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E P I D E M I O L O G Y

Plasma lipids and growth faltering: A longitudinal 
cohort study in rural Gambian children
Gerard Bryan Gonzales1,2,3,4*, Daniella Brals5, Bakary Sonko6, Fatou Sosseh6,  
Andrew M. Prentice6, Sophie E. Moore6,7†, Albert Koulman3,4†

Growth faltering in children arises from metabolic and endocrine dysfunction driven by complex interactions 
between poor diet, persistent infections, and immunopathology. Here, we determined the progression of the 
plasma lipidome among Gambian children (n = 409) and assessed its association with growth faltering during the 
first 2 years of life using the panel vector autoregression method. We further investigated temporal associations 
among lipid clusters. We observed that measures of stunting, wasting, and underweight are dynamically associ-
ated with each other and that lipid groups containing polyunsaturated fatty acids (PUFAs) and phosphatidylcho-
lines consistently predict future growth outcomes. Linear growth was dynamically associated with the majority of 
lipids, indicating a higher nutritional demand to improve height compared to weight among growth-restricted 
children. Our results indicate a critical role for PUFAs and choline in early life dietary interventions to combat the 
child growth faltering still so prevalent in low-income settings.

INTRODUCTION
The first 1000 days (from conception to 2 years of age) are critically 
important in determining individual health trajectories to adulthood, 
and exposures during this period—especially nutritional exposures—
can have lasting negative impact (1). The causes of malnutrition are 
complex and multifaceted, involving the interplay between nutrition, 
hygiene, infections, maternal health, economic status, and other 
sociodemographic factors (2). Malnutrition, which here refers to 
undernutrition, is characterized by stunting or having a length-for-age 
z score (LAZ) below −2 SD, wasting or having below −2 SD weight-
for-length z score (WLZ), and underweight or being below −2 SD 
weight-for-age z score (WAZ) (3). Stunting is believed to be a result 
of chronic nutrient deprivation (chronic malnutrition), whereas 
wasting results from short-term malnutrition (hence, often referred 
to as acute malnutrition). Underweight is a reflection of both wasting 
and stunting (4). Global estimates suggest that in 2019, 144 million 
children under 5 years of age were stunted, while 47 million were 
wasted (5), and this number is expected to rise due to the effect of 
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
pandemic (6).

Omics-based approaches have been used to gain a deeper under-
standing into the biochemical and metabolic perturbations that occur 
among children with malnutrition. However, the majority of these 
reports have focused on analyzing samples and data from cross-sectional 
studies (7–10); data from longitudinal studies are needed to help 
understand the timing and direction of associations. By following 

the metabolome and lipidome progression over time in a single in-
dividual, resolution is enhanced, because interindividual sources of 
variability [i.e., differences in (epi)genetic and lifestyle characteristics] 
are controlled. However, longitudinal analysis of high-dimensional 
data in field-based settings and among populations most at risk from 
undernutrition, especially metabolomics and lipidomics, remains 
challenging due to logistical and practical issues in field-based studies 
in low-resource settings. Furthermore, where longitudinal analyses 
exist, data analysis methods used have been limited to assessing the 
progression of metabolic features over time, ranking the most dy-
namic features (11–15), and not exploring potential causality or 
associations among the different metabolic features over time.

While the systems biology field has been exploring novel approaches 
to investigate longitudinal data and its association with specific clinical 
outcomes, other disciplines, such as econometrics and social sciences, 
have been analyzing the same types of problems using robust data 
analysis approaches backed by strong mathematical foundations 
(16–20). In our current study, we investigated the association between 
progression of the lipidome and growth outcomes in the first 2 years 
of life among children in The Gambia using an econometric-based 
causal inference approach applied to systems biology. Here, we adopt 
the panel vector autoregressive (PVAR) method in a generalized 
method of moments (GMM) framework to infer the directions of asso-
ciations among serum lipids and growth outcomes in these children.

RESULTS
Population characteristics
A total of 1631 serum samples were analyzed from 409 individual 
children from 3 months of age up to 2 years (five time points). A total 
of 205 children had samples from all five time points, 77 from four 
time points, 63 from three time points, and the remainder (65) had 
samples from two time points (21). Table 1 highlights child charac-
teristics by time point. In general, a decline over time in WAZ, LAZ, 
and WLZ was observed, indicating growth faltering in this population. 
Males had significantly lower WAZ, LAZ, and WLZ than females across 
the first 2 years, but their growth patterns were not different from 
each other (i.e., no interaction between sex and age was found, P = 0.70).
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Using latent class linear mixed models, we identified subclusters 
within the population characterized by different growth patterns in 
the first 2 years of life. For LAZ, we identified three patterns of growth 
(Fig. 1A). Cluster 1 (32%) included children who started with low 
LAZ at week 12 and remained at their low LAZ over time. Cluster 2 
(43%) included children with the highest LAZ at week 12, which 
gradually decreased over time but did not drop below −2 SD, indi-
cating that children in this cluster were not considered stunted as 
classified by the World Health Organization (WHO) definition. Almost 
half (49.7%) of the children belonged to cluster 3, which was char-
acterized by midlevel LAZ at week 12 and having a steep decline in LAZ 
toward stunting over time. By week 104, 26% (25 of 95) of those in 
cluster 1 were stunted, whereas this was 47% (65 of 138) in cluster 3.

For WAZ (Fig. 1B) and WLZ (Fig. 1C), two clusters were identi-
fied, but 98 and 99% of the children belonged to the second cluster 
for WAZ and WLZ, respectively. Three children had WAZ of −2.68 ± 1.52 
at week 12 but caught up in weight by week 104 (WAZ = 0.12 ± 1.47). 
In addition, the WLZ of nine children at week 12 (WLZ = −1.36 ± 1.20) 
had significantly increased by week 104 (WLZ = 0.82 ± 1.13) (P < 0.05). 
Individualized growth patterns are shown in fig. S1.

Lipidome progression in the first 2 years of life
The total serum lipids (sum of all individual lipids) did not signifi-
cantly change in the first 2 years of life, indicating that the lipid pool 
is conserved during infant growth (Fig. 2A). However, serum lipid 
composition appeared to change over time. The serum concentra-
tion of most lipids identified (175 of 278, 63%) significantly decreased 
over time, whereas 17% (48 of 278) had a significant upward trend. 
Several lipids (55 of 278, 30%), on the other hand, were conserved 
during the first 2 years of life (Fig. 2B). The progression of all iden-
tified lipids with age is shown in table S1.

To reduce the number of independent variables for succeeding 
analyses, we identified clusters of highly correlated lipids (“modules”) 
using weighted correlation network analysis (22). Lipids assigned to 
their respective modules potentially share similar physiological and 
molecular characteristics, as modules reflect functional relationships 
(physical and nonphysical interactions) among its members (22). 
Each module is characterized by an eigenlipid (MEq, where q denotes 
the module), which is a unique representation that most closely reflects 

the collective behavior of the module (23). This indicates that the 
progression of lipids in each module over time is reflected by the 
dynamics of the MEq. About 87% (241 of 287) of the lipids were 
clustered into 10 modules, whereas the remaining 37 (13%) lipid 
species were unassigned (gray module, ME5). Module assignment 
of all lipids is detailed in table S2. To obtain an overview of the 
interlipid correlations, we plotted the module correlation network 
(Fig. 2C), which shows that several modules are more closely cor-
related, creating bigger clusters of lipids as depicted on a heatmap 
showing hierarchical clustering (Fig. 2D).

The weighted correlation network analysis clustered lipids with 
very similar chemical or biological characteristics into different 
modules (Table 2). Most notably, triglycerides (TGs) with poly-
unsaturated (n > 5) fatty acid (PUFA) side chains (ME6) were clustered 
differently from shorter-chain TGs (ME11) and TG with PUFA 
containing fewer double bonds (n < 4). The most abundant phos-
phatidylcholines (PCs) found in serum were clustered in ME9, whereas 
cholesterol esters and sphingomyelins were clustered in ME10. 
Cholesterol esters and PCs with PUFA side chains, however, were 
clustered in a different module (ME2). LysoPCs with saturated FA 
(ME7) were also clustered differently from lysoPCs with PUFA (ME8). 
Oxidized PCs and ether-linked PCs were clustered in ME1. Last, 
any lipid that did not belong to any other module was clustered in 
ME5. However, these lipids also shared common characteristics such 
that this module is composed of free FAs and FA oxidation products 
and their esters. Therefore, this module cannot be discounted. Each 
module had a characteristic progression from 12 to 104 weeks of 
infant age, where the biggest changes occurred between week 12 and 
week 24 (Fig. 2E).
Lipids associated with LAZ
Adjusting for age, we did not find any MEq that significantly asso-
ciated with LAZ over time. However, associations did appear when 
age in weeks (included in the model as a time trend) was removed. 
This indicates that the eigenlipids were significantly associated with 
other factors changing through time but not with LAZ itself.

We also did not find any significant differences in the MEq pro-
gression over time among the three LAZ clusters, indicating that 
general lipid progression is similar in all the children in this popu-
lation through the first 2 years of life (Fig. 3A). Multidimensional 

Table 1. Growth characteristics of 410 Gambian children in the first 2 years of life.  

Age in weeks Trend*

12 24 52 78 104

N 298 327 323 345 338

N girls (%) 138 (46.3) 155 (47.4) 157 (48.6) 165 (47.8) 158 (46.7)

WAZ, mean ± SD −0.70 (1.04) −0.81 (1.17) −1.26 (1.06) −1.28 (1.06) −1.38 (0.93)
 = −0.22

P < 0.001

LAZ, mean ± SD −0.37 (1.04) −0.46 (1.03) −1.03 (1.03) −1.13 (1.05) −1.33 (0.94)
 = −0.28

P < 0.001

WLZ, mean ± SD −0.52 (1.12) −0.63 (1.22) −1.03 (1.14) −1.01 (1.07) −0.97 (0.93)  = −0.16

P < 0.001

*Partial correlation () and P value obtained using fixed-effects panel model analysis, i.e., by estimating the following equation: Yit = i + Tt + it, where Yit is the 
respective growth parameter (WAZ, LAZ, or WLZ), i is the individual fixed effect representing unobserved time-constant characteristics of the child, and Tt is the 
time-trend variable, which takes values between 1 (12 weeks) and 5 (104 weeks).
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scaling analysis shows that MEq induced a time-dependent clustering 
of the observations, but no latent class-specific clustering is evident 
(Fig. 3B). Analysis of individual lipid species instead of MEq also 
showed that lipid progression was not dependent on the LAZ growth 
trajectory (table S3).
Lipids associated with WAZ and WLZ
WAZ and WLZ were highly correlated at all time points (r = 0.83, 
P < 0.001). Consequently, similar modules are associated with these 
anthropometric measures. Adjusting for age, serum levels of oxidized 
and ether-linked PCs (ME1) and free FAs (ME5) tend to have an 
opposite trend with WAZ and WLZ progression (P < 0.001). Con-
versely, the progression of PUFA-containing lipids (ME2) tended 
to have the same trends as WAZ and WLZ (P < 0.001) over time. As 
highlighted, almost all children followed the same WAZ and WLZ 
growth trajectory, except for a very small number of children who 
have improved growth parameters over time. Hence, we did not 
compare differences in lipid progression between these WAZ and 
WLZ latent classes, as there would not have been enough observa-
tions in the first cluster to make a reliable comparison.

PVAR model using system GMM approach
We assessed the associations among plasma lipids and growth out-
comes using dynamic panel data analysis, specifically PVAR model, 
which is an econometrics-based causal inference method. A first-order 
PVAR model (lag t−1) was selected as optimal lag length based on 
the model selection procedure of Andrews and Lu (17). Table S4 
shows the estimates of the system GMM-PVAR model for the three 
growth outcomes and 11 eigenlipid modules. We visually represented 
the GMM-PVAR model results as a temporal network as shown in 
Fig. 4. In this temporal network, current (Yt) and lagged values (Yt−1) 
of growth outcomes and each lipid module are combined into indi-
vidual nodes, which are connected with directed edges according 
to the regression estimates of the model (table S4, see “Coef”). The 
direction of the arrows indicates that current values of a node are 
consistently associated to the next (t + 1) value of the other node, 
or with itself in case of a loop. Full arrows indicate a positive 

association, while dashed arrows indicate a negative association, 
and arrow thickness gives the strength of the association. Only sig-
nificant (P < 0.05) associations are shown, which mean that the 
observed association is consistent for every succeeding time point. 
Such association shall henceforth be referred to as G associations 
here. Hansen test for overidentifying restrictions did not reject the 
null hypothesis, implying that all instruments used are valid. The 
stability of the PVAR was confirmed as the eigenvalues are strictly 
less than 1, and none of the roots are outside the unit circle (fig. S2), 
indicating that the model is stable and also that our variables are 
stationary (24, 25).

The results indicate that the growth parameters are G associated 
with each other to varying degrees; gains in WAZ are associated 
with increased future WLZ and WAZ itself, whereas gains in WLZ 
are associated with an increase in LAZ. Length growth is also posi-
tively G associated with weight. Modules consisting of PUFA-rich 
lipids (ME2 and ME6), PCs (ME2 and ME9), TGs (ME2 and ME6), 
and cholesterol esters (ME2 and ME10) are positively G associated 
with WLZ. However, these same lipids have negative G associations 
with WAZ in a population with high burden of growth faltering.

Most lipid modules had positive G associations with LAZ, indi-
cating that more biological processes and building blocks are poten-
tially demanded to increase height rather than weight. In addition 
to the lipids dynamically associated with WLZ, LAZ is also G asso-
ciated with serum levels of phosphatidic acid and phosphatidyl-
ethanolamine (ME4) and lysoPC containing monounsaturated FA 
(MUFA) and PUFA lipids (ME8). ME9 had the biggest positive G 
association with LAZ and WLZ among all the lipids. These positive 
G associations indicate that overall changes in the serum levels of 
these lipids will likely induce a change in LAZ and WLZ in the same 
direction; increasing serum levels of these lipid groups may lead to 
an increase in LAZ and WLZ.

Ether-linked PCs (ME1), free FAs (ME5), saturated FA (SFA)/
MUFA-lysoPCs (ME7), and small TGs (ME11) did not show significant 
G association on any of the growth parameters. However, these lipids 
were shown to be G associated with the levels of the other lipids. For 

Fig. 1. Growth patterns of children from 12 to 104 weeks of life. Clusters of similar growth curves were generated using latent class mixed modeling. (A) Three latent 
groups representing different LAZ progression in the population—25% belonged to cluster 1, 32% to cluster 2, and 43% to cluster 3. For WAZ (B) and WLZ (C), two latent 
groups were obtained, but 98 to 99% of the population belonged to cluster 2. A few children showed an increasing trend in their WAZ (three) and WLZ (nine) in the first 
2 years of life.
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Fig. 2. Lipid progression in the first 2 years of life among children in The Gambia. (A) Sum of total lipids over time. Fixed-effects panel analysis revealed no significant 
change in total lipids over time (P = 0.70). (B) Number of lipids significantly altering through time [P = 0.05 adjusted for false discovery rate (FDR)]; ↑ indicates significant 
increase, ↓ indicates significant decrease, and ↔ indicates no significant change after Bonferroni correction. (C) Weighted correlation network showing 11 lipid clusters 
obtained using the WGCNA package in R. (D) Intermodular relationship showing closely related lipid clusters (modules). (E) Progression of eigenlipid (MEq, where q is the 
module number), which represents the collective behavior of the lipids in the module, over time. Significance levels: ***P < 0.0001; **P < 0.001; *P < 0.01. Comparisons 
were made using paired t test comparing the time point with the preceding time point. Analysis was only made among those with values in both time points. Gray shadow 
around the line indicates the 95% confidence interval.
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instance, levels of ME1 and ME5 predict increased ME9 levels, 
whereas ME11 predicts decreased ME9. Increasing ME7 is associated 
with a decrease in ME5 but an increase in ME11. The interplay of 
the lipids indicates the dynamic interactions, including synthesis 
and oxidation cycles, that occur between the lipid groups.

DISCUSSION
In this study, we introduced a statistical technique typically used in 
econometrics and social sciences to infer G associations among growth 
outcome parameters and plasma lipids in the first 2 years of life 
of African children living in an area with a high burden of growth 

Table 2. Association between module eigenlipid (MEq) and growth outcomes over time in the first 2 years of life. Upper numbers are partial coefficients 
estimated by using a fixed-effects panel model; lower numbers in parenthesis are FDR-adjusted P values. Boxes are colored blue when a significantly positive 
association was found and red when negative. Fixed-effects panel models were estimated by the following equation: Yit = i + Tt + MEit + it, where Yit is the 
respective growth parameter (WAZ, LAZ, or WLZ), i is the individual fixed effect representing unobserved time-constant characteristics of the child, Tt is a 
time-trend variable taking values between 1 (12 weeks) and 5 (104 weeks), and MEit is the respective module eigenlipid. PC, phosphatidylcholine; PS, 
phosphatidylserine; PE, phosphatidylethanolamine; TG, triglycerides; DG, diglycerides; FA, fatty acid; SFA, saturated FA; PUFA, polyunsaturated FA; MUFA, 
monounsaturated FA; PA, phosphatidic acid. 

Module Size* Outcomes Main composition

WAZ LAZ WLZ

ME1 16 −2.65 −0.06 −3.67 Ether-linked PCs and 
PSs, oxidized PCs

(<0.001) (0.92) (<0.0001)

ME2 39 2.55 0.58 2.66 All PUFA-containing 
lipids [both n-3 (22:6, 
20:5) and n-6 (20:4)], 

the cholesterol esters, 
PCs, PC-O/PC-PE-O/

PE-P

(<0.001) (0.54) (0.011)

ME3 31 −1.36 −1.47 −1.49 Most common TGs and 
DGs

(0.14) (0.19) (0.22)

ME4 26 0.13 −0.08 0.47 PA, PEs

(0.84) (0.92) (0.70)

ME5 37 −2.43 −0.34 −3.67

Unassigned lipids; free 
FAs and FA oxidation 

products and their 
esters

(<0.001) (0.71) (<0.0001)

ME6 11 1.26 −0.59 1.41 TG containing PUFAs

(0.15) (0.54) (0.22)

ME7 14 0.26 0.76 0.09 LysoPC mainly SFA and 
MUFA (sn1)

(0.74) (0.50) (0.91)

ME8 11 −0.89 −1.38 −0.82 LysoPC mainly MUFA 
and PUFA (sn2)

(0.27) (0.20) (0.51)

ME9 25 0.83 −0.64 1.45 Most abundant PCs

(0.27) (0.54) (0.22)

ME10 41 1.13 1.25 0.38
Most common 

cholesterol esters and 
sphingomyelins

(0.18) (0.19) (0.74)

ME11 27 −0.47 −1.29 −1.18
All small TGs and 

in-source fragments 
and isotopes

(0.63) (0.20) (0.33)

*Number of lipids belonging to the module.
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faltering. Using the PVAR method, we showed which lipids are G 
associated with growth and also how different lipids may influence 
each other over time.

We first characterized the children’s growth patterns in clusters 
using latent class mixed modeling. Previous studies that have com-
pared growth parameters in children with metabolites have typically 
characterized children as either growth impaired (e.g., stunted or 
underweight) or healthy, and determined which metabolites or 
lipids are able to classify them based on this binary classification 
(7, 26) even for studies that observed children over a period of time 
(14). Using latent class modeling, we showed that the children from 
rural Gambia experienced a general decline in growth outcome over 
time, albeit at different trajectories. This observed growth faltering 
has been reported previously for this cohort of children (27, 28) and 
is also observed to be common among children in low- and middle- 
income countries (LMICs) (29). However, while some children re-
mained stunted over the first 2 years of life, some children remained 
above the stunting cutoff (despite reduced growth), while others 
started as normal and slowly faltered ending up as stunted in the 
longer term. This indicates that a binary classification (impaired 
versus healthy) for growth faltering does not adequately capture the 
growth trajectories in these children.

For weight measures (WLZ and WAZ), we observed a general de-
cline, except in a very small number of children who increased in WAZ/
WLZ over time, which makes statistical comparison difficult. Future 
studies to investigate the progression of serum lipids among those with 
different WAZ/WLZ trajectories therefore require a much bigger sam-
ple size to capture enough number of children in both groups.

A number of studies have followed the metabolic status of children 
through the early years of life, especially in the first 2 years (table S5) 
(11–15). However, most of these studies focused on well-nourished pop-
ulations. A notable exception to this was the study by Giallourou et al. 

(14) that followed the changes that occur in the metabolome of 
children by analyzing urine and plasma samples at 3, 6, 9, 15, and 
24 months of age among children in three resource-constrained 
countries (Peru, Bangladesh, and Tanzania) (14). The authors used 
a phenome-for-age z score (PAZ) and found that PAZ of stunted 
children lagged compared to healthy children, indicating poor meta-
bolic maturity. These studies mainly used linear mixed/multilevel 
models, analysis of variance (ANOVA), and other multidimensional 
data analysis techniques [principal components analysis, partial least 
squares regression, and ANOVA–simultaneous component analy-
sis (ASCA)]. Although associations with growth outcomes can be 
deduced using these methods, they typically do not show variable 
interrelatedness and do not assess potential causal links between the 
metabolome/lipidome and growth outcomes.

Similar to Nikkilä et al. (15), who studied serum lipidome pro-
gression among Finnish children from birth to 2 years of age, we 
began by clustering tightly correlated lipids into modules to reduce 
dimensionality. To do this, we used weighted gene correlation net-
work analysis (22). We observed that the algorithm clustered lipid 
species based on their chemical features, specifically type of lipid 
species, length, and (un)saturation (SFA, MUFA, and PUFA). These 
clusters indicate that serum levels of these lipids behave very simi-
larly across time in the population, enabling us to generalize their 
association with growth outcomes. We observed that major meta-
bolic changes occurred around the first 6 months of life, which cor-
responded to the start of the transitional feeding in our study 
population—when children started taking other foods apart from 
breast milk. In this population of infants, rates of exclusive breast 
feeding (EBF) are high, with a mean duration of EBF across the 
whole of the study cohort of 5.2 months (27).

Here, we analyzed longitudinal biochemical data using panel 
data analysis methods from the field of econometrics. Panel data are 

Fig. 3. Eigenlipid progression of the children grouped based on latent class linear mixed modeling. (A) Each facet represents a module obtained from weighted 
correlation network analysis. No significant differences in the time course progression of MEq were observed among the three clusters in all modules. (B) Multidimension-
al scaling analysis showing time-dependent clustering of observations but no distinction between latent classes
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a hybrid of cross-sectional and time series data, where data are col-
lected for N individuals over T occasions, which is typically the 
most common design used in longitudinal systems biology studies. 
Systems biology can benefit from panel data analysis, as it is best 
suited for studies with large N but small T, which is most common 
especially in clinical studies where participants are not able to pro-
vide numerous biological samples over long periods of time. To the 
best of our knowledge, this paper is the first to demonstrate the use 
of panel data analysis methods in systems biology.

Despite observing three categories of LAZ trajectories, we found 
no significant differences in the serum lipid profiles of these children 
over time, which concurs with our basic panel analysis (Table 2). 
Contrary to LAZ, we observed that lipolysis products (free FAs and 
oxidized PCs) progress reciprocally to the progression of WAZ 
and WLZ. However, this association does not imply that free FAs 
and oxidized PCs cause the decline in WAZ and WLZ in the first 
2 years of life. One requirement for establishing a causal relationship 
is to demonstrate consistent significant association between current 
levels of the exposure and future levels of the outcome. One main 
advantage of using dynamic panel analysis strategies is its ability to 
infer potential causal links between outcomes and variables in a 
longitudinal study (30). In econometric terms, causality is assessed 
in terms of Granger causality, which is a statistical concept based on 
prediction. Under this framework, a time series (MEq) is Granger 
causal of another time series (LAZ) if inclusion of the history of 
(MEq) improves prediction of LAZ over knowledge of the history of 
LAZ alone (31). This is achieved by incorporating lagged (t−1…n) 
values as independent variables in the model, which will lead to 
biased estimates when performed using ordinary linear regression 

models due to the Nickell bias (20). This bias is eliminated by using 
GMM in dynamic panel analysis (16, 18, 19, 32). Granger causality 
is not only the most adopted criterion for causal inference in eco-
nomics but also used in other fields such as neuroimaging (33). 
However, as our study is an observational clinical study, causality 
cannot be fully concluded in epidemiological terms using econo-
metric tools alone. For this reason, we referred to these associations 
as G associations instead of causal pathways. The main advantage of 
our analysis is therefore that it provides an insight into which spe-
cific lipid targets could be tested further in randomized control trials 
(RCTs). This strategy increases the likelihood of success of the RCT, 
where the actual causal link will be tested.

In this study, we used a system GMM-PVAR model, which al-
lowed us to simultaneously assess the G associations between serum 
lipid profile and growth outcomes, and also how different lipid species 
are consistently associated with each other over time. The PVAR 
model is a modification of the conventional VAR model, which deals 
with panel data that typically comprise designs with N > T (34). 
PVAR also addresses individual heterogeneity from each individual 
cross-sectional unit (in this case, each child) (34). Hence, using this 
method, we are able to establish G associations and also assess variable 
interrelatedness, which previous longitudinal studies in children 
fail to report.

Our results suggest a G association between being underweight 
to being wasted and subsequently stunted. In a compilation of data-
sets from 1.8 million children in 51 countries, it was previously re-
ported that all children that were both stunted and wasted were also 
underweight (35), indicating a cross-sectional association among 
the three growth parameters. However, it has also been previously 
demonstrated that wasting precedes stunting and children with low 
WLZ were at a higher risk of linear growth retardation (stunting), 
especially for those below 3 years old (36–38). Wasting at younger 
age (from 6 to 17 months) was associated with stunting from 18 months 
of age. This association was, however, not observed when wasting 
occurred below 6 months of age (36, 37). These earlier reports indi-
cate that the association between the three growth outcomes was 
accurately captured by the PVAR model, indicating the validity of 
our approach.

It may, however, seem counterintuitive that although WAZ and 
WLZ are highly correlated (Table 2), directions of G associations with 
MEs are opposite from one another (Fig. 4). However, we need to 
consider that the results should be viewed as a system and not as 
individual independent nodes. Note that, despite being statistically 
correlated, WAZ and WLZ are not the same. Our analysis highlights 
that the physiology that results in the growth parameters is different.

WAZ is weight. Future weight of the child is positively influenced 
when current weight of the child, TGs (ME6), and height (LAZ) are 
high, whereas levels of other lipids, especially PUFA-rich ones (ME2; 
8 and 11), PCs (ME9), and cholesterol esters and sphingomyelins 
(ME10), are low. The effect of TGs on weight is well known, whereas 
an increase in height would naturally increase weight. Furthermore, 
in a European study, full-term infants fed a higher level (3.2%) of 
-linolenic acid (ALA) during the first 4 months of life had higher 
plasma levels of docosahexaenoic acid (DHA) and lower mean group 
weight than infants on a 0.4% ALA formula (39). These results con-
cur with our PVAR model, indicating a negative causal link between 
PUFA-rich lipids (ME2, ME8, and ME11) and WAZ.

WLZ is a measure for wasting (in these children), and hence a 
proxy indicator of lean mass. Our results indicate that current weight 

Fig. 4. Results of system GMM-PVAR analysis. Temporal network visualization of 
the system GMM-PVAR model. Arrows indicate that a node predicts another node 
(or itself) in the next time point. Full arrows indicate positive association, while 
dashed arrows indicate negative association. Loops indicate that the current value 
of a node predicts the future value of itself. Arrow thickness depicts the strength of 
the association. Node annotation for ME1 to ME11 is shown in Table 2. All roots are 
inside the unit circle indicating stability of the model and stationarity of the vari-
ables (fig. S2). WAZ, LAZ, WLZ, and all ME eigenlipids were included in the model as 
endogenous variables in the first order (lag t−1). Sex variation was taken into ac-
count by adjusting for sex as an exogenous variable.
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is a large driver of future wasting status, but increasing weight alone 
by providing a child with TGs will not be enough to increase lean 
mass. To increase future WLZ, these PUFA-rich lipids are needed 
on top of increased weight. Our analysis therefore highlights the need 
for deeper statistical analysis such as the use of econometric tools 
(i.e., PVAR in Fig. 4 and table S4), as these important information would 
be completely missed when only relying on correlations (Table 2).

In the interpretation of the lipid data, it is important to under-
stand that circulating lipids in the first years of life play a crucial role 
in the growth and development of many vital organs, most of all the 
brain, which requires lipid for growth and myelination. However, 
most information that we have in the literature is still mainly limited 
to European or other high-income settings. Our results demon-
strated that in this population, the majority of lipids contributed to 
LAZ, indicating higher energy and biochemical requirements for 
increasing linear growth than increasing weight. WLZ alone is 
insufficient to influence future LAZ, and several lipid clusters are 
needed to improve LAZ. This shows that more factors are associated 
with stunting than is explained by prior wasting, as also previously 
hypothesized (36). The different classes of lipids involved indicate 
that it is not only the lipids that provide energy that are limiting 
growth. Most notably, lysoPCs composed of MUFA and PUFA (ME8) 
were exclusively positively causal to LAZ compared to WLZ and 
WAZ. Evidence on the effect of PUFA, especially DHA, prenatal 
supplementation on infant height has been inconsistent (40). In one 
study, prenatal DHA supplementation resulted to a significant in-
crease in infant height at age 18 months compared to placebo (41), 
but this effect was no longer observed when the children were fol-
lowed to 60 months of age (42). Moreover, cord blood PUFA levels 
were found to have a sex-specific association with infant height at 
6 months of age, where n-3 PUFA levels were associated with higher 
infant length in males, while higher n-6 PUFA concentrations were 
associated with lower length in infancy. However, higher cord blood 
n-3:n-6 ratio was associated with higher infant length at 6 months 
of age. These associations were, however, no longer observed at later 
time points (from 2 years of age) (43). It is important to interpret 
these results in relation to nutrient availability. Brain development 
and growth requires large amounts of PUFAs, as the brain’s lipid 
composition comprises 35% PUFAs, which cannot be synthesized 
de novo (44). Hence, insufficient PUFA intake may require the body 
to use energy for FA desaturation to enable brain development and 
growth, limiting the energy available for lateral growth. Supplemen-
tation with PUFAs can therefore have very different effects on growth, 
depending on the availability of other nutrients. Hence, the poten-
tial effect of PUFA on LAZ may not be consistent. For instance, we 
have previously shown that PUFA supplementation did not improve 
growth and cognitive function of breast-fed infants in The Gambia, 
despite increasing plasma PUFA levels (45). PUFA intake was therefore 
not the limiting factor.

Of all lipids contributing to LAZ, PCs (ME9) had the highest G 
association on LAZ and WLZ. A metabolomics study reported 
reduced urinary levels of betaine and dimethylglycine, which are 
endogenous choline metabolites, in stunted Brazilian children, in-
dicating possible reduction of choline bioavailability from the diet 
(26). Choline is an essential nutrient and is a precursor for PCs. Low 
serum choline was also previously reported to be associated with 
linear growth failure among children in Malawi (46). Eggs, particu-
larly the egg yolk, are one of the main sources of dietary choline (47). 
Clinical trials using egg supplementation reported improved LAZ 

and height gain among children in Ecuador (48) and Uganda (49), 
respectively. Although eggs contain many other important nutrients, 
our data suggest that this efficacy could be due, at least in part, to 
the increase in intake of PC precursors.

Our current results demonstrate that all lipid species containing 
PUFAs (ME2, ME6, and ME8) and PCs (ME2 and ME9) were posi-
tively G associated to infant LAZ in the first 2 years of life. This 
underlines the importance of availability of essential lipids in early 
life nutrition in these populations. This highlights the need to use 
evidence from studies in the target populations, rather than relying 
on evidence of just European studies. Growth faltering among children 
in LMICs occur at a population level (29), which indicates the need 
to study its determinants at a community level instead of looking at 
individuals. As the majority of these children in our study were ex-
clusively breastfed until 5 months of age, poor maternal breast milk 
lipid composition could be an underlying factor associated with growth 
faltering. A survey of breast milk composition from mothers in area 
with high burden of infant growth faltering is therefore warranted 
and could be a target for intervention.

Furthermore, environmental factors potentially contribute to the 
malabsorption of PUFAs and choline in these children. Environmental 
enteric dysfunction is a subclinical state of intestinal inflammation 
commonly observed in children in LMICs (50), which may affect 
absorption of these lipids from breast milk. Hence, efforts to improve 
sanitation and reduce incidence of infections in children may 
improve bioavailability of essential lipids, which leads to improved 
growth outcomes.

Although this paper greatly contributes to the very limited data 
available on the interaction between lipids and growth outcomes in 
the first 2 years of life, we acknowledge that our study would be 
improved if children with more variable growth trajectories were 
included. In this study population, most children exhibited very similar 
growth trajectories and were growth impaired, especially stunted. 
Future studies involving children with different growth outcomes 
within the same population is therefore warranted.

In this study, we used a high-throughput lipidomic method, which 
does not provide a more thorough lipid identification compared to 
liquid chromatography–mass spectrometry (LC-MS)–based techniques. 
However, the weighted correlation network analysis allowed us to 
cluster lipids with similar structural and biochemical properties, which 
compensates for the lack of specificity in individual lipid identifications.

The link between underweight and wasting to stunting indicates 
that measures and interventions to address childhood stunting may 
require prevention of underweight and wasting earlier in life. Demon-
strating the role of circulating lipids in growth regulation among 
infants in low-resource areas offers insights into potential inter-
vention strategies based on nutritional formulation with specific lipid 
compositions or those that trigger increase in circulating levels of 
specific lipid species, especially PUFAs and PCs.

MATERIALS AND METHODS
Study population
The analyses presented included data and samples collected as part 
of the Early Nutrition and Immune Development (ENID) study, a 
randomized trial conducted in the rural West Kiang region of The 
Gambia between April 2010 and February 2015. The full ENID trial 
protocol is described by Moore et al. (21), and the trial was registered 
as ISRCTN49285450. Briefly, mother-infant pairs were recruited in 
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pregnancy (<20 weeks of gestation) and followed until 2 years post- 
partum. During pregnancy, women were randomly assigned to four 
trial arms, comparing combinations of protein-energy and multiple 
micronutrients, and from 6 to 18 months of age, their infants 
received either a daily multiple micronutrient-enriched lipid-based 
nutritional supplement (LNS) or a placebo LNS. As part of the trial 
design, infant anthropometry and blood samples were collected at 
clinic visits at 12, 24, 52, 78, and 104 weeks of infant age. Full details 
of measurement and sample collection protocols can be found in the 
trial protocol (27). The analyses presented here were not planned in 
the original study design and used data and samples from the first 
400 infants born into the ENID trial.

The ENID trial was approved by the joint Gambian Government/
MRC Unit The Gambia Ethics Committee (projects SCC1126v2 
and L2010.77). Written informed consent was obtained from all the 
participants before enrolment.

Untargeted lipidomic analysis
Serum samples were stored at −80°C until assay. Lipids were ex-
tracted as described previously (51). Briefly, 100 l of LC-MS–grade 
water and 150 l of internal standard mix were added to 15 l of 
serum in a 96-well glass-coated plate before mixing for 10 s. Sub-
sequently, 750 l of LC-MS–grade methyl-tertiary butyl ether and a 
further 200 l of LC-MS–grade water were added to each well 
before shaking for 10 s. Once mixed, plates were spun at 845g for 
2 min to achieve phase separation, with 25 l of the upper organic 
phase transferred to a new glass-coated plate with 90 l of MS mix 
(7.5 mM ammonium acetate in isopropanol:CH3OH 2:1), which 
was subsequently added to each well.

Direct injection mass spectrometry (DIMS) lipidomic profiling
Samples were infused into an Exactive Orbitrap (Thermo Fisher Scientific, 
Hemel Hempstead, UK) using Triversa NanoMate (Advion, Ithaca, 
USA). Data collection began 20 s after the infusion began, initially 
analyzing samples in the positive ionization mode with an ionization 
voltage of 1.2 kV applied. Data were acquired between 150 and 2000 mass/
charge ratio (m/z) with a scan rate of 1 Hz, giving a mass resolution 
of 65,000 at 400 m/z. A more detailed description of the instrument 
parameters can be found in the study of Harshfield et al. (51).

Processing lipidomic data
Raw data files were converted to .mzXML files using msConvert 
(ProteoWizard) (52) and were subsequently processed in R (version 
3.2.2) using an in-house script to compare spectra against a list of 
1649 lipid species, with a relative intensity and mass deviation value 
recorded for each lipid in every sample. We applied four filtering 
steps for quality control of the data and focus subsequent analysis 
on analytically robust signals. The first step was to remove lipids 
with a mean mass deviation between expected and recorded mass of 
greater than 5 parts per million (ppm). The second step was to re-
move signals with an average intensity in the samples less than five 
times greater than in the blanks. The third step was to remove signals 
with 0 values in greater than 10% of samples. The final step was to 
remove lipids with r < 0.9 in our quality control (QC) dilution series.

Data analysis
Analysis of growth outcomes
The changes in WAZ, LAZ, and WLZ over time were determined 
using a fixed-effects panel model specification

   Y  it   =  α  i   +  β  1    age  it   +  u  it    (1)

where i (i = 1…n) is the individual fixed effect; Yit is either WAZ, 
LAZ, or WLZ; ageit is the age of child i at age t; and uit is the error term. 
This was implemented using the plm package (53) in R (version 3.6).

We subsequently clustered the children based on their growth 
patterns using latent class mixed modeling implemented using the 
lcmm package (54). LAZ, WAZ, and WLZ values of the children at 
all time points were used as dependent variables, while sex and age 
were independent variables. Missing measurements were considered 
missing at random, and hence, children with incomplete measure-
ments were included. Age and child ID were used as random effects 
to allow varying intercepts and slopes per individual time series. A 
five-quantile spline function was used for estimation. The number 
of latent classes was tested between 2 and 4, and model selection was 
based on the Akaike information criterion (AIC). For estimating LAZ, 
a three-latent class model yielded the least AIC value, whereas a two- 
latent class model yielded least AIC values for both WAZ and WLZ.
Correlation network analysis
To reduce data complexity, clusters of tightly correlated lipids were 
determined using weighted coexpression network analysis (WGCNA) 
(22). Scale-free topography typical of biological networks (r2 ≳ 0.8) 
(23) for our data was achieved using  = 18 for a signed network. A 
Pearson correlation (sij) matrix was then generated between each 
lipid pairs (i and j), which was transformed into an adjacency matrix 
through the power transformation

  aij =   (     
1 +  s  ij   ─ 2   )     

β

   (2)

This power transformation punishes weak and negative correla-
tions while amplifying strong positive correlations. As this study aimed 
to determine the dynamic changes in lipids over time, a signed net-
work was used to determine lipids that move in the same direction 
over time. Using hierarchical clustering embedded with the WGCNA 
package, tightly correlated lipids are clustered into modules using 
the blockwiseModules function, setting the minimum number of lipids 
forming a module to 10. The network was visualized using igraph (55).
Association between modules and growth outcomes
Each member of the module is characterized by an eigenlipid (MEq, 
where q denotes the module number) through a singular value 
decomposition. MEq represents the collective behavior of the par-
ticular module (23). The progression of individual lipids or module 
MEq in the first 2 years of life was assessed using the fixed-effects 
panel model as in Eq. 1 but with MEq as additional independent  
variable

   Y  it   =    i   +    1    age  it   +    2    MEq  it   +  u  it    (3)

where MEqit indicates the MEq of child i at time t. Significant as-
sociations of growth outcomes and lipids through time were detected 
using P < 0.05 after adjusting for false discovery rate (FDR) (56).
Panel vector autoregression model
A PVAR model uses lags of the endogenous variables and analyzes 
interdependencies among variables of interest (LAZ, WAZ, WLZ, 
and 11 lipid modules obtained from the weighted correlation net-
work analysis). We thus estimated a 14-variate PVAR model of order 
p with panel-specific fixed effects represented by the following equation
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   Y  it   =   ∑ l=1       p   A  l    y  i,t−l   +  v  it   +  e  it    (4)

where Yit is a (1 × 14) vector of endogenous variables for the ith 
cross-sectional unit (child) at time t, yi,t-l is a 14 × 1 vector of lagged 
endogenous variables (l being the number of lags), and vit and eit are 
(1 × 14) vectors of dependent variable–specific fixed effects and 
idiosyncratic errors, respectively. Al represents the 14 × 14 matrix of 
endogenous parameters to be estimated. Sex was additionally included 
as an exogenous variable, but we did not adjust for randomization 
arm in the original clinical trial. This is because the trial included 
lipid-based nutrient supplements, which directly influenced the lipids 
in plasma. Hence, adjusting for randomization arm in the trial to test 
the association between lipids and growth is not appropriate because 
the trial is part of the pathway from exposure to outcome and con-
trolling for it will block some of the effect (57).

Following the procedure of Sigmund and Ferstl (25), we used 
unbalanced panel data and estimated PVAR models by fitting a 
multivariate panel regression of each dependent variable on lags of 
itself using GMM. GMM specification requires stationarity, which 
means that all unit roots of the PVAR model should fall inside the 
unit circle.

The PVAR model was specified by first specifying the maximum 
lag order of the model using the method described by Andrews and 
Lu (17). Because of maximum t = 5, we only tested for either first-order 
(t−1) and second-order (t−2) panels. Lag selection was based on the 
AIC and Bayesian information criteria. Then, a first difference and 
system GMM approaches with either first difference or forward 
orthogonal deviation (fod) transformation were assessed. The sta-
bility of the model was then tested. The system GMM model with 
fod transformation yielded a stable model and was hence used in 
the final analysis. The PVAR model was generated using the pack-
age panelvar in R (25).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj1132

View/request a protocol for this paper from Bio-protocol.
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