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The origin of the eukaryotic cell is a major open question in biology. Asgard archaea are the closest known prokaryotic relatives of
eukaryotes, and their genomes encode various eukaryotic signature proteins, indicating some elements of cellular complexity prior
to the emergence of the first eukaryotic cell. Yet, microscopic evidence to demonstrate the cellular structure of uncultivated Asgard
archaea in the environment is thus far lacking. We used primer-free sequencing to retrieve 715 almost full-length Loki- and
Heimdallarchaeota 16S rRNA sequences and designed novel oligonucleotide probes to visualize their cells in marine sediments
(Aarhus Bay, Denmark) using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). Super-resolution
microscopy revealed 1-2 um large, coccoid cells, sometimes occurring as aggregates. Remarkably, the DNA staining was spatially
separated from ribosome-originated FISH signals by 50-280 nm. This suggests that the genomic material is condensed and spatially
distinct in a particular location and could indicate compartmentalization or membrane invagination in Asgard archaeal cells.
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INTRODUCTION

The origin of the eukaryotic cell is a major unresolved puzzle in
the history of life. Several lines of evidence suggest that a merger
between an archaeal host [1] and an Alphaproteobacteria-related
symbiont [2] constituted a key event in the evolution of the
eukaryotic cell. The archaeal host was likely an ancestral Asgard
archaeon, as recent phylogenomic analyses showed that the
Asgard archaea superphylum (e.g., Loki-, Thor-, Odin-, Heimdall-,
and Helarchaeota) comprises the closest known extant prokaryotic
relatives of eukaryotes [1, 3, 4]. Genomes of Asgard archaea are
also enriched in eukaryotic signature proteins (ESPs) that are
homologous to eukaryotic proteins involved in membrane
trafficking, vesicle formation and/or transportation, protein
ubiquitinylation, and cytoskeleton formation [1, 3, 4]. The presence
of these ESPs suggests that the archaeal host already possessed
some building blocks of cellular complexity before the first
eukaryotic cell emerged. Microscopic investigations of the first
cultured Lokiarchaeon “Candidatus Prometheoarchaeum syntro-
phicum” strain MK-D1 revealed thin, sometimes branched,
membrane protrusions with cytosolic connection but no visible
intracellular membrane structures [5]. This provided the first
glimpse into the cell biology of Lokiarchaeota. However, Asgard
archaea are highly diverse [6] and the exact branching point of
eukaryotes within the superphylum is still uncertain [1, 7].
Therefore, visualization of Asgard archaeal cells in the environ-
ment is essential for a comprehensive understanding of their
cellular structure and morphological diversity. Before their
metagenomic identification, when Lokiarchaeota were known as
Marine Benthic Group B, Knittel and colleagues visualized their

cells in marine sediments [8] yet methodical limitations did not
allow to discern single cells and to draw any in-depth conclusion
on their morphology. A recent study suggested that Loki- and
Heimdallarchaeota cells from brackish lake sediment had highly
diverse morphologies and cell sizes up to 12 um, allegedly with
condensed DNA [9].

Here, we visualize Loki- and Heimdallarchaeota cells from
marine sediments (Aarhus Bay, Denmark) by catalyzed reporter
deposition-fluorescence in situ hybridization (CARD-FISH) and
super-resolution microscopy. We captured the 16S rRNA sequence
diversity of these two phyla using a recently established primer-
free rRNA sequencing method [10]. Asgard archaeal 16S rRNA
sequence diversity is poorly covered by common 16S rRNA gene
sequence primer sets [10]. The primer-free approach therefore
enabled us to obtain almost full-length 16S rRNA sequences of a
diverse range of Loki- and Heimdallarchaeota populating the
sediments and to design two specific oligonucleotide probes with
high coverage for each of the two phyla. This allowed
unambiguous visualization of Loki- and Heimdallarchaeota cells
using dual-probe hybridizations. Our results invariably show 1-2
pum large, coccoid cells with spatially separated DNA and
riboplasm, suggesting a potential for compartmentalization or
membrane invagination in Asgard archaeal cells.

RESULTS AND DISCUSSION

We retrieved 684 Lokiarchaeota and 31 Heimdallarchaeota near-
full-length 16S rRNA sequences from sequence libraries generated
from sediment sampled at 27 m water depth in 5cm intervals
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Fig. 1 Phylogenetic analysis and depth distribution of Loki- and Heimdallarchaeota 16S rRNA sequences from Aarhus Bay sediments.
A Maximum likelihood phylogeny of Loki- and Heimdallarchaeota operational taxonomic units (OTUs) and related sequences selected from
the SILVA database (v. 132). Specificities of FISH probes and the number of sequences constituting each OTU are also depicted. TACK archaea
were selected as outgroup. Bar: 0.1 substitutions per nucleotide position. B Heatmap and relative abundances of Loki- and Heimdallarchaeota

sequences at different sediment depths.

between 0 and 40cm below seafloor (cm.b.sf) in Aarhus Bay
(Supplementary Information). The maximum relative read abun-
dance of Lokiarchaeota was 1.6% at 15-20 cm.b.s.f. and 0.1% for
Heimdallarchaeota at 10-15 cm.b.s.f. (Fig. 1). The sequences were
grouped into 58 Loki- and 3 Heimdallarchaeota operational
taxonomic units (OTUs) using a 98% sequence identity threshold
and formed three distinct Lokiarchaeota clades and one mono-
phyletic Heimdallarchaeota cluster (Fig. 1). The primer-free
sequencing of RNA extracts enabled us to broadly sample the
Asgard archaeal diversity in Aarhus Bay sediments and provided a
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solid database to design oligonucleotide probes for their
visualization.

Based on the newly retrieved full-length sequences, we
designed four novel oligonucleotide probes specifically targeting
Loki- and Heimdallarchaeota 16S rRNA with high coverage (Fig. 1,
Supplementary Table 1). Probe LOK1183 targets almost all
sequences in Lokiarchaeota Clade A, which contains 92% of the
retrieved Lokiarchaeota sequences from Aarhus Bay sediments,
while probe LOK1378 targets 85% of the sequences in all three
Lokiarchaeota clades. Probe HEIM329 and HEIM529 each target
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HEIM329 - FITC HEIM529 - Alexa594 DAPI Overlay

LOK1378 - FITC LOK1183 - Alexa594 Overlay

Fig.2 Visualization of Loki- and Heimdallarchaeota cells in Aarhus Bay sediments by CARD-FISH. Probe names and the dyes are indicated
for each panel. Representative cell morphotypes were imaged in a super-resolution structured illumination microscope (SR-SIM; panels (A), (B),
(D), (E)) and confocal laser scanning microscope (CLSM; panels (C) and (F)). For SR-SIM images, single slices from the center of the focal plane
are shown. For CLSM images, three-dimensional (3D) surface reconstructions are depicted. All z-stack images taken in CLSM are included in
Supplementary Fig. 2. 360° rotation of 3D reconstructed images are also provided in Supplementary Video. Negative and positive controls are
shown in Supplementary Fig. 1 together with large ovoid and filamentous false-positive signals. Images are representative of dual labeled
Lokiarchaeota (n = 72) and Heimdallarchaeota (n = 70) cells in five individual experiments using two different sediment cores taken from the
same sampling site. The scale bar is 1 uym.
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>97% of the retrieved Heimdallarchaeota sequences. All designed
probes cover >89% sequences in their target groups in the SILVA
database (v. 132). The two Lokiarchaeota probes match 5 and 10
different non-target sequences in the SILVA database (v. 132),
respectively, while the Heimdallarchaeota probes have no match
outside their target group. The broad coverage and high
specificity suggest that our probes can also be used to detect
Loki- and Heimdallarchaeota in other habitats. Furthermore,
designing two probes for each phylum enabled us to identify
Lokiarchaeota clade A and Heimdallarchaeota cells via double
hybridizations with two distinct dyes and thus confidently
distinguish true- and false-positive signals (Supplementary Fig. 1).
The general archaeal probe ARC915 also targets Lokiarchaeota
and thereby provided yet another control for specific hybridiza-
tion of the two Lokiarchaeota-specific probes, while the non-sense
probe NON338 served as the negative control. We also designed
competitor probes to minimize the theoretical false-positive
hybridizations with the most frequent one and two mismatches
[11] in the SILVA database (v. 132) and helper probes to facilitate
probe binding [12]. This comprehensive experimental design with
appropriate controls enabled reliable detection of low-abundant
Loki- and Heimdallarchaeota cells in Aarhus Bay sediments.

We used both confocal laser scanning microscopy (CLSM) and
three-dimensional super-resolution structured illumination (SR-
SIM) microscopy for detailed imaging of dual-labeled Loki- and
Heimdallarchaeota signals. Loki- and Heimdallarchaeota cells
featured coccoid shapes and often formed clusters (Fig. 2)
(Supplementary Fig. 2). Based on SR-SIM imaging, Lokiarchaeota
cells (n = 18) were 1.27 + 0.24 uym in diameter and 1.43 £0.25 pum
in length, while the width and the length of Heimdallarchaeota
cells (n=11) were 1.30£0.20 pm and 1.37 £ 0.21 um, respectively
(Supplementary Table 2). In addition, we observed a few large (>3
pum) ovoid and filamentous cells, resembling some of the
Lokiarchaeota morphotypes reported from lake sediment [9];
however, we never detected these cell types in double hybridiza-
tions with two probes (Supplementary Fig. 1P-R), and therefore
consider them false-positives.

The DNA stain (4/,6-diamidino-2-phenylindole; DAPI) in the
FISH-identified Loki- and Heimdallarchaeota cells was consistently
confined to a single spherical central or lateral position (Fig. 2),
corroborating the signal pattern suggested for some of the Asgard
archaeal cells in lake sediments [9]. Using SR-SIM, we could image
a clear gap, which separated the DNA from the ribosome-
originated FISH signals with an average width of 0.18 £ 0.07 ym in
Heimdallarchaeota and 0.16+0.13 um in Lokiarchaeota cells
(Supplementary Table 2). The spatial separation of DNA and
ribosomes in Loki- and Heimdallarchaeota cells represents an
unusual observation since DAPI and FISH signals generally overlap
partially or completely in prokaryotic cells [13]. Accordingly, SR-
SIM imaging of benthic bacteria in Aarhus Bay sediments
demonstrated the prevalence of this overlapping signal pattern
(Supplementary Fig. 3). Also, the separated DNA signal observed in
Loki- and Heimdallarchaeota cells appeared different from the
condensed DNA formation previously described, for example, in
Escherichia coli cells [14] and the Thaumarcheota Cenarcheum
symbiosum [15] and Nitrosopumilus maritimus [16]. To corroborate
this, we performed SR-SIM imaging of CARD-FISH-labeled E.coli
and N. maritimus cells. Although their DNA was condensed in
particular cellular locations, their FISH and DAPI signals always
overlapped, indicating that their DNA and ribosomes are partially
co-localized and not fully separated (Supplementary Fig. 4).

To assess whether the gap between DAPI and FISH signals was
indicative of an internal membrane, we tried various dyes to stain
membranes of the CARD-FISH-labeled Asgard archaeal cells
(Supplementary Information). However, none of these stainings
was successful, not even for the outer cell membrane, most likely
because cell membranes were disintegrated during the CARD-
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FISH protocol. We then used wheat germ agglutinin (WGA), a
lectin primarily binding to N-acetyl-D-glucosamine but also other
glycoconjugates and oligosaccharides [17] to at least be able to
visualize the surfaces of Loki- and Heimdallarchaeota cells. WGA
consistently decorated a cell surface that enclosed the proximal
FISH and DAPI signals, suggesting that both signals originated
from the same single cell (Supplementary Fig. 5). The WGA
staining also demonstrated extracellular structures connected to
some Heimdallarchaeota cells (Supplementary Fig. 5). These
structures appear different than the membrane protrusions in
the first cultured Lokiarchaeon “Ca. P. syntrophicum”, which has a
considerably smaller cell size (550 nm in diameter) and does not
possess the separated DNA and ribosome signals [5]. Our
observations therefore indicate diverse cellular organizations
and morphotypes within Asgard archaea superphylum.

Our combined results suggest that genomic material is
condensed and spatially distinct from the riboplasm within the
detected Loki- and Heimdallarchaeota cells. Considering the
anticipated role of Asgard archaea in eukaryogenesis, in particular
the presence of ESPs potentially involved in dynamic cytoskeleton
formation [18] and membrane remodeling [4, 19], the separation
of DNA- and ribosome-derived signals might be indicative of
cellular compartmentalization. Alternatively, the observed pattern
could be the result of a membrane invagination to form a nucleoid
region, similar to membrane organizations for example in
Planctomycetes cells [20] or Atribacter laminatus [21].

Our study demonstrates the first visualization of diverse Loki-
and Heimdallarchaeota cells in the marine environment and
provides a protocol for reliable in situ imaging of rare
microorganisms in environmental samples. Future research should
address the ultrastructure of Asgard archaeal cells using electron
microscopy. This would help to elucidate the cell biology of
Asgard archaea and provide insights into the emergence of
subcellular complexity of the eukaryotic cell.
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