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Association networks in the Dutch offshore beam trawl fleet:
their predictors and relationship to vessel performance
Darren M. Gillis, Adriaan D. Rijnsdorp, and Jan Jaap Poos

Abstract: Networks play a key role in the functioning of socioecological fishery systems. Most network studies among fish
harvesters examining fishing success utilize interviews and questionnaires. Though insightful, such studies are resource
and time-intensive and thus unlikely to be replicated frequently through time. Alternatively, commercial landings records
and vessel monitoring systems (VMS) provide continuous sources of information that can be used to examine variation in
vessel networks through time. We used VMS data to define association networks among vessels. Relationships were found
between common network metrics and annual performance based on landings data. Associations between vessels were
more closely examined as a function of annual activity, performance, favoured species, and landing port using temporal expo-
nential random graph models. We examined network dynamics across 4 consecutive years. Changes in vessel associations were
clearly related to performance, landing port, and species targeted. Network structure could affect the relationship between catch
and nominal effort, influencing stock assessments and responses to management actions. Our methodology provides a means to
follow network change, identifying situations where more detailed study is warranted.

Résumé : Les réseaux jouent un rôle clé dans le fonctionnement des systèmes socioéconomiques de pêche. La plupart des
études sur les réseaux de pêcheurs qui examinent le succès de la pêche ont recours à des entrevues et des questionnaires.
Bien que produisant des renseignements utiles de telles études sont onéreuses en termes de ressources et de temps et donc
peu susceptibles d’être reproduites fréquemment. Les registres de débarquements commerciaux et les systèmes de surveil-
lance des navires (SSN) fournissent pour leur part des sources d’information continue pouvant être utilisées pour examiner
les variations des réseaux de navires au fil du temps. Nous avons utilisé des données de SSN pour définir des réseaux d’associations
entre navires. Des relations ont été relevées entre des paramètres de réseaux courants et la performance annuelle basée sur les
données de débarquements. Les associations entre navires ont été examinées de plus près en tant que fonctions de l’activité
annuelle de la performance des espèces privilégiées et du port de débarquement en utilisant des modèles de graphes aléatoires
exponentiels temporels. Nous avons examiné la dynamique des réseaux au fil de 4 années consécutives. Les variations des asso-
ciations de navires sont clairement reliées à la performance au port de débarquement et aux espèces ciblées. La structure des
réseaux pourrait avoir une incidence sur la relation entre les prises et l’effort nominal influençant ainsi les évaluations de
stocks et les réactions aux mesures de gestion. Notre méthodologie offre un outil permettant de suivre les variations des
réseaux et cerne des situations nécessitant des études plus détaillées. [Traduit par la Rédaction]

Introduction
The popularity of network analysis in fisheries and fish biology

has increased in recent years with both the increased profile of
network studies in daily life and greater accessibility of software
tools to implement it. Networks have been applied to diverse
aspects of fishery systems, including marine food webs, spatial
connectivity, and fisheries governance (Gaichas and Francis 2008;
Drake and Mandrak 2010; Fliervoet et al. 2016). Network analyses
have been used across scales, from studying angler movements
among reservoirs (Martin et al. 2017) to linking the many dimen-
sions of fisheries (environmental, ecological, sociological, eco-
nomic, and management) under a common analytical framework
(Zador et al. 2017). However, network structure and its change is
not typically incorporated in catch standardizations in fisheries
science (Maunder and Punt 2004), likely due to a lack of longitudi-
nal relational data among fishing vessels in most commercial
fleets. In this study, we are interested in the potential of forming

meaningful network models from commercial fisheries data that
are related to vessel performance derived from landed catch. If
possible, this would provide the potential to incorporate network
relationships more broadly in the fisheries statistics used to fol-
low changes in fish populations.
Networks among fish harvesters are often associated with in-

formation exchange and potential cooperative behaviour (Barnes
et al. 2017; Alexander et al. 2018). Cooperation is more likely when
the ratio of benefits to costs exceeds some threshold (Nowak 2006).
The tendency to cooperate is not fixed, but can change with envi-
ronmental conditions or other external factors. In fisheries, ben-
efits will vary with fish abundance and prices, while costs can
change with weather conditions, fuel prices, or regulatory condi-
tions. For example, increased fuel costs could limit the range of
vessels, concentrate fishing activities, and reduce the benefits of
sharing fishing success from individual fish discoveries. Coopera-
tion among fishers can serve several purposes. It may result in bet-
ter informed fishing decisions that increase fishing success, may
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reduce the risk of loss of life, or share the risk of poor returns
(McGoodwin 1979; Acheson 1981; Wilson et al. 2013). In the appli-
cation of fishing effort, cooperative exchanges of information
about current fish location is paramount (Wilson 1990).
Information networks in fishing fleets have been examined

fromboth theoretical and empirical perspectives. Little et al. (2004)
used a model of the common coral trout (Plectropomus leopardus)
fishery on the Great Barrier Reef to examine the effect of a Bayes-
ian information sharing network on expected trends in fish catch
and abundance. They found that when vessels exchanged infor-
mation the catch was expected to be higher and fish biomass
reduced. They further predicted less variation in annual catch and
profit among the vessels. Mbaru and Barnes (2017) employed net-
work analysis to identify key individuals (information brokers) in
Kenyanfishing communities for the dissemination of conservation
information among six fishing communities. In fisheries gover-
nance, the importance of brokerage between scientists and deci-
sion makers has been demonstrated through network analysis
(Cvitanovic et al. 2017). However, among fish harvesters, brokers
can experience reduced performance when they are known to
share information across social boundaries. Barnes et al. (2016)
found reduced revenues among brokers connecting ethnic groups
in a Hawaiian longlinefishery.
Social networks have been successfully constructed by question-

naires and linked to fishing success in salmonid (Oncorhynchus,
Salmo, and Salvelinus spp.), lobster (Homarus gammarus), and bigeye
tuna (Thunnus obesus) fisheries (Mueller et al. 2008; Turner et al.
2014; Barnes et al. 2017). Yet, constructing social networks from
surveys and interviews can be time-consuming and subject to
nonresponse biases. Furthermore, relationships among fish har-
vesters can change through time. Networks constructed from data
routinely collected in fisheries would greatly extend the potential
application of network analysis in fisheries science and allow their
structure and changes to bemore easily examined.
Themain goal of this paper is to determinewhether vessel associ-

ation networks constructed from routinely collected fisheries data
can be meaningfully related to vessel performance. The networks
will be based upon vessel proximity while fishing. Performance
will be defined using a catch standardization that incorporates
time of year, as well as fishing effort and vessel characteristics. To
this end, we employ generalized additive mixed models (GAMMs;
Wood 2017) to provide an index of vessel performance, classic net-
workmetrics, and correlations to identify general trends (Newman
2018), and temporal exponential random graph models (TERGMs;
Leifeld et al. 2018) to study the dynamics in networks of vessel asso-
ciations in relation to vessel performance while accounting for
other spatially and behaviourally relevant covariates.

Methods

Fishery overview
Our study examined the Dutch offshore beam trawl fishery

from 2007 to 2010 (Fig. 1). We restricted our analysis to fishing
activities occurring at least 12 nautical miles (1 n.mi. = 1.852 km)
from the coast and outside of the regulatory “Plaice Box”. These
“offshore” vessels are typically larger and excluded from inshore
waters. (Pastoors et al. 2000; Beare et al. 2013). The three sources
of data usedwere the commercial landing records, the vesselmoni-
toring system data (VMS; Gerritsen and Lordan 2011; Hintzen et al.
2012), and the monthly price for each species. Data were obtained
from the onsite records of Wageningen Marine Research (P.O. Box
68, 1970 AB IJmuiden, the Netherlands) and online government
sources.
Commercial landing records were provided by every vessel for

each trip. They included a trip identifier, the date of departure
and return from each trip, the port where fish were landed, the
quantity (by weight) of species caught each day, and the location
(International Council for the Exploration of the Sea rectangle;

ICES 1977) where the catch originated. Ports with fewer than six
vessels landing catch were not uniquely identified in our data to
maintain anonymity of the vessels. The species from the fishery
that were available in the landings records were brill (Scophthalmus
rhombus), Atlantic cod (Gadus morhua), plaice (Pleuronectes platessa),
sole (Solea solea), turbot (Scophthalmusmaximus), andwhiting (Merlangius
merlangus). Sole and plaice are known to be current target species
within this fishery and together made up over 87% of the reported
landed weight, while turbot remains a high-valued species caught
less frequently (Gillis et al. 2008).
The VMS records are automatically reported by vessels at sea,

integrating navigation information and satellite communication
to provide real-time monitoring of vessel location from shore. In
addition to its regulatory function, this also augments existing
vessel safety protocols. Records are reported approximately every
2 h and consist of vessel and trip identifier, date, time, position
(latitude and longitude), and speed.
The prices for each species were downloaded from the Statis-

tics Netherlands website (CBS 2019). They were calculated from
the monthly average of auction prices of fresh fish landed in
Dutch ports. The original source of these data was Productschap
Vis (the Dutch Fish Product Board).

Estimating vessel performance
Vessel performance was derived from the total landed catch

throughout the year. To make it comparable among vessels, it
must also account for the amount of fishing (gear deployment),
local differences in travel costs, potential variation in the avail-
ability of fish through the year (due to changes in fish aggrega-
tions and movement), and vessel characteristics. We defined a
metric of vessel performance based upon standardizing the catch
reported on the trip landing records using GAMMs (Wood 2011;
Zuur 2012). Each calendar year was standardized separately to
match the subsequently constructed annual association net-
works (see below). This, and all subsequent analyses, were per-
formed using R and its statistical packages (R Core Team 2018).
The logarithm of catch was used as the response variable to better
approximate normality. The predictor variables were the number
of dayswith reported catch at sea (fishingDays), the number of days
at sea without reported catch (otherDays), standardized (Z-scored)
horsepower (std_hp), the interactions of std_hp with fishingDays
and otherDays, a smooth of the day-of-the-year (1 January = 1) for
the start of the trip (s(dateout)), and a smooth representing the ran-
dom effect of vessels (s(vessel)). The terms fishingDays and other-
Days represented nominal effort (in days�1) and days traveling
without fishing, respectively. The std_hp term represented poten-
tial size- and gear-related vessel differences typically incorporated
into standardizations. The interactions allow for differences in
catch rate and travel efficiencies with vessel size and gear. The
s(dateout) term allowed for temporal (seasonal) variation in catch
through the year due to changes in availability from factors such as
dispersal or changing habitat as well as the balance of mortality
and recruitment. The s(vessel) term used regression splines to esti-
mate simple random effects (Wood 2017; also see R documentation
for mgcv::random.effects) that allowed for differences among ves-
sels unrelated to std_hp. Finally, the similarity between consecu-
tive trips was incorporated as a first-order autoregressive term
(AR1). This was estimated from the residuals of the GAMM without
autocorrelation and then added into a second GAMM estimation
using the bam() function of the mgcv package (Wood 2017). The an-
nual vessel performance estimates were extracted from the final
model as the random effect values (for annual performance). The
standard deviation of the model residuals for each vessel was used
to represent variation in a vessel’s performance.

Network construction
Unlike social networks constructed from observed communi-

cations or surveys of fish harvesters (Mueller 2008; Turner et al.
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2014; Barnes et al. 2017), our networks of vessel association were
constructed from the automated VMS records collected from
each vessel throughout a calendar year. This was performed in
four steps: (i) identifying VMS records associated with trawling,
(ii) determining the number of other vessels trawling in proxim-
ity to each VMS position recorded (simultaneous adjacent trawls),
(iii) defining associations between vessels (edges in graph or net-
work theory; Newman 2018) based upon their number of adjacent
trawls, and (iv) constructing an R network object for analysis.
The VMS records were used both to select offshore records and

to identify trawls. Only records that occurred outside of the Plaice
Box and at least 12 n.mi. beyond the coastline were retained for
analysis. All distances were calculated as great circle distances
using the haversine formula (distHaversine()) in the geosphere
package (Hijmans 2019). Records were classified using their speeds
in normal mixture models estimated with the mixtools package
(Benaglia et al. 2009). Speed was modeled as a mixture of two nor-
mal distributions. An initial mixture was determined using all off-
shore speed values for the study year. The means of each of these
distributions were used as initial estimates in subsequent mixture
models that were fit to the records of each vessel separately. This

allowed for variation in trawling speed among vessels. Finally,
trawling records were defined as records that had speeds within
2 SD of the lower mean from the model. Typically, trawling speeds
were�4–6 n.mi.·h–1 and the highermeans (“steaming” speed) were
�11–13 n.mi.·h–1. The trawling speeds are on average slightly slower
than those found in a previous study (6.6 n.mi.·h–1; Poos et al. 2013)
but are based on more recent years and a larger, more diverse set
of vessels. Only VMS records classified as trawls were retained for
subsequent analysis.
Associations (edges) between vessels were based upon the num-

ber of times their VMS trawling records were in close proximity.
Calculations were expedited by using R’s foreach and associated
packages for parallel computing (Microsoft and Weston 2017).
For each VMS trawl record, all other records within a 32 km ra-
dius and a 24 h period (12 h before and after the record) were
determined using distHaversine() (i.e., associated trawl posi-
tions). These ranges were chosen to represent the potential for
vessel interaction while fishing, based upon expected observabil-
ity of vessels and the geometry of fishing grounds. 32 km is the
distance across which two observers who are both 17 m (56 ft.)
above the water would be expected to see each other under ideal

Fig. 1. Offshore trawl positions of the Dutch beam trawl fleet used in the analysis. The numbered locations are landing ports. Local trawl
intensity is indicated by the strength of the shading, with individual trawls plotted as transparent grey points. The coastlines and
landforms were taken from the rworldmap and rworldxtra packages of R.
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viewing conditions (see table 13 in Bowditch 2002). The exact dis-
tance will vary with vessel sizes and observer locations (bridge,
masts, radar versus visual, etc.). Additionally, this definition was
consistent with a previous investigation into the spatial and tem-
poral aspects of localized fishing by North Sea beam trawlers
(Rijnsdorp et al. 2011). They found that elliptically shaped fishing
grounds were �17 n.mi. long, based upon tow midpoints. They
also found that 80% of the observations were located on local
grounds for less than 24 h. Our definition provides a useful first
approximation for our analysis. The actual range and time period
of vessel interactions will likely vary from our assumptions, even
within the Dutch fleet. Interactions that require direct observa-
tion would likely happen over a shorter range of distances and
times. Alternatively, interactions that result from sharing infor-
mation about successful trawling locations, such as by radio,
may have larger spatial and temporal spans. We account for this
by employing a robust definition of associations, described below.
The number of associated positions among all vessels were tallied
across the entire calendar year to create a matrix of associated
trawl position counts representing spatial vessel interactions.
Two transformations converted the associated trawl position

count matrix into a network adjacency matrix (Luke 2015;
Newman 2018). First, the proportion of tallies attributed to each
of the other vessels was calculated for each vessel. These propor-
tions formed the proportional adjacency matrix. This was then
transformed into a binary network adjacencymatrix by setting all
proportions greater than the 95% quantile value to one and all
others to zero. These calculations emphasized the strongest asso-
ciations among vessels in the networks analysed. By focusing on
the proportions, rather than absolute counts, and by using the
95th percentile as the threshold, rather than a fixed value, our
definition of association will be robust across a range of distances
and time periods. This could break down at extremes where either
all vessels are equally connected (whole North Sea across many
days or weeks) or when counts of co-occurrences between associ-
ating vessels are entirely lacking due to highly restrictive criteria.
By choosing criteria consistent with previous analyses in our fish-
ery, we have avoided those extremes in our study.
Once the annual adjacency matrix was defined, an R network

object was created using the network() function from the statnet
collection of packages (Handcock et al. 2008). This resulted in an
undirected network with vessels as the vertices and edges (valued
0 or 1) representing the strongest associations. It defined a simple
(not bipartite) network that lacked loops (vertices did not link to
themselves). Within the network, vertices were assigned attrib-
utes that distinguished them in the original data: number of
observed trawl positions, species targeting, most common land-
ing port, performance, and variation in performance. We limited
our network analyses to vessels that were active throughout all
4 years studied to focus on changes in their relationships through
time.

Network overview
The resulting annual networkswere visualized using Fruchterman–

Reingold network diagrams (Butts 2008). They were quantita-
tively explored using whole network metrics: number of compo-
nents, number of isolates, connectedness, edge count, and
density (Krackhardt 1994; Newman 2018). The components are
groups of vertices that are interconnected by edges. Isolates are
the number of vertices without connections to any others. Con-
nectedness is defined as the proportion of all pairs of vertices
(dyads) that are connected through one or a series of edges.
Finally, the density of the network is the proportion of all possi-
ble edges that are present. We have no specific a priori hypothe-
sis about the variation in whole network metrics among years.
However, all of the metrics reflect the potential for information
exchange that is often proposed in network studies (Granovetter
1983; Krackhardt 1992). The number of distinct components,

isolated vessels, and connectedness (proportion of vessel pairs
that can reach each other through the network) provide an indi-
cation of how freely information either has flowed or could flow
in the defined network. However, our selection of only the
strongest (upper 5%) associations to form our dichotomous net-
works limits the conclusions that can be drawn when comparing
metrics among years, especially regarding density and edge
count. The relationship between general network structure and
covariates is more revealing.
The influence of categorical covariates on network structure

was examined through network modularity. This measures the
tendency for similar vertices with the same covariate values to as-
sociate (Newman 2018). Such associations are more generally
termed homophily (Goodreau et al. 2009; Newman 2018). The
three covariates examined in this manner were the number of
VMS trawl observations, the proportion of sole in the landings,
and the landing port. These represented the activity level, the
fishing strategy, and the community and region where fishing
occurred. The number of observations and proportion of sole
were made categorical by dividing them into three groups
defined by the 1/3 and 2/3 percentile values. More active vessels
could be more likely to form associations, even by chance, which
should be considered when evaluating other relationships. Pur-
suing similar species could bring vessels together more often, as
could the exploitation of fishing opportunities in the same geo-
graphical region. Finally, the landing port itself could provide an
opportunity to share information (Gatewood 1987; Palmer 1991)
that would result in associations on the water. The null hypothe-
sis for each covariate was estimated by randomizing its value
among network vertices and recalculating network modularity.
This was done 10 000 times to estimate 95% confidence intervals
for the null hypothesis. However, potential collinearities among
the covariates makes these single tests descriptive and explora-
tory rather than establishing strong hypotheses tests (see the fol-
lowing application of TERGMs).

Comparison of each vessel’s networkmetrics with annual
performance
The relationship between each vessel’s position in the network

was compared with its performance (value and variation, see
above) using vertex metrics of centrality: degree, betweenness,
and eigenvector centrality. Degree is the number of edges con-
necting a vertex to others. Betweenness measures the number of
shortest paths between other vertices that pass through a vertex.
Eigenvector centrality is related to a vertex’s connections to
other vertices of high degree. We expect that greater centrality
reflects better access to information within the fleet and the
potential to increase vessel performance. Vessels with higher
degree have direct associations with more vessels and possibly
can draw on a larger information pool. Eigenvector centrality
reflects connections to other individuals of high degree (Newman
2018). Vessels scoring highly on this metric may have access to in-
formation from other well-informed (connected) vessels even
when they have fewer connections in the network overall. Ves-
sels with high betweenness are potential intermediaries or
“brokers” between different network components (Robins 2015).
This could reflect their location on pathways of potential infor-
mation flow between distinct groups of vessels. Access to more
diverse information sources could improve performance, though
poor relationships between the groups being bridged could result
in the opposite trend (Barnes et al. 2016).
A permutation test was used to examine the centrality–

performance relationships in each of the 4 years. First, a Pearson
correlation coefficient was calculated from the observed data.
The performance values were then randomly reassigned to each
vertex, and the correlation with the network metric was recalcu-
lated. This was repeated so that 10 000 correlation values were
generated, including the observed value. The position of the

Gillis et al. 927

Published by Canadian Science Publishing

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

W
A

G
E

N
IN

G
E

N
 U

N
IV

E
R

SI
T

Y
 &

 R
E

SE
A

R
C

H
-L

IB
 o

n 
09

/2
7/

21
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 



observed value in the distribution of simulated and observed val-
ues was used to define the two-tailed probability of obtaining the
observed value under the null hypothesis (Manly 2007).

Predictors of vessel association
The influence of performance and other covariates on network

formation was investigated using temporal exponential random
graph models (TERGMs; Leifeld et al. 2018). TERGMs are an exten-
sion of ERGMs (Luke 2015) that follow network changes (dynam-
ics) through a series of consecutive observations of network
structure (waves). They determine the effect of covariates in a for-
mat similar to logistic regression where the response is the prob-
ability of an edge existing between two vertices. TERGMs allow a
wide variety of covariate definitions, including structural aspects
of the network itself and temporal covariates that can span one
or more time steps. In this way they can account for the depend-
ent nature of observations from the network when determining
the significance of specific predictors. For n vertices, TERGMs pre-
dict the probability of an observing a network represented by the
n � n adjacency matrix N, where Nij = 1 when vertices i and j are
connected and 0 otherwise. Following Leifeld et al. (2018) for a
network that is dependent on its configuration in the previous
time step, this can be stated as

ð1Þ P NtjNt�1; h
� �

¼ exp hT � h Nt;Nt�1
� �� �

c hð Þ

where Nt and Nt–1 are the current and previous network configu-
rations (waves), h is a vector of model coefficients, T is the trans-
pose operator, and h(Nt, Nt–1) is a vector network statistics and
covariates. These statistics may be calculated from the conditions
at t, at t – 1, or across both times. The model can be expanded to
include a longer series of networks (waves) and dependencies
acrossmore than two consecutive waves. The endogenous network
statistics are calculated from the network structure and can include
values such as a vertex’s number of edges (degree) or shared con-
nections between two vertices to a third vertex (shared partners).
The exogenous covariates can be based on vertex or edge attrib-
utes. Finally, c(h) is a normalizing constant representing all possible
edge configurations for the number of vertices in the network. The
probability of observing a particular sequence of networks is the
product of the probabilities of each network in the series, assum-
ing conditional independence (Leifeld et al. 2018).
Within this framework, the probability of a specific edge between

vertices i and j (p ij) can be expressed as

ð2Þ p ij ¼ PðNij ¼ 1 jNt
�ij; N

t�1; hÞ

¼ logit�1
XR

r¼1

u r � d ijð Þ
r Nt;Nt�1
� �

2
4

3
5

where the inverse logit function is defined as

ð3Þ logit�1 xð Þ ¼ 1
1þ exp �xð Þ

and Nt
�ij is the structure of the network at time t considering all

possible edges except the one between i and j. d ijð Þ
r Nt;Nt�1
� �

is the
change in value of the rth network statistic in the vector when
the edge between i and j is toggled between presence and absence
(1 ! 0) in Nt, which may depend on Nt–1. u r is the coefficient in
the TERGM associated with the rth network statistic from the h
vector of network statistics in eq. 1. See Leifeld et al. (2018) and
Morris et al. (2008) for more detail on the model’s development
and notation.
ERGM (and the derived TERGM) formulations allow for increas-

ingly complex network representations (Goodreau et al. 2009;
Harris 2013). When the network statistic in h(.) is only the

number of edges (with coefficient u edge), this model represents a
simple random graph— the classic Erdös–Rényi model (Newman
2018). u edge can also act as a constant term in more complex mod-
els. When only exogenous terms are added to the model, it is
termed “dyadic-independent”. In thismodel the probability of edge
formation is independent of all other edges and is equivalent to a
logistic regression of edge presence or absence. The addition of
endogenous terms, drawn from the structure of the network,
recognizes that the formation of an edge can be dependent on the
presence of, and patterns among, neighboring edges. These form
“dyadic-dependent” models that require Markov chain Monte
Carlo (MCMC)methods to estimate theirmaximum likelihood sol-
utions (Morris et al. 2008). Additionally, in TERGMs the endoge-
nous terms can be calculated across networks going back through
time as well as within the current network.
Our TERGMs of theDutchNorth Sea beam trawlfishery attempted

to predict the association of vessels (network edges) from vessel
covariates (exogenous) and network structure (endogenous),
including network stability through time. This combined the net-
works of all years studied into a single analysis. We limited our-
selves to main effects due to the number of vessels observed
(77 vessels active across all 4 years) to estimate 25 model coeffi-
cients. Collinearity among the exogenous predictors was examined
using generalized variance inflation factors (GVIF; Fox 2015).
The continuous vessel covariates were the number of trawling

observations (nObs) of each vessel (its activity level) during the
year and their performance represented by the random effect
from the earlier GAMM (performance). Both of these covariates
were standardized to mean zero and unit variance to allow the
relative impact of their effects to be directly compared. The num-
ber of observations of a vessel’s fishing position could influence
the probability of detecting associations, such that vessels that
were at sea more would have a greater opportunity to be near
others. Wewished to account for this effect before drawing conclu-
sions about other covariates. Performance is expected to increase
the probability of edge formation since associating with successful
vessels at sea is an obvious way to attempt to enhance catch.
Qualitative vessel covariates (factors) were general fishing

strategy (pSOL) based on the proportion of sole in the annual
catch and the most common landing port (landing port) during
each year studied. For pSOL, three categories (low, medium, and
high) corresponded to the three equally sized quantiles (1/3, 2/3, 1)
of the distribution of the proportion of sole in the annual land-
ings. Differences in the concentration or behaviour of the species
pursued could impact the proximity of fishing vessels. Similarly,
the fishing grounds in the vicinity of each port may differ in the
local distribution offish and impact vessel proximity while fishing.
After accounting for classic main effects, performance, pSol, and

landing port were also examined for the tendency of similar vessels
to associate. For pSol and landing port, homophily (Goodreau et al.
2009) was directly examined. For performance, we tested hetero-
phily, the increased tendency for more different vessels to be
associated, by examining the absolute difference in performance
measures between vessels. These tests relate to assortative asso-
ciations based on fishing success, fishing strategies, and possible
geographic influences or constraints. Fishers on more successful
vessels may be reluctant to share information with less skilled or
inexperienced fishers who may be unable to reciprocate. Pursu-
ing similar species or fishing opportunities in the same regions
could contribute to vessel segregation. Finally, sharing informa-
tion within ports could also result in vessel associations on the
water.
The influence of local network structure (endogenous effects)

was represented by the geometrically weighted degree distribu-
tion (GWD) and the geometrically weighted edge-wise shared
partners statistic (GWESP) (Hunter 2007; Goodreau et al. 2009).
Failing to account for these could bias the examination of other
coefficients by treating dependent edges as independent in the
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analysis, akin to pseudoreplication in ecological studies (Hurlbert
1984). However, the main purpose of these coefficients is to test
for the influence of social interactions on the formation of new
associations within a network. GWD examines the effect of net-
work centralization on the formation of new edges (Levy and
Lubell 2018). It quantifies the centralization of the network in
terms of the number of edges connected to each vertex. In our
fishing networks this would distinguish between a tendency in
vessel associations toward more centralization (following a leader,
for example) and more diffuse arrangements (possibly avoiding
dense clusters). The influence on this statistic of adding an edge to
a vertex of lower degree is greater than adding an edge to a vertex
of higher degree. The strength of this tendency is determined by an
exponent (decay coefficient). GWESP quantifies the effect of exist-
ing edges to a common vertex (partners) on the probability of form-
ing an edge between those two vertices, forming a triangle pattern
(closure). Common partners could enhance the probability of form-
ing a new association through social factors such as a greater ease
in initial introductions or perceived trustworthiness in those that
have existing relationships with other trusted partners (Goodreau
et al. 2009). With GWESP the effect of each additional shared part-
ner on the formation of an edge is not linear, but declines as the
number of partners increases. The rate of this decline also varies
with an exponent. These statistics are more complex than the sim-
ple degree and triangle statistics that preceded them in network
analysis, but they produce network solutions that have better
MCMC convergence properties than the former measures (Hunter
et al. 2008). With simple networks the decay coefficientsmay be es-
timable, but in more complex models like ours this can also result
in failure ofMCMC convergence. In our case they were fixed (1.0 for
GWD and GWESP). The sensitivity of the assumed values was inves-
tigated by repeating the analysis around those values. Only the
results using an exponent of one are presented due to their insensi-
tivity to its value.
To examine the role of different types of covariates in our net-

works, we compared several models of increasing complexity,
beginning with a simple random graph (Erdös–Rényi model net-
work). Subsequently, we examined networks that incorporated—

temporal network stability, endogenous effects, exogenous effects,
and all effects combined. Stability represents potential social iner-
tial across time — the tendency for associations among vessels, or
their absence, to be maintained. Endogenous effects allow the role
of social interactions based upon existing levels of interaction
(number of other associations) and closure (closing triangles with
shared partners). In our models the exogenous factors are charac-
teristics of the vessels that are independent of network structure.
Finally, the full model combined all of these potential influences.
The final model was selected from among these using the criteria
of area under the precision-recall curve (AUC-PR).
AUC-PR provided an index of model fit that was based upon the

successful prediction of edges in the network (Leifeld et al. 2018).
In our study, precision was calculated as the number of correctly
predicted edges divided by the total number of predicted edges
in the network; this estimates the probability of a predicted edge
existing. Recall estimates the probability of an existing edge
being predicted and was calculated as the number of correctly
predicted edges divided by the number of edges in the network.
Typically, when precision is plotted on recall it declines as recall
increases. However, better models maintain higher precisions
through increases in recall, tending towards a horizontal line
near a precision of one. As both precision and recall vary between
zero and one, the area under this curve approaches one as the
quality of the model increases. In contrast, a random model
would result in a horizontal line at a precision equal to a simple
probability of an edge forming. A more detailed development of
precision-recall curves and their use in model selection can be
found in Davis and Goadrich (2006). Pursuing a single metric can
lead to overfitting and requires additional model evaluation.

The goodness-of-fit of the final model was examined in more
detail using the graphical methods of Hunter et al. (2008) and
Leifeld et al. (2018). These compare the distribution of network
statistics in the observed data with those constructed by simulat-
ing networks based upon the estimated TERGM. The network
comparisons examined the degree distribution, dyad-wise and
edge-wise shared partner distributions, triad census, and the dis-
tribution of minimum geodesic distances among all vertices.
Ideally, we expect the observed statistics to fall within the range
of those calculated from the simulated networks.
Though the TERGM described above represented temporal dy-

namics, it did not explicitly address the question of whether per-
formance (standardized fishing success based on catch) drove
network formation or was positively influenced by it. To probe
this more directly, we considered an alternate covariate, the per-
formance from the previous year. The lagged and unlagged per-
formance covariates were highly correlated (r > 0.87 in adjacent
years), which could result in collinearity issues if both were used
in a single model. Therefore, we compared the model using
lagged performance with themodel using current performance.

Results

Fishery overview
The number of vessels participating in the offshore fishery

declined through the 4 years examined, but the number of trips
and total days reporting fishing remained similar after an initial
drop following 2007 (Table 1). The number of days where fishing
was reported by at least one vessel was high (≥360 days) for all of
the years examined. The number of ICES rectangles (300 latitude �
1° longitude; ICES 1977) reporting catches declined during the first
3 years, but then increased in 2010. The number of VMS positions
classified as trawling by our analysis was greatest in 2007. Plaice
had the greatest landed weight among all of the years examined,
while sole landed the greatest value in the first 3 years, declining
over the last 3 years. The variation in market conditions was dem-
onstrated in 2008, where the greatest value of sole landed corre-
sponded to the second lowest quantity of sole landed.

Table 1. Overview of offshore Dutch beam trawl fishery data used in
this study.

2007 2008 2009 2010

Effort
Vessels 111 101 84 82
Trips 4 833 3 678 3 778 3 733
Total days 20 842 15 660 16 239 16 171
Unique days 361 360 360 362
Unique rectangles 84 75 70 78
Trawling positions 220 680 166 971 178 740 164 924

Catch weight (kg)
Sole 8 630 838 7 889 951 8 066 712 7 210 357
Plaice 20 400 926 16 592 445 19 415 917 22 384 679
Turbot 1 926 325 1 436 704 1 423 449 1 258 278
Others 3 316 437 2 695 634 3 088 221 3 147 540

Catch value (e)
Sole 64 741 572 70 124 370 58 641 859 46 420 850
Plaice 57 950 049 46 294 903 47 083 866 56 542 539
Turbot 3 957 194 2 738 756 1 972 968 1 680 051
Others 18 538 315 17 916 475 20 403 300 25 936 734

Note: Effort is described by the number of vessels, trips, reported days
fishing, and the number of trawling positions identified from the vessel
monitoring system (VMS) data. The number of unique days and International
Council for the Exploration of the Sea (ICES) rectangles represent the temporal
and spatial extent of the fishery in each year. Catch for the three most valuable
species and others combined is reported both as weight and value landed.
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The location of fishing trawls (VMS records) in the offshore por-
tion of the Dutch beam trawl fishery are shown in Fig. 1. The VMS
trawls followed the boundary of the Plaice Box (Pastoors et al.
2000; Beare et al. 2013) clearly in the northeast. Concentrations
of fishing activity were greatest in the south, and the effects of
bathymetry on trawling locations were also evident (see van der
Reijden et al. 2018 for a more detailed discussion on bottom
types). Fishing from the main ports studied (six or more vessels)
was not spatially uniform across the whole area fished (Fig. A1).
Vlissingen fishing was concentrated in a small area between the
Straits of Dover and 52°N. Stellendam’s activities were mostly
south of 53°N. Vessels from IJmuiden fished further north, in
some cases off Norway, but mostly below 54°N. The Den Helder
vessels were also mostly active below 54°N, but followed the edge
of the Plaice Box more closely. Harlingen trawls were concen-
trated on either side of 54°N and were bounded strongly by the
Plaice Box. Eemshaven trawls were concentrated immediately
north of the port, between 54°N and 55°N. There was little nota-
ble difference in the overall distribution of trawl locations
among the 4 years studied (Fig. A2).

Catch standardization and vessel performance
The number of days fishing and the other days at sea during a trip

were themost consistent predictors of catch value (log-transformed;
Table 2a). Other predictors (standardized horsepower and its
interactions) varied in magnitude and significance between years.
When significant, catch value was positively related to the number
of daysfished and the number of nonfishing days in the trip. Signif-
icant horsepower coefficients were positive. The interaction of
daysfishing and horsepower was positive where significant. In con-
trast, significant nonfishing days � horsepower interactions were
negative, indicating an effect of nonfishing days on the catch that
declinedwith smaller vessels. All terms were retained in all models
to allow consistent standardization of performance among years.
The smooth terms representing seasonal trends and vessel ran-

dom effects were both significant in all of the years examined
(Table 2b). For each of the years the smooth term indicated a mid-
year dip in total landed value (Fig. 2). The standard deviation of
the random effects appeared to increase throughout the study
but was also similar in magnitude to the variation observed in
themodel residuals in each of the years (Table 2c).

Network overview
In 2007, patterns in association were geographically related

(Fig. 3). The southernmost port (Vlissingen) vessels fished to-
gether in a strongly connected network component. Strongly
connected components have many direct connections among
most or all of their vertices. Stellendam, the next most southerly
port, also formed strongly connected groups, but it also had clear
associations with vessels from IJmuiden and Den Helder. Vessels
from IJmuiden tended to associate with other IJmuiden vessels
and those from Den Helder, though a Stellendam group (right of
center) was situated between two IJmuiden groups. Harlingen
vessels associated most commonly with vessels from Den Helder
and Harlingen, while Eemshaven vessels mostly associated with
others from the same port in a strongly connected grouping. The
general pattern of association followed the northeast–southwest
distribution of ports along the coast. The “other” landing port
vessels are scattered throughout the network and represent
smaller ports that are not identified to preserve confidentiality.
In subsequent years the association networks generated from

the VMS records varied, emphasizing their dynamic nature (Fig. 4).
The connectivity within the networks seemed similar initially and
then noticeably declined (2009, 2010). The geographical nature of
associations was maintained, while more active vessels (larger
nodes in Fig. 4) often had more edges. As the network became less
connected more “star” patterns (unconnected vertices connected
through a central vertex) appeared. The central node was often a

vessel with much fishing activity, but in 2010 the large star forma-
tion of mostly Harlingen vessels had a single vessel from Den
Helder that was more active than the central vessel (Fig. 4, upper
left). All of the networks seemed to have a large component with
few edges between its vertices (weakly connected). Also, strongly
connectedEmmshavenandVlissingen components becamemore evi-
dent as time advanced, and thenetworks becamemore fragmented.

Table 2. Fixed effects from generalized additive mixed model (GAMM)
catch standardization used to define the vessel performance metric (a),
GAMM smooth parameters from catch standardizations used to define
vessel performance (b), and variation in the GAMMs used for catch
standardization (c).

(a) Fixed effects

Year Coefficient Estimate SE t p

2007 (Intercept) 3.870 0.012 320.201 <0.001
fishingDays 0.129 0.002 68.683 <0.001
otherDays 0.065 0.003 23.311 <0.001
std_hp 0.011 0.013 0.837 0.403
fishingDays� std_hp 0.014 0.002 5.712 <0.001
otherDays� std_hp �0.008 0.003 �2.836 0.005

2008 (Intercept) 3.957 0.014 274.096 <0.001
fishingDays 0.119 0.002 55.047 <0.001
otherDays 0.065 0.003 20.581 <0.001
std_hp 0.084 0.015 5.593 <0.001
fishingDays� std_hp �0.001 0.003 �0.384 0.889
otherDays� std_hp �0.017 0.003 �5.371 <0.001

2009 (Intercept) 3.855 0.017 224.461 <0.001
fishingDays 0.137 0.003 50.850 <0.001
otherDays 0.068 0.004 18.751 <0.001
std_hp �0.018 0.017 �1.062 0.288
fishingDays� std_hp 0.026 0.003 8.125 <0.001
otherDays� std_hp �0.003 0.004 �0.833 0.405

2010 (Intercept) 3.915 0.018 216.607 <0.001
fishingDays 0.126 0.003 48.671 <0.001
otherDays 0.071 0.004 19.972 <0.001
std_hp 0.111 0.020 5.430 <0.001
fishingDays� std_hp �0.005 0.004 �1.335 0.182
otherDays� std_hp �0.019 0.004 �4.478 <0.001

(b) Smooth parameters

Year Smooth Est. df F p

2007 s(dateout) 8.008 113.886 <0.001
s(vessel) 103.528 17.661 <0.001

2008 s(dateout) 7.455 112.899 <0.001
s(vessel) 92.789 20.331 <0.001

2009 s(dateout) 7.551 160.563 <0.001
s(vessel) 78.784 23.116 <0.001

2010 s(dateout) 8.074 123.785 <0.001
s(vessel) 77.904 35.409 <0.001

(c) Variation in GAMMs

Parameter 2007 2008 2009 2010

AR(1)-r 0.193 0.145 0.248 0.171
Residual SD 0.099 0.095 0.105 0.105
Vessel RE SD 0.082 0.095 0.101 0.116

Note: (b) Seasonal patterns are captured by the smooth of the first day of the
trip (dateout), and the random effects for each vessel are estimated by the vessel
smooth. Est. df is the estimated degrees of freedom for the smooth. (c) For
variation in the GAMMs used for catch standardization, the autocorrelation
between consecutive trips (AR(1)-r ) is estimated from the residuals of a
preliminary GAMM without autocorrelation and is fixed at the stated value for
the final estimation. SD = standard deviation; RE = random effects.
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The differences among years were quantified with network
metrics (Table 3). The density of the networks and edge counts
followed the same pattern: similar among years but greatest in
2008. The similarity was likely due to their definition based upon
the most highly associated vessels (95th percentile). Density and
edge count are expected to vary together when networks are the
same size, defined here by the vessels active across all years. The
number of distinct network components was greatest in the last
2 years, while the number of isolated vertices among the 77 vessels
was generally low, greatest in 2009. The overall connectedness was
initially high (2007, 2008) and noticeably less in the last years (2009,
2010). Furthermore, the components of the networks were notice-
ably smaller (fewer vertices) and the networks less connected in
the last 2 years, especially 2010 (Fig. 4).
Modularity was significantly related to all of the vertex attrib-

utes considered (Table 4). Each coefficient fell outside of the 95%
confidence interval constructed for the null hypothesis. This
indicates that network structure was influenced by a vessel’s
landing port, activity (discretized as nObs), and fishing strategy
(discretized as pSOL). More insight into these effects was pro-
vided by the subsequent TERGMs.

Comparison of each vessel’s networkmetrics with annual
performance
The network metrics for vertices (vessels) were found to be

related to the vessel’s GAMM standardized performance (Table 5)
for two of the three metrics examined. Degree and eigenvector
centrality were positively correlated with performance in 3 of
the 4 years examined. However, betweenness centrality had no

discernible relationship with performance in any of the years
examined. Vessel network metrics were not significantly corre-
lated with the variation in the vessel’s performance (estimated
fromGAMM residuals), and so these results are not presented.

Predictors of vessel association dynamics (TERGMs)
The model containing all types of predictors provided the best

fit as indicated by the AUC-PR curve (AUC-PRmean among years> 0.60;
Table 6).The poorest fit was seen in the random network, with a
mean AUC-PR among years of �0.05, reflecting the density of the
network. Including the term for network stability improved the
predictive ability of the model by 30%. The additional inclusion of
endogenous (network structure) and exogenous (vessel character-
istics) predictors also improved the model. The addition of exoge-
nous predictors to the stability model resulted in the greatest
improvement from random and a >0.10 improvement over an al-
ternative addition of the remaining endogenous predictors. The
full model, including both endogenous and exogenous predictors,
provides an additional improvement of�0.03.
The full model was also modified to examine the effect of

including lagged performance metrics instead of their current
values (Table 7). This was done to consider the potential for direc-
tional causality, such that the performance of the previous year
would be the strongest influence on vessel associations within
the current year (Leifeld et al. 2018). Ultimately, the model with
unlagged performance metrics had the greatest mean AUC-PR
value. Therefore, the original full model based upon current per-
formance metrics was used as the focus of our subsequent
analysis.
The goodness-of-fit of the selected model was examined prior

to further interpretation. The metrics examined were within the
range of values expected from our TERGM, with some irregular-
ities within those ranges (Fig. 5). The degree distribution was par-
ticularly irregular, but still within the 95% range of the degree
distribution expected from the TERGM. More significantly, the
distribution of geodesic differences between vertices was fit well,
though it was not directly represented in the TERGM, unlike
degree and triads, which are related to GWD and GWESP. The
final AUC-PR shows that this model clearly outperforms that
expected from a random network. More background on interpret-
ing the statistics in these diagnostic plots can be found in Leifeld
et al. (2018) and Hunter et al. (2008). Given the quality of the fit, we
continued to interpret themodel results.
The coefficients of our final TERGM (Table 8) represented the

strength of the relationship between the predictors and the tend-
ency for vessels to form associations between consecutive years.
Specifically, they quantified the effects of the predictors on the
log-odds ratio (logit) of edge formation. The sign of these coeffi-
cients indicated the direction of their effects on the underlying
probability of a connection between two vertices. All coefficients
were found significant and retained in the final model. The
MCMC chains displayed good mixing and no signs of degeneracy,
with the minor exception of the chains estimating homophily in
vessels from Vlissingen, which display some multimodality.
Repeating the analysis with a single homophily term eliminated
this issue but also yielded similar model results, so the more
detailed model was retained. Goodness-of-fit simulations deter-
mined that the degree distribution and edge-wise shared partner
distribution were within the range of values expected from the
final model. The distribution of minimum geodesic distances
showed greater departures from the observed values, but the
observations were usually within the simulated confidence inter-
vals. No appreciable collinearity was detectable among the exog-
enous predictors (all GVIF1/(2�df)< 2; Fox 2015).
The significant endogenous coefficients indicated that internal

processes were relevant to network formation across the years
examined. The edges term corresponded to a constant probabil-
ity (expressed as log-odds) of edge formation without covariate

Fig. 2. Smooth components of the catch standardization
generalized additive mixed models (GAMMs) for each year.
Observations are indicated by the rug plot along the horizontal
axis. The smooths are in the units of the linear predictor, which is
the logarithm of the value of all species records for each trip.
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effects. The positive temporal stability indicated a tendency for
the presence (or absence) of edges to be maintained between
adjacent years (waves). The positive GWD statistic indicated that
the probability of association for a particular vessel was influ-
enced by connections to other vessels. More specifically, it corre-
sponded to a reduction in edge formation to vertices that already
had a large number of edges (i.e., less centralization; Levy and
Lubell 2018). The positive GWESP indicated that edges were more
likely to form between vertices that were already connected by a
third common vertex.
The exogenous coefficients represent the contributions of ver-

tex (vessel) attributes to network formation independent of net-
work structure. Higher numbers of VMS records classified as
trawls (nObs) increased the probability of edges to that vessel.
This was not surprising, since more activity at sea would increase
the probability of encountering other vessels, but needed to be
incorporated to remove its effect from the interpretation of the
other covariates examined.
The TERGM suggested that vessel performance (standardized

catch) strongly influenced the formation of edges, both through
its magnitude and homophily. Vessels with greater performance
were more likely to form edges in all of the years examined. This
effect was more predictive within a year than when considering
performance in previous years, as noted previously. Homophily
was illustrated through the negative heterophily coefficient. It
indicated that edge formation was less probable between more
vessels withmore disparate performance values.

The probability of edge formation differed with catch composition
(representing targeting).Vesselswith ahighproportionof sole in their
landings had a lower probability of forming edges. Vessels with inter-
mediate levels of sole in their annual landed catch had the greatest
probability of forming edges, as indicated by the highest targeting
coefficient (0.73). Themiddle targeting category had a negative homo-
phily coefficient, suggesting that edge formation favours connections
to vessels with different targeting strategies. The high and low sole
vessels both appeared to associatemorewithin their classification.
Landing port influenced the probability of edge formation

through both general port tendencies and homophily among ves-
sels using the same port. The main effect on the probability of
edge formation was lower than that estimated for Eemshaven in
all identifiable ports. Interestingly, the two southernmost ports
were closest to Eemshaven in this estimate. Homophily wasmore
strongly related to the formation of new edges in the northern
ports (Eemshaven, Harlingen, and Den Helder). Among the more
southern ports, it was strongest in Vlissingen.

Discussion
Our analyses established that there was a relationship between

networks constructed from vessel associations at sea and their
annual performance in the Dutch beam trawl fishery. Simple cor-
relations were revealed between performance and both vessel
degree and eigenvector centrality. Vessels that had more associa-
tions with other vessels or that were associated with vessels with
a greater number of associations tended to have better catches.

Fig. 3. Vessel association network of the Dutch offshore beam trawl fleet for 2007. Edges (lines) link associated vessels (vertices). The size of the
vertex indicates the relative number of observed trawling vessel monitoring system (VMS) records for the year. The abbreviations indicate the
most common landing port used by the vessel: VLI = Vlissingen, SL = Stellendam, IJM = IJmuiden, HD = Den Helder, HA = Harlingen, EEM =
Eemshaven. The shading of the vertices indicates the relative latitude of the landing port, becoming lighter for more northerly ports. OTH are
unshaded circles and represent vessels from ports with six or fewer vessels that were not identified to preserve confidentiality.
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The relationship was further supported by our dynamic network
analysis (TERGM) after accounting for landing port, species tar-
geting, and differences in fishing activity among vessels.
Our network correlations were consistent with previous fish-

ery network studies. Turner et al. (2014) constructed a directed
network of information sharing in the Northumberland lobster
fishery based on survey data. They found that network centrality
was positively related to perceived fishing success, though per-
ceived success and actual landings (when available) were only
moderately correlated (rs = 0.66; Turner et al. 2014). Mueller et al.
(2008) examined the relationship between network position and
catch success in the Lake Michigan salmon charter fishery. They
found that captains with more reciprocated edges in a directed
network had greater success, based upon self-reported monthly
average catches. Barnes et al. (2017) were able to compare directed
networks developed from structured surveys with revenue data
from the Hawaiian longline fleet. They found that in-degree was
positively related to revenue on an annual basis, but not within a

trip. However, neither our correlations nor these other studies
accounted for dyadic dependence in network structure when test-
ing the relationship between centrality and performance.
A relationship between network structure and performance

was further supported by our dynamic network analysis (TERGM).

Fig. 4. Vessel association networks for each of the years studied. Symbols are the same as Fig. 3, except landing port abbreviations are
not shown due to limited space.

Table 3. General networkmetrics of annual vessel association networks.

Metric 2007 2008 2009 2010

Size 77 77 77 77
Components 5 3 9 8
Isolates 3 2 5 2
Connectedness 0.850 0.948 0.581 0.206
Edge count 144 171 146 141
Density 0.049 0.058 0.050 0.048

Table 4. Networkmodularity in relation to vessel attributes.

Attribute Year Modularity

H0

Lower 95% Upper 95%

Landing port 2007 0.529 –0.058 0.034
2008 0.521 –0.055 0.029
2009 0.408 –0.060 0.030
2010 0.473 –0.059 0.032

No. of observations 2007 0.107 –0.070 0.055
2008 0.079 –0.065 0.047
2009 0.105 –0.070 0.048
2010 0.162 –0.072 0.055

Proportion of sole landed 2007 0.308 –0.071 0.054
2008 0.295 –0.065 0.047
2009 0.356 –0.070 0.050
2010 0.272 –0.071 0.054

Note: Network structure is estimated from the observed network attributes,
and then for a null model the network is constructed by randomizing the
attribute labels 10 000 times to estimate the 95% confidence intervals of the null
hypotheses (H0). The number of observations (nObs) and proportion of sole
landed (pSOL) were discretized into three equal categories (low, medium, high)
before calculating modularity. For all covariates, the observed modularity
values fell outside of the 95% range expected under H0, indicating significance.
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In addition to controlling for dyadic dependence, we also
accounted for landing port, species targeting, and differences in
fishing activity among vessels. Overall, we can conclude that net-
work position and processes are associated with fishing success.
However, neither direct correlations nor TERGMs established
causality — do vessels associate due to performance or do their
associations enhance their performance?
Uncertainty in causality is a common concern in studies based

upon observational data. Generally, regression-type models imply
Y is caused by X rather than testing it explicitly. Network models
add additional complexity by considering how group effects from
the network impact individuals who are themselves contributors
to those group effects— the classic “reflection problem” described
by Manski (1993). Carefully designed manipulative experiments
wouldmore clearly establish causality in network studies but these
are seldom possible (Wasserman 2013). Robins (2015) discusses the
issue of causality in network models in more depth, including
other complicating factors such as relevant but unobserved covari-
ates, and the value of models that are only consistent with causal-
ity. Ultimately, how we consider causality is limited by the nature
of the data at hand.
Using past values of covariates as predictors (Robins 2015; Leifeld

et al. 2018) more directly represents causality. This takes advant-
age of the “arrow of time” — current events do not influence the
past. Where amodel based upon the past values of a covariate out-
performs contemporary values, the hypothesis of causality is
strongly supported. Unfortunately, our comparison of TERGM
predictors showed the opposite trend. The high correlation in ves-
sel performance between adjacent years further complicates our
investigation of causality — we expect similar prediction of edge
formation from both lagged and unlagged performances. This
may be overcome through a manipulative study that randomized
vessels within the network (unlikely to occur). Insight could also
come from a novel fishery, followed from its beginnings before
associations became established. Such a study should occur when
performance-related skills and relationships are first developing.
The role of early network formation on current dynamics is clear
from the significance of network stability in our TERGM.

However, the significance of the other predictors shows that net-
work dynamics (changes between years) are more than just iner-
tia with a random element.
Our TERGM results also indicated that associations were more

likely to form among vessels with similar performances (expressed
as negative heterophily in the analysis). Preferential associations
among individuals with similar characteristics is well established
in the social network literature. It can occur by building on group-
ings that already exist, such as gender or location (Goodreau et al.
2009; Alexander et al. 2018). It may also occur when individuals
attempt to limit asymmetry in their interactions (Apicella et al.
2012). In fisheries, correlation between vessel interaction and fish-
ing success has been directly observed (Palmer 1990), so it is not sur-
prising that we see it in our analysis. This result is not simply
driven by vessel location or the species pursued, which are both
controlled in our analysis. Instead it suggests a deliberate choice by
vessel masters and communication among them. A causal alterna-
tive is that vessels have highly skillfulmasterswho each have excel-
lent knowledge of fish and vessel distributions. Arriving at the best
time and place together could generate spatial associations with-
out direct interactions among them. However, this is less likely
than the presence of communication and some coordination in
their search for fish, which has long been observed in other fish-
eries (Andersen 1973; Gatewood 1987; Palmer 1991).
The existence of association networks in fishing activity is not

surprising; vessels pursuing aggregated fish (Poos and Rijnsdorp
2007; Rijnsdorp et al. 2011; van der Reijden et al. 2018) are likely
to be found in close proximity. Our vessel networks were formed
from the strongest associations observed on the water. This was
done to emphasize any relationship between associations at sea
and fishing success and to avoid creating networks with a single
component connecting all vessels. However, a network constructed
in this manner may not represent information exchange well. The
network literature distinguishes between strong and weak ties
(Granovetter 1973). Typically, themaintenance of social structure is

Table 5. The relationship between
annual performance (vessel’s random
effect from the standardizing GAMM)
and the vessel’s network centrality,
using nonparametric correlation with
Kendall’s tau.

Centrality Year r p value

Betweenness 2007 0.037 0.757
2008 –0.035 0.770
2009 –0.143 0.213
2010 0.011 0.894

Degree 2007 0.119 0.302
2008 0.260 0.024
2009 0.242 0.038
2010 0.429 0.000

Eigenvector 2007 –0.308 0.011
2008 0.114 0.316
2009 0.463 <0.001
2010 0.533 <0.001

Note: p values were determined by
randomization. After calculating the observed
correlation, performance values were
randomly shuffled among vessels and Pearson
correlation (r ) was recalculated 9999 times.
This estimated the probability of the observed
tau under the null hypothesis based upon
10 000 values assumed to come from the same
distribution.

Table 6. Model fits with varying model complexity.

Model

Area under precision-recall curve

2008 2009 2010 Mean

All terms 0.616 0.521 0.650 0.596
Exogenous and stability 0.604 0.464 0.622 0.563
Endogenous and stability 0.388 0.415 0.545 0.449
Exogenous 0.460 0.370 0.437 0.422
Temporal stability 0.344 0.350 0.401 0.365
Random 0.048 0.066 0.046 0.054

Note: The fit of the model is indicated by the area under the precision-recall
curve, strictly positive with a maximum of one. The model consisting of only
endogenous predictors is not displayed because it did not converge.

Table 7. Model fits with lags of performance metrics.

Model

Area under precision-recall curve

2008 2009 2010 Mean

Current performance and
current homophily

0.683 0.521 0.662 0.622

Lagged performance and
lagged homophily

0.666 0.510 0.649 0.608

Current performance and
lagged homophily

0.675 0.515 0.663 0.618

Lagged performance and
current homophily

0.672 0.513 0.660 0.615

Note: Lags of both performance and the absolute difference in performance
between vertices (homophily examined as heterophily) were considered. The fit
of the model is indicated by the area under the precision-recall curve, strictly
positive with a maximum of one.
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Fig. 5. Goodness-of-fit plots for the final temporal exponential random graph model (TERGM) examining factors influencing the
formation of edges (associations) between vertices (vessels) in sequential annual networks of vessels while fishing. The first five plots
illustrate the fit of the observed network statistics (solid line) to the distribution of those statistics (box and whisker plots) expected if the
TERGM is true. Ideally, the lines should fall within the TERGM’s expectations. The sixth plot is the precision-recall curve (black) that
indicates the success of the TERGM in predicting edge formation in comparison with a random network (grey). Standard errors are
indicated by whiskers around selected points used to construct the TERGM’s curve.
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attributed to strong ties, while weak ties provide better access to
innovative information (Krackhardt 1992). In our case, the informa-
tion of interest is fish distribution and abundance. We expect that
there is a hierarchy to this information. Local fluctuations in abun-
dance due to recent exploitation or fish movements happen con-
stantly. Following them allows vessels tomaximize their success by
moving in a frequency-dependentmanner that is often observed in
fisheries (Rijnsdorp et al. 2000; Gillis 2003; Gillis and Van der Lee
2012). Alternatively, and more rarely, the discovery of unexploited
fishing grounds, pursuit of new species, or the application of novel
gear types represent the type of innovation typically associated
with information flow among weak ties (Granovetter 1983). In our
model, it is likely that the majority of the information exchanged
within a year is “evolutionary rather than revolutionary”, tuning
and building on existing relationships. Thus, our strong ties are
well suited to constructing networks that are relevant tomaintain-
ing profits in an establishedfishery.
We incorporated network structure and vessel properties in

the TERGM primarily to control for their effects when examining
the relationship between network dynamics and vessel perform-
ance. However, these covariates indicated aspects of network
dynamics that were insightful in themselves. We were not sur-
prised that more active vessels had a greater probability of form-
ing associations with others; this would be expected even if
association was random. The relationships between vessel associ-
ation and other vessel characteristics aremore revealing.
The importance of geography was indicated by the significance

of landing port and targeting in both our initial exploration of
the annual networks (modularity) and the subsequent dynamic
network model (TERGM). Proximity is related to association in
many social settings (Rivera et al. 2010), including other fisheries
(Alexander et al. 2018), seniors’ communities (Schafer 2015), and
even online networks that are not obviously constrained geo-
graphically (Huang et al. 2013). In the Dutch trawl fishery, mas-
ters and crews of vessels sharing a common landing port will
have more opportunities to interact on shore and similar access
to the surrounding fishing opportunities. The underlying mecha-
nisms of vessel association may be both social (direct communi-
cations) or environmental (fish concentrations leading to vessel
concentrations). These environmental mechanisms could also
arise from pursuing the same species, where trawling attempts
to match the fine-scale habitat use of that species. Modularity
indicated clustering related to both port and target species in all
of the years studied. The formation of new vessel associations
(TERGM) was also related to both vessel characteristics. The prob-
ability of association varied among the different ports, likely
reflecting local differences in fish abundance and distribution.
Differences in the formation of associations among targeting cat-
egories could reflect differences in fishing tactics in response to
the distribution and movements of the species pursued. For
example, the Vlissingen vessels are known to specialize on sole
in the southern North Sea with chainmats that allow trawling on
rough grounds (Rijnsdorp et al. 2008) and formed strongly con-
nected components in our annual networks. The homophily
observed within the classifications of both landing port and tar-
geting could result from spatial constraints, choice, or a combi-
nation of the two. In contrast with this general pattern, the lack
of homophily in the intermediate sole-targeting category sug-
gests that these vessels prefer to form links with others that fol-
low either a high or low sole strategy. Here, the intermediate
category could encompass vessels that are attempting to follow
one of the other strategies less successfully.
By pursuing the same species from the same home port, vessels

will be drawn together in space. Sharing information about
recent success could also bring them closer in time. This could
occur through either deliberate communication or observation
(Allen and McGlade 1986; Gillis and Showell 2002). Such behav-
iours have been well documented in a wide variety of fisheries,

including tuna seiners (Orbach 1977), North Atlantic trawlers
(Andersen 1973), Maine lobster boats (Palmer 1990), and Pacific
salmon seiners (Orth 1987). The influence of social networks on
targeting and catch composition has also been observed among
small, open boats in a coastal Jamaican fishery (Alexander et al.
2020). Unfortunately, our annual time scale leaves the relative
importance of social influence and environmental constraints
unresolved here. Examining such issues would benefit from both
a shorter time scale and an independently derived social network
that could be compared with spatial and temporal associations at
sea. Such comparisons have proven successful in relating social
networks online to geographical proximity (Crandall et al. 2010).
Communication networks at sea are most likely related to rela-

tionships onshore. Barnes-Mauthe et al. (2015) found that infor-
mation was shared more freely within ethnic groups in the
Hawaiian longline fishery. Both Mueller et al. (2008) and Turner
et al. (2014) found that fishers were more likely to share informa-
tion with others of similar success in a freshwater charter fishery
and a marine lobster fishery. Mueller et al. (2008) also found that
information was shared exclusively within ports, but preferen-
tially with captains at different marinas, while Turner et al.
(2014) assumed a priori that each port formed an independent
network in their analysis. In a series of spatially lagged produc-
tion models, Haskell et al. (2019) established that average reve-
nue per trip in the American Pacific coast groundfish fishery is
predicted best by a model that incorporates information sharing
while in port rather than at sea. The importance of landing port
in network formation seen in our analysis is consistent with com-
munication patterns in other fisheries as well as potentially
reflecting geographical constraints.
Themotivation for collaborationmay vary in pursuit of different

species in the same region. Consistent fish distribution and move-
ment patterns devalue information sharing because fish locations
can more easily become public knowledge. This was observed
when comparing Maine’s sea urchin and lobster fisheries (Wilson
et al. 2013). Among lobster fishers, collaborative actions and selec-
tive information sharing is well documented (Palmer 1990), corre-
sponding to a resource that is biologically variable in space and
time. In contrast, urchin fishers from the same region were highly
individualistic when the resource was initially abundant and ubiq-
uitous. Later, when the urchin population was depleted, intense
competition among fishers hindered collaboration. In the Dutch
trawlers, differences between the behaviour of the target species
could also contribute to the differing probabilities of vessel associa-
tion among the targeting strategies.
Interannual dynamics indicated that in our fishery, the net-

work structure itself was not strongly related to changes in vessel
associations. The endogenous effects of degree (GWD) and triad
closure (GWESP) did not improve the TERGM model as much as
the vessel’s characteristics — both directly and through homo-
phily. This suggests that influence among peers did not play a
major factor in forming associations on the water, which has also
been suggested in other social network settings (Lewis et al.
2012). Without dyadic dependence our model would reduce to a
simpler generalized linear model (in this case, a logistic regres-
sion) without many of the estimation challenges of network
models. We could have reached similar conclusions about the
effects of all of the other covariates. However, given the preva-
lence of endogenous effects in the social network literature (Rivera
et al. 2010), this should not be done a priori. Their explicit consider-
ation strengthens our conclusions, but may not always be required
tomake valid inferences.
Alternate methods of modeling network dynamics may provide

different insights. Stochastic actor-oriented models (Snijders 2017)
have been popular in social network analysis formany years. These
models focus on the formation and dissolution of edges (ties, links)
originating with specific actors (vertices, nodes). In contrast, ERGMs
and their derivatives focus on the prediction of edges existing
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between two vertices. The coefficients generated are rates of edge
formation rather than probabilities and thus are not sensitive to
the time interval between successive network samples (waves).
There has been much recent discussion about the best choice of
methodologies (Desmarais and Cranmer 2012; Block et al. 2019),
but without a definitive resolution. The choice can be made based
on the goal of the study (focus on edges or individuals) or the desire
to explicitly represent individual actions. In practice, the fit of
the model is usually the final arbiter choice for specific data sets
(Leifeld and Cranmer 2019; Desmarais and Cranmer 2012),
though some authors feel that statistical and theoretical consid-
erations should be paramount (Block et al. 2019). In addition to
the TERGMs that we examined, ERGM methods for dynamic

models also include separable exponential random graph models
(STERGM; Krivitsky and Handcock 2014). These split the dynamic
process between waves into two models: edge formation and edge
dissolution. We preferred the TERGM approach to explicitly repre-
sent network stability in a single parameter for ease of interpreta-
tion, though this excluded the use of AICwith the current software
available. Our central goal was not to choose among model meth-
odologies. We were not directly concerned with “microlevel mech-
anisms” that gave rise to the changes observed in the networks
between years (Block et al. 2019). Instead, we primarily wished to
account for known covariates, including network structure, in the
comparison of vessel performance to network dynamics. Other
suggested criteria (Block et al. 2019) that would favour a TERGM
approach are that vessels could possibly associate with several
other vessels simultaneously and that the focus of our question
was better represented by the network edges (vessel associa-
tions) than the actions of specific vessels. Ultimately, we chose
the TERGM methodology to focus on a single model of change
that directly represented the stability of networks edges across
time in addition to the other covariates examined.
Employing GAMMs provided a standardization that mitigated

the impact of seasonal trends in fish availability on our measure
of vessel performance. The smooth components of the GAMMs
indicated a decline in trip values in themiddle of the years that is
consistent across the years examined. This pattern in value landed
follows typical landing trends in the main target species (sole and
plaice; Poos and Rijnsdorp 2007) and seasonal trends in fishing
mortality for both species (Rijnsdorp et al. 2006). In sole, this varia-
tion in offshore catch has been attributed to springtimemovement
into shallow coastal waters to breed and subsequent return to the
offshore feeding grounds. Similarly, seasonal variation in offshore
plaice catches has been related to southward spawning migrations
in autumn followed by a northward return to dispersed feeding
grounds.
Our GAMMs predicted catch within a trip rather than catch per

unit effort. This allowed effort to be represented in several covariates
rather than a single “nominal” effort value. Examining standardized
catch also eliminated the statistical concerns associated with an
assumed relationship between catch and nominal effort (Aljafary
et al. 2019). Effort was incorporated in the model’s predictors as
days fishing and days at sea without fishing. As expected, more
fishing days were related to larger trip landed values. The same
was true for days at sea without fishing, similar to earlier results
in the Dutch trawl fishery (Rijnsdorp et al. 2000). This is consistent
with optimality arguments that postulate more distant fishing
opportunities will only be exploited when catches can account for
travel costs (Sampson 1991), as predicted by the marginal value
theorem from foraging theory (Charnov 1976; Stephens and Krebs
1986). The role of horsepower as a predictor was to account for
advantages such as higher speeds, the ability to deploy gear more
effectively in tidal currents, or to use heavier gear. However, the
utility of this advantage could vary with species and bathymetry.
At least one of the horsepower terms was significant in each of
the modeled years. When horsepower alone was significant, the
catch value per trip increased with horsepower. A positive interac-
tion of horsepower and days fishing suggested that horsepower
increased the efficiency of trawling time. When significant, the
interaction between horsepower and nonfishing days was nega-
tively related to trip value. This indicated a reduction in trip value
with travel for higher horsepower. It is also consistent with mar-
ginal value theorem arguments, since greater horsepower is asso-
ciated with larger, faster vessels that allow the affordable
exploitation of less profitable distant areas. Vessels with lower
horsepower would be expected to exploit more distant areas only
when the expected catch was high. Other covariates such as home
port, fishing strategy, and vessel network metrics were not
included as fixed effects in the standardization so that they could
be examined in the subsequent network analysis.

Table 8. Temporal exponential random graph model (TERGM) of the
probability (expressed as log-odds) of a vessel forming an association
(edge) with another vessel as the network advances one time step
(1 year) in a longitudinal series (a wave).

Predictor Estimate SE p

Endogenous
Edges –7.2884 0.014 <0.001
Temporal stability 1.0425 0.056 <0.001
GWD (a = 1) 2.5872 0.005 <0.001
GWESP (a = 1) 1.1854 0.033 <0.001

Exogenous
No. of observations 0.0003 <0.001 <0.001
Performance
Value 3.4889 0.016 <0.001
Homophily (as heterophily) –3.0985 0.020 <0.001

Targeting (catch composition)
Value (ref. high sole)
Low sole 0.1039 0.034 0.002
Medium sole 0.7321 0.036 <0.001

Homophily
High sole 1.2094 0.019 <0.001
Low sole 1.0136 0.015 <0.001
Medium sole –0.4419 0.018 <0.001

Landing port
Factor (ref. Eemshaven)
Harlingen –0.5339 0.023 <0.001
Den Helder –0.5684 0.038 <0.001
IJmuiden –0.4734 0.030 <0.001
Stellendam –0.2874 0.020 <0.001
Vlissingen –0.2385 0.009 <0.001
Other ports 0.2112 0.010 <0.001

Homophily
Eemshaven 1.2398 0.010 <0.001
Harlingen 1.9921 0.013 <0.001
Den Helder 1.2521 0.019 <0.001
IJmuiden 0.9019 0.015 <0.001
Stellendam 0.7350 0.010 <0.001
Vlissingen 1.1590 0.020 <0.001
Other ports 0.2267 0.009 <0.001

Note: This probability of a function of exogenous (network independent)
factors, endogenous factors (network structure), and stability in associations (or
their absence — memory) between waves. The edge coefficient is a constant (no
covariate). GWD is the coefficient for the geometrically weighted degree
distribution, GWESP is the coefficient for the geometrically weighted edgewise
shared partner distribution. Both GWD and GWESP have a decay coefficient (a ) of
1. The relationship of edge formation to vessel performance is examined in terms
of performance value and homophily (the tendency for vessels with similar
performances to associate). The latter is represented by heterophily, calculated as
the absolute difference between vessel performances. The influence of targeting
(proportion of sole in annual catch) and landing port are examined both as simple
factors (examining differences among categories) and as homophily coefficients
examining preferential associations among similar vessels.
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Using the vessel random effects of the GAMMs as the annual
performance measure allowed vessels to be equitably compared.
Each random effect is essentially a vessel-specific variation in
expected catch that is standardized among all vessels. Vessel
effects defined this way incorporate all vessel differences not ex-
plicitly represented in the model’s covariates. In our standardiza-
tion, it removed the effects of vessels’ physical characteristics as
well as seasonal influences on catch where vessels fished more at
different times of the year.
Our study highlights a number of directions for future research

in networks among fish harvesters. The deeper exploration of
causality discussed earlier suggests additional analysis with differ-
ent models, shorter time steps between waves, or both. Shorter
intervals (months or weeks) would be more sensitive to possible
causal relationships in the fleet on a scale more comparable to a
single trip. Examining the relationship between social networks
on shore and the association networks on the water would require
additional data. In the Dutch beam trawl fleet, the home ports and
the landing ports are similar, providing poor contrast to investigate
the relationship between the two networks. However, the tradi-
tional fishing port of Urk does not act as a landing port. Instead, its
vessels fish from a number of other coastal Dutch ports. The more
traditional construction of social networks based on surveyswithin
Urk would allow the comparison of associations within the com-
munity with landing port use and vessel association at sea. Addi-
tionally, the recent introduction of electric pulse fishing (van
Marlen et al. 2014) provides a unique opportunity to study the
spread of innovation through the fleet. This may reveal the role of
weak ties in the fishery more effectively than our association
network.
The relationship between vessel performance and vessel net-

works could also be incorporated into catch standardizations.
Given the relatively small effect of covariates related to degree
and closure in our TERGM, we may be tempted to ignore them
and use generalized linear mixed models or GAMMs as has been
done in the past (Maunder and Punt 2004). However, given the
ability to construct association networks from vessels at sea, net-
work metrics could be easily included in these models, as was
done in Barnes et al. (2017). Where possible, and especially when
fleet structure is known to be changing, we recommend examin-
ing the underlying changes in vessel interactions through net-
work-based covariates in catch standardizations.
The methodology of this paper provides a framework to exam-

ine novel questions about vessel association and success in other
fisheries. Our standardization of performance using GAMMs mit-
igates the effect of temporal variation in landed value that is the
result of seasonal fluctuations in fish availability in subsequent
analyses. The TERGMs incorporate both typical fishery covariates
and endogenous network characteristics, providing hypothesis
tests that more accurately represent the precision of the coeffi-
cients. We have established that vessel performance is related to
network dynamics, but this is just the first step towards a richer
investigation of effort dynamics in the North Sea.
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Appendix A
These appendix figures provide a more detailed breakdown of

the VMS locations illustrated in Fig. 1. They illustrate the different
locations exploited from each port and the similar spatial exploitation
among the years studied.
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Fig. A1. The VMS estimated location of trawls from each of the
landing ports studied for all years.
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Fig. A2. The VMS estimated location of trawls from all landing ports examined for each of the years studied.
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