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A B S T R A C T   

In spectral data predictive modelling of fresh fruit, often the models are calibrated to predict multiple responses. 
A common method to deal with such a multi-response predictive modelling is the partial least-squares (PLS2) 
regression. Recently, deep learning (DL) has shown to outperform partial least-squares (PLS) approaches for 
single fruit traits prediction. The DL can also be adapted to perform multi-response modelling. This study pre
sents an implementation of DL modelling for multi-response prediction for spectral data of fresh fruit. To show 
this, a real NIR data set related to SSC and MC measurements in pear fruit was used. Since DL models perform 
better with larger data sets, a data augmentation procedure was performed prior to data modelling. Furthermore, 
a comparative study was also performed between two of the most used DL architectures for spectral analysis, 
their multi-output and single-output variants and a classic baseline model using PLS2. A key point to note that all 
the DL modelling presented in this study is performed using novel automated optimisation tools such as Bayesian 
optimisation and Hyperband. The results showed that DL models can be easily adapted by changing the output of 
the fully connected layers to perform multi-response modelling. In comparison to the PLS2, the multi-response 
DL model showed ~13 % lower root mean squared error (RMSE), showing the ease and superiority of 
handling multi-response by DL models for spectral calibration.   

1. Introduction 

Multivariate data acquired with advanced analytical instruments 
such as spectrometers are rich in chemical and physical information 
related to the fruit analysed (Mishra et al., 2020; Saeys et al., 2019). For 
example, the visible and near-infrared (Vis-NIR) spectroscopy data 
consists of colour information, overtones of fundamental chemical 
bonds such as OH, CH, NH and SH, and light scattering information 
related to the physical structure of the fruit (Nicolai et al., 2007). Due to 
such a rich information captured by advanced analytical instruments, 
often, the user is interested to reap the full benefit of the information and 
try to predict multiple chemicals as well as physical properties in the 
samples (Mishra et al., 2021b). For example, in the case of fresh fruit 
analysis with diffuse reflectance near-infrared (NIR) spectroscopy, NIR 
calibrations are widely used to predict several chemical properties such 
as moisture content (MC) and soluble solids content (SSC) (Walsh et al., 
2020). Another example of where multi-output NIR model was found to 

be helpful was related to the prediction of several types of fats and 
proteins in meat produce (Zomeño et al., 2012) and several soil prop
erties (Ng et al., 2019). Hence, the need to predict multiple response 
variables with a single model explains the need to develop 
multi-response predictor models. 

In the domain of chemometrics, the need for multi-response 
modelling is well understood and a popular method already widely 
used is the multi-response partial least-squares (PLS2) regression (Wold, 
1987; Wold et al., 1984). PLS2 linearly transforms the space of the 
predictors and the responses jointly to obtain a new set of orthogonal 
variables called scores and corresponding loading vectors. The trans
formation is performed to maximize the covariance between the pre
dictor and the response variables. The scores obtained from such a 
transformation can be used to regress either in a least-squares or support 
vector machines approach. Later, to regain back the multi-response 
predictions, the predicted scores for the response variable can be 
internally multiplied with the loading vectors. An enormous amount of 
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application of PLS2 exists in the chemometrics literature as well as in the 
metabolomics community (Mishra et al., 2021b; Stocchero et al., 2019). 
Given the recent (last decade) advances in artificial intelligence (AI) 
related to deep learning (DL) neural networks (NN), DL models are 
emerging as a potential tool to model the multivariate data related to 
analytical instruments such as spectrometers (Mishra and Passos, 2021a, 
b; Puneet and Passos, 2021). The DL approaches have already out
performed the PLS regression modelling, and many examples exist 
where DL has been used to predict single response variables (Mishra and 
Passos, 2021a; Yu et al., 2018b). From the many types of DL algorithms 
currently available (Alzubaidi et al., 2021), there are two types that have 
become popular for spectral modelling. The first is the 1-dimensional 
convolutional neural networks (1D CNNs) which allows joint features 
extraction and subsequent mapping to target variable (Bjerrum et al., 
2017; Cui and Fearn, 2018; Ng et al., 2019), and the second is the 
autoencoders that allow data compression/encoding by comparing 
input features to output representations of the data. These encoded 
features (of lower dimension) can afterwards be used to develop 
regression models (Abdalla et al., 2019; Yu et al., 2018b). So far, 1D 
CNNs have the advantage over autoencoders as it directly combines a 
feature extraction block and a mapping of these features to the property 
of interest in the same model. Although CNNs methods are increasingly 
expanding into the space of applications for multivariate predictive 
modelling, most of spectra-related studies until now have focused on the 
use of 1D-CNNs for prediction of a single response (Bjerrum et al., 2017; 
Cui and Fearn, 2018; Xin et al., 2020; Yu et al., 2018a, b). Nonetheless, 
like PLS2 regression, 1D-CNNs can also be used to model multiple re
sponses (Ng et al., 2019). Multi-target regression (also called 
multi-output or multi-task) modelling with 1D-CNNs can be performed 
by branching the NN structure or by changing the dimensions of the final 
output layer to the desired number of responses. 

This study aimed to compare the multi-response deep spectral pre
dictive modelling with multi-response PLS based analysis for fruit traits 
prediction with NIR spectroscopy. A comparison between a one con
volutional layer DL model with a more complex three convolutional 
layers model was also explored to find if complex DL models can 
outperform simple DL models. Furthermore, the study also aimed to 
explore/validate a novel automated DL model optimisation approach 
based on Bayesian optimization methods to train and optimise the DL 
models efficiently. 

2. Materials and method 

2.1. Data sets 

In this study, a near-infrared (NIR) spectroscopy data set related to 
European ‘Conference’ pear (Pyrus communis L.) fruit was used for the 
prediction to two internal quality properties: moister content (MC) and 
solid soluble content (SSC). All fruit were sourced from a local fruit 
distributor in The Netherlands. A total of 551 pears were measured with 
NIRS and laboratory reference analysis. The spectral measurements 
were performed with a portable spectrometer (Felix F-750, Camas, WA, 
USA) in the range of 310–1135 nm, with a spectral resolution of 8–13 
nm. In this study, the analysis was restricted to the spectral range 
(720–997 nm) because it has most of the information about the chemical 
overtones for moisture (OH) and sugars (CH) (Osborne, 2006). The 
spectrometer used a Tungsten lamp for illumination and a built-in white 
painted reference standard for estimating the reflectance. The data 
acquisition was performed at the mid belly part of the fruit. For all 
batches, after spectral measurements, a 1 cm thick slice was cut from the 
equator of the fruit and divided into four equal parts. Two of these parts 
were used to determine MC and SSC (in relative percentage units %). MC 
was found by recording the weight of the parts before and after drying in 
a hot-air oven (FP 720, Binder GmbH, Tuttlingen, Germany) at 80 ◦C for 
96 h, as performed in a recent study (Mishra et al., 2021a). SSC of 
extracted pear fruit juice was determined using a handheld 

refractometer (HI 96801, Hanna Instruments Inc, Woonsocket, RI, USA) 
as performed in a recent study (Mishra et al., 2021a). The measured 
values for the MC distribution range from 80.12 % to a max of 99.94 % 
(mean = 84.83, std = 1.71), while the SSC distribution ranges from 8.4 
% to 16.4 % (mean = 12.59 %, std = 1.33 %). 

2.2. Data partition and augmentation 

The local measurement performed in the laboratory resulted in a 
total of 551 spectra and corresponding reference measurements. How
ever, 551 samples from a DL modelling perspective can be considered as 
a small data set size and data augmentation was needed. The initial data 
set was partitioned into train (75 %) and test (25 %) subsets using the 
Kennard-Stone (Kennard and Stone, 1969) algorithm. The train set was 
further divided into calibration (70 %) and tuning (30 %) subsets using 
the same K–S algorithm and subsequently augmented using the method 
described in (Bjerrum et al., 2017). Model train and hyperparameters 
optimization was performed with the augmented calibration and tuning 
sets, while the test set was used to measure the final performance of the 
model. A complete scheme of the data split can be found in Fig. 1. 

The augmentation was performed by adding random variations in 
offset, multiplication, and slope to existing samples. This procedure 
simulates slightly different spectra acquisition scenarios (e.g., back
ground lighting, instrumental offsets, etc.) so that for the same target 
value, they were created multiple (slightly different) copies of the 
original spectra. Offset was varied ±0.10 times the standard deviation of 
the training set as described in (Bjerrum et al., 2017). Multiplication was 
carried out with 1 ± 0.10 times the standard deviation of the training 
set, and the slope was adjusted randomly between 0.95 and 1.05. The 
process was repeated 10 times for the training subsets (calibration and 
tuning), thus resulting in a total of 2890 calibration and 1240 tuning 
spectra. Both reference properties were augmented accordingly. The 
data augmentation serves two purposes; first was that it increases the 
data size to become suitable for DL modelling (help avoid overfitting) 
and second, it adds extra variability to the data set such that the models 
can become robust to unseen variations. Finally, all spectra were stan
dardized (mean = 0 and standard deviation = 1). The models were 

Fig. 1. Data partition and augmentation scheme.  
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fitted/trained on the augmented calibration set and continuously eval
uated and improved based on the metrics obtained for the tuning set. 
Once the model was calibrated, as a last step, it was tested on the test set. 
The evaluation metrics chosen are the Root Mean Squared Error (RMSE) 
and the Coefficient of Determination (R2) defined as 

RMSE(y, ŷ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
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√
√
√
√ , (1)  

R2(y, ŷ) = 1 −

∑N

n=1
(yn − ŷn)

2

∑N
n=1 (yn − y)2, (2)  

SDR =
RMSE if ŷ = y

RMSE
(3)  

Where, N explains the number of samples, yn corresponds to a measured 
target value, ŷn explain a predicted target value and y was the mean 
value of the target variable. The Standard Deviation Ratio (SDR) was 
also defined for latter use in results comparisons. 

2.3. Multi-response 1D convolutional neural networks 

In this study, two different 1-dimensional CNNs (or 1D-CNN) archi
tectures were used for comparison purposes. The first architecture, a one 
convolutional layer DL model derived from (Cui and Fearn, 2018), was 
constituted by 1 convolutional layer, with 1 filter (also called kernel) 
with a fixed width and stride = 1, followed by a block of fully connected 
(FC or dense) layers and dropout layers pairs, with different number of 
units each and a final output layer with 2 units (corresponding to target 
variable MC and SSC). The second architecture, a three convolutional 
layers DL model derived from (Malek et al., 2018; Zhang et al., 2019, 

2020) uses 3 convolutional layers with 16, 32 and 64 filters corre
spondently. The first two convolutional layers were followed by batch 
normalization and dropout layers to decrease problems related to 
overfitting and increase the stability during training. This three-layers 
convolutional block was followed by a global average pooling layer 
(GAP), a dense layer with a fixed number of units and a final output 
dense layer with two units. An illustration of the two architectures can 
be found in Fig. 2. The main idea behind the CNN architecture was that 
the convolution layers can extract relevant spectral features (certain 
peaks, valleys, etc.) and the dense layer(s) further combine these fea
tures in a non-linear way to predict the target variables at the output. In 
both architectures, a linear activation function was used in the output 
layers (due to the regression task) and exponential linear unit (ELU) 
activations were used in all the other convolutional and dense layers. 
The units’ weights in all layers were initialized using the ‘He_normal’ 
initialization procedure (He et al., 2015) and optimized (during model 
training) using the adaptive moment optimizer algorithm, Adam 
(Kingma and Ba, 2014). Adam’s learning rate (LR) was automatically 
adapted along the training using an iterative algorithm that dynamically 
decreases the LR to ensure that the best convergence behaviour was 
achieved. The loss function used during the gradient descent optimiza
tion was the mean squared error (MSE) complemented by an L2 penalty 
(β) on the model weights (L2 layer regularization) to decrease the 
problem of overfitting. A fixed batch size of 128 samples and a 
maximum of 500 epochs for training were used in conjunction with an 
‘Early Stopping’ approach to further help prevent overfitting issues. 

The CNNs hyperparameters in both architectures were optimized 
using the Bayesian optimization pipeline recently presented in earlier 
study (Passos and Mishra, 2021). This pipeline uses Tree-structured 
Parzen Estimators (TPE) (Bergstra et al., 2011) and the Hyperband (Li 
et al., 2017) algorithm to effectively probe the hyperparameter space in 
search for optimal solutions and a LR range test to optimize the initial 

Fig. 2. The two deep learning model architectures studied in this work with, 1 convolutional layer (1CL) and 3 convolutional layers (3CL).  
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LR. The optimization process starts by using a base hyperparameter 
configuration and improves it iteratively. Table 1 shows the base initial 
hyperparameter values, their search ranges and step for both architec
tures. For the one convolutional layer architecture, this optimization 
pipeline also acts as Neural Architecture Search method (NAS), since it 
was configured to find the appropriate number of dense and dropout 
layers for the final model. The number of dropout layers effectively 
implemented was always the same as the number of dense layers, but the 
optimization process can find a Dropout Rate (DR) for a certain dropout 
layer to be zero, which in practice was equivalent to disabling it. 

The optimization pipeline fits a CNN model (with a given set of 
hyperparameters) to the calibration set, computes the RMSE on the 
tuning set, and uses that metric as the optimization objective function. 
The computed RMSE in this optimization phase was the averaged RMSE 

for both MC and SSC outputs. For each of the architectures, 1000 models 
were probed during the optimization. As a baseline benchmark for 
comparing the multi-output CNNs results, a PLS2 (Wold, 1987) analysis 
was carried out using the PLS function in the SciKit-Learn library 
(0.23.2) (https://scikit-learn.org/stable/). 

All models and their optimization routines were implemented using 
the Python (3.6) language, TensorFlow/Keras (2.5.0) (Abadi et al., 
2016) and the Optuna 2.9.1 library (Akiba et al., 2019), running on a 
workstation equipped with a NVidia GPU (GeForce RTX 1070 Ti), an 
Intel® Core™ i7-4770k @3.5 GHz and 16 GB RAM, running Microsoft 
Windows 10 OS. 

3. Results 

Prior to showing the DL modelling, a benchmark analysis with PLS2 
was performed. A summary of the results from PLS2 analysis for MC and 
SSC prediction based on this pear fruit data set are shown in Fig. 3. PLS2 
optimization was done by fitting multiple PLS models with varying 
number of Latent Variables (LVs) in the range (1–50) to the calibration 
set and computing their RMSE on the calibration and tuning sets. The 
criteria used to choose the optimal LVs = 7 (Fig. 3 A) was the point 
where the RMSE of the calibration and tuning sets diverge. This criterion 
usually ensures a better generalization capability to the PLS model. The 
RMSE on the test set for MC and SSC were 0.67 % (Fig. 3 B) and 0.65 % 
(Fig. 3 C), respectively. 

The LR optimizations for both architectures were performed using 
the initial hyperparameter values. This procedure allowed to find the LR 
interval where the CNN effectively learns (i.e., the loss improves during 

Table 1 
Ranges used for Neural Architecture Search (NAS) and hyperparameters (HP) 
search in the optimization pipeline. *The initial LR is determined based on the 
LR range finder test.  

Name Type (Base value) [Search 
Interval] / step 

1 / 3 convolutional 
layers (CL) 

Convolutional filter 
size 

HP (25) [5 – 79] / 2 1CL 

Number of Dense 
layers 

NA (3) [1 – 5] / 1 1CL 

Number of units p/ 
Dense layer 

HP (36, 18, 12) [8 – 128] / 
8 

1CL 

L2 regularization β HP (0.003) [0.00025 – 
0.05] / 0.00025 

1CL 

Number of Dropout 
layers 

NA (0) [1 – 5] / 1 1CL 

Dropout rate p/ 
Dropout layer 

HP [0 – 0.6] / 0.005 1CL 

Initial Learning rate HP (*) [1×10− 7 – 0.4] 1CL 
Convolutional 1 filter 

size 
HP (9) [3 – 25] / 2 3CL 

Convolutional 2 filter 
size 

HP (7) [3 – 25] / 2 3CL 

Convolutional 2 filter 
size 

HP (5) [3 – 25] / 2 3CL 

Convolutional 1 filter 
stride 

HP (5) [1 – 11] / 1 3CL 

Convolutional 2 filter 
stride 

HP (3) [1 – 11] / 1 3CL 

Convolutional 2 filter 
stride 

HP (3) [1 – 11] / 1 3CL 

Dropout Rate 1 HP (0.1) [0 – 0.6] / 0.005 3CL 
Dropout Rate 2 HP (0.) [0 – 0.6] / 0.005 3CL 
Number of units in 

Dense layer 
HP (64) [8 – 256] / 8 1CL 

L2 regularization β HP (0.01) [0.00025 – 
0.05] / 0.00025 

3CL 

Initial Learning rate HP (*) [1×10− 8 – 0.1] 3CL  

Fig. 3. A summary of PLS2 calibration, (A) Latent variable optimization (vertical line marks LVs = 7), (B) performance for predicting MC (%) in the test set, and (C) 
performance for predicting SSC (%) in the internal test set. 

Table 2 
Optimized hyperparameters for one and three convolutional layers deep model. 
*The number of dropout layers corresponds to the number of dropout layers 
with DR∕= 0.  

1 Convolutional layer model 
hyperparameters 

Value 3 Convolutional layer model 
hyperparameters 

Value 

Convolutional filter size 7 Convolutional 1 filter size 25 
Number of Dense layers 3 Convolutional 2 filter size 15 
Number of units p/ Dense 

layer 
[64, 120, 
96] 

Convolutional 3 filter size 11 

L2 regularization β 0.002 Convolutional 1 filter stride 7 
Number of Dropout layers* 2 Convolutional 2 filter stride 10 
Dropout rate p/ Dropout 

layer 
[0.4, 
0.05, 0.] 

Convolutional 3 filter stride 7 

Initial Learning rate 0.004 Dropout Rate 1 0.015   
Dropout Rate 2 0.185   
L2 regularization β 0.015   
Number of units in Dense 
layer 

96   

Initial Learning rate 0.003  
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training). The higher LR boundary of the LR range finder test was used as 
initial LR for the Adam optimizer. This procedure suggested an initial LR 
= 0.004 for one convolutional layer model and LR = 0.003 for three 
convolutional layers model. The other optimal hyperparameters found 
for both architectures are shown in Table 2. 

The optimal models found for both DL model architectures where 
then tested on the test set yielding a lower RMSE and better linearity 
than the ones obtained using PLS2. The best performing models found 
during the optimization are shown in Fig. 4. 

To have a more robust measure of the model’s performance, the 
average RMSE and standard deviation for ten repeated runs over a 
maximum of 800 epochs was computed. For one convolutional layer DL 
model, RMSEMC = 0.551 ± 8.8×10− 7 % and RMSESSC = 0.548 ±
9.6×10− 8 %. For the three convolutional layer DL model architecture 
RMSEMC = 0.596 ± 8.1×10− 7 % and RMSESSC = 0.562 ± 6.4×10− 7 %. 
The results obtained with both architectures were similar with an 
advantage for the one convolutional layer DL model, despite the three 
convolutional layers DL model being more complex (37250 trainable 
parameters for three convolutional layers DL model vs. 25122 for one 
convolutional layer DL model). Over the ten repeated runs, the one 
convolutional layer DL model only stopped improving around epoch 
680, while the three convolutional layers DL model stopped training 
earlier, at epoch 450. This shows that the maximum of 500 epochs 
allowed during the optimization task capped the performance of one 
convolutional layer DL model and explains the slightly higher values 
found for the best model of the pipeline (Fig. 4 A, B). Moreover, three 

convolutional layers DL model has a higher number of hyperparameters 
that must be optimized, and that process was much more computa
tionally costly. In the reference workstation used, the optimization batch 
of 1000 models for three convolutional layers DL model took 23 h 30 
min compared to the 18 h 43 min that one convolutional layer DL model 
optimization took. These optimization times completely dwarfed the 
PLS2 optimization that took less than a 1 min to compute. PLS2 
simplicity is still one of its most attractive features and its speed cannot 
be outperformed by any neural models. 

So far, it has been shown that the multi-output DL model out
performed the PLS2 analysis by a substantial fraction for both MC and 
SSC prediction. However, to understand if the multi-output DL model 
provides any advantage over developing two individual single output DL 
models, a performance comparison was performed. Using the one con
volutional layer DL model architecture, two single output DL models 
were implemented and optimized individually using the same method 
and hyperparameters intervals previously described. The structure of 
the DL model the same as the one presented for one convolutional layer 
DL model (Fig. 2) but having only 1 unit in the final output layer. The 
two models are separately trained and optimized (Table 3) to predict MC 
and SSC individually. 

The final metrics (for the average of 10 model runs) on the test set 
obtained on MC were RMSEMC = 0.538 ± 7×10− 7 %, and for SSC, 
RMSESSC = 0.539 ± 8×10− 6 %. In both cases, the performance of the DL 
models improved when compared to their multi-output counterpart. 
This behaviour was expected because the neural network can focus on 

Fig. 4. Performance of multi-response deep learning model for simultaneously predicting moister (MC %) (A, C), and (B, D) soluble solids content (SSC %). Top row 
(A, B) are results obtained with one convolutional layer CNN model and the bottom row (C, D) correspond to results obtained with three convolutional layer CNN 
model, on the best run of the optimization benchmark. 
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learning just one target variable. One of the downsides of having to 
optimize two models was the computational time requirements, as in 
this case, it was around 14 h (1000 models for both MC and SSC). 

4. Discussion 

In this study, the RMSE obtained with PLS based multi-response 
modelling were in the range of ~0.65 % for both the MC and SSC. In 
recent studies using pears, the prediction errors were in the similar 
range, for example, RMSEP ~0.6 % (Sun et al., 2009), RMSEP = 0.68 % 
(He et al., 2016), RMSEP = ~0.6 % (Yuan et al., 2020), and RMSEP =
0.7 % (Cruz et al., 2021). However, the performance of the 
multi-response DL models in this study was better than the results re
ported in the earlier studies using a single response model suggesting the 
superiority of DL models to have better performance even while 
modelling multi-responses. 

One of the important things to consider when modelling multiple 
target variables is their value distribution. In this specific type of data 
(pear NIRS, MC and SSC data) the bibliographic survey and a pre
liminary data analysis showed that the expected errors for prediction for 
MC and SSC are of the same magnitude. This must be considered 

because, during the training of the multi-output DL models, the sto
chastic gradient descent algorithm will try to minimize the combined 
loss (MSE in this case) for both target variables. In the case of regression 
problems for multiple target variables with quite different amplitudes/ 
ranges, the user could use normalization/scaling methods to ensure 
similar ranges of target variables and thus inducing a more balanced 
response from the DL models. One also must account for the fact that 
some target variables are easier to map/predict than others. This means 
that the DL models might struggle to adjust the layers weights to pro
duce a non-linear function approximation to one of the target variables 
in detriment of the other. This seems to be (partially) the case in this 
study, where the single-output CNNs performed slightly better than their 
multi-output analogue. Based on the results obtained from all models 
(CNNs and PLS2) MC was arguably more difficult to predict. This was 
substantiated by the SDR computation, e.g., for the single-output one 
convolutional layer DL model, where SDRMC = 3.124 and SDRSSC =

2.385. In fact, by looking at the training history of the single-output one 
convolutional layer DL model (Fig. 5) one can see that the loss values for 
the MC model starts at much higher values than that of the SSC model. In 
fact, in the first 50 epochs the MC model reduces the loss error 2 orders 
of magnitude. It was expected that in the multi-output DL model this 
behaviour was also present, with MC improvement driving the neural 
network learning in the first epochs and then catching on to the SSC 
learning. 

A final note regarding the modelling presented in this study is that 
the tuning loss (computed for validation) in the optimized DL models 
was lower than the calibration loss (effective training). This was since 
the Bayesian optimization pipeline used the minimization of the error in 
the tuning set as objective function. At this point it might be useful to 
remember that that is different than what is usually found in the stan
dard training process of NNs. During training, the stochastic gradient 
descent algorithm finds the best model parameters (weights and biases) 
to fit the data, but here, prior to that, the Bayesian optimization searches 
for the model hyperparameters that minimizes the pipeline objective 
function thus leading to models that might perform better in the tuning 
set than in the calibration set. This opens the possibility to other types of 
optimization objective functions like e.g., multi-objectives, minimiza
tion of a metric and maximization of another, etc. It can also be used in 
scenarios where a neural network has several output branches that can 
be used, for example, for simultaneous regression type predictions (SSC, 
MC, etc) and classification tasks (cultivar, presence of internal brown
ing, etc.). The goal would be to be able to find a neural network archi
tecture that could effectively separate the spectral responses due to the 
influence of different target variables for the problem at hand. 

5. Conclusions 

This study demonstrated the potential of the DL models to multi- 
response modelling for fruit traits prediction by changing the final 
output layer of the DL to the desired number of responses. The results 
showed that the DL model for simultaneously predicting MC and SSC in 
pear fruit achieved up to ~13 % lower RMSE compared to the traditional 
latent space based multi-response PLS modelling. Furthermore, a simple 
DL model using only one convolutional layer was sufficient to achieve a 
better performance compared to an extraordinarily complex multiple 
convolutional layers-based DL model. From results, it can be understood 
that the spectral data may not require large DL models with multiple 
convolutional layers and as a single convolutional layer model with 
proper optimisation may be sufficient, hence, it is suggested to the sci
entific community to first explore simple DL models before moving to 
more complex neural architectures. Although it is incredibly important 
to perform the proper optimisation of DL model using the automated 
approaches as demonstrated in this study. Since a multi-output model is 
a special case of multiple single output model, hence, as expected, the 
performance of the multi-output DL models was topped by the perfor
mance of the individually developed single-output DL models for 

Fig. 5. Training history for the calibration and tuning losses for the optimized 
single-output models. Blue (dot-dashed) and orange (dotted) lines correspond 
to MC training. Black (solid) and red (dashed) lines correspond to SSC training 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article). 

Table 3 
Optimized hyperparameters for single output 1 convolutional layer deep 
learning models for individual MC and SSC prediction. *The number of dropout 
layers corresponds to the number of dropout layers with DR∕= 0.  

One convolutional layer model 
hyperparameters 

Value (for MC) Value (for SSC) 

Convolutional filter size 7 19 
Number of Dense layers 3 3 
Number of units p/ Dense layer [64, 88, 104] [8, 32, 24] 
L2 regularization β 0.00125 0.00325 
Number of Dropout layers* 2 3 
Dropout rate p/ Dropout layer [0.14, 0.0, 

0.05] 
[0.245, 0.27, 
0.535] 

Initial Learning rate 0.004 0.04  
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different responses. However, in practical industrial settings, where the 
best model performance is desired, multi-output DL models are practical 
and handy as they allow a single model to integrate multiple responses. 
Such a single model can be easy to handle, update and transfer using 
advances DL approaches such as transfer learning. 
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