasing number of possibilities for achieving this using dedi-
cated software (Carley et al., 2017; Clark et al., 2019; Gerard
et al., 2018; Pereira et al., 2018; Serang et al., 2012; Voorrips
et al., 2011; Zych et al., 2019).

Identity-by-descent (IBD) probabilities are the inheritance proba-
bilities of parental alleles in a population of related genotypes (either
bi-parental or multi-parental), and they can be exploited both for
QTL mapping and to accurately interpret parental meiosis and in-
heritance patterns. Hidden Markov Models (HMM) have previously
been applied to estimate these inheritance probabilities for poly-
ploids (Hackett et al., 2013; Mollinari and Garcia, 2019; Zheng
et al., 2016, 2020), and have been shown to be robust against com-
mon issues such as genotyping errors or local ordering issues in the
underlying linkage maps (Zheng et al., 2016). Of the currently avail-
able methods, both TetraOrigin and polyOrigin include a fully gen-
eralized polysomic model with the possibility of including
multivalents in the model of parental meiosis (Zheng et al., 2016,
2020). These packages are, however, currently aimed at tetraploid
species. MAPpoly implements a HMM to estimate IBD probabilities
that can be applied for all even ploidy levels, but assumes bivalent
pairing only (Mollinari and Garcia, 2019). However, autopolyploids
carry homologous chromosomes that often pair during meiosis in
more complex structures called multivalents, associations of more
than two homologues (generally only even numbers are considered
viable). In particular, the phenomenon of double reduction, a pos-
sible product of multivalent pairing where both copies of a segment
of sister chromatids are passed on to an offspring (Bourke et al.,
2015), is ignored. The overall impact of omitting double reduction
from the model used for QTL analysis has previously been shown to
be relatively minor in a QTL analysis that does not account for it
(Bourke et al., 2019), but double reduction events at specific loci
may have important breeding implications (e.g. an offspring carry-
ing a double copy of a favourable allele at that locus). For higher
ploidy levels (6� and higher), HMM approaches may lead to com-
putational bottlenecks (Mollinari and Garcia, 2019). Alternative

approaches to estimate IBD probabilities have been proposed
(Bourke, 2014) and although less accurate, have the advantage of
being computationally tractable at higher ploidy levels and have pre-
viously been successfully used in the analysis of several traits in
hexaploid chrysanthemum for example (Van Geest et al., 2017a).

Apart from their application in QTL mapping, IBD probabilities
provide a powerful approach to reconstruct meiotic processes and
identify recombination events in polyploid individuals. This latter
point can be exploited to address the issue of genotyping errors.
They also yield insights into potential preferential chromosomal
pairing, which is increasingly being acknowledged as a feature of
many polyploid species that were previously assumed to be either
purely auto- or allopolyploid (Bourke et al., 2017; Leal-Bertioli
et al., 2018). In this article, we describe the features of polyqtlR, a
novel R package (R Core Team, 2020) for QTL mapping in both
auto- and allopolyploid species which addresses many of the com-
plexities of polyploid inheritance mentioned above. Estimation of
IBD probabilities under a full polysomic model (including multiva-
lents and double reduction) is performed for autotriploid, autotetra-
ploid and autohexaploid F1 populations, while IBD probabilities of
diploids and allopolyploids are estimated using a diploid HMM.
Alternatively, a computationally efficient but approximate method
for IBD estimation suitable for all ploidy levels (allo- and auto-) is
implemented in polyqtlR. With these IBD probabilities, a range of
applications are available, for QTL discovery and exploration as
well as investigation of meiotic processes and patterns of recombin-
ation across the genome.

2 Materials and methods

2.1 Input data
polyqtlR requires as input dosage-scored marker information with
an accompanying phased linkage map from an F1 population.
Dosage scores can either be discrete or probabilistic (i.e. the proba-
bilities of each of the dosage classes from 0 to ploidy for each indi-
vidual at a marker), while phased linkage maps can be generated
using software such as TetraploidSNPMap (Hackett et al., 2017),
polymapR (Bourke et al., 2018b) or MAPpoly (Mollinari and
Garcia, 2019). For hexaploid populations, only polymapR or
MAPpoly are currently suitable, while polymapR is the only soft-
ware that can also map odd-numbered ploidies such as triploid pop-
ulations (Bourke et al., 2018b). In the case of tetraploids for which a
marker order is already known, parental map phase and IBD proba-
bilities can also be estimated using TetraOrigin or polyOrigin
(Zheng et al., 2016, 2020).

2.2 Modelling autopolyploid meiosis
2.2.1 Hidden Markov Model

The methodology behind the estimation of offspring IBD probabil-
ities was originally developed for tetraploid populations (Zheng
et al., 2016) but we have extended the approach to a range of com-
monly encountered ploidy levels (2�, 3�, 4� and 6�). Details are
contained in Supplementary Methods S1.

2.2.2 Heuristic model

An algorithm for approximating IBD probabilities without using
HMM is also implemented in polyqtlR. This uses an approach ori-
ginally described inBourke (2014) and re-implemented by Van Geest
et al. (2017a). Details are contained in Supplementary Methods S2.
Finally, IBD probabilities may be interpolated at a regular grid of
positions using cubic splines (by default at 1 cM spacings).

2.3 Form of the QTL model
The IBD-based QTL analysis uses a linear regression on the parental
homologue probabilities, broadly similar to the weighted regression
model proposed by Kempthorne (1957) and implemented in the
TetraploidSNPMap software (Hackett et al., 2013, 2014, 2017).
For a tetraploid, the form of the model is:

2 P.M.Bourke et al.
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Y ¼ lþ a1X1 þ a2X2 þ a3X3 þ a4X4 þ a5X5 þ a6X6 þ a7X7

þ a8X8 þ �

Here, the Xi are inheritance probabilities for each parental
homologue (1–4 for parent 1, 5–8 for parent 2 in a tetraploid),
which range from 0 � Xi � 1 when bivalent-only pairing is
assumed. In the case where multivalents are also permitted in the
meiotic model, more than one copy of a parental homologue can be
inherited through the process of double reduction, in which case Xi

are the total sum of inheritance probabilities for each parental
homologue, with 0 � Xi � 2.

In the context of a tetraploid, it can be generally assumed X1 þ
X2 þX3 þX4 ¼ 2 and X5 þX6 þX7 þX8 ¼ 2 (i.e. both parents
contribute an equal number of chromosomes to an offspring).
Eliminating X1 and X5 by substituting these expressions into the
previous equation (to remove collinearity) leads to the following
model:

Y ¼ lþ 2 a1 þ a5ð Þ þ a2 � a1ð ÞX2 þ a3 � a1ð ÞX3 þ a4 � a1ð ÞX4

þ ða6 � a5ÞX6 þ ða7 � a5ÞX7 þ ða8 � a5ÞX8 þ �

This can be re-written as:

Y ¼ l
0 þ a

0

2X2 þ a
0

3X3 þ a
0

4X4 þ a
0

6X6 þ a
0

7X7 þ a
0

8X8 þ �

where l
0

is the adjusted intercept (l
0 ¼ lþ 2 a1 þ a5ð Þ), a

0
i are the

adjusted regression co-efficients (e.g. a
0

2 ¼ a2 � a1) and � is the re-
sidual term. For a hexaploid, the model includes ten of the twelve
parental homologues (Van Geest et al., 2017a), etc.

A single marker analysis option is also included in the package,
in which a genome-wide scan is performed by fitting the following
additive model at each marker position:

Y ¼ y þ aDþ �

where Y is the vector of phenotypes, D is the vector of marker
scores, y is the overall mean and � the residuals.

If experimental factors (loosely termed ‘blocks’ here, although
they could correspond to different years, environments, etc.) are
included, they are first fitted (Y � Blocks) after which the residuals
are used to perform the genome-wide QTL scan. Missing pheno-
types are imputed using fitted block effects and non-missing pheno-
type scores for that individual in other blocks. By default, at least
50% observations are required for imputation (e.g. minimum 2 out
of 3 phenotypes non-missing for that individual in a 3-block situ-
ation). Estimating BLUEs [using a linear mixed model with geno-
types as fixed effects (Pinheiro et al., 2017)] for block-corrected trait
values can speed up the analyses, particularly when estimating sig-
nificance thresholds.

The sum of squared residuals (RSS1) is recorded from the
ANOVA table (for both IBD-based and single marker approaches)
and used to calculate the logarithm of odds ratio (LOD) score as fol-
lows (Broman and Sen, 2009):

LOD ¼ N

2
log10

RSS0

RSS1

� �

where N is the population size, and RSS0 is the residual sum of
squares under the Null (no QTL) Model. In cases where large-effect
QTL are present and segregating in a population, it can be advanta-
geous to reduce the level of background noise at other loci by
accounting first for the major QTL and running an analysis on the
QTL-corrected phenotypes. Such an approach has previously been
termed multiple QTL mapping (Jansen, 1992, 1993). In polyqtlR,
we follow a similar approach to correct for genetic co-factors, either
by supplying the name of a marker closely linked to the major QTL
peak, or the QTL peak position from the genome-wide scan (usually
performed at regular intervals for efficiency). There is no limit to the
number of co-factors that can be added, but a parsimonious analysis
with only significant QTL as genetic co-factors is recommended (to
avoid issues of collinearity). Automatic fitting of genetic co-factors
is also implemented, fitting all possible combinations of initially
detected QTL exceeding the significance threshold as co-factors (i.e.

for QTL q1, q2, . . ., qn, all co-factor models Un
i¼1

n
i CðqiÞ are tested,

where n
i CðqiÞ denotes all i-wise combinations of QTL for

i 2 ½1;2; . . . ; n�). Following this, a set of positions that individually
maximized the threshold-adjusted LOD scores within the genetic re-
gion associated with each QTL locus are identified (a QTL locus is
by default assumed to be no smaller than a 20 cM interval—i.e. this
is the smallest assumed resolution between independent QTL that
could occur). These new set of positions are then fed back into the
same procedure to refine the estimates of QTL position and
threshold-corrected significance, with positions that maximize the
threshold-corrected LOD score being selected. Internally, the QTL
model described above for IBD probabilities is initially fitted at the
supplied position(s) and the residuals are saved to replace the vector
of phenotype values in the QTL scan. Note that when blocks or gen-
etic co-factors are included, they form part of the Null Model in the
calculation of LOD scores.

The percentage of phenotypic variance explained at a single pos-
ition is estimated by

PVE ¼ 100� 1� 10
�2�LOD

N

� �

In the case of a multi-QTL model, the PVE is estimated using

100� 1� RSS1

RSS0

� �

where RSS1 is now recorded from the fitted (multi-) QTL model and
RSS0 from the no-QTL model (Broman and Sen, 2009).

Approximate significance thresholds are determined using
Permutation Tests (Churchill and Doerge, 1994). The number of
permutations Np and the approximate Type I error rate a can be
specified. By default Np ¼ 1000 permutations of trait values are per-
formed, after which the maximum genome-wide LOD scores are
recorded from each of the Np genome-wide scans. The 100*(1 - a)
percentile of the ordered LOD scores is taken as an approximate
100*(1 - a) % significance threshold (by default a¼0.05).
Chromosome-specific thresholds can be generated by restricting the
input to the chromosome(s) of interest, if so desired.

2.4 Exploration of QTL configuration, mode of action
One of the advantages of an IBD-based analysis over single-marker
methods is the ability to explore QTL peak positions to determine
the most likely QTL configuration (the parental origin of QTL
alleles that have an effect on the phenotype), their mode of action
(additive/dominant) and the effect sizes (both positive and negative)
of specific parental alleles. A range of QTL models can be compared
in polyqtlR using the Bayesian Information Criterion (BIC)
(Schwarz, 1978) as previously proposed (Hackett et al., 2014).
Homologue-specific effects can be visualized around QTL peaks,
aiding in the interpretation of the most likely predicted QTL
configuration.

2.5 Genotypic information coefficient
The genotypic information coefficient (GIC) is a convenient measure
of the precision of our knowledge on the composition of parental
alleles carried by each offspring individual at a particular position,
averaged across the mapping population. This is visualized in a simi-
lar manner to QTL profile plots, providing an overview of the
genome-wide information landscape in the population in the vicinity
of detected (or indeed expected but undetected) QTL.

The GIC of homologue j (1 � j � ploidy1þ ploidy2) at each
position is calculated from the IBD probabilities using the formula:

GICj ¼ 1� 4

N

XN
n¼1

Pn;jð1� Pn;jÞ

where ploidy1 and ploidy2 refer to the ploidy levels of the two
parents, N is the population size and Pn;j is the probability that indi-
vidual n inherited homologue j at that position [this is a generalization
of the GIC measure used in MapQTL (Van Ooijen 1992, 2009)]; for
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a derivation see Appendix I of Bourke et al. (2019). When multiva-
lents are included in the HMM, only offspring predicted to have come
from bivalent-only meioses for that linkage group are used in the
calculation.

2.6 Polyploid meiosis
Several aspects of polyploid meiosis can be investigated using IBD
probabilities. These include detecting signatures of multivalent pair-
ing structures in tetraploid and hexaploid parents, determining rates
of double reduction, identifying recombinations from cross-overs,
and looking for deviations from random pairing in meiosis, a feature
associated with autopolyploidy (polysomic inheritance). Non-
random chromosomal pairing, also called ‘preferential pairing’
(Bourke et al., 2017) can be detected across a population using
counts of bivalent pairing structures. Using the HMM method of
IBD estimation, each valency (homologue pairing configuration) has
an associated posterior probability. Deviations from random pairing
are tested per parental chromosome using a chi-square test on the
counts of predicted pairings.

2.7 Cross-overs, errors and linkage map curation
Recombinations from cross-overs are detected given a predicted
pairing by looking for regions in which the inheritance probabilities
of pairing parental homologues switch from one homologue to the
other. A threshold probability is defined (by default 0.4) to identify
meiotic pairing patterns that were clearly predicted or ‘plausible’
using the HMM and screen out those that were ambiguous. Within
the context of bivalent pairing, each individual has an associated in-
heritance probability (IBD) for homologues in each bivalent pair. A
recombination break-point is defined as a point at which the differ-
ence in inheritance probabilities of such pairing homologues changes
sign. Its position is taken as the midpoint between the flanking posi-
tions for which such a switch-over in inheritance probabilities
occurred. Individuals showing unexpectedly high numbers of recom-
binations can be identified and removed. One of the input parame-
ters in the HMM method of IBD estimation is the error prior e, the
genome-wide error rate in the offspring genotypes. With high-
quality data, error priors of the order 0.01–0.05 are reasonable,
while for poorer-quality data a higher error prior may be required.
If IBD probabilities are estimated using a suitably high error prior
(e ¼ 0:2, say), spurious recombinations from genotyping errors are
suppressed, in which case IBD parental homologue probabilities can
be used to directly re-impute marker genotype dosages with the
function impute_dosages. For each individual, the imputed dosage
of individual j at marker n on a certain linkage group is given by:

d̂n;j ¼
X

H�P

where H is the (ploidy1þploidy2)�1 vector of parental homologue
probabilities of that individual at that marker position (ploidy1 and
ploidy2 being the ploidy levels of parent 1 and parent 2, respective-
ly), P is the (ploidy1þploidy2)�1 vector of parental phase coded in
0 and 1 notation (1 for presence, 0 for absence) and H�P is their
element-wise product. This operation generally leads to non-integer
dosage values, and so d̂n;j is rounded to the nearest integer. If the ab-
solute value of the difference between the exact and rounded values
exceeds a user-defined rounding error threshold (by default 0.05),
the imputed dosage is set to missing.

3 Results

We demonstrate the capabilities of polyqtlR with a number of ex-
ample applications. We first analysed an example trait in both tetra-
ploid and hexaploid material and compared our results to those
generated using TetraploidSNPMap (Hackett et al., 2017) and
QTLpoly (Pereira et al., 2020). We then used the package to dissect
the meiotic patterns of a hexaploid chrysanthemum population
(Van Geest et al., 2017a). Finally, we performed some tests to quan-
tify the accuracy and computational performance of the IBD estima-
tion module in the package.

3.1 QTL detection
A tetraploid cut rose (Rosa�hybrida) dataset for the morphological
trait ‘stem prickles’ using a previously published linkage map
(Bourke et al., 2017) and phenotypic data collected in different
growing environments (Bourke et al., 2018a) was analysed with
polyqtlR, QTLpoly and TetraploidSNPMap. The first genome-wide
scan for QTL using polyqtlR detected four putative QTL on LG 2,
3, 4 and 6 (Fig. 1). By fitting various combinations of QTL as co-
factors, we found that the significance of the LG 3, 4 and 6 peaks
could be increased, while the peak on LG 2 dropped in significance
upon the inclusion of co-factors. Different co-factor combinations
were tested for each QTL. The analysis that resulted in the highest
threshold-adjusted LOD score for that peak was used to estimate
the QTL position. The four-QTL model was found to explain 54%
of the phenotypic variation (PVE), while the best three- and two-
QTL models explained 49% and 43% of the phenotypic variation,
respectively. TetraploidSNPMap predicted a three-QTL model,
detecting the same QTL on LG 3, 4 and 6, while a putative position
on LG 2 failed to reach the genome-wide significance threshold.
QTLpoly predicted a two-QTL model, detecting peaks on LG 3 and
4. A putative QTL was initially detected on LG 6 in the forward
search (sig.fwd ¼ 0.01), but was removed in the subsequent back-
ward elimination step (sig.bwd ¼ 0.0001). The major QTL on LG 3
and 4 have also been reported in previous studies in diploid rose
populations (Crespel et al., 2002; Linde et al., 2006).

For the major QTL detected on LG 3, an additive model with
QTL alleles for increased number of prickles located on parental
homologues 4 and 6 (i.e. parental genotypes oooQ�oQoo) was
found to have the lowest BIC of the 224 QTL models tested (listed
in Supplementary Table S1), which corresponded well with the
visualized homologue effects for that linkage group (Fig. 2).

We also used polyqtlR and QTLpoly to analyse an example trait
‘T32’ for a hexaploid population (TetraploidSNPMap is restricted
to analyses of tetraploid populations and therefore was not included
in this comparison). ‘T32’ is a simulated trait provided with the
QTLpoly package for test purposes (Supplementary Data S1). Two
peaks were detected in the initial genome-wide scan using polyqtlR,
while a third peak became apparent after the major LG 1 peak was
fitted as a co-factor (Fig. 1). The PVE of the three-QTL model was

Fig. 1. Comparison of the results of polyqtlR with those of alternative methods in

both a tetraploid and hexaploid dataset. Upper panels: results of polyqtlR; Lower

panels: results of TSNPM ¼ TetraploidSNPMap and QTLpoly for two example

traits: stem prickles in tetraploid rose (left panel) and trait ‘T32’ in a simulated

hexaploid dataset (right panel). Estimated QTL positions are highlighted with

arrows. In the case of the LG 2 QTL for stem prickles, no significant association

was detected after fitting co-factors (dotted purple arrow). Legend ‘CoF: 3 & 6’

refers to a co-factor model with QTL positions on LG 3 and 6 included as co-fac-

tors. On the y-axes, LOD or LOP (-log10(P)) scores were re-scaled so that independ-

ently estimated significance thresholds overlap on the plot. For the trait ‘T32’,

QTLpoly returned P-values of 0 around the QTL on LG 2 which cannot be visual-

ized using LOP and were therefore artificially replaced, leading to a plateau around

the peak

4 P.M.Bourke et al.
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50%. The location of the three peaks corresponded very closely to
the true positions of the simulated QTL, with all three true QTL
positions contained in the LOD—1 support intervals around the
detected peaks. Indeed, polyqtlR detected all three simulated QTL
with slightly higher precision than QTLpoly: the deviations between
peak and true position for QTL 1a, 1b and 2 were 0.97, 7.98 and
0.99 cM for polyqtlR, while those for QTLpoly were 1.04, 9.26 and
1.19 cM, respectively.

3.2 Analysis of meiosis
A hexaploid chrysanthemum (Chrysanthemum�morifolium) F1 popu-
lation that had previously been used to generate a high-density linkage
map (Van Geest et al., 2017a) was re-analysed to gain insights into the
parental meiosis. An analysis of the genome-wide counts of recombi-
nations across the population showed that the dataset was of remark-
ably high quality (apart from a pair of outlying individuals), while the
parental meioses appear to have involved fewer than the expected
average of one cross-over event per bivalent (Fig. 3a).

The two outlier individuals were subsequently found to contain
significantly more missing values that the rest of the population
(Supplementary Fig. S1). They were removed and the remaining 398
individuals were re-analysed using the multivalent-aware HMM,
allowing the number of multivalents per linkage group to be esti-
mated (Fig. 3b). Maternal LG 5 had an unusually high number of
predicted multivalents, which was reflected in a relatively high rate
of predicted double reduction events for that chromosome, up to
6% (Fig. 3c).

With multivalents accounted for, the remaining bivalent pairing
configurations were used to test for preferential chromosome pair-
ing. Deviations from a random-pairing (polysomic) model were
tested using a chi-square test on the predicted counts of each set of
bivalents per homologue (e.g. a test on the counts of AB, AC, AD,
AE and AF for homologue A, etc.), while the deviations themselves
can be used to visualize the chromosomal pairing patterns of both
parents using polyqtlR (Fig. 4). There appeared to be evidence of
non-random pairing in the paternal meiosis, with the most extreme
deviation identified between paternal homologues H and J of link-
age group 1. These homologues were predicted to have paired in
192 of the 389 bivalent-only meioses, an excess of 114 over the
number expected if pairing were random (associated chi-square P-

values of 2.8�10�44 and 5.4�10�45 for homologues H and J, re-
spectively). For a number of chromosomes, three of the fifteen pos-
sible bivalent configurations were over-represented, for example in
LG 3, 9 (and to a lesser extent LG 4 and 6) of parent 2 (Fig. 4). In all
such cases (particularly for LG 3 and LG 9), the preferential bivalent
pairings were complementary (i.e. involving all 6 homologues).

3.3 Speed and accuracy of IBD estimation
The polyqtlR package contains two methods to estimate IBD proba-
bilities which are used in many subsequent analyses. We critically
compared these methods in terms of their accuracy and computa-
tional efficiency. F1 populations of 200 offspring each were simu-
lated using PedigreeSim (Voorrips and Maliepaard, 2012) for ploidy
levels 2�, 3�, 4�, 6�, 8� and 10�. A range of marker densities
were simulated (50, 100, 200, 500, 1000 and 2000 markers per
chromosome over 5 chromosomes), as well as differing proportions
of simplex�nulliplex markers (proportions from 0 to 1 in steps of
0.2, where ‘0’ contained no 1� 0 or 0�1 markers, and ‘1’ contained
50% 1�0 and 50% 0�1 markers). As multivalents were not simu-
lated, these were also not included in the IBD estimation.
Computations were performed on a desktop PC (Intel Xeon proces-
sor, 3.6 GHz and 16 Gb RAM) in parallel over 5 cores. At lower
ploidy levels (2�, 3� and 4�), the HMM was found to be both
faster and more accurate than the heuristic method (Fig. 5), while at
the hexaploid level the HMM was more accurate but had a high
computational cost. Hexaploid datasets containing 10 000 markers
(2000 per chromosome) were not analysed with the HMM due to
protracted run-times. While datasets with higher proportions of sim-
plex�nulliplex markers led to more accurate results using the heur-
istic method, the opposite was true of the HMM approach (Fig. 5).
Regardless of the method used, both the error rate and computation
time increased with increasing ploidy.

4 Discussion

We are currently witnessing an unprecedented number of develop-
ments in polyploid genomics, aided by increasingly affordable

Fig. 2. Exploration of the homologue effects at a QTL peak using polyqtlR.

Example shown corresponds to the QTL peak position on LG 3 of tetraploid rose

for the trait stem prickles. Positive effects (increasing the number of prickles) are

coloured green, while negative effects are coloured purple. Parental homologues are

numbered H1–H4 (maternal) and H5–H8 (paternal)

Fig. 3. Explorations and visualizations of meiotic dynamics using polyqtlR. (a)

Genome-wide counts of predicted recombinations per individual in a hexaploid

chrysanthemum F1 population, derived from (bivalent-only) IBD probabilities with

an error prior of 0.01. The horizontal dotted line shows the expected number of

counts assuming on average one cross-over recombination per homologue

(6�9¼54); (b) Numbers of multivalent pairing structures predicted by the HMM

per linkage group (x-axis). Maternal counts are shown in red (P1) while paternal

counts are shown in blue (P2). Two F1 individuals with unusually high numbers of

predicted recombinations in (a) were removed; (c) Rate of double reduction across

the genome, using the same data as (b)
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genotyping possibilities as well as the realization among breeders and
researchers that genomics-assisted breeding in polyploid species is no
longer an insurmountable challenge (Bourke et al., 2018c; Smulders
et al., 2019). The polyqtlR package aims to facilitate this process by
offering a range of tools to help uncover both the origin of favourable
(or unfavourable) parental alleles for traits of interest, while also shed-
ding light on how these alleles are passed from one generation to the
next by exploring meiotic dynamics of polyploid species.

4.1 Software alternatives and QTL validation
It is usual for new software tools to compare their performance to
previously released software alternatives. We have nominally done
so by comparing the results of polyqtlR to existing packages
TetraploidSNPMap and QTLpoly for traits in tetraploid and hexa-
ploid populations, but without quantifying performance differences.
The use of the additive-effect interval mapping approach in
polyqtlR and TetraploidSNPMap is less computationally expensive
than fitting mixed models as is done in QTLpoly, and this was in-
deed reflected in the run-times we observed. For the trait stem
prickles in the tetraploid rose population, polyqtlR detected four pu-
tative QTL, three of which were confirmed by TetraploidSNPMap
and two of which were confirmed by QTLpoly and were also
detected in independent experiments with diploid rose populations
(Crespel et al., 2002; Linde et al., 2006). We feel this demonstrates
the importance of comparing results of various software. The peak
on LG 2 that we detected may possibly have been a ‘false positive’
detection, although in exploratory analyses these may be less of a
concern than possible ‘false negatives’, such as the LG 6 peak that
was eliminated in subsequent mapping rounds by QTLpoly. It is
interesting to note that the precision of polyqtlR for the simulated
trait ‘T32’ in the hexaploid population was slightly higher than
QTLpoly (all three QTL peak positions were closer to the true QTL
positions). This trait has previously been used to demonstrate the su-
periority of multi-QTL models over single-QTL ones (Pereira et al.,
2019), while we have demonstrated here that a ‘fixed effect interval
mapping’ approach is equally capable of building an accurate multi-
QTL model if genetic co-factors are included.

Finally, an earlier version of polyqtlR was previously tested in an
investigation of the effects of double reduction on QTL detection
(Bourke et al., 2019). QTL for the traits flesh colour and plant ma-
turity in tetraploid potato coincided with known underlying genes
StCDF1 (Kloosterman et al., 2013) and StChy2 (Wolters et al.,
2010), while a large simulation study confirmed the ability of the
package to accurately identify simulated QTL under a wide range of
parameter settings (Bourke et al., 2019).

4.2 Hexaploid inheritance
Using polyqtlR, we uncovered evidence of preferential pairing in
hexaploid chrysanthemum, a phenomenon that was not detected in

a previous study using the same population and genotypes (Van
Geest et al., 2017b). This highlights the power of leveraging map
and genotype information to correctly diagnose preferential pairing,
as was done previously in a study of tetraploid rose (Bourke et al.,
2017). From our analysis it appears that the hexaploid parents of
this population indeed exhibited predominantly hexasomic inherit-
ance, but with some clear exceptions to this trend (Fig. 4).
Attempting to parametrize preferential pairing at the hexaploid level
or higher is clearly non-trivial given the variable patterns of prefer-
ential pairing observed here. In some cases, a single pair of homo-
logues behaved as a ‘sub-genomic unit’ (i.e. showing a strong
pairing preference), while elsewhere in the genome, multiple sets of
complementary homologue pairs showed non-random pairing pat-
terns, reminiscent of a more allopolyploid-like pairing behaviour for
these chromosomes (Fig. 4). These sorts of insights could potentially
be of enormous importance to breeders aiming to recombine specific
alleles on a single homologue (in coupling phase). These meiotic
insights are also of fundamental interest to biologists, providing ex-
perimental evidence regarding the mode of inheritance of polyploid
species that may not fall neatly into the categories of allo- or autopo-
lyploid (Bourke et al., 2017).

4.3 Innovative aspects
polyqtlR offers a number of innovations not available elsewhere.
For example, it allows the inclusion of multivalent structures in the
inheritance model for triploid, tetraploid and hexaploid popula-
tions, carried through to subsequent QTL analyses and explorations
of parental meioses. At the hexaploid level this is unique, allowing
us to estimate rates of multivalent pairing and visualize the double
reduction landscape, something that to the best of our knowledge
has never previously been visualized in a hexaploid species (Fig. 3).
The practical implications of double reduction events for QTL map-
ping may be relatively minor (Bourke et al., 2019), but they can
have potentially important breeding implications by increasing the
frequency of favourable alleles in particular individuals, as well as
being of theoretical interest to polyploid geneticists.

The package also calculates and visualizes per-homologue pro-
files of the GIC, one of the major factors determining QTL detection
power and precision (Bourke et al., 2019). Through visual inspec-
tion, parental homologues with poor information can be easily iden-
tified and potentially targeted with additional markers.

Options for genotype curation are relatively limited for poly-
ploid species currently, but can be achieved in polyqtlR through
IBD-informed genotype imputation. The choice of a suitable

Fig. 5. Mean error and computation time associated with estimation of IBD proba-

bilities in polyqtlR. Comparison between results from the available options within

the package: either a HMM or a heuristic algorithm (Heur). In each simulation, 5

chromosomes were simulated for a population of 200 individuals. Mean error was

calculated as the average deviation in parental homologue probabilities from the

true inheritance probabilities over all estimated positions and individuals. The le-

gend (top left panel) refers to the proportion of simplex�nulliplex markers in the

simulated datasets. For higher ploidy levels (8�, 10�), the HMM method has not

been implemented and so no comparison was possible

Fig. 4. Deviations from a random-pairing model detected in a hexaploid chrysanthe-

mum F1 population using polyqtlR. Maternal homologues are labelled A–F, while

paternal homologues are labelled G–L (these labels are randomly assigned). The

thickness of the line connecting parental homologues indicates the level of deviation

from a random-pairing model, with counts exceeding expected proportions col-

oured red, and counts less than the expected proportions coloured blue
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error prior e in IBD estimation is critical to this step. e is not
known a priori, but can be estimated a posteriori by running the
IBD estimation step a number of times with different values (e.g.
e ¼ 0.01, 0.05, 0.1 and 0.2) and comparing the marginal likeli-
hoods across the mapping population between runs. Applying a
higher error prior (e.g. e ¼ 0:2) makes transitions between states less
probable in the HMM procedure, thus penalizing multiple cross-overs
that are often necessary to accommodate genotyping errors in a pre-
dicted meiotic model with an overly conservative error prior. These
can be used directly to re-impute marker genotypes, which could sub-
sequently be used in re-estimating linkage maps that may have been
built under the assumption of error-free data.

polyqtlR also includes a heuristic approach to IBD probability
estimation, something that is not currently available elsewhere but
which allows IBD probabilities to be approximated in a relatively
short time for populations of all ploidy levels, with almost no in-
crease in computation time with increasing ploidy level (Fig. 5).
Our approach to detecting and visualizing preferential chromo-
some pairing (Fig. 4) also provides a clear overview of meiotic
pairing and recombination dynamics across experimental popula-
tions, leading to insights into pairing behaviour at a level of detail
not previously possible. Finally, although not demonstrated here,
polyqtlR can identify recombinant individuals for specific homo-
logues, a functionality that could be used for tailored breeding
approaches or ‘breeding-by-design’ for polyploid crops (Peleman
and Van Der Voort, 2003).

4.4 Concluding remarks
In this paper we have introduced a novel R package to facilitate
QTL analysis and the exploration of chromosomal pairing in poly-
ploid species. polyqtlR is freely available under the general public li-
cense from the Comprehensive R Archive Network (CRAN) at
http://cran.r-project.org/package¼polyqtlR.
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