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Abstract
The health of the lower basin of the Volta River in Ghana was evaluated in January–February and May–June 2016 using
physicochemical parameters and benthic macroinvertebrates sampled at 10 locations. Selected environmental variables were
compared to accepted environmental water quality standard values where applicable. Principal component analysis (PCA)
and redundancy analysis (RDA) were used to analyse the association between the benthic macroinvertebrates distribution
and physicochemical variables. Pesticide concentrations were generally below the limit of detection 0.01 and 0.005 µg/L for
organophosphate/synthetic pyrethroid and organochlorines respectively. Nutrient levels were also generally low; however,
significant differences existed between the values of physicochemical parameters at the different sampling sites and seasons
(Monte Carlo permutation test; p= 0.002), as well as between the abundance of macroinvertebrates at the different sites and
seasons (p= 0.002). The environmental variables dissolved oxygen (DO), phosphate, pH, substratum (p < 0.05), turbidity,
conductivity, total dissolved solids, total solids and nitrate (0.05 < p < 0.10) significantly explained the variation in
macroinvertebrate composition between sampling stations in the Volta River. Polypedilum fuscipenne, was positively
correlated with turbidity and DO concentrations; Physa sp., Centroptilum sp., Centroptiloides sp., Phaon iridipennis and
juvenile fish were positively correlated with nitrate concentration and pH and negatively correlated with turbidity and DO.
Polluted sites were dominated by the snail Lymnaea glabra. This demonstrates that physicochemical parameters and
macroinvertebrates could be applied to describe the water quality and improve the biomonitoring for water resources
management and the environmental protection in the Lower Volta River.
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Introduction

The Volta River is one of largest river systems in Africa
covering an area of ~400,000 km2; shared by six riparian
states of West Africa and one of the most important river
systems in Ghana (Barry et al. 2005). The north-south
extent of this transboundary basin stretches from
approximately latitude 5o 30′ N in Ghana to 14o 30′ N in
Mali, with the widest stretching approximately from
longitude 5o 30′ W to 2o 00′ E (Gordon et al. 2013). The
lower part of the river basin promotes different uses
including agriculture, aquaculture, fishing, water for
domestic (drinking) and industrial purposes, water
transport, sand mining and industrial activities (e.g. tex-
tile works) among others (Andah et al. 2003; Mul et al.
2015). The lower basin also includes two hydroelectric
dams (Akosombo and Kpong). The Kpong Dam is 24 km
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downstream of Akosombo along the river channel and the
establishment of the Akosombo dam for example has
rendered some of the soils more acidic (Barry et al.
2005). Sedimentation in the river has been reported,
resulting from the hydrological alterations of the dams
(Boateng et al. 2012; Ly, 1980; Amenuvor et al. 2020).
The river also receives domestic wastewater, industrial
wastewater, municipal and rural wastes, and other human
activities. High levels of organic pollutants may degrade
the water quality in receiving waters and threaten the
aquatic ecosystems (Asantewaa Owusu et al. 2016; Cor-
coran et al. 2010; Wang et al. 2013). For example, water
may become polluted due to a range of contaminants
originating from agricultural activities (Hooda et al.
2000; Karikari, Ansa-Asare (2006); Lovelle, Sullivan
(2006)). Indeed, pesticides have been reported to affect
water bodies in Ghana (Acquaah (1997); Fianko et al.
2011; Ntow 2001 2005). In addition, the statistics show
that the water sources have been, and continue to be,
exploited (Asantewaa Owusu et al. 2016). To improve the
water resources management and the water quality
monitoring for the Volta River system and other water
resources, monitoring of physiochemical parameters and
aquatic macroinvertebrates have been applied (Baa-Poku
et al. 2013; Thorne et al. 2000; Thorne and Williams
1997). In Ghana, however, the application of these
monitoring tools to evaluate the relationships between the
community composition of benthic macroinvertebrates,
physicochemical variables and pesticides for the water
quality evaluation is rather limited and in its early stages.

Benthic macroinvertebrates are a ubiquitous and
diverse group of species that react strongly and often
predictably to human influences in aquatic ecosystems. In
addition some are sedentary; therefore, body burdens
reflect local conditions, allowing detection of a variety of
perturbations in a range of aquatic habitats (Rosenberg
and Resh 1993). Benthic macroinvertebrates are an
important and integral part of many aquatic ecosystems
and any negative effects caused by pollution in the
community structure can in turn affect higher trophic
levels like fish and birds. Further, benthic invertebrates
have the ability to clean waterways as they utilize the
organic and detritus matter (Sharma and Chowdhary,
2011). Macroinvertebrate populations in streams and
rivers can assist in the assessment of the overall health of
the system (e.g. Carlisle et al. 2007).

The overall objectives of the research were to: (1) evaluate
the values of the physicochemical parameters and pesticides
and benthic macroinvertebrate richness and composition in the
Lower Volta River system, and (2) examine the relationships
between the environmental variables and the macro-
invertebrate community to determine their response to the
water quality parameters in the Volta River.

Materials and Methods

Study area

There are two distinct types of savannah in the basin:
woodland savannah and grassy savannah. The woodland
savannah, mostly found in the southern parts of the basin, is
densely wooded with tall to medium tall grasses (Mul et al.
2015). The climate of the Volta Basin is dominated by the
rain-bearing south westerly tropical maritime air mass and
the dry, north easterly tropical continental air mass (Dickson
and Benneh 1988). Normally, there is a bimodal rainfall
from April to July and from September to November in
Southern Ghana. The single wet season is from May to
October in Northern Ghana, which is followed by dry
season (Harmatan). The wettest area in Ghana is the
extreme southwest where annual rainfall is about 2000 mm;
the annual rainfall generally decreases from south to north.
The country has a high temperature with the average annual
temperature ranging between 24 °C and 30 °C (GEPA
Ghana Environmental Protection Agency (2011)). In the
coastal area of Ghana the relative annual humidity is
95–100% in the morning and about 75% in the afternoon. In
the north these values can be as low as 20–30% during the
Harmatan period and 70–80% during the rainfall period
(Andah et al. 2003).

The study area has average rainfall of 1000 mm/year with
distinct dry (October–May) and wet (May–October) sea-
sons. Temperatures vary between ~16 and 40 °C depending
on season, time of day, and elevation (Bekoe and Logah
2013) and falls within the Dahomeyan system which occurs
at the southern part of the main Volta Basin (Fig. 1), and
consists of mainly metamorphic rocks, including horn-
blende and biotite, gneisses, migmatites, granulates, and
schist (Barry et al. 2005).

Site Selection and Sampling

Site selection was based on land use, accessibility and
anthropogenic activities using the Rapid Bioassessment
Protocol (RBP) for streams and wadable rivers (Barbour
et al. 1999). The sampling reach was divided into three
areas: the Akosombo hydroelectric Dam (3 stations), in
between the Akosombo hydroelectric Dam and Kpong
hydroelectric Dam (4 stations) and the Kpong hydroelectric
Dam (3 stations) (Fig. 1). Water quality was evaluated in
the river by sampling upstream, the hydrologic alteration
from the dam, and downstream of the waterways and the
differences in macroinvertebrate abundance were used as
biological indicator of disturbance (Tables SI 2, 3, and 4).
Land uses (Table SI 1) and stations were subjected to non-
point influents (i.e. agricultural runoff) and point influents
(i.e. fish pond). Also, one site was selected as a reference
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site where there was no or slight pollution expected (Table
SI 1; T6 (Adi Lake)). Each station was sampled three times
within a 2-week interval in the dry and wet seasons namely:
January–February 2016 and May–June 2016, respectively,
for the investigation of physicochemical parameters, pesti-
cide concentrations, and macroinvertebrate abundance.
Sampling was mainly confined to a few meters (~4) from
the banks of the river courses except on a few occasions
where a canoe was used due to unavailability of a conducive
bank. Surface water samples were taken from a depth of
20–30 cm. Samples were collected into acid-cleaned high-
density 1 L polyethylene bottles. The samples were carried
in an ice cooler from the field and stored in a refrigerator at
4 °C before analysis of physicochemical parameters. Water
samples were again taken from each of the sites using pre-
cleaned sterile glass amber bottles and kept at 4 °C and
subsequently used for pesticide analyses.

At each sampling location, a surber sampler (30 × 30 cm
and 250 micron mesh) was used for collecting macro-
invertebrates based on the RBP as it is suitable to sample
different habitats (Lima da Cunha et al. 2019). On each site
three replicates were collected and composited as one
sample. Benthic macroinvertebrates were preserved in 4%
formaldehyde solution. The macroinvertebrates were sor-
ted, identified to the lowest possible taxonomic level

(species, genus, or families), and counted under a
stereomicroscope.

Physicochemical Analysis

During sampling, water temperature (°C), pH (−), dissolved
oxygen (DO mg/L), total dissolved solids (TDS, mg/L),
turbidity (NTU), and electrical conductivity (µs/cm) were
measured on site using portable equipment (Horiba U-50
Series multi-parameter water quality meter). Total solids
(TS) was determined by Gravimetric Method (APHA
American Public Health Association (1998)). 10 ml of the
water samples were transferred into a pre-weighed evapor-
ating dish which was then dried in an oven at a temperature
of 103–105 °C for 2 and half hours. The dish was trans-
ferred into a desiccator and allowed to adjust to room
temperature and was weighed. The TS was represented by
the increase in the weight of the evaporating dish. The total
suspended solids were easily obtained by simple calcula-
tion, i.e. total suspended solids= total solids− TDS. Bio-
logical oxygen demand (BOD) was determined according to
standard methods for the examination of water and waste-
water (APHA American Public Health Association (1998)).

Orthophosphate (PO4 –P) was determined using ammo-
nium molybdate and ascorbic acid method (Mackereth et al.

Fig. 1 Map showing study area and sampling points
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1978), ammonia-nitrogen (NH4 –N) by the indophenol blue
method (Franson 1989), nitrate-nitrogen (NO3 –N) by
hydrazine reduction followed by diazotizing to form an
azodye which was measured colorimetrically and nitrite-
nitrogen (NO2 –N) was determined by N-(1-2 naphthyl)
ethylene di amine di -hydrochloride method. (APHA
American Public Health Association (1998)). All reagents
used were of analytical grade, equipment was calibrated
before measurement and replicate analyses were carried out
for each determination to ascertain reproducibility and
quality assurance.

Pesticide Extraction and Analysis

The following pesticides were chosen as target compounds
based on information of previous and current pesticide use:
lindane, delta-HCH, heptachlor, aldrin, gamma chlordane,
alpha-endosulfan, DDE, endrin, dieldrin, DDD, DDT,
endosulfan sulfate, methoxychlor, ethoprophos, diazinon,
dimethoate, pirimiphos-methyl, fenitrothion, malathion,
chlorfenvinphos, profenofos, allethrin, bifenthrin, λ-cyha-
lothrin, permethrin, cyfluthrin, cypermethrin, fenvalerate,
deltamethrin and chlorpyrifos. Supplementary information 5
(SI 5) provides the methods for the sample extraction and
pesticides analysis.

Data analysis

Multivariate analyses were performed using the CANOCO
5 program to investigate the correlations among physico-
chemical characteristics of the sampling sites, the macro-
invertebrate species and their relationships (Van den Brink
et al., 2003; Ter Braak and Šmilauer 2018). For both the
physicochemical and the macroinvertebrate data set the
significance of the differences between the dry and the wet
season was evaluated using an RDA analysis including
season as explanatory variables and sampling date as cov-
ariables. Within the Monte Carlo permutation test following
the RDA analyses, the samples were only permuted within
the covariables. The significance of the differences between
sampling times was tested using season as covariables and
permuting the samples only within the covariables. After
that, a PCA was performed for both data sets including
season and sites as passive explanatory variables

Redundancy analysis (RDA) was used to test the sig-
nificance of each the physicochemical parameters, as well as
the substrate composition (Table S1) in explaining the dif-
ferences in community composition. It was again used to
examine the relationships between environmental variables
(i.e. physicochemical and habitat parameters) and the
abundance of macroinvertebrates. This analysis was fol-
lowed by another RDA including the significant physico-
chemical and habitat parameters as explanatory variables

and; season and sampling site as passive explanatory vari-
ables. The abundance values of macroinvertebrates were log
(2x+ 1) transformed in the above multivariate analysis,
where x represents the abundance data (Van den Brink et al.
2000).

Results and Discussions

Physicochemical Parameters

Habitat assessments during the study were highly variable
in the form of watershed features, riparian vegetation, in-
stream features and substratum. Lower availability of the
hard habitat like cobble substratum occurred at stations
(Sedorm 1) T1, (WRI) T4, (ATL) T5, (Adi Lake Ref.) T6,
(Kpong) T7 and (Akuse Sand Winning) T10. These stations
had sand content ranging from 15 to 100% (Table S1).

There was a clear separation between physicochemical
parameters and their relative values in the different sites and
seasons in the PCA ordination diagram (Fig. 2). Addition-
ally, there was a significant difference between seasons and
sites (Monte Carlo permutation test; p = 0.002) while no
significant difference existed between sampling dates (p >
0.05. This is in contrast to the assertion by Gampson et al.
(2014) that physicochemical parameters do not vary much

Wet
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Sedorm2Marine
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ATL

ADIlake

Kpong
AkuseCanal

AkuseBridge

AkuseSand

Sedorm1
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Temperature

EC

Turbidit

Nitrate Nitrite
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Fig. 2 PCA plot showing the correlations between physicochemical
parameters and their relative values in the different sites and seasons.
The horizontal and vertical axes display 34 and 19% of the variation in
physicochemical parameter values, respectively. Monte Carlo permu-
tation tests indicated that differences between seasons and sites are
significant (p= 0.002), while the differences between sampling dates
was not significant (see text for test conditions and abbreviations)
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in terms of the sampling sites of the Lower Volta basin.
Thus, the anthropogenic activities resulting from the
adjoining land use characteristics, may have changed the
physicochemical parameters. Again, the rainy season is
characterized by a lot of precipitation which can influence
the physicochemical parameters of the river. The PCA plot
shows the largest differences in values between the stations
for TDS, electrical conductivity (EC), turbidity, total solids,
ammonia, pH ad DO (Fig. 2). Akuse Bridge is clustered
away from all other stations, with relatively high TDS and
EC values. The vertical axis merely displays the differences
between the seasons, which were significant. The dry sea-
son recorded lower pH values compared to the wet season
(Table SI 2; Fig. 2). The lowest pH of 4.4 was recorded at
the first sampling of Sedorm 1 during the dry season which
could be described as acidic (Table SI 2). The highest
(10.25) were also recorded at Sedorm 1 and Marine but
during the wet season. All the pH values determined in the
wet season were within the WHO recommended range for
drinking water (6.5–9.5) (Table SI 2) except the first and
third sampling of Sedorm 1 and the third sampling of
Marine in the wet season. This could be due to photo-
synthetic activity and microbial respiration as well as
decomposing activities at the large expanse of wetland
associated with Sedorm 1 thus affecting the pH value.
Similar values have been reported on the Volta River by
other studies (Gampson et al. 2014; Amoah and Koranteng
2006). Overall water temperature ranged from 28.1 to
32.8 °C (ATL, Sedorm) and 28.5 to 31.5 °C (Sedorm 2,
Sedorm 1) in the dry and wet seasons, respectively (Table
SI 2). The temperatures of the sampling sites were relatively
constant and compares to the range (27–30 °C) reported by
Amoah and Koranteng (2006).

Conductivity of the water samples ranged from 66 to
149 μS/cm (Akuse Canal, Akuse Bridge) and 68 to 166 μS/
cm (WRI, Akuse Bridge) (Table SI 2) in the dry and wet
seasons, respectively. The mean values obtained for both
seasons were below the WHO recommended guideline limit
of 1400 μS/cm. Conductivity is related to the concentration
of TDS. The TDS values obtained for both the dry and wet
season were below recommended limit of 500–1000 (mg/L)
permissible for drinking (Davis, Dewiest (1966)). The
electrical conductivity and TDS values obtained here indi-
cates relatively low salt contents in the study area. The
mean total solids of the water in the study area ranged from
42–99 mg/L in the dry season and 44–106 mg/L in the wet
season, indicating good water quality. Turbidity values
were comparatively higher in the dry season and ranged
from 23 to 90 NTU, whiles the wet season recorded values
of 3–26 NTU (Tables SI 2). Except Adi, Kpong and Akuse
canal in the wet season (Table SI 2), all the samples in both
seasons had turbidity values exceeding 5 NTU, the WHO
guideline value for turbidity in drinking water (WHOWorld

Health Organization (2004); WHO World Health Organi-
zation (2008)). The high turbidity may be attributed to the
larger particles such as organic matter, dissolved solids,
agricultural runoff, leaching of soil contaminant and point
source water pollution discharged from industrial or sewage
treatment plants. This causes problems with water pur-
ification processes, leading to increased treatment cost
(DWAF Department of Water Affairs and Forestry (1998)).

Dissolved oxygen (DO) varied from 4.4–14.7 mg/L to
2.1–9.8 mg/L in the dry season and wet seasons, respectively
(Table SI 2). The highest value was measured during the dry
season at sampling site Marine and the lowest value was
measured at site Akuse Sand Winning in the wet season. The
low DO at some sites may be caused by the decomposition
of organic matter, dissolved gases, industrial waste, mineral
waste and landfill leachate (Table SI 1). Acceptable range of
BOD concentrations for drinking water of 0.8–5 mg/L is set
by WHO World Health Organization (2004); WHO World
Health Organization (2008), but our study revealed ranges of
2.18–5.82 mg/L and 1.02–18.7 mg/L in the dry season and
wet season, respectively (Table SI 2). The highest BOD
value was recorded at the sampling site Akuse Sand Win-
ning during the wet season (Table SI 2). The high levels
obtained could possibly be attributed to domestic discharges
which can increase the organic loads in the water
(Table SI 1) a view shared by other researchers (Avalon
Global Research, 2012; Edokpayi et al. 2017).

Nutrients

The WHO has adopted a standard of 50 mg/L for nitrate-
nitrogen and 3 mg/L for nitrite-nitrogen as the maximum
contaminant level for drinking water (WHO World Health
Organization (2004); WHO World Health Organization
(2008)). Nitrate levels ranged between 0.1–1.7 mg/L in the
dry season and 1.1–7.9 mg/L in the wet season. The ranges
of nitrite were 0.01–0.03 mg/L (dry) and 0.01–0.05 mg/L
(wet) and of ammonium were <0.001–0.65 mg/L (dry),
0.01–1.45 mg/L (wet), respectively (Table SI 2). These
concentration levels were generally low and below the
WHO standard. Criteria for total ammonia (NH3) have been
established, for example by the EPA, to reflect the varying
toxicity of NH3 with pH (USEPA United States Environ-
mental Protection Agency (2013)). However, WHO does
recognize odor effects at a concentration of 1.5 mg/L and
taste effects at 35 mg/L. The highest NH3 concentration of
1.45 mg/L was recorded in this study for the wet season, so
odor effects could occur, but not taste effects. In other
studies, water quality criteria for phosphorus compounds,
such as phosphates, are set at a concentration that prevents
excessive growth of algae. Phosphorous is a limiting
nutrient for algal growth and therefore controls the primary
productivity of a water body (Karikari et al. 2007). It is also
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an essential nutrient and indicator of anthropogenic pollu-
tion. In most natural waters, PO4-P concentration range
from 0.005 to 0.020 mg/L. In pristine waters, PO4-P con-
centrations may be as low as 0.001 mg/L (Karikari et al.
2007). Levels of PO4-P in this study varied between
0.16–4.97 mg/L in the dry season and 0.14–1.45 mg/L in
the wet season. Digestive problems could occur in humans
from drinking water with extremely high levels of phos-
phate (Morrison et al. 2001). None of the samples had
values that exceeded the 5 mg/L set as standard in South
Africa (Morrison et al. 2001).

Pesticides

The concentration of organochlorine pesticides were below
the detection limit (0.005mg/L) at all the sampling sites.
Meanwhile, Ntow (2005) reported gamma-HCH levels of
8 µg/L as well as alpha-endosulfan and endosulfan sulfate
concentrations of 36 and 23 µg/L respectively in the Volta
Lake. Settling of agricultural chemicals along with sediment
could explain the low water concentrations. A study by
Logah et al. (2017) suggests that there is high sediment
concentrations downstream of Akuse which can be attrib-
uted to sand mining activities at various sections of the river
and sediment input from tributaries could explain the low
concentrations of agricultural pesticides in the water. Also,
the absence of detection of organochlorines could be due to
the ban of the use of e.g. DDT (GEPA Ghana Environmental
Protection Agency (2008)) in Ghana, over time leading to
possible degradation and dilution in the water body. Recent

use of such products may also have been stopped which
would have lowered the organochlorine pesticide levels.
However, λ-cyhalothrin was detected at Sedorm 1 and
Akuse Canal in the dry season in concentrations of 0.6 and
8.8 µg/L respectively. Cypermethrin was detected at a con-
centration of 1.4 µg/L at Marine during the
January–February dry season sampling period. λ-cyhalothrin
is highly lipophilic and tends to bind rapidly and strongly to
organic materials (Maund et al. 1998; Leistra et al. 2003).
Furthermore λ-cyhalothrin is highly toxic to some groups of
aquatic organisms, particularly insects and crustaceans, with
the midge Chaoborus obscuripes being sensitive (48- and
96-h EC50= 0.0028 µg/L. Other insect larvae (Hemiptera,
Ephemeroptera) and macrocrustacea (Amphipoda, Isopoda)
are also relatively sensitive, with 48-and 96-h EC50 values
between 0.01 and 0.1 µg/L (Schroer et al. 2004). Likewise,
fish is sensitive with reported LC50 in bluegill sunfish,
0.21 μg/L; rainbow trout, 0.24 µg/L (Kidd and James 1991).
Cypermethrin likewise is very highly toxic to fish and
aquatic invertebrates. The LC50 (96-h) for cypermethrin and
rainbow trout is 8.2 µg /L, and for bluegill sunfish is 1.8 µg/L
while the effect concentrations for the total crustacean
community and cladoceran and copepod subgroups in a
study by Friberg-Jensen et al. (2003) ranged between
0.02–0.07 and 0.04–0.17 µg/L, respectively, with copepods
being less sensitive than cladocerans. This raises concern as
based on intrinsic sensitivity, biological traits, mode of
action used for invertebrate vulnerability index rankings by
Rico and Van den Brink (2015), Ephemeroptera, Plecoptera,
Tricoptera, and Odonata genera were identified potentially
most vulnerable to pyrethroids in aquatic ecosystems. The
pesticide data were however not analysed further due to the
low number of detections (Table SI 4).

Macroinvertebrate Community

A total of 14 and 16 macroinvertebrate fauna were identi-
fied in the dry and wet seasons, respectively, belonging to 2
major phyla viz: Arthropoda and Mollusca. Among these
phyla, Arthropoda (Polypedilum fuscipenne, Stereo chir-
onomus sp. Ictinogamphus sp. Laccophilus sp. Cen-
troptiloides sp. Hagenius sp. Lethocerus sp. Phaon
Iridipennis, Centroptiloides, Culicidae sp. and Eurymetra
sp.) dominated (66.7%) followed by Mollusca (Physa sp.
Lymnaea glabra, Mya arenaria, Bithynia sp. and Pomacea
paludosa) (33.3%) (Table SI 3).). It should be noted that
three taxa (Bithynia sp., Eurymetra sp. and P. paludosa)
were only found at one sampling site, so their results should
be interpreted with caution. Generally, there was low spe-
cies richness and presence of tolerant taxa and change in
hydrology. Hydropeaking leading to rise and fall of water
levels could cause desiccation of several invertebrate taxa,
see, for example Abernethy et al. (2021), as well as
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ADIlake
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Fig. 3 PCA plot showing the correlations between macroinvertebrate
abundance values in the different sites and seasons. The horizontal and
vertical axes display 27 and 16% of the variation in the abundance of
macroinvertebrate species, respectively. Monte Carlo permutation tests
(999 permutations) indicated that differences between seasons and
sites are significant (p= 0.002), while the differences between sam-
pling dates was not significant (see text for test conditions)
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considerable change in geomorphology of the river, parti-
cularly as a result of sustained high releases from the
Akosombo and Kpong dams (Logah et al. 2017).

Significant difference existed between macroinvertebrate
composition at the different sampling sites and seasons
(Monte Carlo permutation tests; p= 0.002; Fig. 3). The
macroinvertebrates were generally more abundant in the
wet season than the dry season except P. fuscipenne and
Bithynia sp. at Akuse Canal, Akuse bridge and Marine
(Fig. 3). The Akuse and Marine sites are, however, char-
acterized by industrial, township and agricultural activities
(Table SI 1). Similar results have been reported in the Porto-
Novo lagoon in Benin (Adandedjan et al. 2011). L. glabra
was the predominant macroinvertebrate in both seasons
(Fig. 3) because it can survive under polluted and unpol-
luted conditions (Rondelaud et al. 2009). The species with
high frequency included L. glabra (Lymnaeidae; Gastro-
poda), P. fuscipenne (Chironomidae; Diptera), Cen-
troptiloides sp. (Baetidae; Ephemeroptera), Physa sp.
(Physidae; Gastropoda) and Steriochironomus sp. (Chir-
onomidae; Diptera) (Fig. 3; Table SI 3). At the sites where
human pressures were present (anthropogenic stress, agri-
cultural waste and domestic waste, i.e. Akuse and Sedorm
sites) taxa tolerant to pollution, such as Chironomidae were
abundant, as well as even some non-tolerant ones increased
(e.g. some Ephemeroptera families). Physa sp. has been
used as a pollution indicator in Australia by Shield et al.
(2014) and has also been found abundant in the study areas

(Akuse and Sedorm sites and WRI) where agricultural,
aquaculture, waste, organic and sewage pollution is high.
Also, in a study by Hynes, (1975a, b), Ephemeroptera
(Centroptiloides sp. and Centroptilum) were mentioned as
playing a major role in the recovery and recolonization of
zoobenthos of a dried up river (Pawmpawm River, Southern
Ghana), showing their high recolonization capacity.

Correlation among the Physicochemical Parameters
and Macroinvertebrates

We found that pH, DO, TDS, turbidity, EC, nutrients and
substratum together explained around 34% of the total varia-
tion in macroinvertebrate composition among sites (Fig. 4).
Species on the left-hand side of the diagram, such as P. fus-
cipenne correlate significantly positively with turbidity and
DO concentrations and occurred in relatively high abundance
values at the Kpong and Akuse canal sampling sites during the
dry season. Likewise, species on the right-hand side of the
diagram, including Physa sp. Centroptilum sp. Centroptiloides
sp. Phaon iridipennis and juvenile fish were positively cor-
related with nitrate concentration and pH. In contrast, these
species also were negatively correlated with turbidity and DO,
and occurred in higher abundance at Sedorm 2 and Akuse
Sand sampling sites during the wet season (Fig. 4). Ishaq,
KhanA (2014), observed an inverse correlation of macro-
invertebrates with turbidity and a positive relationship with
pH, confirming our results. The molluscs (Mya arenaria and
Bithynia sp.) were negatively correlated with the sand sub-
stratum and phosphate concentration; however, L. glabra was
positively correlated (Fig. 4). The results suggest that the
nature of the substratum and organic contamination caused by
anthropogenic activities might be a primary force in deter-
mining benthic community composition. For instance, absence
of benthic macroinvertebrates was observed in samples from
ATL where high levels of nutrients were determined (Tables
S2 and S3). For instance, a study by Liston et al. (2008)
suggests that, total macroinvertebrate density in benthic floc
eventually decreases with enrichment. Macroinvertebrate
density first increases with enrichment until periphyton mats
are lost, after which it decreases due to a loss of habitat.

Overall, our results suggest that anthropogenic dis-
turbance (i.e. environmental pollution) significantly con-
tributed to the variation in benthic assemblages in rivers,
even though we cannot rule out the influence of unmeasured
ecological drivers.

Conclusions

The results of this study show that macroinvertebrate
community composition shifted along the physicochemical
parameters, site and season. There were significant

pH
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Nitrate
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Total solids TDSDO
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Rock

Sand Wet

Dry
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Lymnaea glabra
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Mya arenaria

Bithynia sp.
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Phaon iridipennis
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Fig. 4 RDA biplot showing the environmental variables that sig-
nificantly explained the variation in macroinvertebrate composition
between stations as result of the Monte Carlo permutation tests (999
permutations; p < 0.10). The environmental variables explained 34%
of the variation in species composition of which 35% is displayed on
the horizontal axis and another 27% on the vertical axis. For clarity,
only 9 out of 17 species are shown, these are the species which best
fitted the ordination space (see text for abbreviations)
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correlations between macroinvertebrate communities and
environmental variables (i.e. DO, turbidity, substratum,
total solids, EC, TDS, pH, and nutrients) in the Volta river.
There was also a significant relationship between macro-
invertebrate community composition and sampling sites.
Absence of benthic macroinvertebrates was recorded at a
few samples sites of the Volta river where high levels of
nutrients were determined. Our results suggest that anthro-
pogenic activities (e.g. aquaculture, agriculture effluent
discharges) altered the macroinvertebrate community com-
position directly or indirectly in the exposed sampling sites.
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