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ABSTRACT
Yield is a function of environmental quality and the sensitivity with which genotypes react to that. Environmental 

quality is characterized by meteorological data, soil and agronomic management, whereas genotypic sensitivity 
is embodied by combinations of physiological traits that determine the crop capture and partitioning of envi-
ronmental resources over time. This paper illustrates how environmental quality and genotype responses can be 
studied by a combination of crop simulation and statistical modelling. We characterized the genotype by environ-
ment interaction for grain yield of a wheat population segregating for flowering time by simulating it using the 
the Agricultural Production Systems sIMulator (APSIM) cropping systems model. For sites in the NE Australian 
wheat-belt, we used meteorological information as integrated by APSIM to classify years according to water, heat 
and frost stress. Results highlight that the frequency of years with more severe water and temperature stress has 
largely increased in recent years. Consequently, it is likely that future varieties will need to cope with more stress-
ful conditions than in the past, making it important to select for flowering habits contributing to temperature and 
water-stress adaptation. Conditional on year types, we fitted yield response surfaces as functions of genotype, lati-
tude and longitude to virtual multi-environment trials. Response surfaces were fitted by two-dimensional P-splines 
in a mixed-model framework to predict yield at high spatial resolution. Predicted yields demonstrated how relative 
genotype performance changed with location and year type and how genotype by environment interactions can 
be dissected. Predicted response surfaces for yield can be used for performance recommendations, quantification 
of yield stability and environmental characterization.

K E Y W O R D S :   Adaptation landscape; APSIM; breeding strategy; climate change; G×E; P-splines; wheat.

1 .   I N T R O D U C T I O N
Genotypes vary in their sensitivity to the environmental conditions, 
which is the basis for their improvement by plant breeding. These differ-
ences in sensitivity lead to genotype by environment interaction (G×E), 
potentially changing the genotypic ranking across levels of environmental 
quality. To understand G×E, and to make genotype recommendations, 

plant breeders evaluate their candidate varieties (genotypes) in a set of 
multi-environment trials (METs). Multi-environment trials aim to repre-
sent the growing conditions that varieties are likely to encounter when 
grown by farmers. This set of conditions is usually described as the target 
population of environments (TPE; Comstock and Moll 1963; Chapman 
et al. 2000b; Chenu 2015; Hammer et al. 2019).
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2  •  Genotype-specific P-spline response surfaces

Locations used for the METs are a sample of possible locations 
that belong to the TPE. Hence, breeders and farmers are not only 
interested in characterizing adaptation to those specific locations, but 
across the whole latitude and longitude range encompassed by the 
TPE. With this aim, genotype adaptation needs to be predicted across 
the whole range of geographies in which genotypes will potentially be 
grown (Cooper et al. 2014). Across the TPE, a given genotype shows 
adaptation to the region in which it realizes highest yields, and for a 
given region, the highest yielding genotype shows the best adapta-
tion to that region (van Eeuwijk et al. 2016). Predictions of genotype 
performance across the TPE can be made for subsets of locations 
that are internally homogeneous, called mega-environments (Atlin 
et al. 2000; Piepho and Möhring 2005; Chauhan et al. 2017). Mega-
environments can be geographically defined by subsets of locations 
that share weather or soil characteristics, and these locations may not 
be contiguous or adjacent, especially when considered in a national or 
global context. In dry environments as those in the Australian wheat-
belt, soil characteristics can largely determine the level of water stress, 
as they influence water retention capacity (Chenu et al. 2013). Besides 
describing environments as instances of mega-environments, environ-
ments can be described as functions of explicit environmental gradi-
ents, represented by latitude and longitude (Lowry et al. 2019). As an 
extension of this latter approach, latitude and longitude can be com-
plemented and replaced by explicit environmental covariables related 
to weather or agronomic management (Malosetti et al. 2004; Millet 
et al. 2016).

There is a range of possible models to predict genotype adapta-
tion across a gradient defined either by geographical coordinates or by 
explicit environment quality (Piepho and Möhring 2005; Smith et al. 
2005; van Eeuwijk et al. 2005, 2019; Piepho et al. 2014; Bustos-Korts 
et al. 2016). For example, the factorial regression models are a linear 
function of the genotypic sensitivities to environmental covariables, 
and are popular due to their simplicity and because their parameters 
offer a clear biological interpretation in terms of genotype average 
performance and sensitivity to the environment (Cullis et  al. 1996; 
Brancourt-Hulmel et al. 2000; Malosetti et al. 2004, 2013; Smith et al. 
2005; Millet et al. 2016; Parent et al. 2017; Bustos-Korts et al. 2018).

While factorial regression models are a convenient approach to pre-
dict adaptation across an environmental gradient, they may be restric-
tive in cases where gradient effects are non-linear, as it is often the case 
in plant breeding. To fit non-linear responses, factorial regression mod-
els can be extended to include quadratic or higher order polynomial 
terms, but this will require large numbers of degrees of freedom with 
consequent problems in fitting. Spline models offer a flexible alterna-
tive to model non-linear responses (Eilers and Marx 1996; Eilers et al. 
2015), and can be even extended to model variation across multiple 
dimensions (Lee et al. 2013; Wood et al. 2013; Rodríguez-Álvarez et al. 
2015; Wood 2017). Two-dimensional P-spline models are being used 
to separate genetic differences from spatial heterogeneity within trials 
(Velazco et al. 2017; Rodríguez-Álvarez et al. 2018; Boer et al. 2020). 
In this paper, we aim to illustrate the use of two-dimensional P-spline 
approaches at larger scales than trials, i.e. to model spatially dependent 
G×E variation at the level of the TPE, predicting the yield response 
surfaces of individual genotypes as a function of only latitude and 
longitude.

The choice of which environmental covariables to include in the 
prediction model largely depends on the environmental drivers for 
G×E. Within the TPE sample represented by METs, there may be 
recurring or repeating characteristics (i.e. that remain constant across 
years for a given location) that induce differential genotypic responses, 
which are an expression of G×E. Typical repeating characteristics are 
associated with latitude, longitude and to soil type. Latitude usually has 
a large effect on differential genotype adaptation via its effect on phe-
nology (Zheng et al. 2012, 2013), whereas soil characteristics largely 
impact nutrient and water availability for the crop. Hence, soil differ-
ences between locations are usually increased in environments with 
low rainfall (Wang et al. 2017). Note, however, that in real-world METs, 
the effects of ‘location’ may be affected by the fact that a ‘location’ refer-
ence is usually associated with a nearby geographical reference (such as 
a town name), and the actual trials are not done in the exact same field 
each year even if breeders try to choose a typical soil type and man-
agement. In low-rainfall environments like Australia where fallows and 
crop rotations are common, running a trial in exactly the same field and 
same place in successive years would be considered poor experimental 
practice due to potential carry-over effects of plot effects, impacts on 
soil water reserves and pressure of weeds and diseases.

Other characteristics of environmental quality are less predict-
able because they change from year to year with the weather fluc-
tuations, but they are predictable from their frequencies estimated 
from long-term data. For example, the long-term frequency of water 
supply-demand ratio (Chapman et al. 2000b; Chenu et al. 2013) and 
the frequency of El Niño–Southern Oscillation (ENSO) events in the 
eastern Australian wheat-belt (Zheng et al. 2018) could potentially be 
used to estimate the probability of a certain stress level to occur at a 
particular location. If the probability of a certain year type (weather 
scenario) can be estimated from long-term data, it becomes attractive 
to predict response surfaces across latitude and longitude for each of 
the likely weather scenarios across years. In that way, latitude and lon-
gitude effects become repeatable G×E, conditional on a year type or 
weather scenario.

In Australia, national variety trials of wheat are conducted by the 
GRDC (Grains Research and Development Corporation) in coop-
eration with commercial breeding companies. Those companies also 
conduct their own research trials. However, in neither of these vari-
ety trials are the same varieties grown over large numbers of seasons. 
The limited replication of varieties over years represents a bottleneck 
in studying long-term adaptative responses. This bottleneck can be 
addressed by utilizing crop simulation models to construct synthetic/
virtual breeding trial data sets that span a longer series of years. This 
approach has been widely adopted for multiple crops; e.g. sorghum 
(Chapman et al. 2002; Hammer et al. 2014, 2019), maize (Chenu et al. 
2009; Harrison et al. 2014; Messina et al. 2011), wheat (Chenu et al. 
2017) and soybean (Messina et al. 2006), including studies that look 
at flowering time effects in wheat for current (Zheng et al. 2015b) and 
future climates (Zheng et al. 2016).

In this paper, we present the use of P-splines embedded in mixed 
models to interpret G×E and predict the adaptive responses of indi-
vidual wheat genotypes from simulated data for a region of about 677 
by 445 km in size. The Agricultural Production Systems sIMulator 
(APSIM) yield was simulated for 156 genotypes varying in flowering 
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time and sown in 13 Australian locations across 39  years of weather 
records. We focus on the adaptive responses across latitude and longi-
tude, and we examine how these response surfaces change depending 
on the level of drought and heat stress present across years. We also 
describe the adaptation landscape in terms of the traits contributing 
to adaptation across environmental conditions (i.e. sensitivity to pho-
toperiod, vernalization requirements and thermal time requirements 
from floral initiation and flowering).

2.  METHODS
This section describes the main steps of our approach; data genera-
tion using simulations in APSIM Wheat, G×E analysis of outputs gen-
erated by APSIM and construction of environmental indices using 
APSIM outputs to facilitate classification of years in year types. 
Conditional on year type, yield response surface models for individ-
ual genotypes were fitted as functions of longitude and latitude using 
P-spline methods within a mixed-model context. The fitted response 

Figure 1. General overview of the modelling approaches used to generate the APSIM yield data, fitting of P-splines and generating 
predictions along the whole latitude–longitude surface, and use of P-spline predictions to classify locations.
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4  •  Genotype-specific P-spline response surfaces

surfaces provided predictions of yield responses at any desired reso-
lution level for all genotypes. The yield predictions were used to 
subdivide the area defined by longitude and latitude coordinates in 
adaptation zones. Our workflow is schematically represented in Fig. 1.

2.1  Simulated data
Data corresponded to grain yield for 156 wheat genotypes simu-
lated by Zheng et  al. (2018) using the APSIM cropping system 
model (Holzworth et  al. 2014) together with a phenology model 
(Zheng et al. 2013), frost impact module (Zheng et al. 2015a) and 
heat impact module (Lobell et al. 2015). In this data set, variation 
in APSIM genotype-specific parameters was induced by allelic vari-
ation for the VRN-A1, VRN-B1, VRN-D1 and PPD-D1 genes, and 
the full range of values of additional thermal time requirements 
from floral initiation to flowering (from 425 to 1025  °Cd; Zheng 
et  al. 2013). The set of genotypes included commercial varieties 
and virtual genotypes that could potentially be bred based on the 
flowering alleles present in the Australian germplasm pool (Zheng 
et al. 2013). Allelic combinations at vernalization and photoperiod 
genes produced variation for the APSIM parameters; Ppd, Vrn and 
Eps. Genotypes with the same phenology (but different allelic 
combinations) were disregarded, so that a total of 156 genotypes 
unique for their phenology were considered. Overall, the selected 
genotypes had APSIM parameters ranging from 0 to 1.2 for the 
photoperiod sensitivity (Ppd parameter, with values of 0, 0.3, 0.6, 
0.9 and 1.2, with 0.6 for the reference genotype Janz), 0.9 to 1.7 for 
the vernalization sensitivity (Vrn parameter, with values of 0.9, 1.1, 
1.3, 1.5 and 1.7, with 0.9 for Janz) and 425 to 1025  °Cd for earli-
ness-per-se (Eps parameter, with values of 425, 475, 525, 575, 625, 
675, 725, 775, 825, 925, 975 and 1025 °Cd, with 675 °Cd for Janz). 
Genotypes were labelled by their flowering time parameters; the 
first number indicates the value for sensitivity to photoperiod, the 
second indicates vernalization requirement and the third number 

indicates the minimum thermal time requirement from floral initia-
tion to flowering. For example, ‘g1.2_0.9_425’ indicates a genotype 
with a sensitivity to photoperiod of 1.2, vernalization requirements 
of 0.9 and minimum thermal time requirement from floral initia-
tion to flowering of 425  °Cd. For most of the environments, the 
range for flowering time was around 50  days [see Supporting 
Information—Fig. S5]. Note that this genotypic variation can 
be considered to be rather extreme compared to real-world con-
ditions. Australian breeders tend to select wheats for early-season 
(slower maturing) or main-season (faster maturing) sowing times. 
Commercial wheats are often classified as ‘quick’, ‘medium’ or ‘slow’ 
and are usually compared to reference cultivars that are established 
on the market. Consequently, the range in flowering time within a 
typical breeders trial may be 3–4 weeks in early generation breed-
ing, or 1–3 weeks in the type of MET we are considering here, i.e. 
much less than 50 days.

In this study, we focused on 13 out of the 15 locations used in 
Zheng et al. (2018), removing ‘Emerald’ and ‘Roma’ (Fig. 2; Table 
1). We dropped Emerald because it was geographically too distant, 
which does not allow for a reliable surface estimation with P-splines. 
Roma had extreme stress conditions, leading to zero yield for many 
genotypes. For the 13 locations we considered, yield was simulated 
for each season from 1978 to 2016. Zheng et al. (2018) simulated 
several sowing dates. In this study, we restricted ourselves to one 
sowing date per location (the same date was used across years). The 
selected sowing date per location was identified as the one leading 
to the largest yield for the average of the genotypes (‘optimal’ sow-
ing date; Table 1). For a location, the starting soil conditions were 
the same in every year of simulation and represented the average 
starting condition for that location after the analysis of historical 
data in Zheng et  al. (2018). Four environments with a large crop 
failure were removed, leaving in total 503 environments for the G×E 
analysis.

Figure 2. Trial locations used to simulate APSIM yield between 1978 and 2016.
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2.2  Using environmental covariables to classify years 
into year types

Water and temperature stress are common environmental drivers for 
grain yield in Australian wheat production systems (Chenu et al. 2011, 
2013; Ababaei and Chenu 2020). To help classifying years according 
to their water and temperature stress, we used APSIM to compute four 
environmental indices for each genotype (Table 2; see Supporting 
Information—Figs S2–S4). These indices were related to water, frost 
and heat stress. Indices were calculated between 300 °Cd before flow-
ering and 100 °Cd after flowering, coinciding with the critical period 
for grain number determination (Table 2).

After computing the indices per genotype, we averaged the values 
across all genotypes for each year–location combination. The aver-
age environmental indices across genotypes were used to character-
ize environmental quality. Then, data were arranged in a matrix with 

years as objects in rows and index–location combinations as variables 
in columns. Variables were centred and scaled, and were used to calcu-
late Euclidean distances between years. These distances were used in a 
hierarchical clustering procedure to classify years according to the four 
environmental indices relating to water, frost and heat stress (Ward 
method; Zelterman 2015) using the ‘hclust’ function in R (R Core 
Team 2019). With this clustering procedure, years were classified into 
two classes; ‘mild’ years (with reduced water and temperature stress) 
and ‘hot and dry’ (with water, frost and heat stress).

2.3  Mixed-model G×E analysis
2.3.1  Variance components model To quantify the relative contribu-
tion of locations and years to the total G×E, we fitted the following 
mixed model to the APSIM yield:

y
ijk
= µ+ Lj + Yk + LYjk + Gi + GLij + GYik + GLYijk� (1)

In equation (1), y
ijk

 is the phenotype (yield) of the ith genotype in 
the jth location and the kth year (i = 1,...156; j = 1,...13; k = 1,...39). 
µ is the general intercept, Lj and Yk  are the fixed effects of location 
and year and LYjk  is the fixed interaction between location and year. 

Gi  is the random main effect of the ith genotype, whereas GLij  is the 
random effect of genotype by location interaction. GYik represents 
genotype by year interaction and GLYijk corresponds to a residual 
term that contains the genotype by location by year interaction. 
Because of the absence of replicate information (APSIM output 
consisted of one yield observation per genotype–environment 
combination), the last term represents only interaction between 
genotype, location and year, whereas for real data the residual 
term would contain within trial error as well. Random effects were 
assumed to be independent and normally distributed with zero 

Table 1.  Location name, latitude, longitude and sowing date for the 13 locations considered in this study with their 
corresponding mean simulated yield and date to flowering together with their corresponding standard deviations (SDs) across 
genotypes and years. Data simulated for 156 genotypes differing in phenology, over 1978–2016. QLD, Queensland; NSW, New 
South Wales.

State Region Name Latitude Longitude Sowing date Days to 
flowering

Yield (kg ha−1)

Mean SD Mean SD

QLD Eastern Darling Downs Dalby -27.18 151.26 29 May 114.1 13.5 1593.3 942.4
QLD Western Darling Downs Meandarra -27.32 149.88 7 May 115.7 16.1 1578.6 1034.0
QLD Western Darling Downs Goondiwindi -28.55 150.31 11 April 107.2 20.7 2000.8 1180.3
NSW Northern NSW Moree -29.48 149.84 5 May 121.7 16.7 2141.6 1048.8
NSW Northern NSW Walgett -30.04 148.12 5 May 121.5 16.4 1205.7 1054.4
NSW Northern NSW Narrabri -30.32 149.78 21 April 121.0 19.6 2005.5 1440.6
NSW Northern NSW Coonamble -30.98 148.38 21 April 124.3 19.7 1838.7 1125.0
NSW Eastern NSW Gunnedah -30.98 150.25 5 May 127.7 16.7 2504.1 1024.0
NSW Western NSW Nyngan -31.55 147.20 17 April 123.4 20.6 1959.7 819.6
NSW Western NSW Gilgandra -31.71 148.66 25 April 143.4 18.7 2115.9 1047.1
NSW Western NSW Dubbo -32.24 148.61 29 April 140.9 17.8 2073.4 1167.1
NSW Eastern NSW Wellington -32.80 148.80 23 April 156.1 18.6 2593.8 1066.1
NSW Western NSW Condobolin -33.07 147.23 11 May 139.4 16.0 1447.3 883.0

Table 2.  Description of the environmental indices 
calculated with APSIM output and that were used to 
classify environments according to their levels of water and 
temperature stress. The four indices were calculated in a period 
from flowering + 100 °Cd to flowering + 600 °Cd.

Name environmental index Description

S2_sum.rain Sum of rainfall
S2_frost.sum Accumulated thermal time when 

minimum temperature is less 
than 0

S2_vpd Average of daily vapour-pressure 
deficit, as calculated with APSIM

S2_avg.maxt Average of daily maximum 
temperatures
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means and specific variances; Gi ∼ N(0,σ2
g ), GLij ∼ N(0,σ2

gl), 
GYik ∼ N(0,σ2

gy), (GLYijk) ∼ N(0,σ2
ε).

To characterize the main sources of variation and quantify the con-
tribution of year types (‘s’, scenarios) to G×E variation, the model was 
expanded to model (2):

y
ijk(s)

= µ+ Lj + Ts + Y(T)k(s) + LYjk + GLij

+ GTis + GY(T)
ik(s)

+ GLTiks + GLY(T)
ijk(s)

� (2)
Equation (2) substitutes the random terms GYikand GLYijk from equa-
tion (1) by the following random terms; GTis, which is the random 
interaction between genotype and year type, GY(T)

ik(s)
 that repre-

sents genotype by year (within year type) interaction, GLT iks that 
is the three-way genotype by location by year type interaction and 
GLY(T)

ijk(s)
 that corresponds to a residual term that contains geno-

type by location by year interaction. As in model (1), all the random 
effects are assumed to be independent and normally distributed, with 
zero means and homogeneous variances. For the fixed part of the 
model, the year effect was partitioned into a year type (Ts) and year 
within year type (Y(T)k(s)) effect.

As the set of genotypes used in this study was specifically segregat-
ing for APSIM parameters related to flowering time, we also assessed 
the relative importance of those parameters, using the following model:

y
fgh(i)t

= µ+ Et + Ppd
f (i)

+ Vrng(i) + Eps
h(i)

+ Ppd.Env
f (i)t

+ Vrn.Envg(i)t + Eps.Env
h(i)t

+ Ppd.Vrn.Env
fg(i)t

+ Ppd.Eps.Env
fh(i)t

+Vrn.Eps.Env
gh(i)t

+ GEfgh(i)t

�

(3)

In model (3), yfgh(i) is the yield of genotype i in environment t (year–
location combination or trial), Et  is the fixed environment effect, 
Ppd

f (i)
, Vrng(i) and Eps

h(i)
 are the random effects of the APSIM param-

eters that were used to generate the genotype i (see section ‘Simulated 
data’). These parameters regulate photoperiod response, vernalization 
requirements and thermal time requirements from floral initiation to 
flowering. For the Ppd, Vrn and Eps APSIM parameters, the param-
eters defined 5, 5 and 13 classes, respectively. The interactions between 
APSIM parameters regulating phenology and the environment were 
also included. The term GEfgh(i)t represents residual G×E. All random 
terms were assumed to be independent and normally distributed, with 
zero means and homogeneous variances.

2.3.2  Genotype–genotype by environment  biplot To visualize the 
contribution of APSIM parameters regulating phenology to APSIM 
yield and to describe their relation to genotypic performance across 
environments, we used a genotype–genotype by environment model 
(GGE; Yan and Kang 2002; Yan and Rajcan 2002).

y
it
= µ+ Et +

M∑
m=1

bimztm + εit� (4)

In model (4), yit represents the mean yield of the ith genotype in the tth 
trial, µ stands for an intercept and Et  is the fixed trial effect. The geno-
type main effect and the interaction are explained by M multiplicative 
terms. Each multiplicative term is formed by the product of a geno-
typic sensitivity bim (genotypic score) and environmental scores ztm. 
Finally, εit  is a residual term. To visualize how sensitivity to photoper-
iod, vernalization requirements and earliness-per-se contribute to G×E, 
the first two PCs estimated for G+G×E (

∑2
m=1 bimztm in model (4)) 

were visualized as a GGE biplot, label-colouring genotypes according 
to their values for the APSIM parameters regulating phenology.

To understand the contribution of environmental conditions to 
genotypic performance, the standard GGE biplot was enriched with 
environmental information. The scaled environmental covariables 
were regressed against the environmental PC1 and PC2 from the GGE 
model. The coefficients of these regressions were used to describe 
directions of greatest change for these covariables in the biplot (Voltas 
et al. 1999; Graffelman and Van Eeuwijk 2005). The direction is given 
by the regression coefficients and the origin. Furthermore, the angles 
between the direction vectors again give information about correla-
tions: small angles between vectors mean high correlations, while 
angles > 90° indicate negative correlations between the vectors.

2.3.3  Predicting response surfaces with P-splines embedded in a 
mixed model To describe the genotypic response across latitude and 
longitude, we used the following model for the APSIM yield data for 
each genotype separately, i.e. conditional on i:

y
ijk
= µ+ Yk +

Ä
β1
i

ät
s1(lat)j +

Ä
β2
i

ät
s2(lon)j

+
Ä
β3
i

ät
s3(lat, lon)j + εijk

� (5)

In equation (5), yijk  is the yield of genotype i in location j and year k, Yk  
is the fixed year effect. The term s1(lat)j  defines the evaluation at loca-
tion j of a set of basis functions (in vector form) for the spline fit on the 

latitude of the trial, while (β1
i
)
t
 is the corresponding set of genotype-

specific random coefficients (in row vector form). Similar spline terms 

are defined for longitude, (β2
i
)
t, and the interaction between latitude 

and longitude, (β3
i
)
t. The interaction is orthogonal to the main effect 

spline terms for latitude and longitude (Wood et al. 2013; Wood 2017; 
Boer et  al. 2020; Piepho et  al. 2021). The residual term εijk  contains 
G×E not explained by the spline surfaces and, for real data, within trial 
error. Smooth terms were fitted using first-degree P-splines with 10 
segments and first-order penalties (Eilers et al. 2015). Higher degree 
P-splines and higher differences could also be used, but the advantage 
of using first-degree P-splines and first-order differences is that this 
model is equivalent to a linear variance model (Williams 1996; Boer 
et al. 2020). The latitude and longitude range of the spline segments 
coincides with the latitude and longitude range spanned by the trials. 
The P-spline mixed model was fitted with ASReml-R v. 4 (Butler et al. 
2017).
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As there were contrasting year types, it made sense to predict 
the genotypic response surfaces of each genotype across latitude 
and longitude, conditional on the year type (one predicted surface 
per genotype for ‘mild’ years and another predicted surface per gen-
otype for ‘hot and dry’ years). Then, for each genotype we used the 
predicted surfaces to subtract ‘mild’ years from ‘hot and dry’ years. 
In this way, the difference in yield between ‘mild’ and ‘hot and dry’ 
years represents the sensitivity to year type, across the whole lati-
tude and longitude span.

To characterize the surfaces for explicit environmental quality, we 
fitted model (5), replacing yield as a response by the environmental 
indices that were used to classify years; rainfall (S2_sum.rain), aver-
age maximum temperature (S3_avg.maxt), sum of frost temperatures 
(S2_frost.sum2) and vapour-pressure deficit (S2_vpd2) averaged 
across genotypes.

To quantify the contribution of year-to-year variation (within year 
type) to the total variation, we extended model (5) as follows:

y
ijk
= µ+ Yk +

Ä
β1
i

ät
s1(lat)j +

Ä
β2
i

ät
s2(lon)j +

Ä
β3
i

ät
s3(lat, lon)j

+
Ä
β4
ik

ät
s1(lat)j +

Ä
β5
ik

ät
s2(lon)j +

Ä
β6
ik

ät
s3(lat, lon)j + εijk

� (6)

Here, the term (β4
ik
)
t
 represents the set of random coefficients for 

latitude (in row vector form) that are specific to each year, i.e. they are 
scenario-dependent deviations of the genotype-specific coefficients 
introduced above. Similar spline terms are defined for year-by-longi-

tude variation, (β5
ik
)
t , and the contribution of year-to-year variation 

to the interaction between latitude and longitude, (β
6
ik
)
t
. We quanti-

fied the contribution of each model term by starting with a null model 
with only a fixed year main effect. Then, we sequentially added terms 
in model (6). We quantified the contribution of each term by calculat-
ing the difference in the residual variance between the null model and 
the model with spline terms, divided by the residual variance of the 
null model.

2.3.4  Finding patterns across the genotypic response surfaces—loca-
tion classification

2.3.4.1  Highest yielding genotypes across latitude and longitude 
We used model (5) to make predictions for each genotype over a 
grid of 140 by 100 points that covered a latitude range from −27°S to 
−33.5°S and a longitude range of 147°E to 151.5°E (these ranges cor-
responded to the latitude and longitude ranges for the locations used 
in the simulations; Fig. 2). The covered area approximately spans 677 
km from North to South and 445 km from East to West, making each 
pixel equivalent to about 4.8 by 4.8 km.

For each pixel on this grid (=location), we identified the five geno-
types that had the highest yield in the tested conditions (i.e. 1 sowing 
date, 1 soil condition), as predicted by the two-dimensional spline 
surfaces across years within year type. The location by genotype 
matrix contained a 1 if a genotype was in the top five of the genotypic 
ranking at a particular location and a 0 if it was not. This is equivalent 
to applying a selection intensity of 3.2  %. This presence or absence 

matrix was used to calculate the Jaccard similarities between loca-
tions, based on which were the five highest yielding genotypes. This 
similarity matrix was used for a hierarchical clustering procedure of 
locations (Ward method) implemented in the ‘hclust’ function in R 
(R Core Team 2019). The resulting regions have similar set of highest 
yielding genotypes. In such a way, these regions would reflect set of 
locations for which breeders might do the same genotype selection, 
at least in terms of maturity. We ran this procedure using the predic-
tions for each year type separately (i.e. producing one classification 
for years with mild heat and water stress and one classification for ‘hot 
and dry’ years).

2.3.4.2  Using G+G×E to cluster environments in the whole adapta-
tion landscape

Assigning locations to regions by commonality of the highest yielding 
genotype is a simple and straightforward method to classify locations. 
However, if genotypes that are in the upper yield percentiles are very 
similar in yield, this might lead to frequent changes in genotypic rank-
ing across latitude and longitude, associated to small yield differences. 
This potentially leads to frequent spatial discontinuities in the classi-
fication of environments. A more robust procedure assigns locations 
to regions by the full set of fitted yields for all genotypes. Hence, we 
created yield predictions for each genotype on a grid of 15 by 24. For 
computational convenience, we reduced the grid resolution, compared 
to the analysis above that looked at the winning genotype per pixel. We 
considered that each point in the grid defined by latitude and longitude 
defined a (virtual) location. In this part of the analysis, each pixel cov-
ered about 28 by 28 km.

As in the GGE model (Yan and Kang 2002), we fitted a principal 
components models to the genotype by virtual location matrix of 
the environment-centred predicted yields from the two-dimensional 
spline surfaces across years within each year type. As the first two prin-
cipal components explained most of the relevant variation (87.1 and 
87.6 % for ‘mild’ and ‘hot’ years, respectively), we retained the scores 
of both of them to construct a location by location similarity matrix 
(Euclidean distances). This similarity matrix was used for a hierarchi-
cal clustering procedure of locations (Ward method) implemented in 
the ‘hclust’ function in R (R Core Team 2019). For each year type, the 
clustering procedure resulted in location classes (regions).

2.3.5  Quantifying the contribution of sensitivity to photoperiod, vernal-
ization requirements and earliness-per-se to the predicted adaptation 
landscape per year type The contribution of sensitivity to photoperiod, 
vernalization requirements and earliness-per-se to the predicted adapta-
tion surface was also quantified with a mixed model that was fitted to 
the spline-predicted yield across virtual locations. The following mixed 
model was fitted to predictions made for each year type separately, where 
the subscript r refers to the region as identified within year type by cluster-
ing on G+G×E of the predicted adaptation landscape;

y
fgh(i) j(r)

= µ+ Lj + Ppd
f (i)

+ Vrng(i) + Eps
h(i)

+ Ppd.Region
f (i)r

+ Vrn.Region
g(i)r

+ Eps.Region
h(i)r

+Ppd.Vrn.Region
fg(i)r

+ Ppd.Eps.Region
fh(i)r

+Vrn.Eps.Region
gh(i)r

+ GEfgh(i) j(r)

�
(7)
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Model (7) follows the logic of model (3), yifghr is the APSIM yield 
of the flowering time parameter combinations f, g , h, i in location j, 
Lj is the fixed location effect, Ppd

f (i)
, Vrng(i) and Eps

h(i)
 are the ran-

dom main effects of the APSIM parameters regulating photoperiod 
response, vernalization requirements and thermal time requirement 
from floral initiation to flowering (with parameters fitted as factors), 
nested within genotype i. The interactions between APSIM param-
eters regulating phenology and regions were also included. The term 
GEfgh(i) j(r) represents residual G×E.

3 .   R E S U LT S
3.1  Year classification

The clustering procedure on environment covariables suggested two 
clearly defined groups of years (Fig. 3), which were contrasting in their 
levels of water and temperature stress. Year type 1 was characterized by 
larger rainfall (S2_sum.rain; see Supporting Information—Fig. 1), 
lower average maximum temperature (S3_avg.maxt; see Supporting 
Information—Fig. 2), less accumulation of frost temperatures (S2_
frost.sum; see Supporting Information—Fig. 3) and lower vapour-
pressure deficit (S2_vpd; see Supporting Information—Figs 1–4) 
than type 2  years. Given these differences, year type 1 can be inter-
preted as years with mild temperature and water stress (hereafter 
referred to as ‘mild’ years), and year type 2 as years with strong tem-
perature (heat and frost) and water stress (hereafter referred to as ‘hot 
and dry’ years). Noteworthy, the relative frequency of ‘hot and dry’ 
years has greatly increased in the most recent decades. For example, 
2 and 4 years were classified as ‘hot and dry’ in the decades 1978–87 
and 1988–97, whereas 6 and 7 years were classified as ‘hot and dry’ in 
the periods 1998–2007 and 2008–16 (Fig. 5). This is consistent with 
the estimates of a trend increase of average temperature for August to 
November of about 0.05 °C per year from 1985 to 2017 in this region 
(Fig. 3 in Ababaei and Chenu 2020).

Within year type, there was also spatial variation for the environ-
mental conditions (Fig. 4). Locations in the North and East had higher 

rainfall (S2_sum.rain; Fig. 4A and B), lower maximum temperature 
(S3_avg.maxt; Fig. 4C and D) and vapour-pressure deficit (S2_vpd; 
Fig. 4E and F) than the other locations. Although the spatial pattern 
for S3_avg.maxt2 and S2_vpd was preserved across year types, the 
absolute values were very different between year types; ‘hot and dry’ 
years had lower S2_sum.rain, higher S3_avg.maxt and S2_vpd than 
‘mild’ years. The spatial pattern of S2_frost.sum differed between year 
types; in ‘mild’ years, S2_frost.sum was larger in Southern locations 
than in the rest of the region, reflecting lower frost stress (Fig. 4G). 
In contrast, frost temperatures were more important in ‘hot and dry’ 
years (Fig. 4H).

3.2  Variation in flowering time and yield
The variation in sensitivity to photoperiod, vernalization require-
ments and earliness-per-se led to large variation in flowering time [see 
Supporting Information—Fig. 5]. Locations differed in the means 
and range of days to flowering. The shortest mean duration between 
sowing and flowering was observed in Goondiwindi, with a long-
term mean across genotypes of 107  days. The largest duration was 
in Wellington, with a long-term mean across genotypes of 156  days. 
Within location, days to flowering did not seem to vary much between 
year types [see Supporting Information—Fig. 6]. Note that the 
majority of the flowering dates (25 and 75 percentiles) coincide with 
the flowering ranges observed in real breeding trials. However, the 
full range of flowering dates is ca. 10–25  days greater than in most 
breeding trials.

The influence of year types was much larger on yield than on days 
to flowering, where year types had a strong effect on genotypic perfor-
mance, with ‘hot and dry’ years having in general lower yield across 
locations than ‘mild’ years (Fig. 5), consistent with differences in envi-
ronment quality. Given that ‘hot and dry’ years have increased in their 
frequency during the most recent years (Fig. 5), a strategy to select for 
wheat varieties that are well-adapted to future climate conditions could 
be to select for varieties with adapted ‘flowering genetics’ or sow earlier 
(Zheng et al. 2016; Collins and Chenu 2021).

Figure 3. Cluster dendrogram to classify years based on indices S2_sum.rain, S2_frost.sum, S2_vpd and S2_avg.maxt (see details 
in Table 2). Year type 1 (mild temperature and water stress) was represented by 20 years, and year type 2 (hot temperature and 
strong water stress) was represented by 19 years.
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Figure 4. (A and B) Spatial variation for rainfall (S2_sum.rain); (C and D) average maximum temperature (S3_avg.maxt); (E and 
F) average vapour-pressure deficit (S2_vpd); (G and H) the sum of frost temperatures (S2_frost.sum) for ‘mild’ and ‘hot and dry’ 
(HD) years. The four indices were calculated in a period from flowering + 100 °Cd to flowering + 600 °Cd. Surfaces were fitted 
simultaneously to the environmental indices calculated for all genotypes using model (5). Missing predictions for S2_frost.sum in 
HD years indicate locations in which no frost was observed.
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3.3  Variance components for yield across locations 
and years

The variance components model indicates that there is large G×E 
for yield in this data set (Table 3). Most of the G×E is not consistent 
from one year to the next and is mainly related to the two-way geno-
type by year interaction and the three-way interaction between geno-
types, locations and years (captured in the residual in Table 3). For the 
two-way genotype by year interaction, we used explicit covariables to 
classify years in groups that are more internally homogeneous and pre-
dictable. For example, from explicit covariables, as we did here and as 
done in Chenu et al. (2011); Zheng et al. (2018), or from long-term 
frequencies, as done in Chenu et al. (2013). The genotype by location 
interaction will be examined by fitting smooth surfaces with P-splines 
across latitude and longitudes.

3.4  Variance components for yield between 
year types

Upon integrating year type in the G×E analysis (Table 4), we see that 
the variance component for genotype by location by year type interac-
tion is about half the magnitude of the variance component for geno-
type by location interaction. Therefore, it will be interesting to model 
the genotype by location interaction by explicit functions conditional 
on the year type. Variance components for individual effects in Table 3  
are different from those of Table 4 (especially the genotype main 
effect) because of the absence of some locations in particular years 
(four year–location combinations were removed because of large crop 
failure in those environments).

3.5  Contribution of APSIM parameters regulating 
flowering time to G×E

We also estimated the contribution of APSIM parameters regulating 
flowering time on yield. Across the 503 environments considered in this 
analysis, the largest contribution to the yield G×E was made the three-
way interactions, especially Ppd:Eps:Env and Vrn:Eps:Env (Table 5).  
This implies that specific combinations of photoperiod and vernaliza-
tion alleles, in combination with different earliness-per-se levels make 
important contributions to wheat adaptation across environments. 
The two-way interactions between Eps:Env and Ppd:Env also made 
very important contributions to the total G×E variation (Table 5). The 
same result can be illustrated in Supporting Information—Figs 7 
and 8 that describe the relationship between yield and flowering time 
for each of the environments. In most environments, this relationship 
shows an optimum, but the position of this optimum between yield 
and days to flowering depends on the year–location combination.

When assessing the relationship between yield and the 
APSIM parameters regulating phenology, it can be observed 
that for all environments there is an optimum Eps value, and that 
the position and height of this optimum depends on the spe-
cific combinations of Ppd and Vrn values (Fig. 6). Furthermore, 
the effect of Ppd and Vrn on yield is much larger in ‘mild’ than in 
‘hot  and dry’ years, leading to a larger phenotypic variance in 
‘mild’ than in ‘hot and dry’ years (as already observed in Figs 4  
and 5). There is a large interaction between earliness-per-se and Ppd/
Vrn values, shown in the yield crossing overs in all locations and 
year types. However, the optimum combination of Eps and Ppd/
Vrn depends on the location, and it is also highly influenced by year 
type. This explains the large and complex G×E observed in this data 
set. The Eps value that leads to optimum yield is in general lower for 
hot than for ‘mild’ years, coinciding with the general observation 
that long-cycle genotypes run out of water in ‘hot and dry’ years. In 
‘hot and dry years’, the optimum combination of APSIM parameter 
values is an intermediate value of Eps with large values for Ppd and 
Vrn. However, when Eps is larger than 700  °Cd, genotypes with a 
lower value of Ppd/Vrn have an advantage. This leads to large crosso-
ver G×E in this data set (Fig. 6). In contrast, for any Eps value in 

Table 4.  Variance components for the simulated yield data of 
156 genotypes over 39 years at 13 locations (total of 503 year–
location combinations) based on genotype and genotype 
interactions with location or year type.

Component Variance Standard error

Geno 71 280 10 414
Geno:Loc 29 975 1461
Geno:Type 28 852 3764
Geno:Year within Type 45 304 1140
Geno:Loc:Type 14 965 834
Residual 200 468 1088

Table 3.  Variance components for the simulated yield data of 
156 genotypes over 39 years at 13 locations (in total 503 year–
location combinations because four of them were removed due 
to crop failure).

Component Variance Standard error

Geno 86 559 10 380
Geno:Loc 37 528 1408
Geno:Year 60 023 1407
Residual 208 106 1115

Table 5.  Contribution of the APSIM traits regulating 
phenology to yield variation. Variance components were 
estimated by fitting the statistical model to 156 genotypes at 13 
locations over 39 years.

Term Component Standard error

Ppd 49 610 35 182
Vrn 5538 3971
Eps 31 056 12 783
Ppd:env 62 232 2287
Vrn:env 25 992 1178
Eps:env 97 832 2355
Ppd:Vrn:env 4593 232
Ppd:Eps:env 69 719 788
Vrn:Eps:env 68 178 798
Residual 22 221 232
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‘mild’ years, having large Ppd and Vrn values is an advantage, com-
pared to low values for Ppd and Vrn. When repeating the analysis for 
the periods 1978–97 and 1998–2016, earlier-flowering genotypes, 
determined either by lower Eps values or by higher Eps values in 
combination with small values for Ppd/Vrn, are favoured in the most 
recent decades [see Supporting Information—Fig. 8].

A GGE analysis per year type characterized the effect of com-
binations of flowering time parameters on G×E for yield (Fig. 
7). In both years, the genotype main effect (Geno_mean) was 
more associated to larger values of Ppd (smaller angle between 
vectors), than to the Vrn and Eps. This result coincides with 
Fig. 6, which showed that larger values for Ppd generally lead to 
larger yields. In contrast, Eps contributed more to G×E than to 
the genotype main effect. These results coincide with the vari-
ance components model in Table 5 and with Fig. 6, which shows 
that the optimum value for Eps depends on the environment. In 

Fig. 7, examining the relative positions of the vectors for envi-
ronment indices and genotypic parameters regulating flowering 
time gives insight in the underlying physiological mechanisms of 
G×E in this data set. In ‘hot and dry’ years, Eps induced a large 
G×E interaction with warmer and dryer environments (this can 
be observed by the almost opposite position of the vector for Eps 
with S2_avg.max and S2_vpd). In Fig. 6, this can be observed as 
the position of the optimum for yield, in relation to Eps values, 
occurs at higher values for environments that are less drought-
prone, like ‘Narrabri’ or ‘Wellington’ (Fig. 4). This indicates that 
when more water is available, it is advantageous to have larger 
values for Eps (hence, later flowering), compared to very dry 
environments. In ‘mild’ years, Eps also had a positive interac-
tion with more favourable environments that had a larger rainfall 
(S2_sum.rain2). Larger values for Ppd and Vrn contributed to 
generate a negative interaction with warmer environments (i.e. 

Figure 5. Variation in APSIM-simulated yield (kg ha−1) associated to locations, years and year type. ‘Hot and dry’ (HD) 
environments correspond to years with high temperature and water stress, whereas ‘mild’ environments correspond to years with 
mild temperature and water stress.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/3/2/diab018/6316219 by W

ageningen U
niversity en R

esearch -Library user on 08 O
ctober 2021

http://academic.oup.com/insilicoplants/article-lookup/doi/10.1093/insilicoplants/diab018#supplementary-data


12  •  Genotype-specific P-spline response surfaces

those with larger values for S2_avg.max). In Fig. 6, this can, 
for example, be observed as lower Ppd and Vrn values leading 
to a larger yield in drought-prone locations like ‘Meandarra’, 
‘Goondiwindi’ and ‘Dalby’ (Fig. 4).

3.6  Spline surfaces across latitude and longitude for 
each year type

As the interaction of genotype and year type was large (Table 4 and 
GTis in equation (2)), it is potentially useful to inspect the spline-fitted 
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Figure 6. APSIM-simulated yield for genotypes as function of the values for the APSIM parameters earliness-per-se (Eps) and 
sensitivity to photoperiod (Ppd, A and B) or vernalization (Vrn, C and D), in ‘mild’ at ‘hot and dry’ (HD) years. Colours of the 
facet headers correspond to the regions within year types as shown in Fig. 11.
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Figure 7. Genotype–genotype by environment (GGE) biplot for APSIM yield in ‘mild’ and ‘hot and dry’ years. Colour dots 
indicate the APSIM parameter values for sensitivity to photoperiod (Ppd, A and B), vernalization requirement (Vrn, C and D) 
and thermal time from floral initiation to flowering (earliness-per-se; Eps, E and F). Black vectors indicate the direction of greatest 
change of environmental covariables and the environment means for grain yield (Env_means). Red vectors indicate the direction 
of greatest change in the APSIM parameters regulating flowering time and genotype means for grain yield (Geno_mean_yld) and 
days to heading (Geno_mean_heading) across environments.
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14  •  Genotype-specific P-spline response surfaces

surfaces per year type. We quantified the contribution of each term in 
the P-spline model by sequentially adding those terms and comput-
ing the reduction in the residual after including an additional model 
term (equation (6); see Supporting Information—Fig. 9). The 
relative importance of latitude, longitude, their two-way interactions 
and their three-way interactions with year indicate that ‘hot and dry’ 
years in general required a larger model complexity, as the interactions 
between latitude and longitude with year explained a larger propor-
tion of the variation than in ‘mild’ years. In ‘hot and dry’ years, geno-
types also differed more in the contribution of each model term [see 
Supporting Information—Fig. 9].

When inspecting the predicted response surfaces for each geno-
type and year type, ‘mild’ years had an average yield that was 2.13 
times larger than that of ‘hot and dry’ years (2879 vs. 1351  kg ha−1; 
Fig. 8). For both ‘mild’ and ‘hot and dry’ years, there was a yield gradi-
ent; average yield per virtual location (pixel) was larger in the East and 
South-East (close to locations Wellington and Gunnedah), than in the 
West (especially in locations Walgett and Meandarra). This aligns with 
the rainfall isohyets which decrease from NW to SE in this part of the 
country (Chenu et al. 2011).

However, the average yield deviation for each virtual location 
(pixel) in the latitude–longitude range spanned by the trials, compared 
to the mean yield, was much less in ‘mild’ than in ‘hot and dry’ years. 
In ‘mild’ years, the best locations had average yields that were about 1.3 
times the general mean (for the same year type), and the worst loca-
tions had average yields that were about 0.8 times the general mean. 

In contrast, in ‘hot and dry’ years, the best locations had average yields 
that were about 1.5 times the general mean (i.e. still lower than mean 
yield in a mild year) and the poorest locations had average yields that 
were about 0.4 times the general mean, i.e. the gradient of environmen-
tal quality was much stronger in ‘hot and dry’ than in ‘mild’ years. This 
coincides with Fig. 8A, which show a larger difference in phenotypic 
variances in more rainy places in ‘mild’ years.

Besides inspecting the gradients in average yield per year type, we 
examined the response surfaces for individual genotypes and focused 
on the yield difference between ‘hot and dry’ and ‘mild’ years across 
latitude and longitude for each genotype (Fig. 9). Most genotypes 
showed a large yield reduction when comparing ‘hot and dry’ and ‘mild’ 
years. Only few of them (e.g. ‘g0_0.9_425’; Fig. 9A) had a similar yield 
(or even larger yield for some locations) in ‘hot and dry’ than in ‘mild’ 
years, causing strong G×E within and between year types (Fig. 9A). 
These exceptional genotypes were very early flowering, with small val-
ues for the three flowering time parameters and a very low mean yield 
(e.g. mean yield of ‘g0_0.9_425’ in mild years was 773.9 kg ha−1; Fig. 
9A). Genotypes with small Eps values, but larger sensitivity to pho-
toperiod (e.g. ‘g1.2_0.9_425’; Fig. 9B) had much larger average yield 
than ‘g0_0.9_425’ (2053.5 vs. 773.9 kg ha−1 in mild years; Fig. 9A) and 
showed an intermediate behaviour; maintaining or increasing yield 
in ‘hot and dry’ compared to ‘mild’ years in South-Eastern locations, 
and reducing yield in Western locations, in ‘hot and dry’ compared to 
‘mild’ years (Fig. 9). The locations that led to a yield increase in ‘hot 
and dry’ years for genotypes similar to ‘g0_0.9_425’ (Fig. 9A) were 

Figure 8. For ‘mild’ years (A) and ‘hot and dry’ years (B), ratio between the mean predicted yield at each pixel in the whole 
latitude and longitude range spanned by the trial locations (calculated across the 156 genotypes and years within year type), and 
the general mean (calculated across all genotypes, pixels and years within year type).
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Figure 9. Difference in the response surfaces between ‘hot and dry’ and ‘mild’ years across latitude and longitude spanned by the 
trial locations, expressed as a ratio to the mean yield in mild years (i.e. value per pixel for each genotype = (yield in ‘hot and dry’ 
year − yield in ‘mild’ year)/mean across all pixels in ‘mild’ year). Surfaces are shown for genotypes with contrasting values for the 
APSIM parameters regulating phenology highlighted in Fig. 5. Mean was calculated for each genotype across the whole latitude 
and longitude range for ’mild’ years. Genotype codes first indicate the value for sensitivity to photoperiod, then for vernalization 
requirement, followed by the minimum thermal time requirement from floral initiation to flowering. For example, ‘g0_0.9_1025’ 
indicates a genotype with a sensitivity to photoperiod of 0.0, vernalization requirements of 0.9 and minimum thermal time 
requirement from floral initiation to flowering of 1025 °Cd. Note the scale difference used in each row of genotypes.
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16  •  Genotype-specific P-spline response surfaces

characterized by lower temperatures and milder drought, compared 
to the Western locations (Fig. 4), which are more prone to drought 
(Chenu et al. 2011, 2013) and heat stress (Ababaei and Chenu 2020).

Genotypes with large Eps values (e.g. ‘g0_0.9_1025’; Fig. 9D; 
‘g1.2_0.9_1025’; Fig. 9E and ‘g1.2_1.7_1025’; Fig. 9F) were much 
more sensitive to year type, with yield reductions between ‘mild’ 
and ‘hot and dry’ years of about 90 % for some locations. For these 

genotypes, yield reduction in ‘hot and dry’ compared to ‘mild’ 
years was especially strong in Eastern locations, which have lower 
temperatures and milder drought (Fig. 4). This apparent contra-
diction can be explained because genotypes with large Eps values 
express their larger yield potential in ‘mild’ years and non-stressing 
conditions (i.e. Eastern locations). However, their yield is rapidly 
reduced under water limitation, heat and frost stress, and their 

Figure 10. Within year type (A for ‘mild’ years and B for ‘hot and dry’ (HD) years), location classification (locations = pixels) 
based on the five highest yielding genotypes across the prediction grid defined by latitude and longitude.

Figure 11. Clusters of locations within year types (A for ‘mild’ years and B for ‘hot and dry’ (HD) years). Colour codes represent 
the clusters of locations (locations = pixels) based on G+G×E predicted from the spline surfaces across the latitude and longitude 
range spanned by the APSIM-simulated locations (indicated in words on the map).
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high yield is no longer expressed in those locations during ‘hot and 
dry’ years, leading to a large proportional reduction. In contrast, 
Western locations, even for ‘mild’ years, have less favourable condi-
tions than Eastern locations (Fig. 3). Hence, their yield reduction 
between mild and ‘hot and dry’ years is less strong than for Eastern 
locations. In both year types, genotypes with intermediate Eps val-
ues had larger general mean than those with very large values for 
Eps, and had a smaller yield reduction between ‘mild’ and ‘hot and 
dry’ years (Fig. 9G–I). Especially for those genotypes with inter-
mediate values for photoperiod sensitivity (e.g. ‘g0.3_1.1_825’ and 
‘g0.6_1.1_675’), the range of reduction was also smaller between 
locations, corresponding to more stable genotypes (Figs 7 and 9).

3.7  Within-year type location classification based on 
the five highest yielding genotypes

We predicted the yield response surfaces for each genotype and year type. 
The yield predictions per pixel in the latitude–longitude grid were used to 
classify pixels, defining adaptation regions that share the same five highest 
yielding genotypes. Figure 10 shows that in both year types, locations in 
the North-West had a different set of top genotypes than in the South-East. 
However, the pattern was more marked for ‘hot and dry’ than for ‘mild’ years. 
In ‘mild’ years (Fig. 10A), most of the locations belonged to the same region 
and the clustering procedure clearly indicated only two regions. In contrast, 
the response surface in ‘hot and dry’ years had a more complex geographical 
separation and led to three regions (Fig. 10B). This shows that in hot and dry 
years, which are becoming increasingly frequent because of climate change, 
the TPE becomes more heterogeneous and more G×E is expressed.

3.8  Location classification based on G+G×E of all 
genotypes for each year type

Besides classifying locations based on the five highest yielding geno-
types, we also applied a clustering method on the first two environ-
mental GGE scores calculated on the yield data. In this strategy, the 
response surfaces of all genotypes are considered simultaneously. For 
both year types, we observe that the classification pattern (Fig. 11) is 
similar to the one realized when focusing on the five highest yielding 
genotypes (Fig. 10) and it coincides with the geographical distribu-
tion of temperature and water stress (Fig. 4); in both there is a diago-
nal pattern running parallel to the longitude boundaries (Fig. 11), 
and approximating the rainfall patterns which are higher in the East 
than West of this region (Fig. 4). The variance components for geno-
types, genotype by region and residual G×E indicated that the relative 
importance of G×E, compared to the main effect was larger in ‘hot and 
dry’ years than in ‘mild’ years (Table 6A). In ‘hot and dry’ years, the 
regions obtained after clustering on G+G×E of the P-spline surfaces 
also explained a smaller part of the G×E variation, indicating that the 
G×E has a more complex structure in ‘hot and dry’ years than in ‘mild’ 
years (Table 6A).

When estimating the APSIM parameter contribution to G×E 
across the predicted response surfaces per year type, it was clear that 
the genotype main effect was largely influenced by thermal time 
requirements between floral initiation and flowering time (earliness-
per-se; Table 6B). However, the relative importance was larger for 
‘hot and dry’ years than for ‘mild’ years, coinciding with the genotype 
response surfaces across ‘mild’ and ‘hot and dry ‘years (Fig. 6) and the 

Table 6.  Variance components estimated for the APSIM yield in the 13 locations for 156 genotypes varying in APSIM 
parameter relative to photoperiod sensitivity (Ppd), vernalization requirement (Vrn) and thermal time from floral initiation to 
flowering (earliness-per-se; Eps). A, Variance components for the cultivar by region interaction. B, Variance components for the 
contribution of APSIM phenology parameters to genotype main effect and to the genotype by region interaction. The analysis 
was made separately for ‘mild’ and ‘hot and dry’ years. For each year type, locations were classified into regions by clustering on 
spline-predicted yields for the full set of genotypes (Fig. 11). 

A Component Mild years Hot and dry years

Variance Standard error Variance Standard error

Cultivar 74 438 15 628 45 892 5917
Cultivar:Region 102 972 11 945 14 619 1461
Residual G×E 241 079 1715 278 153 2040

B Component Mild years Hot and dry years

Variance Standard error Variance Standard error

Ppd 52 472 55 300 9549 8508
Vrn 793 5762 4196 3504
Eps 22 779 19 704 23 553 10 498
Ppd:Region 41 274 31 722 5090 3520
Vrn:Region 7142 7299 355 858
Eps:Region 30 429 17 015 0 NA
Vrn:Ppd:Region 1669 1054 462 329
Eps:Ppd:Region 28 450 4336 18 481 2385
Eps:Vrn:Region 25 787 3942 11 607 1621
Residual G×E 240 870 1712 277 491 2031
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18  •  Genotype-specific P-spline response surfaces

observations made in the GGE biplot (Fig. 7). Figure 6 indicates that 
this main effect of Eps was related to intermediate values generally lead-
ing to larger yield (although the exact position of this optimum some-
how changes depending on the level of water and temperature stress). 
In both year types, Eps:Ppd:Region (interaction between earliness-
per-se, photoperiod sensitivity and location group in the environment 
landscape) and Eps:Vrn:Region (interaction between earliness-per-se, 
vernalization requirement and location group in the environment 
landscape) made important contributions to G×E variation. This coin-
cides with the results shown in Fig. 6, which indicate that in regions 
that are less drought-prone (like region 3; Figs 6 and 11), larger values 
of Ppd and Vrn lead to higher yield. In contrast, for regions that are 
more drought-prone (like regions 1 and 2; Figs 6 and 11), intermedi-
ate values for Ppd and Vrn lead to larger yield. This is especially the 
case for hot years, and in combination with large values for Eps. The 
residual G×E variation was much smaller than the total variation cap-
tured by the two- and three-way interactions between flowering time 
parameters and regions (Table 6B), indicating that the clustering of 
the G+G×E present in the predicted response surfaces was an effective 
method to capture the most important sources of spatial variation for 
G×E within year type.

4 .   D I S C U S S I O N
4.1  Simulated yield landscapes allow testing of sta-

tistical methods over space and time
In this paper, we illustrate how to fit response surfaces for individual 
genotypes, and how these surfaces can be used to decompose the 
structure of repeatable G×E. We also describe the adaptation land-
scape encompassed by the phenotypic responses ascribed to traits 
regulating phenology.

The P-spline methodology presented here could be directly applied 
to real yield data from METs. However, the use of biophysical simula-
tions of yield has the advantage of generating phenotypes for a long 
series of years. We illustrated how to identify year type scenarios, plac-
ing the predicted response surfaces and adaptation landscapes in a 
long-term context. The 39 years of data that we included in this study 
showed that the frequency of heat and drought stress is increasing over 
time, likely associated to climate change (Ababaei and Chenu 2020; 
Fletcher et al. 2020).

 When comparing the year types resulting from the clustering pro-
cedure and the ENSO events (Potgieter et al. 2005), it can be observed 
that most of the ‘El Niño’ events correspond to ‘hot and dry’ years, 
whereas ‘La Niña’ events correspond to ‘mild’ years. Years that could 
not be classified as either ‘El Niño’ or ‘La Niña’ were classified as ‘hot 
and dry’ or ‘mild’ in a comparable proportion (11 hot and 13 mild 
years; see Supporting Information—Table 1). Importantly, the 
approach that we have taken here could only improve the predictabil-
ity of adaptation surfaces a posteriori, i.e. when knowing which kind 
of year is encountered. Nevertheless, the scientific community is mak-
ing large efforts to improve weather forecasting (e.g. by the European 
Centre for Medium-Range Weather Forecasts; https://www.ecmwf.
int/). Such forecasts would be very useful to inform breeders and 
farmers about the level of heat and water stress to be encountered by 
the crop in the upcoming season. An alternative strategy could be to 

undertake bivariate modelling of both year types simultaneously, bor-
rowing information across year types. In that way, predictions could be 
made at each location for the most likely year type, weighing year type 
information by their relative frequencies. The fact that the frequency of 
occurrence of ‘hot and dry’ years has dramatically increased indicates a 
shift in the TPE. This needs to be addressed by selection strategies for 
future varieties, focusing on phenologies and sowing dates that are bet-
ter targeted for hot years (Collins and Chenu 2021). In that sense, our 
response surfaces predicted for hot years might be more informative to 
select for varieties that are well-adapted to future growing conditions, 
than the surfaces predicted for ‘mild’ years.

The simulation setting used here shows how to arrive at useful 
insights about the environmental drivers of adaptation and repeat-
able G×E in the variable climates of the NE Australian wheat-belt, but 
remains limited to one sowing date and a fixed initial soil condition. The 
use of genotype-specific yield response surfaces in combination with 
adaptation landscapes per year type can also be used to provide a better 
understanding of G×E for different management conditions, different 
regions and also future growing conditions, in the context of climate 
change. Another potential application of the predicted surfaces could 
be to inform the decisions about location sampling for METs. Given 
that breeders usually need to limit the number of trials that are con-
ducted, the predicted surfaces could be used to identify those locations 
that represent well the G×E that is to be expected in the TPE in the 
long term (Chauhan et al. 2017). An option to ensure that the METs are 
informative about adaptation across the TPE could be to always include 
trial locations that do induce different adaptive responses across mild 
and hot years, and trial locations without much variation between mild 
and hot years (more consistent genotype discrimination across years).

Our spline approach is implicitly a spatial emulation of APSIM out-
put, comparable to the approach taken by Stanfill et al. (2015) in the 
sense that the P-splines response surfaces produce yield as a statisti-
cal function of the same genotype- and environment-specific inputs 
that are fed into APSIM to produce yield. In principle, the response 
surfaces could have been directly produced by running APSIM simu-
lations on a very dense grid across latitude and longitude. However, 
that requires massive computation time, and a dense grid for soil and 
weather if we want to accurately simulate yield variation. One simpli-
fication applied by Chapman et al. (2000c) used a weather grid in the 
mapping of variation in environment types, and ran the model multi-
ple times for different soil types with the implication that environment 
types could be spatially referenced by knowing the latitude, longitude 
and the soil type. Our combined approach of APSIM simulations and 
spline models provides a more feasible and computationally efficient 
framework for a detailed characterization of genotypic responses, also 
applicable to real-world data sets. The main difference between both 
approaches (P-splines vs. APSIM output) is that P-splines by defini-
tion assume smooth gradients across latitude or longitude. However, 
there might be abrupt changes in environmental quality, for example 
due to changes in the soil quality resulting from the geological history 
of soil landscape. While the weather tends to vary spatially in some 
smooth way (associated with geography and interactions with weather 
systems), the soil does not vary smoothly, especially in a continent as 
old as Australia. Geology has, at extremely long time scales, created 
a landscape which, for any given region may comprise both abrupt 
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(over 10s of metres) and gradual (over 100s of metres) changes in soil 
characteristics like water-holding capacity. Abrupt changes are better 
addressed by crop growth models like APSIM, which contain explicit 
functions of environmental variables. A potential way to compare both 
methodologies would be to re-fit our P-spline models on a very dense 
grid of APSIM output and quantify the prediction error introduced by 
the discontinuities and abrupt changes that cannot be captured with 
the P-spline model. In such a case, additional fixed effects could also 
be introduced in the P-spline model to account for soil covariables that 
are present in a spatially discontinuous fashion.

In this proof of concept, we used a simulated population that was 
segregating only for flowering time parameters. This had the advan-
tage that we could examine an adaptation landscape represented in a 
simple space of variation determined only by three traits, making it 
conceptually straightforward to understand. The range of variation 
for APSIM parameters regulating flowering time was very broad, 
leading to very large G×E. This G×E was also partially driven by the 
fact that, for a given location, all genotypes were sown on the same 
date. However, slow-maturing genotypes are sown early, and fast-
maturing genotypes are sown late. Overall, the flowering time vari-
ation observed in this data set can be considered as an upper bound 
and it could be made narrower, to match the range of flowering time 
variation (1 to 3 weeks) that is commonly encountered in Australian 
wheat germplasm targeted for a given region (Zheng et  al. 2012, 
2013, 2016). The way in which the simulations cover the parameter 
space can modify the G×E patterns for the final trait. Therefore, it 
would be informative (i) to extend this approach by restricting the 
range of flowering time variation to that observed for well-adapted 
local germplasm and sowing dates to inform growers about better 
adapted lines depending on the year type or ENSO events (Zheng 
et  al. 2018) and (ii) to consider other genetically varying APSIM 
parameters to assist breeding progress (Chapman et  al. 2003; 
Hammer et al. 2014; Bustos-Korts et al. 2019). The decision about 
which parameters should show variation to achieve G×E patterns 
that directly relate to the target population of genotypes depends on 
the traits for which the population is segregating and on the range of 
environmental conditions that is explored. On the other hand, the 
sensitivity of APSIM to changes of specific parameters defines the 
impact of those traits on G×E in the TPE (Casadebaig et al. 2016). 
Furthermore, for a final proof of the utility of this approach, it would 
be important to implement it on real data, like the MET data coming 
from pre-registration and post-registration trials.

4.2  Environment classification to look for spatial 
adaptation per year type

In this paper, we investigated two levels of environment classification. 
First, we classified years according to explicit environmental quality 
and we identified two groups; one for years with mild levels of tem-
perature and water (drought) stress and a second group that consisted 
of years with higher temperatures and stronger water and frost stress. 
These groups captured part of the G×E associated to weather patterns, 
which is in general not very repeatable. As a second step, we fitted yield 
response surfaces, conditional on year type. These response surfaces 
provided insight on G×L, allowing us to classify locations according to 
the genotypic ranking across latitude and longitude. Within year type, 

these location classes correspond more directly to geographical and 
soil characteristics, which are more repeatable than across year types, 
allowing breeders to exploit specific adaptation. We observed that 
hot years are becoming increasingly frequent, coinciding with results 
reported by Ababaei and Chenu (2020). Hence, the response surfaces 
and adaptation landscapes generated for hot years become especially 
useful to select varieties that are adapted to future growing conditions. 
Such an approach can also be directly applied for projected future cli-
mate scenarios (e.g. Watson et al. 2017; Collins and Chenu 2021). We 
also showed that there is an increased spatial heterogeneity in environ-
mental quality during ‘hot and dry’ years, reflecting that the TPE is 
becoming more heterogeneous because of climate change. In the long 
run, this would require breeders to revisit the number and location 
of their METs because and increased heterogeneous TPE would also 
require an increased number of testing locations.

We assessed two methods to classify locations into regions; 
grouping locations with a similar set of genotypes in the top five of 
the genotypic ranking (Fig. 10), and clustering locations based on 
the GGE scores (Fig. 11). The main conceptual difference between 
both methods is the degree of importance attached to the five high-
est yielding genotype, compared to the whole set of genotypes. Both 
strategies led to similar groupings, with South-Western locations 
generally belonging to a different region, than those more continen-
tal locations. However, from the plant breeding perspective, it might 
be more appealing to focus the attention on the highest yielding 
genotypes as those are the ones that will determine genetic gain (Yan 
and Kang 2002).

4.3  Characterization of G×E across the adaptation 
landscape

In this study, (i) we compared several methods to understand the 
structure of G×E across latitude and longitude within part of the 
north-eastern Australian wheat-belt; (ii) we calculated yield differ-
ences between hot and mild years for each genotype; (iii) we used the 
predicted response surfaces for each genotype to identify the five high-
est yielding genotype per virtual location (pixel); (iv) we clustered on 
G+G×E generated by all genotypes across latitude and longitude, cre-
ating regions for each year type; and (v) we quantified the contribution 
of APSIM parameters regulating flowering time to G×E across those 
regions. In general, all strategies supported the conclusion that loca-
tions in the South-East of the studied region have higher yield (Fig. 8), 
but also higher yield fluctuations between year types, making a strong 
contribution to G×E in this part of the north-eastern Australian wheat-
belt. It also became apparent that the spatial heterogeneity is larger 
under ‘hot and dry’ years, which are becoming increasingly frequent 
because of climate change.

We used simulated data to illustrate the approach. However, it 
would be interesting to confirm these findings in real phenotypic data 
that are coming from METs. For example, to investigate the efficiency 
of variety testing in VCU trial networks (VCU = value for cultivation 
and use). Such an analysis could give useful insight about the changes 
in variance and genotypic ranking across the whole target production 
area. If large changes in genotypic ranking occur, it is convenient to 
subdivide the TPE into smaller areas (Atlin et  al. 2000; Piepho and 
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Möhring 2005), and to potentially select or recommend varieties 
within those smaller regions. The high spatial resolution of our pre-
dictions contain valuable information to support variety recommen-
dation at the farmer’s level because predictions can be made for the 
exact location of fields (Collins et al. 2021), provided that accurate soil 
information at the farm level is available. In this way, MET information 
is more directly leveraged to the level of specific locations.

As the relative contribution of traits underlying yield severely 
changes depending on the environment conditions (Chenu et al. 2009, 
2013; Bustos-Korts et al. 2019; Collins et al. 2021; Slafer et al. 2021), 
another aspect that could be further explored is the contribution of 
underlying traits to genotype adaptation. Here, we focused on grain 
yield predictions using P-splines. A follow-up research could be to use 
bivariate models for yield and flowering time (or other traits of inter-
est). Such a model would help to explicitly characterize the contribu-
tion of flowering time to yield across the TPE.

4.4  Including explicit environmental covariables
Where differences in adaptation are not related to latitude and longi-
tude, or when G×E variation is not ascribed to specific locations and 
years (not very repeatable), as often occurs in Australian environments 
(Chapman et al. 2000a; Chapman 2008; Chenu et al. 2011, 2013), an 
alternative is to express G×E as function of explicit environmental 
covariables (Nicotra and Davidson 2010). These covariables can cor-
respond to weather and soil characteristics, or to environmental indi-
ces ( Jarquín et al. 2013; Heslot et al. 2014; Bustos-Korts et al. 2019; 
Millet et al. 2019).

The use of environmental covariables could also open interest-
ing opportunities to model the year-to-year variation more explicitly. 
We now used environmental indices related to water and tempera-
ture stress to classify years into the categories ‘mild’ and ‘hot and dry’. 
Although these year types do explain substantial G×E variation, they 
are still internally heterogeneous. Hence, part of the G×E information 
is lost when predicting response surfaces for each year type. An alter-
native would be to model yield variation as explicit function of lati-
tude, longitude and an environmental covariables (that could also be, 
e.g., an index that condenses the information contained in water and 
temperature-related variables). In that way, the model would make a 
more explicit use of the continuous variation that is also contained in 
the year-to-year variation.

4.5  Future developments
In this paper, we fitted spline surfaces to subsets of the data (per geno-
type, per year type, etc.). In future work, we plan to extend the model, 
fitting it to all genotypes simultaneously. Such a model extension would 
provide parameter values that have been estimated simultaneously, 
which allows to borrow strength between genotypes. A second advan-
tage of estimating parameters in the same model fit is that it can pro-
vide more insight into G×E than using the predicted response surfaces 
alone. An additional development of the spline approach would be to 
fit surfaces for different soil types, and then to determine how these 
could be combined and re-fitted if more local soil data can be provided. 
The effect of sowing dates is also an important aspect that would need 
to be considered in a more detailed study of wheat adaptation. This is 
especially relevant as large interactions between rainfall and soil type 
are to be expected because of the differences in soil water retention 

capacity (Chenu et  al. 2013). Further developments (already intro-
duced above) could be the use of bivariate models considering either 
yield and underlying traits or yield in mild and hot years. Such bivari-
ate approaches would have the advantage of borrowing strength across 
traits/year types and would provide useful insights in the interplay 
between traits in modulating adaptive responses across environments.

5 .   C O N C LU S I O N S
Fitting yield response surfaces for individual genotypes was useful to 
understand the structure of G×E and to predict genotype adaptation 
across the whole latitude and longitude range encompassed by the 
simulated METs.

The long-term simulations indicated the presence of two types 
of years, with different levels of water and temperature stress. 
These year types contributed significantly to G×E variation and 
for that reason it is advisable to predict response surfaces per year 
type separately.

The frequency of years with increased temperature and water stress 
is increasing in the most recent years, indicating that, to select varieties 
that are well-adapted to future growing conditions in a context of cli-
mate change, it might be advisable for breeders to base their selections 
on the predicted response surfaces for ‘hot’ years.

We used simulated data to illustrate the approach, but the spline 
methodology presented here can also be applied to real data from 
METs in breeding programmes and VCU networks.

From the three APSIM parameters regulating phenology, the ther-
mal time requirement between floral initiation and flowering had a 
large yield main effect (genotypes with larger requirements had higher 
yield, especially in mild years). Yield G×E interactions were mostly 
driven by specific combinations of Eps (thermal time requirement 
between floral initiation and flowering) and Ppd values. Our approach 
combining crop simulations and statistical models was useful to inter-
pret the adaptation landscape as combinations of the APSIM phenol-
ogy parameters.

S U P P O RT I N G  I N F O R M AT I O N
The following additional information is available in the online version 
of this article—
Figure S1. Variation in S2_sum.rain across locations, years and envi-
ronment types. ‘Mild’ indicates years with mild temperature and water 
stress and ‘HD’ indicates ‘hot and dry’ years with strong temperature 
and water stress. S2_sum.rain is the sum of rainfall from flowering – 
300°Cd to flowering + 100°Cd.
Figure S2. Variation in S2_avg.maxt across locations, years and envi-
ronment types. ‘Mild’ indicates years with mild temperature and water 
stress and ‘HD’ indicates ‘hot and dry’ years with strong temperature 
and water stress. S2_avg.maxt is the average of daily maximum tem-
peratures from flowering – 300°Cd to flowering + 100°Cd. 
Figure S3. Variation in S2_frost.sum across locations, years and envi-
ronment types. ‘Mild’ indicates years with mild temperature and water 
stress and ‘HD’ indicates ‘hot and dry’ years with strong temperature 
and water stress. S2_frost.sum is the accumulated thermal time when 
minimum temperature is less than 0 from flowering – 300°Cd to flow-
ering + 100°Cd.
Figure S4. Variation in S2_vpd across locations, years and environment 
types. ‘Mild’ indicates years with mild temperature and water stress and 
‘HD’ indicates ‘hot and dry’ years with strong temperature and water 
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stress. S2_vpd is the average of daily vapour pressure deficit, as calculated 
with APSIM from flowering – 300°Cd to flowering + 100°Cd.
Figure S5. Variation in simulated days to flowering associated to trial 
locations, years and groups of years. ‘Mild’ indicates years with mild 
temperature and water stress and ‘HD’ indicates ‘hot and dry’ years 
with strong temperature and water stress. 
Figure S6. Relationship between yield (kg ha-1) and days to flowering 
for the 156 genotypes in the 13 studied locations during mild years. 
Sowing date at each location is presented in Table 1. 
Figure S7. Relationship between yield (kg ha-1) and days to flowering 
for the 156 genotypes in the 13 studied locations during ‘hot and dry’ 
years. Sowing date at each location is presented in Table 1.
Figure S8. APSIM-simulated yield for genotypes as function of the 
values for the APSIM parameters earliness-per-se (Eps) and sensitivity 
to photoperiod (Ppd) or vernalization (Vrn), in periods 1978-1997 
(predominantly ‘mild’ years) and 1998-2016 (predominantly ‘hot and 
dry’ years). 
Figure S9. For ‘mild’ (A) and ‘hot and dry’ years (B) and for each gen-
otype (inside each box), contribution of latitude (m1_lat), longitude 
(m2_lon), latitude by longitude interaction (m3_lat.lon), latitude by 
year (m4_lat.year), longitude by year (m5_lon.year) and latitude by 
longitude by year interaction (m6_lat.lon.year). The contribution of 
each model term was quantified as the total accumulated reduction of 
all model terms (in model 6) up till that term.
File S1. R code to fit the P-Spline.
Table S1. Example data to fit the P-splines.
Table S2. Contingency table for ENSO events calculated as in 
Potgieter et al. (2005) and year types as classified by clustering of envi-
ronmental indices. For year types, ‘Mild’ indicates years with mild tem-
perature and water stress and ‘hot and dry’ indicates years with strong 
temperature and water stress.
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