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Plant scientists require high quality phenotypic datasets. Computer-vision based methods

can improve the objectiveness and the accuracy of phenotypic measurements. In this

paper, we focus on 3D point clouds for measuring plant architecture of cucumber plants,

using spectral data and deep learning (DL). More specifically, the focus of this paper is on

the segmentation of the point clouds, such that for each point it is known to which plant

part (e.g. leaf or stem) it belongs. It was shown that the availability of spectral data can

improve the segmentation, with the mean intersection-over-union rising from 0.90 to 0.95.

Furthermore, we analysed the effect of uncertainty in the collection of ground truth data.

For this purpose, we hand-labelled 264 point clouds of cucumber plants twice and show

that the intra-observer variability between those two annotation sets can be as low as 0.49

for difficult classes, while it was 0.99 for the class with the least uncertainty. Adding the

second set of hand-labelled data to the training of the network improved the segmentation

performance slightly. Finally, we show the improved performance of a 4-class segmenta-

tion over an 8-class segmentation, emphasizing the need for a careful design of plant

phenotyping experiments. The results presented in this paper contribute to further

development of automated phenotyping methods for complex plant traits.

© 2021 The Authors. Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Plant breeding has improved crop varieties with respect to for

example yield, stress resistance and plant and fruit

morphology for a long time. The effectiveness of the breeding

process can be further improved by studying the relationship

between genotype, phenotype and environment (Houle et al.,
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2010) for these aspects. These studies require high quality

genotypic, phenotypic and environmental datasets (Yol et al.,

2015). Current phenotypic measurements, however, are

mainly based on human observation and therefore tend to be

subjective and descriptive, limiting the quantity and the

quality of the observations (Gehan & Kellogg, 2017). In

contrast, computer-vision techniques can be used to obtain
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Nomenclature

2D/3D 2-/3-dimensional

DL Deep learning

IoU Intersection over Union

RGB Spectral features (red, green and blue

reflectance)

TP, FP, TN, FN True Positive, False Positive, True

Negative, False Negative

XYZ Geometric features (x, y and z)

XYZRGB The combination of geometric and spectral

features
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phenotypic measurements in an automated and more objec-

tive way.

Traditionally, most computer-vision based phenotyping

research applies feature-based machine learning algorithms,

where the algorithms to extract image features are designed

by hand. Especially in a complex and cluttered greenhouse

environment, this is a challenging task, because of the high

level of variation present in the data (Minervini et al., 2015).

First, there is the intrinsic variation in shape and appearance

between plants and plant parts, within a cultivar and between

cultivars. Additionally, there is an extrinsic source of variation

caused by different growing environments (e.g. lighting con-

ditions or planting density). The environmental variation also

includes variation due to differences between growing sys-

tems and crop maintenance (Lobos et al., 2017). In contrast to

using hand-designed features, in deep-learning (DL)-based

methods, the features are learned together with the decision

making from labelled data in one integrated deep neural

network. This allows joint optimization of feature extraction

as well as decision making. In current state-of-the-art, DL-

based methods outperform feature-based methods.

Computer-vision techniques based on DL seem to be a

promising tool to copewith the challenges present in the plant

domain (Pound et al., 2017; Ubbens & Stavness, 2017).

In this paper, we focus on computer-vision based methods

to collect phenotypic data about the plant architecture of cu-

cumber plants. Plant architecture is the set of phenotypic

traits defining the three-dimensional (3D) organisation of the

plant parts (Reinhardt & Kuhlemeier, 2002). High quality

phenotypic data about the plant architecture supports plant

breeders in their efforts to optimise plant architecture and it

supports and informs growers on the evaluation of their crop

balance and decision making with respect to plannable crop

activities. Being able to adapt the plant architecture also al-

lows to work towards crops that are optimised for automated

harvesting or other crop maintenance tasks. Because of the

complex structure of cucumber plants, we focused on 3D

computer-vision methods. This follows the recommendation

of Boogaard, Rongen and Kootstra (2020) based on the limita-

tions of two-dimensional (2D) computer-vision for internode

length measurements.

An important first step in developing 3D computer-vision

methods, is to segment the input data into individual plant
organs (Shi et al., 2019; V�azquez-Arellano et al., 2016). The

segmented data in which all plant parts are known can then

be used to develop methods to obtain phenotypic measure-

ments, as was for example shown by Golbach et al. (2016). A

recent overview of methods for segmenting 3D data has been

presented by Guo et al. (2020). PointNetþþ (Qi et al., 2017) was

one of the top performing point-based methods identified in

this work, although not specifically focussing on plant mate-

rials. In another recent comparison of point-based segmen-

tation using DL (Turgut et al., 2020), the focus was on

segmentation of rosebush plants. In their work, six recent 3D

point-based segmentation methods were compared. The best

segmentation results were obtained by PointNetþþ. Since

PointNetþþ was found to be one of the best performing

methods in both reviews, we build on this method in our

research.

1.1. Contributions of the paper

In the work of Shi et al. (2019), a method is presented to

segment 2D plant images and project the segmentation into

3D space, to obtain a segmented 3D plant model. The method

works well, but was only tested on small plants due to limi-

tations in PointNetþþ. In this paper, we study the perfor-

mance of a PointNetþþ-based segmentation method for large

cucumber plants. The plants were grown in rows and scanned

by two laser-triangulation sensors, resulting in a coloured 3D

point cloud of the plant, partially incomplete due to a limited

number of viewpoints. We split the point clouds into blocks

that could be processed by PointNetþþ without reducing

spatial resolution. After testing the baseline performance of

the segmentation, the segmentation method was further

investigated in three experiments.

In the first experiment, we investigated the benefit of using

spectral data in addition to the geometric data. In 2D

computer-vision for plant phenotyping, it is common to use

colour images (Dutagaci et al., 2020). These images provide

information on the structure of objects in 2D, as well as on

their spectral properties. Although in the review of Guo et al.

(2020) examples are identified of DL-based 3D segmentation

methods using spectral data, the added value of spectral data

for plant phenotyping has not been studied. Especially when

working directly on point clouds, often only geometric data is

available, as for example in thework of Turgut et al. (2020).We

quantified the added value of spectral data for the purpose of

plant-part segmentation by enriching the 3D point clouds

with spectral data and comparing the segmentation results of

the enriched data to the original performance.

In the second experiment, two manual annotations of the

data were used to get more insight in the effect of the quality

of the training data by studying the intra-observer variability

and the benefit of adding multiple annotations in the training

process. Generating this training data is challenging and

partly an ambiguous process (Griffiths & Boehm, 2019).

In the final experiment, it was considered that plant parts

that are not relevant for quantifying the plant architecture

could have been removed during crop maintenance. Further-

more, non-plant elements like the plant gutter could be given

a distinct colour. These two changes in the experimental set-

up could simplify the segmentation task. We simulated these

https://doi.org/10.1016/j.biosystemseng.2021.09.004
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effects in our data and tested the effect on the segmentation

performance.
2. Materials and methods

This section presents the data used for this research,

including the plant materials, the data acquisition and the

annotation of the data in section 2.1. The segmentation

method is introduced in section 2.2, including a description of

how we processed our data. In section 2.3, the evaluation

criteria used to measure the performance of our method are

introduced. Finally, in section 2.4, the experiments performed

to answer the research questions are explained inmore detail.

2.1. Data

2.1.1. Plant materials
Twelve plants of the cucumber variety Proloog RZ F1 (Rijk

Zwaan, De Lier, The Netherlands) were grown in a climate

chamber. The plants were attached to a supporting wire in

order to grow vertically. To prevent occlusion between plants,

the distance between each plant was 1 m. The plants were

monitored during 11 consecutive days starting at June 25th,

2018 and ending on July 5th, 2018. At the start of the experi-

ment, there were 7e9 leaves per plant, which increased to 11

to 13 leaves at the end of the experiment. A few images of

different plant parts of the cucumber plants are shown in

Fig. 1.

2.1.2. Data acquisition
The point cloud data for this research was generated using

two Phenospex PlantEye F500 multispectral laser scanners,

capturing 3D data based on laser-line triangulation. Besides

the geometric data in the 3D point clouds, the scanners also

provided the reflectance in red, green, and blue. The spectral

measurements of the PlantEye F500 are independent of

lighting conditions in the climate chamber. For this research,

we refer to the geometric data as XYZ and to the spectral data

as RGB.

The two scanners were mounted on an automated data

acquisition system that can move through a climate chamber

(see Fig. 2). Since the scanners were mounted in a fixed frame

with respect to each other, the point clouds from the indi-

vidual scanners could be combined into one point cloud. To do
Fig. 1 e Examples of different pa
this, the two point clouds of one of the scans were manually

aligned. The resulting transformationmatrixwas then used to

align all other scans of the cucumber plants during the

experiments.

The data acquisition system was positioned to scan the

plants from a side-view perspective from both sides of the

plant gutter. At each position, the plant was scanned in a

vertical direction, from bottom to top. The time between the

scans from both sides of the plant was often more than

30 min. Due to (small) movements of the plant in this time

period, we did not merge the scans from both sides of the

plant gutter. This resulted in a total of 12 plants � 2 sides � 11

days¼ 264 point clouds. A schematic overview of the layout of

the climate chamber, including the scan positions and plant

IDs, is shown in Fig. 2.

The point clouds obtained by the data acquisition system

were incomplete. This is due to occlusion by other plant parts

and due to the horizontal position of the scanners, which

resulted in the inability to measure horizontal surfaces (see

Fig. 3).

2.1.3. Data annotation
The training data for the network was obtained by manually

labelling all of the 264 point clouds. This was done using the

segment module of CloudCompare (CloudCompare, 2019).

One class at a time, all points belonging to that class were

selected and stored as a separate point cloud. For 2.3% of the

points it was not clear to which class they belonged. These

points were removed from the point cloud. The remaining

points were divided in the classes stem, petiole, leaf, growing

point (gr point), node, ovary (flower and emerging fruit),

tendril and non-plant. The class non-plant contained the

plant gutter and construction, the pot and the supporting wire

to which the plants were attached. An example of a manually

segmented point cloud is shown in Fig. 3.

At the transition from one class to another, it was some-

times difficult to define the exact boundary between different

plant parts. For example, the boundary between node and

stem and between node and petiole, or the attachment of the

leaf to the petiole. Having incomplete data further increased

the complexity of labelling the data by hand. To quantify the

uncertainty of the annotations, all data was annotated twice.

This was done by the same annotator. The second annotation

was obtained approximately two weeks after the first anno-

tation. The two annotated datasets are referred to as
rts of the cucumber plants.

https://doi.org/10.1016/j.biosystemseng.2021.09.004
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Fig. 2 e Left: Top-view scheme of the 12 plants and the 24 scan positions. The rectangles show plant gutter A and plant

gutter B, each containing six plants. Plants are identified as A1 to B6. Right: The point cloud acquisition system, showing the

two PlantEye F500 scanners. The mobile blue platform was moved to the 24 scan positions indicated in the schematic

overview. At each of these positions, the scanners were moved along the vertical axis to scan the plant from the pot to the

growing point.

Fig. 3 e Example of a manually segmented point cloud.

Note the missing parts in the point cloud.
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annotated dataset A (first annotation round) and annotated

dataset B (second annotation round). The experiment in

which the intra-observer variability between these two

annotation sets is determined is explained further in section

2.4.2.

An overview of the distribution of the different plant parts

in the two annotated datasets is shown in Fig. 4. It is clear that

the leaf (83.70%) and the non-plant material (9.49%) are over-

represented in the data, leading to an imbalanced dataset. The

stem and petiole take up 2.80% and 1.88% of the points

respectively. The number of points for each of the remaining

classes (growing point, node, ovary and tendril) is less than 1%

of the total number of points in the dataset.
Fig. 4 e Distribution of points over the different plant parts.

https://doi.org/10.1016/j.biosystemseng.2021.09.004
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Algorithm 1: pseudo code to divide point cloud into
blocks

1. split_pc_in_blocks(pc, n):

2. # pc: original point cloud

3. # n: number of points per block

4.

5. N ¼ nr_points(pc)

6. i0 ¼ 0

7. i1 ¼ n

8. block_list ¼ []

9. pc_sort ¼ sort_on_z_value(pc)

10.

11. while i1 < N:

12. new_block ¼ pc_sort[i0:i1]

13. block_list.append(new_block)

14. i0 þ¼ n/2

15. i1 þ¼ n/2

16.

17. # Add the last points

18. last_block ¼ pc_sort[N-n:N]

19. block_list.append(last_block)

20. return block_list
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2.1.4. Data split
The annotated data was split in a training, validation and test

set. This division was made on a plant level, to keep the data

sets independent, by preventing that data from one plant was

in more than one of the subsets. We randomly selected plant

B6 for the validation set and plant A1 for the test set. All other

plants were part of the training set. Although only one plant

was used for the validation and test set, the validation set still

contained 218 point clouds and the test set contained 258

point clouds. These numbers were obtained because of the

division of the point clouds into separate blocks (see section

2.2.1) and because each plant was scanned from multiple

sides on multiple days. The training set contained 2626 point

clouds.

To quantify the variation in performance for different

splits of the dataset, a cross-validation was performed. In this

experiment, the training of the neural network was repeated

for three other combinations of training, validation and test

set. The used plant IDs (as defined in Fig. 2) for these data

splits are given in Table 1. The cross-validation was only done

for experiment 1, in which the effect of adding spectral data

was evaluated. The results are shown together with the other

results for this experiment in section 3.1. For the other ex-

periments, split 1 was used.

2.2. Point cloud segmentation

2.2.1. Data pre-processing
The number of points in a point cloud obtained using the

presented data acquisition system was not constant and

ranged from about 200,000 points up to 700,000 points,

depending on plant size. However, PointNetþþ requires a

fixed number of points as input. Besides the varying number

of points, it was not feasible to process an entire point cloud at

once due to memory limitations. Therefore, the point clouds

were divided into overlapping blocks of 40,000 points, similar

to how entire scenes were processed by Qi et al. (2016) and

how rosebush plantswere processed by Turgut et al. (2020). To

obtain a lower and more uniform point density resulting in

bigger parts of the plant in each block, first, a voxel grid filter

was applied. This filter was implemented in Point Cloud Li-

brary (Rusu & Cousins, 2011) and a voxel size of 2 � 2 � 2 mm

was used, as a balance between resolution andmemory usage.

The procedure to divide point clouds into blocks is

described in pseudo code in Algorithm 1. The filtered point

cloud and the number of points per block are input arguments

to the function. After initialization, the points are first sorted

(line 9) along the z-axis (the vertical axis), such that the first

block, containing the first n points, starts at the plant gutter.
Table 1 e Division of plants over the training, validation and t

Train

Plant IDs #Blocks

Split 1 A2eA6, B1eB5 2626

Split 2 A1eA4, A6, B1eB2, B4eB6 2558

Split 3 A1eA2, A4eA6, B1eB3, B5eB6 2551

Split 4 A1eA6, B3eB6 2563
The blocks are generated in line 11e15 of the algorithm. The

second block has an overlap of 50% with the first block and

therefore contains points n/2 to (n/2) þ n (in our case 20,000 to

60,000). Blocks are formed until less than n points remain. For

the last block (line 17e19), the last n points are taken from the

point cloud, meaning that the overlap can be more than 50%

with the second to last block. For small plants, it could happen

that the entire point cloud contained less than n points. In that

case, the while-loop (line 11e15) is skipped. After applying
Algorithm 1 to the original point clouds, the number of blocks

per point cloud varied between 2 and 10, depending on plant

size. The number of blocks for each of the point clouds is given

in Table A1 in the Appendix. An example of a small and a large

point cloud and the division in blocks is shown in Fig. 5.
2.2.2. Point cloud segmentation network
The neural network architecture PointNetþþ as proposed by

Qi et al. (2017) was trained to segment the blocks of the plants

into plant parts. This network is an extension of the original
est set for the four cross validation runs.

Validation Test

Plant ID #Blocks Plant ID #Blocks

B6 218 A1 258

A5 252 B3 292

B4 280 A3 271

B2 265 B1 274

https://doi.org/10.1016/j.biosystemseng.2021.09.004
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Fig. 5 e Example of two point clouds divided into blocks. The point cloud on the left was obtained on the second

measurement day and is divided into three blocks, the point cloud on the right was obtained on the tenthmeasurement day

and is divided into nine blocks. The colours of the points represent the labels obtained by manual annotation. Block 1

contains the lowest part of the point cloud, including the plant gutter. The blocks have 50% overlapping points. All blocks

contain n ¼ 40,000 points. Note that because of the variation in width of the point cloud at different heights and the

variation in point density, each block has its own dimensions.
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PointNet (Qi et al., 2016), which was one of the pioneering DL

methods to work directly on point clouds. In this work, we

used the implementation published online by Qi et al., (2018).

PointNetþþ was designed as a hierarchical network to learn

features on different scales in so-called set abstraction layers.

Each of these layers consists of three steps. First, in the

sampling layer, a set of points is selected from the input cloud

to serve as centre points of the local regions, based on the XYZ

coordinates. The grouping layer then finds groups of points in

the neighbourhood of these centre points. Finally, a PointNet

layer, based on the original PointNet architecture, is applied to

learn features per group of points. The learned features are

propagated to the points that were not sampled through

distance-based interpolation. This is repeated in the other set

abstraction layers to obtain features having larger receptive

fields. Since the architecture of the network was not changed

for this research, we refer to (Qi et al., 2018) for more details.

The input dimension of PointNetþþ is n � (d þ c), where n

represents the number of points. As mentioned in the previ-

ous section, we have set the value for n at 40,000 points. For

each point, there are d þ c features, where d are the three

coordinates of the point (x, y and z) and c are all the other

features. In this research, c ¼ 0 for the case where only geo-

metric data was used and c ¼ 3 for the case where RGB data

was added. The output of the network is a probability matrix

of n times the number of classes, showing for each point the

probability that it belongs to these classes. Per point, the

maximum class probability is selected as the predicted class.

A sparse softmax cross entropy loss is used to train the

network. The learning rate of the network was set to 0.001.

The networkwas trained until the loss on the validation set no
longer decreased. The weights obtained at this point were

used to evaluate the network on the test set. All results in the

remainder of the paper are based on the test set.

2.2.3. Data post-processing
All blocks were processed independently by the neural

network. To transform the predicted segmentation of the

overlapping blocks back into a predicted segmentation of the

entire plant, the overlap of the blocks had to be removed. This

was done by again sorting the points per block. From the first

block, the first 30,000 points were then selected. From the

subsequent blocks, points 10,000e30,000 were selected and

finally, from the last block the still missing points were

selected. The number of points selected from the last block

varies, because of the varying overlap between this block and

the second to last block. By following this approach, for each

point having multiple predictions, the one closest to the

centre of a block was used.

2.3. Segmentation evaluation

To evaluate the performance of the point cloud segmentation,

we used the intersection over union (IoU), which is a metric

often used in the evaluation of 3D point cloud segmentation

(Guo et al., 2020). The general formula for the IoU for class i is

given in Equation (1). This value is computed for all classes

and for each of the point clouds in the test set. The evaluation

was based on all points for which the labelling was consistent,

that is where the twomanually assigned labels were identical.

IoUi ¼ TPi

TP i þ FP i þ FN i
(1)

https://doi.org/10.1016/j.biosystemseng.2021.09.004
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where TPi refers to the number of points correctly predicted to

belong to class i (true positives), FPi refers to the number of

points incorrectly predicted to belong to class i (false positives)

and FNi refers to the number of points that belong to class i,

but are predicted to belong to a different class (false

negatives).

The average IoU-value can be computed either as a micro

average or as a macro average of the IoU-values per class. The

micro average, IoUmicro, was calculated according to:

IoUmicro ¼
Pk

i¼1TPi
Pk

i¼1ðTPi þ FPi þ FNiÞ
(2)

where k is the number of classes. However, because of the

class imbalance, this value is dominated by the leaf class.

Therefore, we also included the macro average, IoUmacro,

which is the average of the IoU over all classes:

IoUmacro ¼
Pk

i¼1IoUi

k
(3)

In the results of the paper, the IoU-values of the different

segmentation approaches are compared to each other. The

significance of the differences is tested using a one-sided

Wilcoxon signed-rank test. The significance is reported as

n.s. (not significant) when p > 0.05, * when p < 0.05, ** when

p < 0.01 and *** when p < 0.001.

2.4. Experiments

In this section, we explain the three experiments that were

performed to answer the research questions of this paper.

2.4.1. Spectral data
As introduced before, the laser scanners used to obtain the

point cloud data capture spectral features in addition to the

geometric data. The first research question of this paper is if

the segmentation performance increases if the geometric data

XYZ is enriched with spectral data RGB. To answer this

research question, we have trained the network with and

without the spectral data, as explained in section 2.2.2. In both

cases the network was trained until the loss on the validation

set did not decrease any further.

To get a deeper understanding of the effect of adding RGB

data, we also compared the confusion matrices of the trained

network with and without spectral data. The difference be-

tween the confusion matrix for XYZ and the confusion matrix

for XYZRGB shows the change in errors made by the network

when spectral data was added.

Finally, the cross-validation described in section 2.1.4 was

done for this experiment. The results are shown in section 3.1.
Table 2 e Classes used in the 8-class and the 4-class segment
ovary, tendril and non-plant were removed from the point clo

Stem Node Petiole Leaf

8-class X X X X

4-class X X X
2.4.2. Intra-observer variability
The second research question is what the intra-observer

variability between annotated dataset A and annotated data-

set B is and how it does affect the segmentation performance.

The intra-observer variability is measured as the IoU between

the two annotated datasets. For this experiment, a point is

considered a TP if it has the same label in both annotated

datasets. If this is not the case, the point counts as a FN for the

label assigned in set A and as a FP for the label assigned in set

B. If both annotated datasets are identical, this leads to IoU-

values of 1 for each class, if there is no overlap the IoU is 0.

The actually observed IoU-values are reported in section 3.2.

We also present the confusion matrix, to give more insight in

the differences between the two annotated datasets and how

each class was labelled.

Additional to the results quantifying the intra-observer

variability, we have trained the network first using anno-

tated dataset A, then using annotated dataset B and finally

using both annotated datasets together. In all these cases, we

have used the combination of XYZ and RGB data as input for

the segmentation method. The results are also shown in

section 3.2.

2.4.3. Design of the phenotyping experiment
The final experiment was devoted to answer the research

question how much the segmentation performance increases

when the plant and its environment are simplified by opti-

mising the phenotyping experiment. As explained in section

2.1.3, during the manual annotation, eight different classes

were distinguished. However, the number of classes could be

reduced by changing the way the crop maintenance was

executed. For example, if the tendrils and ovaries were

removed before scanning the plants, there would be no need

for the network to learn how to recognise these parts. For the

purpose of measuring plant architecture in a plant science or

breeding setting, this is a feasible step to implement.

Furthermore, the non-plant objects like the plant gutter, the

pot and the supporting wire could be given a distinctive

colour, such that they can be easily removed from the data in a

pre-processing step. Finally, the node is an underrepresented

class that is hard to label by hand. It goes beyond the scope of

this paper to actually develop a method to do this, but it is

reasonable to expect that if the stem and petiole are

segmented, the node can also be detected at the intersection

of these two. Based on these considerations, we adapted the

original 8-class segmentation task to a 4-class segmentation

task according to Table 2, by removing the ovary, tendril and

non-plant points and relabelling the node points as stem

points. The network was trained again using the 4-class
ation task. In the 4-class segmentation task, the classes
ud. The class node was merged with the class stem.

Gr. point Ovary Tendril Non-plant

X X X X

X
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segmentation task. In section 3.3, the obtained IoU-values and

the confusion matrix are presented.
3. Results

In this section, the results of the experiments defined in sec-

tion 2.4 are presented. First, in section 3.1, the results of the

segmentation based on geometric data are presented and

compared to the segmentation based on the geometric data

enriched with spectral data. In section 3.2, the intra-observer

variability results of experiment 2 are shown. Finally, in sec-

tion 3.3, the results of training the network on the 4-class

segmentation task are shown. All results are based on the

performance of the method on the test set of the data.

3.1. Spectral data

The IoU-values obtained when training the network on geo-

metric data only (XYZ) and on the combination of geometric

and spectral data (XYZRGB) are shown in Fig. 6. The biggest

improvement was found for the stem, for which themean IoU

increased from 0.41 to 0.70 (p < 0.001). The IoU for the classes

petiole, leaf and non-plant (p < 0.001) as well as for the class

tendril (p < 0.05) also increased significantly. For the classes

growing point, node and ovary, the mean IoU did increase,

although not significantly. Overall, both the micro as well as

the macro average of the IoU showed a significant improve-

ment when spectral data was added.

The confusion matrices for XYZ and XYZRGB are shown in

Table 3, to give more insight in the prediction errors. Looking

at the results for XYZ, it can be seen that 99.1% of the points

manually labelled as leaf are also predicted to be leaf by the

network. Also, for the non-plant objects, 94.0% of the points

are correctly predicted. The most errors are made for the

classes node, ovary and tendril. The node is mostly confused

with the stem (37.9%) and the petiole (21.8%). For ovary, the
Fig. 6 e Performance on the test set based on only

geometric data (XYZ, grey) and geometric and spectral data

(XYZRGB, green). The bars give the mean IoU and the error

bars show the 95% confidence interval on the mean. The

asterisks indicate a significant improvement of the

performance when adding spectral data (p < 0.05 ¼ *,

p < 0.01 ¼ **, p < 0.001 ¼ ***).
errors are quite evenly distributed over stem, petiole, leaf and

tendril. The points manually labelled as tendril are mostly

confused with the stem and leaf.

In the confusion matrix of the network trained on XYZRGB,

it can be seen that the percentage of correctly predicted points,

shown on the diagonal, is higher than for the network trained

on XYZ for all classes except for the class tendril. To visualise

the change in performance, we subtracted the confusion ma-

trix XYZ from the confusion matrix XYZRGB, see Table 4. Note

that in this table, the sumof the rows equals 0%. In this table, if

the performance of XYZRGBwas better than XYZ (more correct

predictions on the diagonal or less errors outside the diagonal),

the cell is highlighted in green, if the performance of XYZRGB

was worse than XYZ, the cell is highlighted in red.

The biggest improvement was observed for the stem,

where the percentage of correct predictions increased by 34.1

percentage points,mainly because of less confusionwith non-

plant objects. For the other classes, except tendril, the per-

centage of correct predictions also increased when the point

clouds were enriched with spectral data. However, also some

values outside of the diagonal increased, indicating an

increased error rate. The highest value (24.2%) was found for

points that were manually labelled as node and that were

predicted as stem. Apparently, the node points that are, due to

the spectral data, no longer incorrectly predicted to be petiole

(�9.4%), leaf (�7.3%) or non-plant (�15.3%), are now (partly)

incorrectly predicted to be stem. Still, also the percentage of

correct predictions for the class node increased.

3.1.1. Cross-validation
The range between minimum and maximum IoU-value for

the four cross-validation runs is shown in Fig. 7. If this range is

small, it means there is a low effect on the segmentation

performance for the different cross-validation runs. On the

other side, a large range means that the specific composition

of the training, validation and test set has an effect on the

segmentation performance. The highest difference between

maximum and minimum IoU over the four cross-validation

runs was observed for the class tendril, including spectral

data. Here, the maximum IoU observed was 0.22 higher than

the minimum IoU. The most consistent performance was

observed for the class leaf, also when spectral data was

included. In this case, the highest IoU was only 0.01 higher

than the lowest IoU.

To verify if the observed variation influences the results of

experiment 1, we tested if the mean IoU-values obtained for

XYZRGBwere higher than for XYZ, for all four cross-validation

runs, using theWilcoxon signed-rank test. The significance of

the performed tests is reported in Table 5. Although there are

some differences for growing point, node and ovary, these do

not change the conclusions of this experiment: adding spec-

tral data significantly improves the segmentation of stem,

petiole, leaf, tendril and non-plant objects, as well as the

overall segmentation quality as measured by the IoUmicro and

IoUmacro.

3.2. Intra-observer variability

As explained in section 2.4.2, the intra-observer variability

was measured as the IoU between annotation A and

https://doi.org/10.1016/j.biosystemseng.2021.09.004
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Table 3 e Confusion matrices for XYZ (above) and XYZRGB (below). The values on the diagonal (marked in bold) show the
true positive rate. Each row in thesematrices corresponds to the points given a specific class in themanual annotation and
shows the division of these points over the available classes as predicted by the network. The values sum up to 100% for
every row (exceptions due to rounding of the numbers). The correct predictions are highlighted in green, the wrong
predictions are highlighted in red, brighter colours indicate higher values.

b i o s y s t em s e ng i n e e r i n g 2 1 1 ( 2 0 2 1 ) 1 6 7e1 8 2 175
annotation B. The results are shown in Fig. 8. It can be seen

that mainly for the classes leaf and non-plant, the corre-

spondence between the two annotations is very high (mean

IoU of 0.99 and 0.98 respectively). Themean IoU for stem (0.86)

and petiole (0.85) is also high. For the classes growing point

(0.67), tendril (0.74) and ovary (0.55) the mean IoU value is

lower. The lowest value is found for the class node, with a

mean IoU of 0.49. The micro average of the IoU-values is 0.98

and the macro average of the IoU-values is 0.77. The micro

average is higher than the macro average, because the
majority of points belongs to the classes leaf and non-plant,

which both have a very high mean IoU-value.

Lower IoU-values in this context mean that more points in

that class were labelled differently in the two annotation sets.

Apparently, there is uncertainty about the correct label for

these points, even if labelled by the same annotator. The 95%

confidence interval shown by the error bars is small, indi-

cating that the intra-observer variability is stable over the

different point clouds.
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Fig. 7 e Minimum and maximum IoU-values observed over the four cross-validation runs for XYZ (black lines) and XYZRGB

(blue lines).

Table 4 e Difference between confusion matrix XYZRGB and confusion matrix XYZ. Green values indicate less confusion
(more correct predictions on the diagonal or less errors outside the diagonal) and red values indicate more confusion. The
sum of percentages in the rows adds up to 0% (exceptions due to rounding of the numbers).
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Table 5 e Results of testing whether the IoU for the
combination of XYZRGBwas significantly higher than the
IoU for XYZ only for the four cross-validation runs (Not
significant ¼ n.s., p < 0.05 ¼ *, p < 0.01 ¼ **,
p < 0.001 ¼ ***). Note that the first column shows the
same significance levels as shown in Fig. 6.

CV1 CV2 CV3 CV4

Stem *** *** *** ***

Petiole *** *** *** ***

Leaf *** *** *** ***

Gr. point n.s. ** n.s. n.s.

Node n.s. n.s. n.s. n.s.

Ovary n.s. * * n.s.

Tendril * *** *** ***

Non-plant *** *** *** ***

IoUmicro *** *** *** ***

IoUmacro *** *** *** ***

Fig. 8 e Mean IoU between annotation A and annotation B.

The bars indicate the mean IoU and the error bars show

the 95% confidence interval on the mean. Note that a high

IoU-value corresponds with a low intra-observer

variability while a low IoU-value corresponds with a high

intra-observer variability.
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To give more insight in the confusion between classes, the

confusion matrix between annotation A and annotation B is

shown in Table 6. Also here, the classes with the highest

agreement between annotation A and annotation B are leaf

and non-plant. The lowest agreement between annotation A

and B (65.6%) is for the class node. For the points labelled as

node in annotation A, 15.3% was labelled as stem and 10.7%

was labelled as petiole in annotation B. Also note that 13.2% of
the points labelled as growing point in annotation A, was

labelled as leaf in annotation B.

3.2.1. Training on annotation A, B, or the combination of A
and B
The performance of the network when trained using only

annotation A, only annotation B or the combination of anno-

tation A and B is shown in Fig. 9. There is no observable dif-

ference between training on annotation A or annotation B,

indicating that the quality of the two annotation sets is

similar. When the network is trained on both annotation sets,

there is a slight improvement in performance. In some cases,

this improvement is significant. This shows that there is

additional information in the second annotation set, from

which the network can learn.

3.3. Design of the phenotyping experiment

In experiment 3, we trained the network for a 4-class (stem,

petiole, growing point and leaf) segmentation and compared it

to the previously used 8-class segmentation. The results are

shown in Fig. 10. For all classes, the mean IoU is significantly

higher for the 4-class segmentation approach. For the 4-class

segmentation as compared to the 8-class segmentation, the

mean IoU for the stem increased from 0.70 to 0.90, for the

petiole from 0.70 to 0.83 and for the growing point from 0.59 to

0.73. For the leaf, which already had a high IoU, a significant

but very small increase of the IoU was observed. The overall

increased performance is also reflected in the IoUmicro, rising

from 0.95 to 0.98 and the IoUmacro, rising from 0.74 to 0.86.

The confusion matrix for the 4-class segmentation is

shown in Table 7 (for the confusion matrix of the 8-class

segmentation, see Table 3). All values on the diagonal are

higher for the 4-class segmentation than for the 8-class seg-

mentation. The errors made by the 4-class segmentation are

similar to the 8-class segmentation. For the stem, the false

negatives are mainly caused by confusion with the petiole

(3.1%), while the false positives are caused by petiole (6.9%)

and growing point (2.1%). The petiole has most false negatives

when wrongly classified as stem (6.9%) or leaf (2.7%). The

growing point does not have many false positives. False neg-

atives for growing point are mainly caused by stem (2.1%) and

leaf (2.4%).
4. Discussion and recommendations

In this paper, we have demonstrated the ability of a

PointNetþþ-based method to segment partially complete

point clouds of cucumber plants. The results clearly show that

the segmentation improved when spectral data was added to

the point clouds. Although there were slight differences be-

tween the four cross-validation runs, all four show significant

improvements for stem, petiole, leaf, tendril and non-plant

objects. For growing point, node and ovary, the mean IoU

also increased, although not significantly.

The difference between the confusion matrices for XYZ

and XYZRGB (see Table 4) shows the effect of adding RGB data

on the confusion of the network. The main contribution of

spectral data was to reduce confusion of parts that have a
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Table 6 e Confusion matrix annotation A versus annotation B. Values on the diagonal (annotation B equals annotation A)
aremarked in bold. Values outside the diagonal that stand out in deviation (indicating disagreement between annotationA
and B) are highlighted in red. Each row corresponds to the points given a specific class in annotation A and shows the
division of these points over the available classes as labelled in annotation B. The sum of percentages in the rows adds up
to 100%.
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distinct colour. For example, the improved segmentation of

the stem comes mainly from less confusion with non-plant

parts. The supporting wire to which the plants were

attached was red, while the stem was green, which explains

the added value of RGB data to separate the two classes.

However, being able to better segment this supporting wire,

resulted in a higher confusion between stem and node. This

can be explained, because while the supporting wire has a

distinct colour, the stem and the node have very similar col-

ours. The class ovary also showed a relatively large benefit

from the spectral data, because this class contained the yellow

flowers of the otherwise mostly green cucumber plant.

The added value of spectral data as shown in this paper

was based on RGB data in the visible part of the spectrum. In

order to improve the segmentation of plant parts that have

similar colours, like the node and stem, other parts of the

spectrum like ultraviolet, near infrared or shortwave infrared

could be relevant (Brugger et al., 2019; Kamilaris & Prenafeta-

Boldú, 2018; Roitsch et al., 2019). Enriching the geometric data

with spectral data in these parts of the spectrum could further

improve the segmentation results. Future research should

demonstrate which parts of the spectrum are most relevant.

The results obtained in this research agree with the

research of Turgut et al. (2020), in which point clouds of

rosebushes (XYZ only) were segmented into flower, leaf and

stem. Using PointNetþþ, the best IoU-values reported in their

research are 0.77 for stem, 0.95 for leaf and 0.73 for flower.
When synthetic data was used for pre-training, these values

increased to 0.83 for stem, 0.96 for leaf and 0.79 for flower. In

our case, the class flower was not present, as flowers and

emerging fruits were both labelled as ovary. Our results

showed an IoU of 0.70 for stem, 0.99 for leaf and 0.18 for ovary.

Of course, the architecture of roses and cucumber plants is not

the same, but it is interesting to see that for leaf and stem

similar performances were achieved. In our case, only 0.54%

of the points were labelled as ovary, where in the rose seg-

mentation of Turgut et al., 4.81% of the points in the training

set was labelled as flower. This could explain why the IoU for

ovary in our research was lower than the IoU for flower as

observed by Turgut et al.

Class imbalance is an issue in supervised learning and as

expected classes for which more examples were present in

the training data achieved higher IoU values than classes with

fewer examples in the training data. Although we expect that

the difference in segmentation performance between over-

and underrepresented classes does not change the answers to

the questions addressed in this paper, improving the seg-

mentation of underrepresented classes is highly relevant for

the plant phenotyping domain in general. Of course, this de-

pends on the specific traits of interest in an experiment. For

example, when measuring internode length or flower and

fruit development, the current segmentation performance is

probably not sufficient. To improve the segmentation of un-

derrepresented classes, we suggest to follow the approach of
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Fig. 9 e IoU for the test set based on trainingwith only annotation A or B and training based on annotation A and B. The bars

give the mean IoU and the error bars show the 95% confidence interval on the mean. The asterisks indicate a significant

improvement of the performance when trained on two annotation sets as compared to the network trained on one of the

datasets (p < 0.05 ¼ *, p < 0.01 ¼ **, p < 0.001 ¼ ***).
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Turgut et al. (2020) and use synthetic data to obtain a more

balanced dataset. Another approach could be to use data

augmentation methods focused on the underrepresented

classes. For example, regions of the plant containing more of

the underrepresented classes could be augmented and

repeatedmore often in the training procedure as compared to

overrepresented classes. Another suggestion is to combine all

underrepresented classes and segment them from the over-

represented classes in a first segmentation step. A second
Fig. 10 e Performance on the test set for the original 8-class

and the simplified 4-class segmentation task. The bars

give the mean IoU for the test set and the error bars show

the 95% confidence interval on the mean. The asterisks

indicate a significant improvement of the performance for

the 4-class segmentation as compared to the 8-class

segmentation (p < 0.05 ¼ *, p < 0.01 ¼ **, p < 0.001 ¼ ***).
network can then be trained to segment the underrepresented

classes.

Having a multi-step approach also brings another advan-

tage. In the pre-processing of the point clouds, we applied a

voxel grid filter. This was done because of the high point

density in mainly the leaves. Without this filter, a leaf could

easily contain more than 40,000 points, meaning that blocks

would be formed containing only a part of a leaf. The voxel

grid filter prevented this from happening by down sampling

the point cloud. However, since at that time the segmentation

was not yet known, the filter was also applied on the other

classes and thus also removed points of the classes that were

difficult to segment. If a multi-step approach is implemented,

in between the steps the resolution of the point cloud could be

increased again. For example, in our case, the first step would

result in a filtered point cloud where the leaves and the non-
Table 7 e Confusion matrices for the 4-class
segmentation. Values on the diagonal (correct
predictions) are marked in bold. Values outside the
diagonal that stand out in deviation are highlighted in
red.

PredicƟons

St
em

Pe
Ɵo

le

Le
af

Gr
. p

oi
nt

La
be

ls

Stem 96.7 3.1 0.1 0.1
PeƟole 6.9 90.3 2.7 0.2
Leaf 0.1 0.1 99.5 0.3
Gr. point 2.1 1.3 2.4 94.2
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plant objects are removed. The remaining points can then be

mapped back in the unfiltered point cloud, and a nearest

neighbour algorithm can select points to increase the resolu-

tion. We plan to test this is in future work.

Since the proposed method heavily leans on the ground-

truth data, inter- and intra-observer variability might have a

serious impact on the results. The results presented in section

3.2 show that the IoU between the two annotation sets of our

research varies per class. The most consistently labelled

classes were leaf and non-plant, having an IoU of 0.99 and

0.98. The lowest IoU-values were observed for ovary and node

at 0.55 and 0.49. Leaves and non-plant objects could be easier

to recognise for labellers, but these parts are also larger in size

than for example node and ovary. For larger objects, there are

relatively fewer boundary points. As the disagreement be-

tween annotation set A and B mainly occurs at the boundary

from one class to another, this disagreement has a bigger ef-

fect on small objects like the node and ovary.

The segmentation results showed similarities with the

intra-observer variability. For the classes with high intra-

observer variability or a low IoU between the two annotated

sets (node, ovary, tendril, and growing point), the proposed

method showed a low segmentation performance, except for

the growing point, which shows that these classes are chal-

lenging to segment for the machine as well as for the human.

Similarly, the classes with low intra-observer variability (leaf

and non-plant) were also segmented very well.

Overall, the results of this experiment indicated that

consistent point cloud annotation is a challenging task. The

improved segmentation performance observed for a network

trained on the combination of annotation set A and B, as

compared to a network trained on only A or B, indicates that

taking label uncertainty into account can improve the quality

of the segmentation. Future work should investigate how to

improve the collection of proper ground truth data to learn

from and how variation between observers could be used in

the training procedure.

In the final experiment, we reduced the number of classes

in the segmentation task. Although for this experiment, this

was done by simulating the data, in future experiments this

could be achieved by using a distinctive colour for non-plant

objects to allow automatic removal of these parts and by

changing the crop maintenance such that plant parts not

relevant for the plant architecture are not in the data. For

dedicated breeding trials this is a feasible option. However, if

plants of a commercial grower are measured, there are of

course limitations.

The results presented in this paper are based on point

clouds obtained using PlantEye F500 laser scanners. These

scanners have a high spatial resolution and provide coloured

point clouds. Using other data acquisitionmethods could lead

to differences in for example point density and completeness

of the data. Also, other sensors might be sensitive to changes

in illumination conditions. Changing the data acquisition as

well as changing the environment in which the plants grow,

might cause the need for retraining of the network. Even after

retraining, differences in the quality of the data can lead to
differences in the performance of the network. Still, we expect

that the conclusions of this paper remain valid, as the objec-

tive of this paperwas not to reach the highest possible IoU, but

rather to show the added value of spectral data for plant-part

segmentation.
5. Conclusion

The results of this paper demonstrate the ability of a

PointNetþþ-based method to segment partially complete

point clouds of cucumber plants. It was shown that the

availability of spectral data significantly improves the seg-

mentation of stem, petiole, leaf, tendril and non-plant objects,

as well as the overall segmentation quality asmeasured by the

IoUmicro and IoUmacro. The IoUmicro increased from 0.90 to 0.95

and the IoUmacro increased from 0.46 to 0.56 when spectral

data was added. The biggest improvement was observed for

the stem, where the IoU rose from 0.41 to 0.70. The intra-

operator variability showed differences per class and

showed that consistent annotation of point clouds is a chal-

lenging task. The lowest agreement between the two hand-

labelled datasets was observed for the node, having an IoU

of 0.49. Combining the two labelled datasets resulted in a

small but significant improvement of the IoU for stem, petiole,

node and ovary. Finally, we showed that a careful design of

the plant phenotyping experiment can improve the segmen-

tation quality. For all classes, the IoU increased when the

segmentation task contained fewer classes. A practical

example to achieve this would be to provide a distinctive

colour for non-plant objects and to apply crop maintenance

specific for the experiment, removing irrelevant plant parts on

forehand.

This paper focuses on the segmentation of point clouds.

However, to obtain phenotypic data sets, segmentation only is

not sufficient. Additional methods to obtain phenotypic

measurements from the segmented point clouds are needed.

This paper contributes to the understanding and optimisation

of the segmentation process and with that it supports the

development of these follow-up methods. This brings the

overall goal to develop automated phenotyping methods for

complex plant traits one step closer.
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Appendix A
Table A1 e The number of blocks per scan (left (L) and right (R) of the plant gutter) for the 11 measurement days. The last
column shows the average number of blocks per scan for the 11 days. Note that if the two annotated datasets are used, the
number of blocks doubles.

Plant A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 Average

Side of gutter L R L R L R L R L R L R L R L R L R L R L R L R

Measurement day:

1 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 2.9

2 3 3 2 3 4 4 3 4 4 4 3 3 4 4 4 4 5 4 4 4 4 3 2 3 3.5

3 3 4 3 3 4 5 4 5 4 5 4 4 5 4 4 5 5 5 5 4 4 4 3 3 4.1

4 4 4 3 4 5 5 5 5 4 5 4 4 5 5 5 5 6 5 5 5 5 5 4 4 4.6

5 5 5 4 5 5 6 6 6 5 5 5 5 6 6 5 5 6 6 5 6 6 5 4 4 5.3

6 5 6 4 5 6 7 6 6 5 6 5 5 6 6 6 5 7 6 6 6 6 6 5 5 5.7

7 6 7 5 6 7 7 7 7 6 6 6 6 7 7 6 6 7 7 6 7 7 7 5 6 6.4

8 7 8 6 6 8 8 8 8 7 7 6 7 7 7 7 7 8 8 8 8 7 7 6 6 7.2

9 8 9 7 7 8 8 9 8 7 7 7 7 8 8 7 8 8 8 9 8 8 8 7 6 7.7

10 9 9 7 7 8 9 9 9 8 8 7 8 8 9 9 9 9 9 9 9 8 9 7 7 8.3

11 9 10 8 8 8 9 9 9 8 9 8 8 9 10 10 10 10 10 10 10 9 10 8 8 9.0
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