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Abstract

Somatic embryogenesis (SE) is a type of induced cell totipotency where embryos develop from vegetative tissues
of the plant instead of from gamete fusion after fertilization. SE can be induced in vitro by exposing explants to
growth regulators, such as the auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The plant hormone abscisic
acid (ABA) has been proposed to be a downstream signalling component at the intersection between 2,4-D- and
stress-induced SE, but it is not known how these pathways interact to induce cell totipotency. Here we show that
2,4-D-induced SE from the shoot apex of germinating Arabidopsis thaliana seeds is characterized by transcriptional
maintenance of an ABA-dependent seed maturation pathway. Molecular-genetic analysis of Arabidopsis mutants
revealed a role for ABA in promoting SE at three different levels: ABA biosynthesis, ABA receptor complex signalling,
and ABA-mediated transcription, with essential roles for the ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI4 tran-
scription factors. Our data suggest that the ability of mature Arabidopsis embryos to maintain the ABA seed mat-
uration environment is an important first step in establishing competence for auxin-induced cell totipotency. This
finding provides further support for the role of ABA in directing processes other than abiotic stress response.
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Introduction

Plant embryogenesis begins at fertilization with the formation  proceeds through defined developmental stages that are charac-
of a totipotent zygote that develops into an embryo within the teristic for each plant species. In the model plant Arabidopsis
confines of maternal and filial seed tissues. Embryo development  thaliana, the first phase of embryo development comprises a

Abbreviations: ABA, abscisic acid; 2,4-D, 2,4-dichlorophenoxyacetic acid; SE, somatic embryogenesis.
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period of cell proliferation and morphogenesis, where the basic
cell types, tissues, and organs are established (Zhao et al., 2017,
Tian et al.,2020a). This phase is driven in part by the plant hor-
mone auxin, which acts as a major instructor of cell identity and
patterning (Smit and Weijers, 2015; Zhao et al.,2017; Figueiredo
and Kohler, 2018). Thereafter, the embryo enters the matur-
ation phase during which cell division is reduced and storage
products accumulate that are used to drive embryo growth
during germination (Devic and Roscoe, 2016). During the last
phase of development, the desiccation and dormancy phase, the
water content of the embryo decreases and the embryo enters a
quiescent state (Leprince et al., 2017). The maturation and des-
iccation phases of embryo development are largely controlled
by the plant hormone abscisic acid (ABA) (Yan and Chen,
2017) and by a well characterized network of ABA-dependent
transcription factors. Among these are the LAFL [for LEAFY
COTYLEDONT1 (LEC1), ABSCISIC ACID INSENSITIVE
3 (ABI3), FUSCA3 (FUS3), and LEAFY COTYLEDON2
(LEC2)] and ABI4 and ABI5 transcription factors. Mutants of
these transcription factors are characterized by a reduction in
storage product accumulation and/or desiccation tolerance,
but also by the failure to maintain embryo identity (Brocard-
Gifford et al., 2003; Carbonero et al., 2016; Devic and Roscoe,
2016; Skubacz et al.,2016; Lepiniec ef al., 2018). Seed dormancy
can be broken in response to specific environmental signals and
by hydration of the seed. During germination, ABA levels de-
cline to promote the transition from embryo development to
seedling development (Shu et al.,2016b).

Plant cells are developmentally flexible, and many plant cells
other than the zygote can develop into embryos, either natur-
ally as part of an altered seed development programme (Ledn-
Martinez and Vielle-Calzada, 2019) or when induced in vitro
(Soriano et al., 2013; Horstman et al., 2017a; Testillano, 2019).
Somatic embryogenesis (SE) is a type of cell totipotency in
which embryos develop from vegetative tissues of the plant
(Méndez-Hernindez et al., 2019; Schmidt, 2020). SE can
be induced in vitro by exposing explants to exogenous plant
growth regulators, usually synthetic herbicidal auxins such as
2,4-dichlorophenoxyacetic acid (2,4-D), often with an add-
itional abiotic stress treatment (Fehér, 2015; Nic-Can et al.,
2016). SE forms the basis for a number of plant breeding
and biotechnology applications, including clonal propagation
(Park et al., 1998; Egertsdotter et al., 2019), but is also used as a
model system to understand cell fate changes, in particular in
Arabidopsis (Horstman et al., 2017a). SE protocols have been
developed for a wide range of Arabidopsis explants, which
show different levels of competence and follow different de-
velopmental routes to somatic embryo development, including
directly from the explant, indirectly through callus, and by sec-
ondary SE (Luo and Koop, 1997; Gaj, 2001; Ikeda-Iwai, 2002;
Ikeda-Iwai et al., 2003; Wei et al., 2006; Kobayashi et al., 2010;
Horstman et al., 2017a).
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At present it is not known whether these different routes
to SE represent a single pathway or multiple pathways that
converge at different downstream points. Nonetheless, a gen-
eral framework for somatic embryo induction has been pro-
posed in which chromatin-modifying proteins, transcription
factors, stress response, and exogenous growth regulator path-
ways converge at the level of endogenous hormone produc-
tion and signalling to reprogramme cells to a totipotent state
(Fehér, 2015; Horstman et al., 2017a; Pasternak and Dudits,
2019). Direct links between embryo repressive chromatin-
modifying proteins and their downstream embryo identity
transcription factor genes have been established in Arabidopsis
seedlings (Jia et al., 2013;Yang et al., 2013; Chen et al., 2018),
as have links between embryo identity transcription fac-
tors and endogenous hormone production (Horstman et al.,
2017a; Wojcik et al., 2020; Wojcikowska et al., 2020), However,
it is not clear how stress modulates SE. With the exception
of Daucus carota (Kamada et al., 1989, 1993; Nishiwaki et al.,
2000), stress treatments on their own are not sufficient to in-
duce SE. Rather, abiotic stress appears to act as an enhancer
of plant growth regulator-induced SE (Ikeda-Iwai ef al., 2003;
Gaj, 2004). In addition to its role as a developmental regu-
lator (Nambara et al., 2010; Hong et al.,2013;Yamaguchi et al.,
2018;Yoshida et al., 2019), ABA has key roles as an integrator
and modulator of abiotic stress response (Vishwakarma et al.,
2017). It has been suggested that an ABA stress response is an
important component of competence for SE, as changes in
ABA levels and ABA-related gene expression can be associ-
ated with competence for SE (Gaj et al., 2006; Su et al., 2013;
Fehér, 2015; Kadokura et al., 2018). In Arabidopsis, ABA en-
hances 2,4-D-induced SE from otherwise non-embryogenic
seedling root explants of the POLYCOMB REPRESSIVE
COMPLEX 2 CURLY LEAF/SWINGER mutant (clf swn)
through an unknown mechanism (Mozgova ef al., 2017), and
modulates auxin response and transport during 2,4-D-induced
secondary SE from embryogenic callus (Su ef al., 2013). It is
not clear whether ABA is required during SE in its role as
a developmental regulator or as a stress response modulator.
Neither is it known which ABA signalling components have
roles during SE.

In this study, we show that 2,4-D-induced SE from the
shoot apex of germinating after-ripened Arabidopsis embryos
is characterized by the maintenance of an ABA-dependent
seed maturation environment. We show genetically that not
only ABA, but also ABA perception, signalling, and transcrip-
tional output are required for efficient 2,4-D-induced SE. We
also show that the AUXIN RESPONSE FACTORS (ARFs)
ARF10 and ARF16, which act upstream and downstream of
ABI3 expression, are also required for efficient SE. These data
provide a mechanistic link between 2,4-D and ABA signalling
in somatic embryo induction, and suggest a developmental role
for ABA in promoting plant cell totipotency.
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Materials and methods

Plant materials and growth

The mutant, reporter, and overexpression lines used in this study are
described in Supplementary Table S1. Primers used for cloning and
genotyping are listed in Supplementary Table S2.

The 35S:PYL10 vector was made by amplifying the PYL10 protein-
coding sequence from Col-0 genomic DNA and then inserting it into
the pGD625 binary vector by Gateway cloning (Immink et al.,2002). The
35S:ABI3 vector was made by amplifying the ABI3 protein-coding se-
quence from Col-0 cDNA and then inserting it into the pH7GW2 binary
vector (Karimi et al., 2002) using Gateway cloning. The pBBM:BBM-
GFP-GUS construct was made using a Col-0 PCR fragment containing
4200 bp upstream of the translational start codon up to the end of the
BBM coding region. This PCR fragment was cloned into the pARC175
binary vector by Gateway cloning (Karimi et al., 2002), which also
contains the GFP-GUS (green fluorescent protein—B-glucuronidase)
reporter and the FAST-Red (OLEO:OLEQ1:RFP) cassette for seed se-
lection (Castel et al., 2019). The FAST-Red cassette was introduced into
the pARC175 vector in between the Xabl and Spel restriction sites.

PYL10 CRISPR/Cas9 [clustered regularly interspaced palindromic
repeats/ CRISPR -associated protein 9] mutagenesis was performed by
combining four guide RNAs in the pAGM4723 vector using Golden
Gate cloning, as described in Wang et al. (2019).

Arabidopsis Col-0 transgenics were obtained by Agrobacterium
tumefaciens-mediated floral dip transformation (Clough and Bent, 1998),
except for the PYL10 crispants, which were generated by A. tumefaciens-
mediated root transformation (Vergunst et al., 1998). The pyl8-1/pyl10“*
and pyl8-1/pyl9/pyl10°R mutants were generated by crossing pyl$-1 and
pyl8-1/pyl9 with pyl10°R, respectively.

All plants were grown in a growth chamber with 70% relative hu-
midity at 20 °C on rock wool cubes (Grodan), which were supplemented
twice a week with 1 g I"" 6.5-6-19 liquid fertilizer (Hyponex). The
snrk2.2snrk2.3snrk2.6 triple mutant seedlings and plants were covered
with a plastic cap to maintain a high humidity level (Fujii and Zhu, 2009).
Plants were maintained under LED light (150 pmol m™ s™) on a 16 h
light/8 h dark day/night cycle. Slight differences in plant growth condi-
tions and age at seed harvest can affect the efficiency of somatic embryo
cultures (Wu et al., 2019), therefore wild-type control and mutant lines
for any given experiment were always grown and harvested at the same
time. Unless otherwise indicated, siliques were harvested when they were
completely brown and then dried to 30% relative humidity (Wu et al.,
2019).

Somatic embryo culture

Seeds were surface sterilized with liquid bleach and then added to 30 ml
of 1/2 MS-10 medium [half-strength Murashige and Skoog macro- and
microelements and vitamins (Murashige and Skoog, 1962; Ducheta), 1%
(w/v) sucrose, pH 5.8] supplemented with 1 pM 2,4-D (Duchefa) in
190 ml plant tissue culture containers (Greiner). Approximately 60—-100
seeds per container were used. The containers were placed at 4 °C in
the dark for 2 d and then placed on a shaker (130 rpm) at 25 °C on a
16 h/8 h day/night cycle (100 umol m™s™"). SE efficiency and product-
ivity were determined after 2 weeks of culture by counting, respectively,
the number of seedlings that formed embryogenic tissues or bipolar som-
atic embryos, and the number of explants with more than two somatic
embryos. For some experiments, explants were transferred after 2 weeks
of culture to 1/2 MS-10 medium without 2,4-D to promote embryo
elongation and thereby facilitate scoring. The results for three technical
replicates (same seed batch) are shown for each experiment, and are in
agreement with numerous experiments with biological replicates from
independent seed batches.

For the ABA treatments, a mixture of TABA stereoisomers (Sigma)
was dissolved in DMSO and added to the SE culture medium prior to
or immediately after stratification or at the indicated time during culture,
and then left in the medium for the duration of the culture. The same
volume of DMSO was added to control cultures.

Gene expression analysis

Arabidopsis Col-0 seeds were surface sterilized and grown in containers
as described above, with or without 1 uM 2,4-D. The seeds were stratified
at 4 °C in the dark for 2 d and then grown for 2 d on a 16 h/8 h day/
night cycle at 25 °C on a shaker platform at 130 rpm.

Total RNA was isolated with the Invitrap Plant Spin RNA Mini Kit
(Invitek), treated with DNase I (Invitrogen), and sent to the Nottingham
Arabidopsis Stock Centre (NASC, http://arabidopsis.info/) for hybrid-
ization to the Arabidopsis Affymetrix GeneChip ATH1-121501 micro-
arrays. Three biological replicates were used for the 2,4-D and control
treatments.

Raw data were analysed using R Bioconductor packages (www.
bioconductor.org; Gentleman et al., 2004). The raw array data were
normalized using a robust multichip average (RMA) normalization,
which was carried out using the affy package (Gautier et al., 2004).
Probe sets that were differentially expressed were identified with
linear models generated with limma using a Benjamin and Hochberg
adjustment for multiple testing [false discovery rate FDR)] for calcula-
tion of the adjusted P-values (FDR values) (Ritchie ef al., 2015). Gene
Ontology (GO) analysis of differentially expressed genes induced by
2,4-D was performed by using DAVID with EASE score (P-value
<0.05) (Huang et al., 2009).

Quantitative reverse transcription—PCR (qQRT-PCR) was per-
formed using RNA isolated with a cetyltrimethylammonium bromide
(CTAB)/LiCl protocol and treated with DNase (TURBO DNA-free kit;
Invitrogen). cDNA synthesis was performed with the iScript cDNA syn-
thesis kit (BioRad). gqRT-PCR was performed as previously described
(Horstman et al., 2017b) using the primers shown in Supplementary
Table S2. Relative gene expression was calculated according to the
27CT method (Livak and Schmittgen, 2001) using wild-type or DMSO-
treated samples as the calibrator (as indicated) and the SAND family gene
(At2¢28390) and the TIP41-like gene (At4g34270) (Czechowski et al.,
2005) as the reference.

Histochemistry

GUS activity was determined histochemically as previously described
(Soriano et al., 2014), using 1.0-2.5 mM potassium ferri- and ferro-
cyanide and up to 24 h incubation time. Explants and seedlings were
cleared with 70% ethanol prior to imaging.

Neutral lipids were visualized by Sudan Red staining (Sudan Red 7B,
Sigma) (Brundrett et al., 1991). Whole explants were incubated for 1 h
in filtered Sudan Red solution (0.5% Sudan Red in 60% isopropanol) at
room temperature, followed by three washes with water.

Light images were recorded as described below.

Microscopy

For confocal laser scanning microscopy, seedlings were embedded in 0.2%
agarose containing 10 pM FM4-64 (Invitrogen) (de Folter et al., 2007)
and imaged with a Leica SPE DM5500 upright confocal microscope
using the LAS AF 1.8.2 software. GFP and FM4-64 were excited with
a 488 nm and 532 nm solid-state laser, respectively, and emissions were
detected at band widths of 500-530 nm and 617-655 nm, respectively.

Light images of explants from SE culture were taken with a Nikon
DS-Fil camera mounted on a ZEISS Stemi SV 11 binocular. Images
were processed with NIS-Elements D 3.2 software.

120Z 4890100 80 UO Josn Aleiqi- yoseasay us Alsiaaiun usbuiuabepn Aq +2201£9/8119/81/2./e10nie/qxl/woo dno olwapeoe//:sdiy Wwoll papeojumo(]


http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://arabidopsis.info/
http://www.bioconductor.org
http://www.bioconductor.org
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data

Results

2,4-D induces SE from the shoot apical meristem
(SAM) of germinating seeds

Contrary to a recent report (Wang ef al., 2020), embryos from
mature, after-ripened Arabidopsis seeds can be readily repro-
grammed from seedling development to somatic embryo de-
velopment by culturing them in 2,4-D (Mordhorst et al., 1998;
Thakare ef al., 2008; Kobayashi et al.,2010;Wu ef al.,2019;Tian
et al., 2020a). Here we followed the development of somatic
embryos from mature, after-ripened seed explants treated with
1 uM 2,4-D (Wu et al., 2019) by using morphological and em-
bryo identity markers to define the major developmental steps
in this process.

During the first 4 d of culture, the seedling cotyledons and
petioles enlarged and the epidermal and cortex cells of the root
elongation zone and the hypocotyl expanded and began to de-
tach from the underlying tissue (Fig. 1A, B; Supplementary Fig.
S1A). Embryogenic and non-embryogenic explants could not
be distinguished morphologically on the fourth day of culture,
but small patches of LEC1:LEC1-GFP embryo reporter ex-
pression could already be observed at the enlarged shoot apex
of some explants (Fig. 1C). By 6 d of culture, the majority of
explants had an elongated hypocotyl-root region, in which the
epidermal and cortical cell layers had completely detached from
the vascular cylinder above the root meristem (Fig. 1D, E). At
this time, cytoplasmic dense, bright green embryogenic protru-
sions (Fig. 1E) (Verdeil et al., 2007; Godel-Jedrychowska et al.,
2020) with LEC1-GFP expression (Fig. 1F) were observed at
the shoot apex.The absence of callus at the shoot apex suggests
that somatic embryos are formed directly from the shoot apex.
Bipolar somatic embryos were visible at the shoot apex from
day 8 of culture onward (Fig. 1G, H), but could be most clearly
distinguished morphologically during days 11-14 of culture
(Fig. 1], K, M, N; Supplementary Fig. S1C). In addition to ex-
pressing LEC1—GFP, these embryogenic protrusions and bi-
polar somatic embryos were intensely stained by Sudan Red, a
dye that stains neutral lipids including the triacylglycerols that
accumulate to high levels in Arabidopsis zygotic embryos (Fig.
11, L, O) (Brundrett ef al., 1991). In non-embryogenic explants,
the shoot apex either failed to develop or formed a (fused)
leaf-like structure (Fig. 11, J-O).These leaf-like structures were
not stained by Sudan Red (Fig. 11, L, O). Non-embryogenic
callus developed in both embryogenic and non-embryogenic
explants on the abaxial surface of the cotyledon petiole, under
the shoot apex, and from the root—hypocotyl vascular cylinder
(Fig. 1G-O; Supplementary Fig. S1B). SE efficiency and prod-
uctivity were calculated after 14 d of culture (Fig. 1P). SE was
induced in ~25% of the explants (SE efficiency) of which ~5%
developed more than two bipolar embryos (SE productivity).

We determined the developmental window in which 2,4-D
is required to induce SE in germinating embryos by adding
or removing 2,4-D at different time points in culture (Fig.
1Q, R). Addition of 2,4-D during seed stratification at 4 °C
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or at the start of culture induced the highest SE efficiency,
while adding 2,4-D at progressively later time points de-
creased SE efficiency, such that SE could no longer be induced
when 2,4-D was added after the third day of culture (Fig. 1Q).
Removal of 2,4-D after 3 d of culture dramatically decreased
somatic embryo induction, while removal at later time points
only had a mild effect on SE efficiency compared with con-
tinuous treatment.

These results indicate that treatment of mature after-ripened
embryos with 2,4-D inhibits normal shoot apex development
to promote embryogenesis, and that the developmental com-
petence for shoot apex embryogenesis is established within
48 h of culture. These results are in contrast to previous reports
showing loss of SE competence in mature embryo explants
within 1 d after germination (Mozgova et al., 2017), but might
reflect differences in the type of SE under study (direct versus
indirect).

2,4-D maintains the seed ABA maturation pathway
post-germination

To identify the signalling pathways that are affected by 2,4-D
treatment, we compared the transcriptomes of imbibed seeds
cultured for 48 h in medium with or without 1 uM 2,4-D. We
identified 5687 and 5300 genes that were significantly up- or
down-regulated, respectively, by 2,4-D compared with the un-
treated control (log, fold change >0.5 or < —0.5, FDR <0.05;
see Supplementary Data Set S1). GO analysis of both up- and
down-regulated genes revealed that changes in the expres-
sion of genes involved in response to cadmium ion, salt stress,
cytokinin, auxin signalling, homeostasis, and response were
among the most highly enriched categories (Supplementary
Figs S2, S3; Supplementary Data Set S1). The 2,4-D treat-
ment also induced statistically significant changes in expres-
sion of genes involved in ABA, dehydration, and cold stress,
and seed maturation pathways (Fig. 2A, B; Supplementary
Fig. S2; Supplementary Data Set S1). The expression of these
seed-expressed ABA and maturation-related genes is nor-
mally down-regulated during the transition to germination
(Carles et al., 2002; Lopez-Molina et al., 2002; Cadman et al.,
2006; Nakashima et al., 2006; Braybrook and Harada, 2008;
Yamaguchi et al., 2018), suggesting that 2,4-D treatment main-
tains the ABA seed maturation pathway post-germination. The
differential expression of selected auxin and ABA pathway
genes was confirmed by qRT-PCR analysis (Supplementary
Fig. S3, Supplementary Fig. S4).

A number of Arabidopsis genes have been identified that
induce spontaneous SE when ectopically expressed and/
or enhance 2,4-D-induced SE (Horstman et al., 2017a). We
therefore examined whether any of these genes are differ-
entially expressed within the first few days of somatic em-
bryo induction (Supplementary Data Set S1). Surprisingly, of
these genes, only PLT1, PLT2, and BBM expression was sig-
nificantly up-regulated in 2-day-old 2,4-D-treated explants.

120Z 4890100 80 UO Josn Aleiqi- yoseasay us Alsiaaiun usbuiuabepn Aq +2201£9/8119/81/2./e10nie/qxl/woo dno olwapeoe//:sdiy Wwoll papeojumo(]


http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data

6422 | Chen et al.

4 days 6 days 8 days 11 days 14 days

.’
3]
A

35 1 r7 o 30 1 35 4
2 S g a a 2 a
& 30 - -G_E & 25 §301 ab
[=% o
g 25 1 58§ g 25
£ 20 - L4 A Q 2 20 - b
5 T 5151 ab 5
215 1 F3 2 215 -
> £ o 10 =
_E 10 A F 2 % _g _g 10 4 ¢
[ J L1 g 5 ]
* 5 1 53 :{2 c c c ; 5 i
0 A F 0 X 0 A —_— 1 0 - T T T
-2 0 1 2 3 4 C 3 6 8
m efficiency productivity
day of 2,4-D addition day of 2,4-D removal

Fig. 1. 2,4-D-induced somatic embryogenesis (SE) from wild-type mature after-ripened embryo explants. The time of culture is indicated above the
panels. (A-N) Overview of somatic embryo cultures in time. (B, E, H, K, N) Magnified images. The images are light micrographs. (C, F) LEC1:LEC1-GFP
explant showing LEC1-GFP expression (green) at the shoot apex. The explants were counterstained with FM4-64 (red). The images are confocal laser
scanning micrographs. (I, L, O) Sudan Red-stained explants. Sudan Red stains the bright green structures and embryos at the shoot apex, but not the
ectopic leaf-like structure that develops at the shoot apex of non-embryogenic explants. The images are light micrographs. (A-O) ¢, cotyledon; r-h, root—
hypocotyl; a, apical pole; b, basal pole; white arrowhead, embryogenic structures; white arrow, somatic embryos; pink arrowhead, leaf-like structure;
pink arrow, non-embryogenic shoot apex; asterisk, callus. The scale bars are 1 mm in (A), (B), (D), (E), and (G-0), and 100 pm in (C) and (F). (P) Somatic
embryogenesis efficiency (percentage of explants with embryogenic tissues and/or bipolar embryos) and productivity (percentage of explants with >2
bipolar embryos) from germinating seeds. (Q) Effect of 2,4-D addition on SE. 2,4-D was added during stratification (-2), at the start of culture (0), or

at the indicated time points (1-4) after the start of cultures. (R) Effect of 2,4-D removal on SE induction. 2,4-D was added during stratification (-2) and
then removed at the indicated time points by refreshing the medium. C, continuous 2,4-D treatment was used as a control. For (Q) and (R), statistically
significant differences in SE efficiency were calculated using Fisher’s least significant difference test. Error bars represent the SD of three technical
replicates in one experiment.

However, BBM:BBM-GUS reporter analysis (Supplementary  expression domain in the root meristem (Galinha et al., 2007).
Fig. S5) showed that BBM was not expressed at the shoot BBM:BBM-GUS activity was only observed in the shoot apex
apex in 2-day-old explants, but was restricted to its normal of embryogenic explants from 6 d of culture onward. These
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Fig. 2. 2,4-D promotes ABA-related gene expression post-germination.
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seed maturation genes. In (A) and (B), the gene name and Arabidopsis
gene identifier (AGI), as well as the log, fold expression change for
2,4-D-treated versus control seedlings are shown for each gene. Genes
were grouped per functional category. The complete dataset can be found
in Supplementary Data Set S1.

data suggest that expression of somatic embryo identity genes
is enhanced by 2,4-D in their natural expression domain in the
root, followed later by ectopic expression in the shoot meri-
stem. The relatively late expression of those embryo identity
genes in the shoot meristem suggests that other developmental
changes precede expression of SE-inducing transcription fac-
tors in the shoot meristem.

Endogenous ABA is required for efficient somatic
embryo induction

2,4-D-treated somatic embryo cultures showed up-regulation
of ABA pathway genes that are normally expressed during
embryo maturation and down-regulated during embryo ger-
mination (Fig. 2). ABA/ABA stress signalling has been pro-
posed to promote SE, but the mechanism has not been well
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characterized. We therefore focused our subsequent analysis on
the role of ABA in SE from the shoot apex of germinating
embryos. Previously we showed that ABA biosynthesis is im-
portant for SE competence in fresh mature seeds (harvested
from yellow siliques that are dried at 30% relative humidity
and then stored at —80 °C) and aged seeds (stored at room
temperature for 5 years) (Wu ef al., 2019). The ABA biosyn-
thesis mutant, aba2-1, which has reduced endogenous ABA
levels (Leon-Kloosterziel et al., 1996; Gonzalez-Guzman et al.,
2002), negatively affected SE efficiency in both fresh mature
and aged seeds, while the cyp707a2-1 mutant, which has a
higher endogenous ABA level (Kushiro et al., 2004), enhances
SE efficiency (Wu et al., 2019). We obtained similar results with
these mutants using mature after-ripened seed explants (Fig.
3). Compared with wild-type explants, the cyp707a2-1 mu-
tant enhanced SE efficiency and the aba2-1 mutant reduced SE
eficiency (Fig. 3A). The aba2-1 mutant also developed more
callus on the cotyledon petioles, under the shoot apex, and
throughout the root—hypocotyl region than wild-type explants
(Fig. 3B). The reduction in SE efficiency in the aba2-1 back-
ground could be fully complemented by addition of 1 uM ABA
to the culture medium (Fig. 3C). The mutant phenotypes and
ABA complementation experiments indicate that endogenous
ABA is required and limiting for efficient SE. However, we
have shown previously that treatment of mature after-ripened
seed explants with exogenous ABA slightly inhibits SE (Wu
et al., 2019). Thus, although ABA levels are limiting for SE
from the shoot apex, they also need to be tightly regulated to
promote SE.

The ABA receptor complex positively requlates
auxin-induced SE

Given the requirement of endogenous ABA for somatic em-
bryo development from germinating seeds (Fig. 3; Wu et al.,
2019), we focused our efforts on identifying the specific com-
ponents of the ABA signalling pathway (Fig. 6) that are re-
quired for this developmental process. ABA is perceived and
transduced by a ternary ABA signalling complex comprising
RCAR/PYR1/PYL ABA receptors (hereafter referred to as
PYLs), clade A PP2C protein phosphatases, and SnRK2 kin-
ases (Fujii et al., 2009; Ma et al., 2009; Park et al., 2009). ABA-
bound PYLs interact with and inhibit PP2Cs, which in turn
promotes activation of SnRK2 kinases such as SnRK2.2/3/6.
The activated SnRK2 protein kinases phosphorylate and acti-
vate various downstream substrates, including ABA-responsive
transcription factors (Fujii et al., 2009; Melcher et al., 2009;Yin
et al., 2009; Raghavendra et al., 2010; Soon et al., 2012; Xie
et al., 2012).

We first determined whether ABA receptors play a role in
somatic embryo induction from germinating seeds. Our tran-
scriptome analysis showed that of the 14 Arabidopsis PYL genes,
seven were (differentially) expressed in 2,4-D-treated cultures,
including PYL1 (up-regulated) and PYL3 (down-regulated)

120Z 4890100 80 UO Josn Aleiqi- yoseasay us Alsiaaiun usbuiuabepn Aq +2201£9/8119/81/2./e10nie/qxl/woo dno olwapeoe//:sdiy Wwoll papeojumo(]


http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data

6424 | Chen et al.

A
60 -

k%

w ey [4)]
o o o
L 1 L

N
o
L

% embryogenic explants

10 A *kk

Col-0 aba2-1 cyp707a2-1

35 1

30 A

25 1

20 A ab

15

10 1

% embryogenic explants

0.25

Fig. 3. Endogenous ABA is required for efficient somatic embryogenesis. (A) The effect of ABA biosynthesis mutants on SE. Statistically significant
differences in SE efficiency between the wild type and the mutant lines were calculated using a two-tailed Student’s t-test (**P<0.01; **P<0.001). Error
bars represent the SD of three technical replicates. (B) Light images of 14-day old explants from somatic embryo cultures of the indicated wild-type and
mutant lines. The insets in the wild-type and aba2-1 panels are magnifications of the respective boxed regions, showing excessive callus formation at
the root-hypocotyl region of the explant of the aba2-7 mutant. The images are light micrographs. Arrows, somatic embryos; arrowheads, embryogenic
tissue; asterisks, callus; ¢, cotyledon; r-h, root-hypocotyl. Scale bars, 1 mm. (C) Application of exogenous ABA restores SE efficiency to wild-type Col-0
levels in the aba2-1 mutant. The Col-0 control was previously reported by Wu et al. (2019). Statistically significant differences in SE efficiency were
calculated using Fisher’s least significant difference test. Error bars represent the SD of three technical replicates.

in subfamily III, PYL5 and PYL6 (both up-regulated) in sub-
family II, and PYL7, PYLS, and PYL9 (all down-regulated)
in subfamily I (Fig. 2A; Supplementary Data Set S1). PYL10,
PYL11, PYL12,and PYL13 are not represented on the ATH1
microarray. Given the functional redundancy between ABA
receptors (Park et al., 2009; Zhao et al., 2018), we analysed
higher order RCAR/PYR1/PYL mutants for their effect
on SE. ABA signalling is blocked to a large extent in the
pyl112458 sextuple mutant, which carries T-DNA inser-
tions in the PYL1, PYL2, PYL4, PYL5, and PYLS8 genes and
a point mutation in PYR1 (Gonzalez-Guzman et al., 2012).
This sextuple mutant had a strong negative effect on som-
atic embryo formation (Fig. 4A, C) that could not be res-
cued by exogenous ABA application (Supplementary Fig. S6),
suggesting that the requirement for ABA for efhicient SE de-
pends on a functional ABA receptor complex. Similarly, the
pyl duodecuple mutant (pyl112458379101112), in which
only one functional ABA receptor, PYL6, is a wild-type allele
(Zhao et al., 2018), also had a negative effect on somatic em-
bryo development (Fig. 4A). The phenotype of these higher
order ABA receptor mutants resembled that of the aba2-1
mutant explants, in which SE efficiency was compromised
and non-embryogenic callus formation was stimulated. Of

the genes in the PYL7, PYLS, PYL9, PYL10 subfamily (sub-
family I), loss-of-function mutants are only available for PYLS
and PYLY. We therefore made a PYL10 null mutant using
CRISPR /Cas9 mutagenesis (pyl10“%) and crossed this mutant
with PYL8 and PYL9 null mutants to obtain double and triple
mutants (pyl8-1pyl10“% and pyl8-1pyl9pyl10“%). The pyl8-
1pyl10“% and pyl8-1pyl9pyl10“® mutants did not show ob-
vious mutant phenotypes during somatic embryo culture (Fig.
4A). In contrast to the negative effect of the loss-of-function
pyl mutants on SE, overexpression of both RCAR12/PYL1
(358:RCAR12/PYL1;Yang et al., 2016) and RCAR4/PYL10
(358:RCAR4/PYL10) (Fig. 4B, C; Supplementary Fig. S7)
slightly, but significantly, enhanced SE efficiency. Together, the
data from both loss of function and overexpression of ABA re-
ceptor complex components suggest that functional ABA re-
ceptors are required for efficient SE and that enhanced basal
ABA signalling promotes 2,4-D-induced SE.

Next, we determined whether mutants for PP2C pro-
tein phosphatases (negative ABA signalling regulators) and
SnRK?2 protein kinases (positive ABA signalling regulators) af-
fect 2,4-D-induced somatic embryogenesis from germinating
seeds. ABI1, ABI2, and AHG3/PP2CA are up-regulated in
our 2,4-D-treated seed explants (Fig. 2A; Supplementary Data
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Set S1).These genes are known to play roles in ABA-mediated
repression of seed germination together with the PP2C phos-
phatase gene HAB1 (Rubio ef al., 2009). SE efficiency was not
affected in the hab1-1 or ahg3 single mutants, while the higher
order abi1-2 hab1-1 PP2C mutant showed enhanced SE effi-
ciency (Fig. 4D, F). Accordingly, overexpression of either ABI1
(35S:ABI1) or ABI2 (35S:ABI2) (Wang et al.,2018) inhibited
somatic embryo formation (Fig. 4E, F). Compared with wild-
type explants, explants from the abi1-2 hab1-1 loss-of-function
mutant did not show any abnormal phenotypes, while ABI1
overexpression explants produced more non-embryogenic
callus over the entire explant (Fig. 4F).

Among the subclass III SnRK?2 kinases, only SnRK2.2 was
up-regulated by 2,4-D treatment (Fig. 2A; Supplementary
Data Set S1). SuRK?2.2, SnRK2.3, and SnRK 2.6 function re-
dundantly in the regulation of ABA-mediated seed germin-
ation, therefore the snrk2.2snrk2.3snrk2.6 triple mutant (Fujii
and Zhu, 2009) was evaluated for its effect on SE.This mutant
had a strong negative effect on SE from germinating seeds (Fig.
4G). As with other positive regulators of ABA signalling, snrk
mutant explants produced more non-embryogenic callus than
wild-type explants (data not shown).

Together, these data indicate that signalling through the ABA
receptor complex, from ABA perception to protein kinase
function, is required for 2,4-D-mediated SE from germinating
seeds.

Seed maturation transcription factors positively
regulate auxin-induced SE

The ABI3, ABI4, and ABI5 transcription factor genes act
downstream of ABA signalling and encode, respectively, B3-,
APETALA2- (AP2), and basic leucine zipper- (bZIP) do-
main DNA-binding proteins. These ABI genes were identi-
fied based on genetic screens for mutants that are insensitive
to ABA during seed germination, but were later shown to
also have overlapping roles in seed maturation (Parcy et al.,
1994; Carles et al., 2002; Penfield et al., 2006; Delmas et al.,
2013), in abiotic stress responses during seed germination
and seedling growth (Soderman et al., 2000; Lopez-Molina
et al., 2001, 2002; Brocard et al., 2002), as well as other post-
germination functions (Brady et al., 2003; Shkolnik-Inbar and
Bar-Zvi, 2010; Wang et al., 2013). ABI3, ABI4, and ABI5 are
subject to extensive transcriptional cross-regulation during
seed maturation and germination (Soderman et al., 2000;
Yan and Chen, 2017). A number of ABI3, ABI4, and ABI5
target genes were up-regulated in the transcriptome dataset,
including the LEA genes LEA4-1, LEA76, AT5G44310, and
AT4G21020, and PGIP1 and NYC1 (Fig. 2B; Supplementary
Fig. S4; Supplementary Data Set S1;Reeves ef al.,2011; Monke
et al., 2012; Skubacz et al., 2016) Given the expression pat-
terns of ABA- and ABI-regulated seed maturation pathway
genes, we examined the expression and function of the three
ABI genes during SE. Microarray-based transcriptome analysis

showed that of these three genes, only ABI5 expression was
up-regulated in 2,4-D-treated mature after-ripened seeds
(Fig. 2A; Supplementary Data Set S1), but gqRT-PCR analysis
showed that ABI3 and ABI4 expression was also up-regulated
significantly at this time point (Supplementary Fig. S4).

Next, we examined the effect of ABI3, ABI4, and ABI5
mutant and overexpression lines on 2,4-D-induced somatic
embryo induction. abi3 null mutants are desiccation intolerant;
therefore, we analysed the response of weak abi3 alleles (abi3-8,
abi3-9, and abi3-10; Nambara et al., 2002) using mature, after-
ripened seed explants, and the response of the abi3-6 null al-
lele (Nambara et al., 1994) using mature wet seed explants. All
abi mutants displayed a strong reduction in SE efficiency from
mature seed explants, with the abi3-6 (0%) and abi4 mutants
(2-5%) being most severely affected (Fig. 5A—E; Supplementary
Fig. S8). Consistent with our results on the core ABA signalling
complex, abi3, abi4, and abi5 explants also produced more non-
embryogenic callus than wild-type explants (Fig. 5C—E). The
higher SE response in the abi3-8, abi3-9, and abi3-10 mutants
compared with the abi3-6 mutant might be due to, respect-
ively, partial versus complete loss of function of the mutant
alleles (Nambara et al., 2002; Delmas et al., 2013). The higher
SE responses in abi5-7 compared with abi4-3 and abi3-6 might
be due to functional redundancy of ABI5 with another eight
ABRE-binding factors (ABFs). The number of embryogenic
explants was also severely reduced in the weak abi3 mutants
and in the abi4 and abi5-7 mutants.

In wild-type immature zygotic embryo explants, prolific
SE takes place on the adaxial surface of the cotyledon petiole,
while a single somatic embryo develops from the shoot apex
(Supplementary Fig. SOA). abi3-6 immature zygotic embryo
explants produced somatic embryos on the adaxial surface of
the petiole, as in wild-type explants, but, unlike wild-type ex-
plants, a shoot-like structure developed from the apex instead
of a somatic embryo (Supplementary Fig. S9B). These results
indicate that abi3-6 immature zygotic embryo explants retain
the ability to form somatic embryos from the petiole, but not
from the shoot apex (Supplementary Fig. S9C), and suggest
that ABI3 is required to repress shoot development from the
shoot apex.

We determined whether exogenous ABA application could
improve SE efhiciency in the abi3, abi4, and abi5 mutant back-
grounds. ABA application did not improve SE efhiciency in the
abi3-6, abi4-1, or abi4-2 backgrounds, but did have a positive
effect on SE in the abi5-7 background (Supplementary Fig.
S10), suggesting that auxin-induced SE is less dependent on
ABI5 than on ABI3 and ABIA4.

Next, we examined the effect of ABI3, ABI4, and ABI5
ectopic overexpression on somatic embryo formation using
35S8:ABI3 (Supplementary Fig. S7), 355:ABI4, and 35S:ABI5
lines (Brocard et al.,2002; Shu et al.,2013). ABI3 overexpression
enhanced, while ABI4 and ABI5 overexpression reduced, SE
efficiency in 2,4-D-treated cultures (Fig. 5B, F). 2,4-D-treated
358:ABI3 explants had a larger embryogenic shoot apex
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signalling and ABI5 transcription factors are required for efficient SE from
germinating seeds, while ABI3 and ABI4 (bold) are essential for SE. ABA
signals through the upstream components, including the receptors and
the PP2Cs, to indirectly up-regulate ABI3 (Lopez-Molina et al., 2002), while
core ABA signalling promotes ABI5 phosphorylation (Fujii et al., 2009;
Melcher et al., 2009; Yin et al., 2009). ABI3 also regulates ARF10 and
ARF16 expression through MIR160, which post-transcriptionally regulates
ARF10 and ARF16 levels (Tian et al., 2020b). Dashed lines indicate indirect
transcriptional regulation, while black solid lines indicate known protein-
level regulation.

than 2,4-D-treated wild-type explants, which was already
visible after 4 d of culture compared with 6 d in wild-type
explants (compare Fig. 1E and Fig. 5F). A similarly enlarged
shoot apex was not observed in 2,4-D-treated ABI4 and ABI5
overexpression lines.

Collectively, our genetic data showed that ABI3, ABI4, and
ABI5 positively regulate auxin-induced SE from germinating
seeds. SE efficiency was reduced in the abi5-7 mutant, even
more so in the abi4-3 mutant, and was completely abolished
in the abi3-6 mutant. The complete absence of embryogenic
growth in the abi3-6 mutant and the positive effect of ABI3
overexpression on SE suggests that ABI3 expression is essential
and limiting for somatic embryo initiation. The slight nega-
tive effect of ABI4 and ABI5 overexpression on SE efficiency
might reflect additional stress signalling roles for these proteins
that interfere with SE. Exogenous ABA application enhanced
SE in the abi5 loss-of-function mutant, but not in the abi3 and

abi4 loss-of-function mutants. Together, these data suggest that
ABI3 and ABI4 are the main downstream effectors of ABA
signalling during SE.

ABI3 is a key component of 2,4-D-induced SE from ma-
ture after-ripened embryos. Auxin signals through the ARFs
ARF10 and ARF16 to maintain ABI3 expression and en-
hance ABA-mediated inhibition of seed germination (Liu
et al., 2013). ABI3 also regulates ARF10 and ARF16 expres-
sion through MIR160, which post-transcriptionally regulates
ARF10 and ARF16 levels (Tian et al., 2020b). Therefore, we
determined whether mutations in ARF10 and ARF16 in-
fluence 2,4-D-induced SE. The efficiency of 2,4-D-induced
SE was significantly reduced in the arf10/16 double mutant
(Supplementary Fig. S12), suggesting that 2,4-D and ABA
converge at the level of ARF10 and/or ARF16 and ABI3.

Developmental timing of ABI3 and ABI4 expression in
SE culture

ABI3 and ABI4 are strong positive regulators of auxin-induced
SE. We examined their expression patterns during the course
of somatic embryo induction to better understand their roles
in this process. ABI3 and ABI4 expression was followed during
SE culture using ABI3:GUS (Ryu et al.,2014) and ABI4:GUS
(Soderman ef al., 2000) reporter lines (Supplementary Fig. S11).
Seeds were cultured with or without 2,4-D,and explants stained
for GUS activity over an 8 d period. ABI3 (Supplementary Fig.
S11A) was expressed initially in the cotyledons and the hypo-
cotyl of germinating seeds from both auxin-treated and con-
trol seedlings, with higher expression in 2,4-D-treated samples
at day 2 of culture. Four days after the start of culture, ABI3
expression could no longer be detected in control seedlings,
but was still present in auxin-treated explants. Later, from day
6 to day 8 of culture, ABI3: GUS expression became restricted
to the cotyledons and shoot apex (Supplementary Fig. S11A).
ABI4 expression (Supplementary Fig. S11B) was also gradually
lost in control seedlings compared with 2,4-D-treated seed-
lings, although ABI4 expression declined earlier than ABI3
expression. No obvious difference in ABI3- or ABI4-driven
GUS activity was found between embryogenic and non-
embryogenic explants from 2,4-D-induced somatic embryo
culture (Supplementary Fig. S11).

ABI3 and ABI4 are induced transiently during seed ger-
mination (https://www.bioinformatics.nl/dormancy/). Our
reporter, microarray, and qPCR data therefore suggest that ABI
gene expression is maintained post-germination in response to
auxin treatment. The developmental window in which ABI
expression normally decreases in control seedlings corresponds
to the window for efficient 2,4-D-induced SE. ABI3 and ABI4
are essential for SE, but GUS reporter analysis suggests that
they are not differentially regulated at the transcriptional level
between embryogenic and non-embryogenic explants. The
lack of difference in expression of these two genes between
embryogenic and non-embryogenic explants suggests that

120Z 4890100 80 UO Josn Aleiqi- yoseasay us Alsiaaiun usbuiuabepn Aq +2201£9/8119/81/2./e10nie/qxl/woo dno olwapeoe//:sdiy Wwoll papeojumo(]


http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab306#supplementary-data
https://www.bioinformatics.nl/dormancy/

ABI3 and ABI4 expression is regulated post-transcriptionally
in these explants (Zhang ef al., 2005; Finkelstein et al., 2011;
Gregorio et al., 2014).

Discussion

The vast majority of SE protocols use 2,4-D as the inducer treat-
ment, alone or in combination with an abiotic stress treatment
(Gaj, 2004). 2,4-D treatment has also been shown to induce a
transcriptional stress response during SE (Rai et al., 2011; Nic-
Can and Loyola-Vargas, 2016; Kadokura et al., 2018). Somatic
embryo induction by stress treatment alone has rarely been de-
scribed (Kamada et al., 1989, 1993; Nishiwaki et al., 2000), sug-
gesting that a stress response is in itself not sufficient for somatic
embryo initiation, but rather is needed to enhance the effect
of auxin treatment. The role of ABA as a core regulator of di-
verse plant abiotic stress responses has been well documented in
many plant species (Vishwakarma et al., 2017; Cho et al., 2018).
It is clear that auxin interacts with the ABA pathway during
somatic embryo induction, but it is not clear whether these
interactions are stress related or simply reflect developmental
roles for ABA in basal signalling pathways (Yoshida et al., 2019).
The observation that ABA modulates auxin response and trans-
port during 2,4-D-induced secondary SE from embryogenic
callus in Arabidopsis supports a developmental role for ABA
during SE (Su et al., 2013), but it is not known which ABA
signalling components regulate this response.

Here we show that 2,4-D-induced SE from mature after-
ripened Arabidopsis embryos induces a transcriptional cascade
that is characteristic for the ABA seed maturation pathway (Fig.
2). Genes in this pathway are normally down-regulated in ma-
ture after-ripened seeds or during germination, but their expres-
sion is maintained when imbibed seeds are cultured in 2,4-D.We
show that ABA promotes and is limiting for SE at three different
levels: ABA biosynthesis, ABA receptor complex signalling, and
ABA-mediated transcription, and that ABI3 and ABI4 are essen-
tial players in this process (Figs 3—5). Our results suggest a novel
developmental role for a basal ABA signalling pathway in modu-
lating auxin-dependent cell fate changes in the shoot apex.

SE requires and is limited by upstream components of
the ABA signalling pathway

Endogenous ABA is required for 2,4-D-induced SE from the
shoot apex of germinating seeds (Fig. 3). Higher order ABA
receptor mutants, where ABA signalling is blocked to a large
extent (Gonzalez-Guzman et al., 2012), also show reduced SE
efficiency that cannot be complemented by exogenous ABA
(Figs 4, 5). Together, these data suggest that a basal ABA level
is required for SE and that ABA signals through the RCAR/
PYR1/PYL receptor complex to regulate 2,4-D induced SE.

Endogenous ABA is required for 2,4-D-induced (indirect)
secondary SE from callus, where it is thought to modulate auxin
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response and transport during secondary embryo outgrowth
(Su et al., 2013). In this system, immature zygotic embryos are
cultured in 2,4-D to induce somatic embryo formation and
then callus formation, followed by secondary SE from callus
after removal of auxin from the medium. Here SE is induced
by 2,4-D treatment directly from the SAM of germinating ma-
ture after-ripened embryos. Whether ABA-regulated auxin re-
sponse and transport is a common component of/is required
for SE systems that rely on different explants and follow dif-
ferent developmental pathways (primary/secondary, direct/in-
direct) remains to be determined by genetic analysis.

In line with the transcriptome data showing 2,4-D-induced
PYL1 and PYL5 up-regulation (Fig. 2A), the higher order
loss-of-function mutant (pyl112458) in subfamilies I, II,
and III negatively affected SE progression (Fig. 4A), while
overexpression of PYL1/RCAR12 (subfamily III) enhanced
SE (Fig. 4B). Expression of the subfamily I receptor genes
PYL7, PYLS, and PYL9 was down-regulated by 2,4-D treat-
ment (Fig. 2A), but pyl8-1, pyl9, and pyl10“® mutant com-
binations had no effect on SE efficiency (Fig. 4A). However,
we cannot rule out a (different) role for subfamily I RCAR/
PYR1/PYL receptors, as genetic redundancy between PYL7
and the other subfamily I members and/or other receptor sub-
families might mask a role for these genes during SE (Park
et al., 2009; Zhao et al., 2018). Although subfamily I RCAR/
PYR1/PYL receptors do not appear to have a major role in
SE, overexpression of one subfamily 1 receptor, PYL10, did
enhance SE efficiency. The ability of 35S:PYL10 to enhance
SE might therefore indicate a lack of specificity of the ABA
receptors with respect to the downstream signalling pathways
that are regulated during 2,4-D-induced SE.

Opverexpression of the ABI1 and ABI2 PP2C protein phos-
phatase genes inhibited SE (Fig. 4E), while the abil hab1
double mutant showed enhanced SE, in line with their role
as negative regulators of ABA signalling (Fig. 4D). According
to the transcriptome data, expression of the ABI1, ABI2, and
AHG3/PP2CA PP2C protein phosphatase genes, which are
negative regulators of ABA signalling, was slightly up-regulated
by 2,4-D treatment (Fig. 2A). This suggests that up-regulation
of these PP2C genes after 2,4-D treatment is due to negative
feedback regulation that keeps downstream ABA signalling in
check (Maia et al.,2014).

Opverall, we show dependence on various mediators of ABA
biosynthesis and signalling to enhance 2,4-D-induced SE.
However, the transcriptome data imply that the ABA tran-
scriptional response is far more complex. For example, genes
for both ABA biosynthesis (ABA2, NCED5, and NCED®6)
and inactivating enzymes (CYP707A1 and CYP707A2) are
up-regulated after 2,4-D treatment (Fig. 2A), yet our mutant
analysis showed that increased SE potential was correlated with
loss of CYP707A2 activity (Fig. 3A). Our transcriptome data
were obtained from whole embryos, while only a subset of
the explant cells contribute either cell autonomously or non-
autonomously to somatic embryo competence. In addition, the
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time point at which specific genes function during the course
of culture needs to be taken into consideration, and can be dif-
ficult to define with mutants. Additional studies using RINAi
and reporter lines for specific genes, as well as pharmacological
intervention (Park et al., 2009; Nemoto et al., 2018), will help
to resolve the contributions of the different signalling compo-
nents to 2,4-D-induced SE.

Auxin maintains the seed maturation environment

In Arabidopsis, ABI4 and ABI5 together with LAFL genes
(LEC1, ABI3, FUS3, and LEC2) control the maturation and
desiccation phases of zygotic embryo development (Brocard-
Gifford et al.,2003; Carbonero et al., 2016; Skubacz et al., 2016;
Lepiniec et al., 2018). Mutant analysis has shown that LAFL
genes also regulate other aspects of embryo development,
including repression of seedling-expressed genes in the early
embryo (Yamamoto et al., 2014) and promotion of suspensor
and cotyledon development. In line with these functions, ec-
topic overexpression of these genes in seedlings confers embryo
identity traits, and in the case of LEC1 and LEC?2 also induces
spontaneous SE (Parcy ef al., 1994; Lotan et al., 1998; Stone
et al.,2001,2008; Gazzarrini et al., 2004; Braybrook et al., 2006;
Horstman et al., 2017a). LAFL and ABI genes are regulated in
part by larger, complex transcriptional and post-transcriptional
feedback LAFL loops during seed development (Gazzarrini
et al., 2004; Zhang et al., 2005; To et al., 2006; Lepiniec et al.,
2018). Unlike LEC1/2 overexpression, ectopic expression of
ABI genes has not been reported to induce SE, but does confer
seed maturation traits such as storage product accumulation
(Parcy et al., 1994; Reeves et al.,2011).

ABI4, ABI5, and LAFL gene expression begins early in em-
bryo development and decreases or becomes restricted to a subset
of tissues in germinating seeds and seedlings (Brocard ef al.,2002;
Kroj et al., 2003; To et al., 2006; Braybrook and Harada, 2008;
Wang et al., 2010; Wind et al., 2013). Our data show that ex-
pression of ABI3, ABI4, ABI5, and other ABA signalling genes
is maintained within the first 48 h of 2,4-D treatment (Fig. 2A),
yet most known SE inducers or enhancers were either not dif-
ferentially expressed or were down-regulated at the same time
point (Supplementary Dataset S1). Three genes, BBM, PLT1,
and PLT?2, showed significant up-regulation after 2 d of 2,4-D
treatment, but we demonstrated that at this time point, BBM is
expressed in the root rather than the shoot, and that ectopic ex-
pression at the shoot apex, the site of somatic embryo initiation,
occurs later, after 6 d of culture, following LEC1 expression
(Supplementary Fig. S5). These data suggest a two-step mech-
anism for SE induction in which 2,4-D first induces an ABA
seed maturation response, followed by induction of embryo
identity genes such as LEC1 and BBM (Supplementary Fig.
S13). 2,4-D and 2,4-D-induced maintenance of ABA-related
gene expression during seed germination and beyond might be
required to create a permissive transcriptional environment for
expression of embryo identity genes such as LEC1 and BBM.

Polycomb Repressive Complex 2 (PRC2) proteins regu-
late the transition from seed development to seed germination
by repressing seed dormancy and embryo maturation traits in
seedlings (Mozgova et al., 2015). In Arabidopsis, shoots from
7-day-old clf swn seedlings occasionally make differentiated
somatic embryos (Mozgova et al.,2017). A combined wounding
and 2,4-D treatment provides the additional competence for
efficient somatic embryo induction in the shoot meristem of
clf swn seedlings, but is not sufficient to induce SE from root
tissues. ABA response appears to be limiting in clf swn roots, as
addition of exogenous ABA to 2,4-D-treated roots is sufficient
to induce SE. In this study, we found that endogenous ABA is
limiting and required for efficient 2,4-D-induced SE from the
shoot apex of wild-type mature embryo explants. However,
exogenous ABA application does not induce SE from the ex-
plant root and actually inhibits SE from the shoot apex. This
suggests that the pathways leading to 2,4-D-induced SE from
mature embryos and from seedlings are different.

Two mechanisms for SE from embryo explants

In Arabidopsis, SE can be induced from both immature bent
cotyledon stage embryos and embryos from mature after-
ripened seeds. SE efficiency is much higher in immature zyg-
otic explants (~80%) than in embryo explants from mature
after-ripened seed (~20%). The tissue competence for SE also
differs between these two explants. In mature embryo explants,
somatic embryos develop from the shoot apex, while in imma-
ture zygotic embryo explants somatic embryos develop from
the cotyledon petioles and only a single somatic embryo de-
velops from the shoot apex. Thus, overall and tissue compe-
tence for SE is gradually reduced during the late maturation
phase (Gaj et al., 2005; Wu et al., 2019).

The aba2, abi3, abi4, and abi5 mutants showed reduced SE
from the shoot apex of mature geminating seeds, yet similar
mutants show either normal or less severely reduced SE ef-
ficiency from the cotyledonary petioles of immature zygotic
embryo explants (Gaj et al., 20006). In wild-type immature zyg-
otic embryo explants, somatic embryos develop from the peti-
oles and shoot apex, but in abi3-6 explants somatic embryos
only develop from the petioles (Supplementary Fig. S9). This
suggests two different mechanisms for 2,4-D-induced SE, one
that operates in the cotyledonary petioles and one that oper-
ates in the shoot apex.

In immature Arabidopsis zygotic embryo explants, LEC1/2
and FUS3 are still relatively highly expressed in the cotyle-
dons (Lotan et al., 1998; Kroj et al., 2003; To et al., 2006). SE
is severely compromised in lec1, lec2, and fus3 immature zyg-
otic embryos, and any embryos that develop, develop indir-
ectly from callus rather than directly from the protoderm as in
wild-type explants (Gaj ef al., 2005). Mature seeds show no or
low LEC1/2 and FUS3 expression (Lotan ef al., 1998; Stone
et al., 2001; Lu et al., 2010; Junker and Biumlein, 2012), but
LEC1 expression can be induced after 4 d of 2,4-D treatment.
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Thus, the existence of a largely intact embryo identity pro-
gramme in cotyledonary petioles might be sufficient to fa-
cilitate 2,4-D-induced SE from immature zygotic embryo
cotyledons, even in the absence of individual ABI genes, while
reinduction of a similar state is required for SE from the shoot
apex of germinating embryos. These results are in line with
studies showing that ectopic expression of the LEC1, LEC2,
and FUS3 seed maturation transcription factors can induce
and/or enhance SE in different explants (Lowe et al., 2003;
Zhang et al., 2014; Liu et al., 2018).

Somatic embryo development from the shoot apex of
germinating embryos relies on ABI3, ABI4, and ABI5 (Fig.
5A). Little is known about the involvement of these genes in
shoot meristem development, but roles for ABI3, ABI4, and
ABI5 in the auxin-dependent control of (lateral) root meri-
stem size/number have been described (Brady et al., 2003;
Shkolnik-Inbar and Bar-Zvi, 2010; Yuan et al., 2014; Ding
et al., 2015; Mu et al., 2017). Only ABI3 has been shown to
have a role in development of the shoot apex. abi3 embryos
show seedling-like characteristics, including premature acti-
vation of the shoot meristem and development of leat prim-
ordia (Nambara et al., 1995; Holdsworth et al., 1999). ABI3 also
promotes vegetative shoot meristem quiescence in seedlings
in response to ABA and dark (Rohde et al., 1999). Meristems
of dark-grown seedlings show ectopic ABI3 expression and
activation of a seed storage protein gene reporter (Rohde
et al., 1999), suggesting that meristem quiescence involves
transdifferentiation to an embryogenic state. ABI gene expres-
sion is low/repressed in germinating embryos, allowing them
to transition to vegetative growth (Lopez-Molina et al., 2001,
2002;Wind et al., 2013; Lepiniec et al.,2018), but is maintained
after 2,4-D treatment (Supplementary Fig. S4) . We propose
that ectopic ABI expression in germinating embryos represses
vegetative shoot differentiation, which provides the develop-
mental framework required for 2,4-D-induced totipotent cell
growth. In germinating embryos, 2,4-D represses vegetative
shoot meristem development in favour of somatic embryo de-
velopment, while (lateral root meristem) callus formation is in-
duced on the abaxial surface of the cotyledons and in the basal
region of the explant (Supplementary Fig. S1). De novo shoot
organogenesis (pluripotency) in Arabidopsis has been shown to
rely on 2,4-D-induced lateral root meristem formation from
pericycle cells (Che et al., 2007; Atta et al., 2009; Sugimoto
et al., 2010). We showed that ABA biosynthesis mutants and
mutants for positive ABA signalling components have reduced
capacity for SE from the shoot apex, but increased callus for-
mation in both the apical and basal regions of the explant (Figs
4C, F, 5C-E). ABA and ABI4 inhibit lateral root formation by
reducing polar auxin transport (Shkolnik-Inbar and Bar-Zvi,
2010). Enhanced callus formation in ABA signalling mutants in
2,4-D-treated explants suggests that ABA and ABA signalling
are required in these tissues to repress 2,4-D-induced lateral
root formation. However, our mutant analyses show that en-
hanced ABA biosynthesis and signalling are not sufficient to
induce SE in these tissues. Together, these data suggest that
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additional factors are limiting for 2,4-D,induced SE from the
roots of mature embryo explants.

A narrow window for somatic embryo induction from
germinating seeds

ABI3, ABI4,and ABI5 are required for efficient 2,4-D-induced
SE from the shoot apex of germinating seeds (Fig. 5A).
ABI3/4/5 expression in germinating embryos declines
during the first 2 d of seed germination, but is extended be-
yond this developmental window after treatment with 2,4-D
(Supplementary Fig. S4). Our 2,4-D addition and removal
experiments showed that this developmental window corres-
ponds to the time frame in which the 2,4-D treatment is most
effective for somatic embryo induction (Fig. 1Q, R).Treatment
of germinating seeds with ABA within a short developmental
window of 60 h after stratification can reinstate a seed ABA
response and seed osmotolerance; thereafter ABA application
induces a vegetative ABA response (Lopez-Molina et al., 2001,
2002). ABI3 and ABI5 are both required to induce this devel-
opmental checkpoint. ABI3 expression is up-regulated by ABA
application within this developmental window, but not there-
after (Lopez-Molina et al., 2002). ABI3 acts upstream of ABI5
to regulate ABI5 expression, and ectopic expression of ABI5
is sufficient to rescue the negative effect of the abi3 mutant
on this developmental checkpoint (Lopez-Molina ef al., 2002).
Similarly, desiccation tolerance can be re-induced in a narrow
developmental window during seed germination, and also re-
lies on ABI3, ABI4, and ABI5 function (Maia et al., 2014).

A model for auxin-ABA interaction during induced cell
totipotency

We propose a model (Fig. 6) in which 2,4-D promotes an ABI-
mediated transcriptional cascade in germinating seeds leading to
repression of vegetative meristem development in favour of som-
atic embryo induction. This pathway i1s dependent on ARF10/16
and on signalling through the core ABA signalling pathway
(RCARs/PYR1/PYLs—PP2Cs—SnRK?2s), as reduced/enhanced
ABA signalling negatively/positively affects 2,4-D-induced
SE, respectively. ABA positively regulates ABI3/4/5 expression
(Lopez-Molina et al., 2001, 2002; Arroyo et al., 2003; Shkolnik-
Inbar and Bar-Zvi, 2010), ABI3/4/5 protein stability/accumu-
lation (Lopez-Molina et al., 2001, 2002; Shu et al., 2016a), and
ABI5 protein phosphorylation (Lopez-Molina et al., 2001; Fujii
et al.,2009; Melcher et al.,2009;Y1n et al.,2009). ABI3 and ABI4
play a larger role in SE than ABI5, as increased signalling through
the ABA receptor can partially restore SE efficiency in the abi5
mutant, but not in the abi3 and abi4 mutants. Auxin and ABA
might interact synergistically through an ARF10/ARF16-ABI3
expression module to regulate SE, as was shown for seed ger-
mination (Liu ef al., 2013). Together, this model provides a new
framework for identifying additional, intersecting plant toti-
potency pathways, and for directing efficient SE in systems that
make use of mature seed explants (Wu ef al., 2019).
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Supplementary data

The following supplementary data are available at JXB online.

Table S1. Plant materials.

Table S2. Primers used in this study.

Fig. S1. Development of the root hypocotyl region in
2,4-D-treated explants.

Fig. S2. GO analysis of 2,4-D differentially regulated genes.

Fig. S3. Statistically significant differentially regulated auxin
pathway genes.

Fig. S4. gqRT-PCR validation of differentially expressed
ABA-related genes in SE culture.

Fig. S5. 2,4-D treatment induces ectopic BBM:BBM-GUS
expression post-germination.

Fig. S6. The eftect of ABA application on SE in ABA re-
ceptor mutant explants.

Fig. S7. 35S:PYL10 and 35S:ABI3 overexpression lines.

Fig. S8. Effect of abi3 weak alleles on 2,4-D-induced som-
atic embryogenesis.

Fig. S9. Effect of the abi3-6 allele on 2,4-D-induced somatic
embryogenesis from immature zygotic embryo explants.

Fig. S10. Effect of ABA application on SE efficiency in abi3,
abi4, and abi5-7 explants.

Fig.S11.2,4-D treatment maintains ABI3 and ABI4 expres-
sion post-germination.

Fig. S12. ARF10
2,4-D-induced SE.

Dataset S1. Microarray data (all data, ABA-related genes,
auxin-related genes, seed maturation-related genes, GO ana-
lysis of 2,4-D-induced DEGs, somatic embryogenesis inducer
and enhancer genes).
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