
Geoderma 405 (2022) 115396

Available online 9 September 2021
0016-7061/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Bayesian approach for sample size determination, illustrated with Soil 
Health Card data of Andhra Pradesh (India) 

D.J. Brus a,*, B. Kempen b, D. Rossiter c,b, Balwinder-Singh d, A.J. McDonald c 

a Biometris, Wageningen University and Research, PO Box 16, Wageningen 6700 AA, Netherlands 
b ISRIC – World Soil Information, PO Box 353, Wageningen 6700 AJ, The Netherlands 
c Section of Soil & Crop Sciences, New York State College of Agriculture & Life Sciences, Cornell University, Ithaca, NY 14853, USA 
d International Maize and Wheat Improvement Centre (CIMMYT), National Agricultural Science Centre Complex (NASC) Dev Prakash Shastri Marg New Delhi, G2, B 
Block, Delhi 110012, India   

A R T I C L E  I N F O   

Handling Editor: Kristin Piikki  

Keywords: 
Pedometrics 
Soil fertility 
Mixed Bayesian-likelihood approach 
Frequentist approach 
Design parameters 
Credible interval 

A B S T R A C T   

A crucial decision in designing a spatial sample for soil survey is the number of sampling locations required to 
answer, with sufficient accuracy and precision, the questions posed by decision makers at different levels of 
geographic aggregation. In the Indian Soil Health Card (SHC) scheme, many thousands of locations are sampled 
per district. In this paper the SHC data are used to estimate the mean of a soil property within a defined study 
area, e.g., a district, or the areal fraction of the study area where some condition is satisfied, e.g., exceedence of a 
critical level. The central question is whether this large sample size is needed for this aim. The sample size 
required for a given maximum length of a confidence interval can be computed with formulas from classical 
sampling theory, using a prior estimate of the variance of the property of interest within the study area. Similarly, 
for the areal fraction a prior estimate of this fraction is required. In practice we are uncertain about these prior 
estimates, and our uncertainty is not accounted for in classical sample size determination (SSD). This deficiency 
can be overcome with a Bayesian approach, in which the prior estimate of the variance or areal fraction is 
replaced by a prior distribution. Once new data from the sample are available, this prior distribution is updated 
to a posterior distribution using Bayes’ rule. The apparent problem with a Bayesian approach prior to a sampling 
campaign is that the data are not yet available. This dilemma can be solved by computing, for a given sample 
size, the predictive distribution of the data, given a prior distribution on the population and design parameter. 
Thus we do not have a single vector with data values, but a finite or infinite set of possible data vectors. As a 
consequence, we have as many posterior distribution functions as we have data vectors. This leads to a proba
bility distribution of lengths or coverages of Bayesian credible intervals, from which various criteria for SSD can 
be derived. Besides the fully Bayesian approach, a mixed Bayesian-likelihood approach for SSD is available. This 
is of interest when, after the data have been collected, we prefer to estimate the mean from these data only, using 
the frequentist approach, ignoring the prior distribution. The fully Bayesian and mixed Bayesian-likelihood 
approach are illustrated for estimating the mean of log-transformed Zn and the areal fraction with Zn- 
deficiency, defined as Zn concentration <0.9 mg kg − 1, in the thirteen districts of Andhra Pradesh state. The 
SHC data from 2015–2017 are used to derive prior distributions. For all districts the Bayesian and mixed 
Bayesian-likelihood sample sizes are much smaller than the current sample sizes. The hyperparameters of the 
prior distributions have a strong effect on the sample sizes. We discuss methods to deal with this. Even at the 
mandal (sub-district) level the sample size can almost always be reduced substantially. Clearly SHC over- 
sampled, and here we show how to reduce the effort while still providing information required for decision- 
making. R scripts for SSD are provided as supplementary material.   

1. Introduction 

This research was motivated by the desire to evaluate the sampling 

efficiency of the nationally-mandated Soil Health Card (SHC) Scheme in 
India. This scheme specifies soil sampling at a very high density every 
two years. For example, Andhra Pradesh (AP) state (162,975 km2) in 
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Cycle 2 (2017/18–2018/19) recorded 2,393,8875 observations, a den
sity of 14.7 km− 1, or one per 6.8 ha. This is consistent with the SHC 
policy of one soil sample per 10 ha in rainfed and one per 2.5 ha in 
irrigated areas. Due to the large scope of the programme and the logistic 
challenges, not all observations are valid: duplicated records of the same 
observation (e.g. the 2.4 M SHC records generated in Cycle 2 in AP were 
generated from samples taken at 1.6 M unique geographic locations), 
coordinates of sampling locations are not agreeing with recorded 
administrative unit (district/mandal), or data values outside permissible 
ranges. Sampling locations are not necessarily revisited in subsequent 
sampling rounds. 

The SHC data are used for soil fertilization recommendations at the 
field level. The very high sampling density, however, results in opera
tional barriers. Staff time to collect mandated soil samples is often 
insufficient and laboratory throughput capacity insufficient for the task 
of ensuring timely high-quality analysis. Costs are high: an estimated 
USD 85 M. The question is whether this high investment in soil survey is 
cost-efficient. Would a reduction of the number of sampling locations 
also suffice, and perhaps increase the quality and consistency of the 
sampling effort? 

To adapt an existing sampling design, the aim or aims of the survey 
must be made explicit, as well as the constraints in terms of the budget or 
the required quality of the survey results (de Gruijter et al., 2006). For 
instance, when the data are used for estimating a population mean, e.g. 
the mean of the residual nitrate concentration in the topsoil of a selected 
district in Andhra Pradesh, how precise should this estimated mean be? 
Or, if the data are used for mapping the Zn concentration in the topsoil of 
Andhra Pradesh, how precise (i.e., at each mapped location how close to 
the true value) should this map be? What precision level is needed for 
decision making? 

The Soil Health Card scheme aims at answering several research 
questions. The SHC scheme was originally designed to address agricul
tural production challenges at field-scale but the data are also used to 
develop soil information at the level of an administrative unit1 within a 
state (e.g., districts or mandals) for policy support. 

In this paper we focus on estimating the current status of soil fertility 
parameters at the level of districts and mandals. So the main question is 
how many sampling locations should be sampled in order to estimate the 
spatial means of soil fertility parameters of the various districts, given a 
precision requirement on these estimated means, for instance in terms of 
the standard error or the length of a 95% confidence interval. This type 
of information is particularly relevant for soil fertilization programmes 
at the level of the district. Think, for instance, of whether or not a fer
tilizer blend with Zn should be applied in a district. 

Two fundamentally different approaches can be followed to decide 
on the sample size: the frequentist approach and the Bayesian approach 
(Adcock, 1997; Lindley, 1997). In the frequentist approach the sample 
size required for a given quality constraint is computed from a prior 
estimate of the population variance or, in case of estimating an areal 
fraction, a prior estimate of this areal fraction. For instance, given a 
chosen maximum length of a (1-α)-confidence interval of the population 
mean or the areal fraction, the smallest sample size is determined that 
results in an interval length that does not exceed the chosen length. In 
practice we are always uncertain to some extent about the design 
parameter (population variance, areal fraction). In case of an areal 
fraction this is even evident, otherwise no additional sampling would be 
needed to estimate this parameter. An important drawback of the fre
quentist approach for sample size determination (SSD) is that our un
certainty about the design parameter is not accounted for. 

In the Bayesian approach for SSD the uncertainty about the design 
parameter is explicitly accounted for, by postulating a probability dis
tribution which reflects our belief about what value the design 

parameter could be. There is extensive literature on Bayesian SSD in the 
statistical literature, see for instance Adcock (1988), Joseph et al. 
(1995), Joseph and Bélisle (1997), Pham-Gia (1997), Wang and Gelfand 
(2002), Pezeshk (2003), M’Lan et al. (2008), Cao et al. (2009), Pezeshk 
et al. (2009) and Brutti et al. (2014). 

Bayesian SSD is commonly applied in clinical trials, see for instance 
Stallard (1998), O’Hagan and Stevens (2001) and Gajewski and Mayo 
(2006) to mention a few. To the best of our knowledge a Bayesian 
approach to determine a sample size is not applied yet in soil science. 
The aim of this paper is to explain in detail Bayesian SSD, and to illus
trate this with the Soil Health Card survey in Andhra Pradesh, India. 

2. Theory 

2.1. Frequentist versus Bayesian approach 

Two major schools of statistical thinking are termed frequentist and 
Bayesian. In the first approach, probability distributions are defined as 
frequency distributions in the long run. For instance, the probability 
distribution of the estimated population mean for a given random 
sampling design is equal to the frequency distribution of the estimated 
population mean if we repeat the selection of samples with this design an 
infinite number of times. The population parameters are considered 
fixed but unknown; we sample to estimate these. 

In the Bayesian approach, probability has a fundamentally different 
meaning. A probability distribution of a population mean, for instance, 
expresses what we believe the population can be. In the Bayesian 
approach a probability can be subjective/personal, so that one person’s 
belief and analysis given this belief might differ from that of another 
person. Bayesian statistics actually is about updating our belief with 
data. We treat the population parameters as random variables with a 
defined probability distribution. In this approach we are able to incor
porate prior information, i.e. knowledge before having sampled. This 
approach is also well-suited to updating by repeated sampling. In this 
paper we show methods using both approaches. 

To decide on the number of sampling locations we must first make 
explicit what quality the result should have. For example, in case of 
estimating a mean over an administrative unit, we should specify the 
quality of the estimated mean. This quality can be expressed in various 
ways. A first option is to express the required quality of the survey result 
in terms of the maximum standard error of the estimated mean (or areal 
fraction). A second option is to express the quality in terms of the 
maximum length of a confidence interval. The length of this interval is 
proportional to the standard error. We chose this quality criterion to 
derive the sample size. 

In the Bayesian approach the analogue of a confidence interval is a 
credible interval. A credible interval can be defined in different ways. A 
highest posterior density (HPD) interval is the credible interval that is a 
short as possible for a given probability level. For any point inside the 
interval the density is larger than at any point outside the interval (Lee, 
1997). For a unimodal distribution this interval contains the values with 
the highest probability density, and so includes the mode of the distri
bution. For a 95% HPD interval with lower bound bl and upper bound bu 

we believe that there is a 95% chance that the parameter of interest is in 
the interval (bl,bu). 

2.2. Frequentist approach 

To estimate a population mean, we assume a normal distribution for 
the estimated mean. Then the length of a (1 − α) confidence interval is 

l = 2 u(1− α/2)
σ
̅̅̅
n

√ , (1)  

where α is the probability that the interval does not contain the popu
lation mean, and u(1− α/2) is the (1 − α/2) quantile of the standard normal 1 https://soilhealth7.gov.in/ 
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distribution, and σ is the population standard deviation of the study 
variable. For example, for a 95% confidence interval u(1− α/2) = 1.96. 
The sample size required for a maximum length of a confidence interval 
is obtained by rearranging this equation and substituting the prior es
timate σ0 of the population standard deviation σ: 

n =

(

u(1− α/2)
σ0

lmax/2

)2

. (2) 

The parameter σ0 is referred to as a design parameter, i.e., a 
parameter that is used to design a sample, in this case to decide on the 
size of a sample aimed at estimating a population mean. 

Various methods are developed for computing a confidence interval 
of an areal fraction, i.e., the fraction of the area where a condition is 
(not) met. With simple random sampling this boils down to computing a 
confidence interval for a binomial probability parameter π. Vollset 
(1993) compares thirteen methods based on their coverage properties, 
lengths and errors relative to exact limits. The confidence interval 
computed by approximating the binomial distribution by a normal dis
tribution is referred to as the Wald confidence interval. With this 
approximation the length of a (1 − α) confidence interval estimate of the 
areal fraction equals 

l = 2 u(1− α/2)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
π(1 − π)

√

̅̅̅̅̅̅̅̅̅̅̅
n − 1

√ . (3) 

Rearranging gives for the sample size 

n =

(

u(1− α/2)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
π0(1 − π0)

√

lmax/2

)2

+ 1, (4)  

with π0 a prior estimate of the binomial probability. Note that when 
designing a sample for estimating an areal fraction, the design param
eter is the same as the parameter of interest. For estimating a population 
mean the design parameter σ0 differs from the parameter of interest μ. 

2.3. Bayesian approach 

A serious drawback of the frequentist approach for SSD explained in 
the previous section is that the sample sizes are sensitive to the prior 
estimates of the design parameters σ0 and π0. In general we are rather 
uncertain about these parameters, and therefore it is attractive to 
replace single values for these parameters by probability distributions. 
This leads to a different statistical approach for sample size determina
tion, the Bayesian approach. This approach also offers the possibility of 
exploiting existing (a priori) information about the population mean or 
proportion (legacy data), by postulating an informative prior. This 
informative prior can then be used in SSD, and in a fully Bayesian 
approach to update the prior once the new data are collected, see 
hereafter. 

The first step in the Bayesian approach of statistical inference is to 
postulate a prior distribution function for the parameters, the population 
mean and population standard deviation in case of estimating a mean, 
and the binomial probability parameter in case of estimating an areal 
fraction. This function expresses our belief and uncertainty about the 
parameters before the new sample data are taken into account. 

The next step is to formalize a theory about the data. That is, we must 
assume the type of distribution function of the data, for example a 
normal or binomial distribution. Once the type of distribution has been 
specified, we can write an equation for the probability of the data as a 
function of the distribution parameters. This probability distribution 
function is referred to as the likelihood function. 

The final step is to revise our prior belief about the population 
parameter of interest, using the data and our theory about the data as 
expressed in the likelihood function. This results in the posterior dis
tribution function of the parameter. The updated belief is computed with 
Bayes’ rule: 

f (θ|z) =
f (θ)f (z|θ)

f (z)
, (5)  

with  

• f(θ|z) the posterior distribution function, i.e., the probability density 
function of the parameter given the sample data z  

• f(θ) our prior belief in the parameter of interest specified by a 
probability density function 

• f(z|θ) the likelihood of the sample data, given values of the distri
bution parameters θ,  

• f(z) the probability distribution function of the sample data. 

The posterior distribution for the parameter (Eq. 5) is conditional on 
data z. The problem is that these new data are not yet known. We are 
designing a sample, and the data are yet to be collected, so at first glance 
this might seem an unsolvable problem. However, what we could do is to 
simulate with the prior probability density function a large number of 
possible vectors with n data. In a full simulation approach the following 
steps are involved:  

1. Simulate θ from the prior distribution f(θ)
2. Given the simulated θ, simulate z of length n from the model f(z|θ)
3. Given the simulated z calculate the posterior distribution f(θ|z) using 

Bayes’ rule (Eq. 5) 
4. Given the posterior f(θ|z), compute the length of the highest poste

rior density (HPD) interval with a coverage probability of 1 − α, or 
reversely, the coverage probability of the HPD interval of length lmax  

5. Repeat steps 1–4 a large number, say S, times  
6. Compute weighted average of the S lengths of the HPD intervals, or 

the weighted average of the S coverage probabilities, using the 
probability densities of the simulated θ’s as weights 

If the average length is larger than lmax, or the coverage probability of 
intervals of length lmax is smaller than 1 − α, then we must increase n, and 
if the average length is smaller than lmax, or the coverage probability of 
intervals of length lmax is larger than 1 − α, then we must decrease n and 
repeat the whole procedure until our precision requirement is met. 
Simulation is one option to determine the sample size, (partly) analytical 
approaches are also available. 

More formally, the procedure is as follows. The prior probability 
density function on the population parameter(s) θ is used to compute for 
a given sample size n the predictive distribution of the data: 

f (z|n) =
∫

Θ
f (z|θ, n)f (θ)dθ (6)  

with Θ the parameter space for θ containing all possible values of the 
distribution parameters θ. This predictive distribution is also named the 
preposterior distribution, stressing that the new data are not yet avail
able. 

Even if θ would be fixed, we do not have only one vector z with n data 
values but a probability distribution, from which we can simulate 
possible data vectors, referred to as the data space Z . In case of a 
binomial probability and sample size n, the data space Z (in the form of 
the number of observed successes given sample size n) can be written as 
the set {0,1,…,n}, i.e., one vector of length n with all failures, n vectors 

of length n with one success, 
(

n
2

)
vectors with two successes, et cetera. 

Each data vector is associated with a probability density (for continuous 
data) or probability mass (for discrete data). As a consequence, we do 
not have only one posterior distribution function f(θ|z), but as many as 
we have data vectors in the data space, which is infinitely many in the 
case of a continuous variable. 

Various criteria for SSD can be defined on the basis of all these 
posteriors, among which are (Joseph et al., 1995; Joseph and Bélisle, 
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1997)  

1. Average length criterion (ALC).  
2. Average coverage criterion (ACC).  
3. Worst outcome criterion (WOC). 

M’Lan et al. (2008) generalized ALC and ACC to criteria based on the 
length of a credible interval raised to a power k, and a median length 
criterion (MLC) and median coverage criterion (MCC). Here we restrict 
our analysis to the three criteria listed above. 

Average length criterion. For a fixed posterior HPD interval coverage of 
100(1 − α)% the smallest sample size n is determined such that 
∫

Z

l(z, n)f (z)dz⩽lmax, (7)  

where f(z) is the predictive distribution of the data (Eq. 6), and l(z, n) is 
the length of the 100(1 − α)% HPD interval for data z and sample size n, 
obtained by solving 
∫ v+l(z,n)

v
f (θ|z, n)dθ = 1 − α, (8)  

for l(z, n), for each possible data set z ∈ Z . f(θ|z, n) is the posterior 
density of the population parameter of interest given the data z and 
sample size n (Eq. 5). ALC ensures that the average length of 100(1 − α)% 
posterior HPD intervals, weighted by f(z), is at most lmax. 

Average coverage criterion. For a fixed posterior HPD interval of length 
lmax the smallest sample size n is determined such that 
∫

Z

{∫ v+lmax

v
f (θ|z, n)dθ

}

f (z)dz⩾1 − α, (9) 

ACC ensures that the average coverage of HPD intervals of length lmax 

is at least 1-α. The integral inside the curly brackets is the integral of the 
posterior density of the population parameter of interest over the HPD 
interval (v, v + lmax), given a data vector z of size n. The mean of this 
integrated posterior density of the parameter of interest θ is obtained by 
multiplying the integrated density with the predictive probability of the 
data, and integrating over all possible data sets in Z . 

Worst outcome criterion. Neither ALC nor ACC guarantee that for a 
particular data set z the criterion is met, as these two criteria are defined 
as averages over all possible data sets in Z . A more conservative sample 
size can be computed by requiring that for all data sets Z both criteria 
are met. Joseph and Bélisle (1997) modified this criterion by restricting 
the data sets to a subset W of most likely data sets. The criterion thus 
obtained is referred to as the modified worst outcome criterion, but we 
will refer to it shortly as the worst outcome criterion. So the criterion is 

infz∈W

{∫ v+l(z,n)

v
f (θ|z, n)dθ

}

⩾1 − α. (10) 

The smallest sample size satisfying this condition is used as the 
sample size. For instance, if the 95% most likely data sets are chosen as 
subspace W , WOC guarantees that there is 95% assurance that the 
length of the 100(1 − α)% posterior HPD intervals will be at most lmax. 
The fraction of most likely data sets in subspace W is referred to as the 
worst level. 

2.4. Mixed Bayesian-likelihood approach 

Besides the fully Bayesian approach, Joseph and Bélisle (1997) 
describe a mixed Bayesian-likelihood approach for determining the 
sample size. In this approach the prior is only used to derive the pre
posterior distribution of the data (Eq. 6), not to derive the posterior of 
the parameter of interest using Bayes’ rule (Eq. 5). Each sampled data 
vector is used to derive the posterior using a uniform prior in both the 
numerator and denominator in Eq. (5). The length of the HPD interval 

with coverage probability 1 − α, or reversely, the coverage probability of 
the HPD interval of length lmax for a given data vector is then computed 
from this posterior. This approach is of interest when, after the data have 
been collected, we prefer to estimate the population mean or areal 
fraction from these data only, using the frequentist approach described 
in the previous sections. This may be appropriate if we have doubts 
about the quality of the legacy data – we are willing to use them to plan 
the sampling, but not to make statements about the population from 
which the sample is drawn. 

2.5. Sample size for estimating a population mean in fully Bayesian and 
mixed Bayesian-likelihood approach 

The three criteria ALC, ACC and WOC are further developed by 
Adcock (1988) and Joseph and Bélisle (1997) to determine the sample 
size for estimating a population mean, assuming that the data come from 
a normal distribution. As we are uncertain about the population stan
dard deviation σ in Eq. (1), a prior distribution is assigned to this 
parameter. It is convenient and conventional to assign a gamma distri
bution as a prior distribution to the reciprocal of the population vari
ance, referred to as the precision parameter λ = 1/σ2. More precisely, a 
bivariate prior normal-gamma distribution is assigned to the population 
mean μ and the precision parameter λ (which is equivalent to a normal- 
inverse gamma distribution for the mean μ and the variance σ2): 

λ ∼ gamma(a, b)
μ|λ ∼ N(μ0, n0λ). (11)  

with μ0 the mean of the prior distribution for the population mean, and 
n0 the prior sample size. Note that n0λ = σ2/n0, so the variance of the 
prior for the population mean equals σ2/n0. In other words n0 de
termines the spread of the prior distribution for the population mean. 
The larger n0, the more squeezed the distribution, the more certain we 
feel about the population mean. With this prior distribution the pre
dictive distribution of the data is a shifted and scaled t distribution with 
2a degrees of freedom, with a mean equal to μ0 and a standard deviation 
(scale) equal to 1/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a n0/b

√
(Joseph and Bélisle, 1997). For any data 

vector z, the posterior distribution of the population mean can be 
computed, which is also a shifted and scaled t distribution with known 
parameters. We refer to Joseph and Bélisle (1997) for these parameters. 

The gamma distribution for the precision parameter λ has itself two 
parameters, a and b, referred to as hyperparameters. In Section 3.1.1 we 
explain how these hyperparameters can be set. The mean of a gamma 
distribution equals a/b, the standard deviation equals 

̅̅̅̅̅̅̅̅̅̅
a/b2

√
. The 

sample size using ACC as a criterion can be computed as (Adcock, 1988) 

n =
4b

a l2
max

t2
2a;1− α/2 − n0, (12)  

with t22a;1− α/2 the squared (1 − α/2) quantile of the (usual, i.e., neither 
shifted nor scaled) t distribution with 2a degrees of freedom, and n0 the 
number of prior data. 

The prior sample size n0 is only relevant if we have prior information 
about the population mean and an informative normal prior is used for 
this population mean. If we have no information about the population 
mean a non-informative prior is used for the population mean and n0 
equals 0. Note that as a/b is the prior mean of the reciprocal of the 
population variance σ2, with n0 = 0 Eq. (12) is similar to Eq. (2). The 
only difference is that a quantile from the standard normal distribution 
is replaced by a quantile from a t distribution with 2a degrees of 
freedom. 

Joseph and Bélisle (1997) present inequality equations for SSD for 
ALC and WOC. These complicated equations cannot be solved analyti
cally, but the solution can easily be found by a bisectional search 
algorithm. 
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2.6. Sample size for estimating a population proportion in fully Bayesian 
and mixed Bayesian-likelihood approach 

The same criteria can be used to estimate the proportion of a popu
lation, or in case of an infinite spatial population of points the areal 
fraction satisfying some condition (Joseph et al., 1995). With simple 
random sampling this reduces to estimating the probability-of-success 
parameter π of a binomial distribution. Recall that in this case the 
space of possible outcomes Z is the number of successes, z, which is 
discrete: Z = {0,1,…, n} with n the sample size. The conjugate prior 
distribution for parameter π of the binomial likelihood is the beta 
distribution: 

π ∼
1

B(c, d)
πc− 1(1 − π)d− 1

, (13)  

where B(c, d) is the beta function. The beta distribution has two 
hyperparameters c and d which correspond to the number of “successes” 
(1) and “failures” (0) in the problem context. The larger the value of 
these parameters, the more the prior information, and the more sharply 
defined the probability distribution. In Section 3.1.2 it is explained how 
these parameters can be set. 

The preposterior marginal distribution of the data is the beta- 
binomial distribution 

f (z|n) =
(

n
z

)
B(z + c, n − z + d)

B(c, d)
, (14)  

and for a given number of successes z out of n trials the posterior dis
tribution of π equals 

f (π|z, n, c, d) =
1

B(z + c, n − z + d)
πz+c− 1(1 − π)n− z+d− 1

. (15) 

For the binomial probability parameter π, criterion ALC (Eq. 7) can 
be written as 

∑n

z=0
l(z, n)f (z|n)⩽lmax. (16) 

To determine the smallest n satisfying this condition, for each value 
of z (number of successes) and each n the length l(z, n) must be computed 
so that 
∫ v+l(z,n)

v
f (π|z, n, c, d)dπ = 1 − α. (17)  

with v the lower bound of the HPD credible set given the sample size and 
observed number of successes z. 

For the binomial probability parameter, criterion ACC (Eq. 9) can be 
written as 

∑n

z=0
Pr{π ∈ (v, v+ lmax)}f (z|n)⩾1 − α, (18)  

with 

Pr{π ∈ (v, v+ lmax)}∝
∫ v+lmax

v
πz(1 − π)n− zf (π)dπ, (19)  

with f(π) the prior density of the binomial probability parameter. 
For a binomial probability no closed form formulas exist for SSD. 

Joseph et al. (1995) describe algorithms for approximating the sample 
sizes. More recently M’Lan et al. (2008) presented various methods for 
binomial SSD, among which a method based on a third order approxi
mation, and a Monte Carlo simulation method. 

3. Case study 

As an illustration, we determine the sample sizes for estimating the 

mean of natural logarithms of Zn within each district and within each 
mandal of Andhra Pradesh. Previous surveys show that the Zn concen
trations within these administrative areas have strong positive skew. 
Thus assuming a normal distribution of the Zn data is unrealistic. We 
therefore computed the natural logarithms of the Zn concentrations, and 
assumed a normal distribution for these transformed data. 

We also determined sample sizes for estimating the areal fractions 
with Zn-deficiency within districts and mandals. This fraction is of 
practical importance. It can, for example, be used to prioritize districts 
or mandals for policy interventions. As a critical Zn-concentration, we 
use 0.9, i.e., if the Zn-concentration at a location is less than 0.9, we 
consider that this location is deficient of Zn, so that the application of Zn 
fertilizer is recommended. This threshold is the division between “latent 
deficiency” and “marginally sufficient” as defined by Shukla and Behera 
(2019). 

In this paper the results for the thirteen districts are presented. The 
results for all 605 mandals in the state are available at the lead author’s 
GitHub repository.2 

The SHC data collected in 2015–2017 (cycle 1) are used to compute 
the mean and variance of ln(Zn) and the proportion of samples with Zn 
deficiency per district (Table 1). These legacy sample descriptive sta
tistics are used as prior point estimates of σ0 (Eq. 2) and π0 (Eq. 4) for the 
frequentist approach and to postulate prior distributions for the distri
bution parameters in the Bayesian and mixed Bayesian-likelihood 
approach. 

3.1. Prior distributions 

In the fully Bayesian approach and the mixed Bayesian-likelihood 
approach uncertainty about the design parameters σ0 of Eq. (2) and π0 
of Eq. (4) is accounted for by assigning a probability distribution to these 
parameters. 

3.1.1. Gamma distribution for the precision parameter 
A prior gamma distribution is assigned to the precision parameter 

λ = 1/σ2. The mean of the gamma distribution was set equal to the 
reciprocal of the legacy sample variance of ln(Zn): a/b = 1/σ2 (Table 1). 
A second equation with a and b is needed to derive parameters a and b. 
In this second equation the coefficient of variation of the gamma dis
tribution, cv(λ), is set equal to some chosen value expressing how much 
trust we have in the prior estimate of λ. Solving the two equations with 

Table 1 
Number of legacy points (n), sample mean of ln(Zn) (μ), sample variance of ln 
(Zn) (σ2) and sample proportion with Zn deficiency (π), of cycle 1 SHC data 
collected in 2015–2017, for districts in Andhra Pradesh, India.  

District n  μ  σ2  π  

Anantapur 49114 − 0.73 0.96 0.77 
Chittoor 37978 − 0.06 0.41 0.49 
East Godavari 30353 0.24 0.70 0.33 
Guntur 63956 − 0.37 0.82 0.61 
Kadapa 21739 − 0.66 0.60 0.77 
Krishna 30481 − 0.05 0.80 0.39 
Kurnool 79775 − 0.39 1.12 0.59 
Nellore 48053 − 1.22 1.19 0.86 
Prakasam 50392 − 0.64 1.35 0.67 
Srikakulam 40823 0.01 0.44 0.40 
Visakhapatnam 8678 − 0.41 0.97 0.57 
Vizianagaram 28321 − 0.35 0.46 0.64 
West Godavari 20211 0.37 0.77 0.26  

2 https://www.github.com:DickBrus/RequiredSampleSizes4AndhraPradesh 
Districts.git. 
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two unknowns gives a = 1/{cv(λ)}2 and b = a σ2. Fig. 1 shows the 
gamma distributions for the district with the smallest (Prakasam) and 
largest (Chittoor) value for the precision parameter λ, for a coefficient of 
variation of 0.25. 

For district Chittoor we drew 10,000 values from the bivariate 
normal-gamma distribution for the precision parameter and the mean 
(Eq. 11), see the histogram in Fig. 2. The curve is the density of the 
shifted and scaled t distribution with 2a degrees of freedom, which is the 
predictive distribution of the ln(Zn) data. The mean of this t-distribution 
is equal to the prior mean μ0 = − 0.06, the standard deviation of the t- 
distribution equals 1/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a n0/b

√
= 0.103. The density curve is not fitted 

to the histogram, but it is evident that the theoretically-derived density 
function fits very well the histogram. 

3.1.2. Beta distribution for binomial probability parameter 
By setting the mode of the prior beta distribution equal to the legacy 

sample fraction with Zn deficiency, used as a prior estimate of the areal 
fraction with Zn deficiency π0, the parameters of the beta distribution 
can be computed as (Sambucini, 2017, Eq. 24): 

c = n0π0 + 1
d = n0(1 − π0) + 1, (20)  

with n0 the prior sample size. The larger n0, the larger the values of the 
parameters, the more sharply defined is the beta distribution, i.e., the 
more trust we have in the prior estimate of the areal fraction with Zn 
deficiency. Fig. 3 shows the prior beta distributions for the districts with 
the smallest (West Godavari) and the largest (Nellore) sample fraction 
with Zn deficiency: π0 = 0.259 and 0.858, respectively. For n0 we used 
the number of legacy data in these districts divided by 1000. This is an 
arbitrary choice so that the distributions will not be too narrow. The 
distribution for Nellore is (1) further to the right, i.e., a larger proportion 
of Zn-deficient observations; (2) sharper than that for West Godavari, 
because Nellore has many more observations (n0 = 48) than West 
Godavari (n0 = 20). In both distributions the mode is the most probable 
value, equal to the legacy sample proportion with Zn deficiency. 

Fig. 4 shows the beta-binomial predictive distribution of the data, for 
West Godavari, for a sample size of 100. For comparison we also plotted 
the binomial distribution for the same sample size and a binomial 
probability parameter equal to c/(c+d) of the prior beta distribution (c 
and d computed with n0 = 20, Eq. (20)). With increasing n0 the beta- 
binomial distribution approaches the binomial distribution. 

3.2. Required sample sizes 

3.2.1. Mean of ln(Zn) 
Table 2 shows the sample sizes for credible (confidence) intervals of 

(average) length 0.2 and (average) coverage of 95%. For WOC with the 
fully Bayesian and the mixed Bayesian-likelihood approach 80% of the 
most likely data sets are used (worst level is 80%). For the Bayesian 
approach we used an uninformative flat prior for the mean of ln(Zn), or 
more precisely stated, a normal distribution with an infinitely large 
variance, so n0 = 0 (Eq. 11). The sample size as determined with the 
frequentist approach ranges from 157 for district Chittoor, which has the 
smallest value for σ2

0 (Table 1) (and so the largest value for the prior 
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Fig. 1. Prior gamma distribution of the precision parameter for Chittoor (black 
curve) and Prakasam (red curve), for a coefficient of variation of λ of 0.25. 

z

D
en

si
ty

−0.4 −0.2 0.0 0.2 0.4

0
1

2
3
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for the precision parameter and the mean of district Chittoor, and shifted and 
scaled t distribution. 
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Fig. 3. Prior beta distribution of areal fraction with Zn-deficiency, for West 
Godavari (black curve) and Nellore (red curve). 
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size of 100. For comparison the binomial distribution is plotted with a proba
bility parameter equal to c/(c+d) of the prior beta distribution. 
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mean of λ), to 517 points for district Prakasam which has the largest 
value for σ2

0. The fully Bayesian sample sizes are larger than the fre
quentist sample sizes. For ALC, the increase of the sample size is about 
5% of the frequentist sample size, for ACC this increase is about 8%, and 
for WOC about 26%. The mixed Bayesian-likelihood sample sizes are 
slightly larger than the fully Bayesian sample sizes. For ALC, the dif
ference is only one point (except for Anantapur with a difference of two 
points, which is most likely an approximation error), showing that the 
information in an uninformative, uniform prior for the mean is one 
point. Recall that when using an informative prior for the mean, a prior 
normal distribution with precision n0λ, all three fully Bayesian sample 
sizes are reduced by n0 points, so that they can become smaller than the 
frequentist sample sizes. The sample sizes computed with n0 = 0 are 
conservative estimates of the sample size with the Bayesian approach. 

Recall that the credible (confidence) intervals are on the log-scale. 
After back-transformation the length of the interval is not constant, 
but depends on the mean of ln(Zn). The smaller this mean, the shorter 
the length. The length after back-transformation, l*, is proportional to 
exp(μ): l* = l exp(μ) (l is 0.2 in our case). 

Fig. 5 shows the effect of the coefficient of variation of the gamma 
distribution for the precision parameter on the sample sizes for district 
East Godavari, using ALC as a criterion. Note that we plotted the com
plement of the coefficient of variation on the x-axis, so that the prior 
becomes more informative along this axis. The smaller the coefficient of 
variation (the larger the complement), the less uncertain we are about 

the precision parameter, the smaller the sample size. With decreasing 
uncertainty about the precision parameter (population variance 
parameter), the fully Bayesian and mixed Bayesian-likelihood sample 
size as determined with ALC and ACC asymptotically approach the 
frequentist sample size (which is 268 for East Godavari, Table 2). With 
n0 > 0 the Bayesian sample size then is n0 points smaller than the fre
quentist sample size. 

Fig. 6 shows the effect of the worst level on the sample sizes for 
district East Godavari using a prior gamma distribution for λ with a 
coefficient of variation of 0.25. The more certain we want to be that for 
an individual sample (i.e., a random sample with the size set by this 
analysis) the length of the 95% credible interval of ln(Zn) does not 
exceed 0.2, the larger the sample size. For a worst level of 0.5 the sample 
sizes are 275 and 276 for the fully Bayesian and mixed Bayesian- 
likelihood approach, respectively. These sample sizes are slightly 
smaller than the sample sizes determined with ALC (Table 2 282 and 283 
points). The same relative difference was observed for the other districts. 
This shows that in this case the required samples sizes determined with 
ALC assures that in a bit more than 50% of the samples the (1 − α)% 
credible interval does not exceed the length lmax. 

3.2.2. Areal fraction with Zn deficiency 
Table 3 shows the sample sizes for credible intervals (confidence 

intervals) of (average) length 0.1 and (average) coverage of 95%. The 
parameters of the beta distribution for the binomial probability 
parameter (Eq. 20) are computed with a prior sample size n0 equal to the 

Table 2 
Frequentist, fully Bayesian and mixed Bayesian-likelihood (mbl) sample sizes required for a confidence (credible) interval of (average) length 0.2 and an (average) 
coverage of 95% for the population mean of ln(Zn). For WOC the 80% most likely data sets are used. The fully Bayesian and mixed Bayesian-likelihood sample sizes are 
computed with a prior gamma distribution for λ with a coefficient of variation of 0.25. The fully Bayesian sample sizes are for a prior sample size of zero (n0 = 0).  

District λ  Freq ALC ALC(mbl) ACC ACC(mbl) WOC WOC(mbl) 

Anantapur 1.05 368 386 388 397 399 466 472 
Chittoor 2.46 157 165 166 169 171 197 204 
East Godavari 1.44 268 282 283 289 292 339 346 
Guntur 1.23 314 330 331 339 342 398 403 
Kadapa 1.67 231 243 244 249 251 292 298 
Krishna 1.25 307 323 324 331 335 388 395 
Kurnool 0.89 432 454 455 467 470 548 555 
Nellore 0.84 458 482 483 495 498 581 589 
Prakasam 0.74 517 544 545 559 561 656 662 
Srikakulam 2.29 168 177 179 182 185 212 218 
Visakhapatnam 1.03 372 391 392 402 404 471 478 
Vizianagaram 2.17 177 187 188 191 194 223 231 
West Godavari 1.31 295 310 311 318 321 373 380  
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Fig. 5. Effect of coefficient of variation of the prior gamma distribution of the 
precision parameter on the fully Bayesian (black dots) and mixed Bayesian- 
likelihood (red dots) sample sizes, using ALC as a criterion, for a credible in
terval of average length 0.2 and a coverage of 95% for the mean of ln(Zn) of 
East Godavari. 
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Fig. 6. Effect of worst level on the fully Bayesian (black dots) and mixed 
Bayesian-likelihood sample sizes (red dots), for a 95% credible interval of 
length 0.2 for the mean of ln(Zn) of East Godavari. Sample sizes are determined 
with a prior gamma distribution for λ with a coefficient of variation of 0.25. The 
prior sample size in the fully Bayesian approach is zero (n0 = 0). 
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number of legacy points divided by 1000 (Table 1). As before, for WOC a 
worst level of 80% is used, i.e., 80% of the most likely data sets are used 
to determine the sample sizes. The sample sizes with the fully Bayesian 
approach are smaller than the frequentist sample sizes. The mixed 
Bayesian-likelihood sample sizes using ALC and ACC as a criterion are 
about equal to the frequentist sample sizes (for some districts some what 
smaller, for other districts somewhat larger). 

The sample size according to the frequentist approach is the largest 
for the district Chittoor. For this district the sample proportion with Zn 
deficiency, used as a prior estimate of the areal fraction with Zn defi
ciency, π0, equals 0.495, i.e., close to 0.5. The closer the sample pro
portion to 0 or 1, the smaller the sample size. This is easily understood, 
as the population variance, equal to π (1 − π), is maximal for an areal 
fraction of 0.5. Also with the fully Bayesian approach and the mixed 
Bayesian-likelihood approach with all three criteria this district requires 
the largest sample size. 

Fig. 7 shows the effect of the prior sample size n0 on the sample size 
for districts Chittoor and Nellore, using ALC as a criterion. For Nellore 
with a π0 of 0.86 both the fully Bayesian and the mixed Bayesian- 
likelihood sample sizes decrease with n0, except that for n0 = 0 the 
sample size is smaller than for n0 = 1. With increasing n0 the three fully 
Bayesian sample sizes go to zero. The mixed Bayesian-likelihood sample 
sizes as obtained with ALC and ACC asymptotically approach the fre
quentist sample sizes. 

For Chittoor a different effect can be seen. The mixed Bayesian- 
likelihood sample size asymptotically increases with n0, whereas the 
fully Bayesian sample size first increases and reaches a maximum of 345 
points at n0 = 14, remains stable until n0 = 21, and than decreases 
again. For small n0 the prior beta distribution of π0 is very flat (Eq. 20). 

With this prior distribution data vectors with small and high sample 
fractions with Zn deficiency are simulated, as well as data vectors with 
sample fractions close to 0.5. With increasing n0 the probability mass 
around the prior estimate π0 increases. For Chittoor this prior estimate 
equals 0.49 (Table 3). With increasing n0 more data vectors with sample 
fractions close to 0.49 are simulated. In the mixed Bayesian-likelihood 
approach the confidence interval is fully based on the likelihood of the 
data. With a sample fraction equal to 0.5 the length of a confidence 
interval (for a given α) is maximal. This explains that for large n0, 
leading to a prior distribution with most probability mass around 0.49, 
the required sample size computed wit ALC is largest. The maximum 
required sample size with the mixed Bayesian-likelihood approach 
equals 376 points, which is somewhat smaller than the frequentist 
sample size of 386 points based on the Wald confidence interval 
(Table 3). The difference is likely caused by the different approximation 
of the length of a confidence interval in the software used for computing 
the mixed Bayesian-likelihood sample sizes. 

As opposed to the mixed Bayesian-likelihood approach in the fully 
Bayesian approach the prior distribution of the areal fraction is also used 
to update this prior to a posterior. The larger n0, the stronger our belief 
in this prior. This strong belief may be based on a large number of 
existing observations (large legacy sample). So with increasing n0 more 
data vectors with sample fractions close to 0.49 are simulated, which 
would lead to an increase of the fully Bayesian sample size, but we give 
more weight on the prior, leading to a decrease of the sample size. 
Apparently until n0 = 14 the first effect dominates, then both effects are 
in balance, and beyond n0 = 21 the second effect dominates. 

For all districts the effect of n0 on the mixed Bayesian-likelihood 
sample sizes is strong for small prior sample sizes, but then levels off 

Table 3 
Frequentist (Wald), fully Bayesian and mixed Bayesian-likelihood (mbl) sample sizes required for a credible interval of (average) length 0.1 and an (average) coverage 
of 95% for the areal fraction with Zn deficiency. The prior sample size n0 is equal to the number of legacy points divided by 1000. For WOC the 80% most likely data 
sets are used.  

District π  Wald ALC ALC(mbl) ACC ACC(mbl) WOC WOC(mbl) 

Anantapur 0.77 275 223 271 226 276 263 318 
Chittoor 0.49 386 335 371 335 371 343 381 
East Godavari 0.32 339 299 327 301 330 336 368 
Guntur 0.61 366 294 356 295 357 311 376 
Kadapa 0.77 272 249 269 256 278 310 335 
Krishna 0.39 368 324 353 325 354 348 378 
Kurnool 0.59 373 286 364 286 364 298 379 
Nellore 0.86 189 144 192 149 201 187 247 
Prakasam 0.67 340 282 331 284 333 310 364 
Srikakulam 0.40 371 319 358 319 359 337 379 
Visakhapatnam 0.57 377 333 340 337 345 370 378 
Vizianagaram 0.64 355 315 341 317 344 347 375 
West Godavari 0.26 296 271 289 277 297 328 352  
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Fig. 7. Effect of prior sample size on the fully Bayesian (black dots) and mixed Bayesian-likelihood sample sizes (red dots), using ALC as a criterion, for a credible 
interval of average length 0.1 and a coverage of 95% for the areal fraction with Zn deficiency in Chittoor and Nellore. 
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rapidly. The prior sample size at which the effect levels off varies from 
three points (Anantapur) to about 50 points (Krishna, Krnool, Praka
sam), see supplementary material. 

For n0 = 0 the fully Bayesian and mixed Bayesian-likelihood sample 
sizes are equal for all districts, and the mixed Bayesian-likelihood 
sample sizes are equal to the fully Bayesian sample sizes. The sample 
sizes are 234, 274 and 366 for ALC, ACC and WOC respectively. The 
frequentist sample sizes are independent of n0, and remain unchanged 
(Table 3). For n0 = 0 both parameters c and d of the beta distribution are 
1, and the prior distribution of the binomial probability parameter is a 
uniform distribution, see Eq. (13). The sample size is thus determined for 
any value of π, not just for a single value of π equal to the legacy sample 
proportion as in the frequentist approach. With a uniform prior distri
bution of π, the beta-binomial preposterior distribution of the data (Eq. 
14) is also a uniform distribution: all values of z (0,1,…,n) have equal 
probability. 

Though we acknowledge that the SHC scheme is oriented towards 
field management, we have shown that for district-level assessments all 
sample sizes are substantially smaller than the current sample sizes 
applied in the SHC scheme (Table 1). Even at the mandal level, for most 
mandals the required sample sizes are smaller than the current sample 
sizes. Fig. 8 shows the surplus of sampling points at the mandals level, 
for the mixed Bayesian-likelihood approach, using ALC as a criterion and 
the same precision requirements as before. Only for a few mandals is the 
required sample size larger than the current sample size. 

4. Discussion 

We are always uncertain about the design parameters (i.e., a 
parameter that is used to design a sample) σ and π, and therefore it is 
reasonable to account for this uncertainty in determining the sample 
size. In Bayesian SSD this is accomplished by postulating a prior distri
bution for the parameter. As shown in the case study, the sample size 
with the fully Bayesian and mixed Bayesian-likelihood approach are 
sensitive to the prior distributions of the parameters. Specifically, for a 
population mean the two parameters of the gamma distribution for the 
precision parameter, and for an areal fraction the two parameters of the 
beta distribution for the binomial probability parameter have a strong 
effect on the sample size. 

Because of this sensitivity ample attention should be paid to the 
choice of these hyperparameters of the prior distribution. In our case 
study we derived the parameters of the beta distribution from the legacy 
sample proportion with Zn-deficiency and an arbitrary choice of the 
prior sample size n0, computed by multiplying the legacy sample size by 
0.001. The hyperparameters of the gamma distribution were derived 
from the sample variance of ln(Zn) and an arbitrary choice on the co
efficient of variation of the gamma distribution. 

Another option, especially applicable in the absence of legacy data, 

would have been expert elicitation. Although expert knowledge is sub
jective, it is based on experience and knowledge of the study area, and 
thus is likely better than ignorance or arbitrary choices. In case we have 
legacy data from the study area, experts may also help to choose a prior 
distribution. How much trust do experts have in a prior estimate of the 
mean or areal fraction as computed from the legacy data? If the confi
dence of an expert in this prior estimate is expressed in terms of an in
terval, this interval can be used to derive the hyperparameters. For 
instance, if according to an expert the areal fraction with Zn deficiency 
for East Godavari is most likely between 0.25 and 0.5, the hyper
parameters of the beta distribution are 21 and 35, interpreting the limits 
as the 2.5% and 97.5% quantiles of this distribution. This corresponds 
with a prior sample size of 56 points (Eq. 20). This leads to a Bayesian 
sample size of 241 points and a mixed Bayesian-likelihood sample size of 
349 points for an average length of a 95% credible interval of 0.1. 

If an expert believes that most likely the population variance of ln 
(Zn) in district East Godavari is between 0.60 and 0.90, the hyper
parameters of the gamma distribution for the precision are 94 and 68, 
leading to an upper bound of the Bayesian sample size (n0 = 0) of 281 
points, and a mixed Bayesian-likelihood sample size of 283 points for an 
average length of a 95% credible interval of 0.2. 

An alternative approach is not to use a single prior, but a class of 
plausible priors, to explore the variation of the criterion used for SSD (e. 
g. ALC) due to uncertainty about the prior. This leads to robust Bayesian 
SSD, see for instance De Santis (2006) and Brutti et al. (2008). In this 
context it is also worth noting that there is no need that the same prior is 
used for computing the predictive distribution of the data and for the 
analysis of the posterior distribution given a vector with data. In the two- 
priors approach for Bayesian SSD the design prior may differ from the 
analysis prior, which is more flexible (Brutti et al., 2014). In essence, the 
mixed Bayesian-likelihood approach can also be seen as a two-priors 
Bayesian approach, in which the analysis prior is a non-informative 
uniform prior, whereas the design prior can be an informative prior. 

The fully Bayesian and mixed Bayesian-likelihood approach for SSD 
is of specific interest for an adaptive sampling approach in which soil 
data are collected in phases. The data of each phase are used to derive a 
prior distribution for the design parameter(s) which is then used to 
determine the required sample size of subsequent phase. This has fea
tures in common with the adaptive Bayesian approach for SSD of a 
reconnaissance survey aimed at estimating a variogram proposed by 
Marchant and Lark (2006). This variogram is needed to derive the 
required spacing of a sampling grid for mapping given a threshold for 
the maximum kriging variance. 

The starting point in determining the sample size is the choice of the 
“confidence” level α and the maximum length of the credible interval 
lmax. Decreasing α and/or lmax will lead to a larger sample size, and vice 
versa. So the question is what is a reasonable choice for these two pa
rameters. Increasing the sample size results in a more precise estimate of 
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size in SHC survey, for the mean of ln(Zn) and the areal fraction with Zn-deficiency. 

D.J. Brus et al.                                                                                                                                                                                                                                  



Geoderma 405 (2022) 115396

10

the population mean of Zn and areal fraction with Zn-deficiency, but 
also in higher costs. Does this pay? For instance, should we collect more 
data to decide on the application of Zn-fertilizer in a district or mandal? 
Through collecting additional data, we are less uncertain, and as a result 
the probability of a wrong decision becomes smaller. But what is the 
monetary value of this? In this example, the expected value of the in
formation (VOI) is the reduced probability of a wrong decision, multi
plied by the average consequence of being wrong. This expected VOI is 
then compared with the costs of collecting the additional data. A recent 
example of this VOI approach applied on soil carbon monitoring is de 
Gruijter et al. (2016). In a Bayesian framework this is know as the 
maximization of the expected utility (MEU) approach (Lindley, 1997), 
which is contrasted with a performance based approach applied in this 
research. 

It is evident that Zn is not the only soil fertility parameter of interest. 
The main aim of this paper is to show how the sample size can be 
determined under a Bayesian approach. To decide on the ultimate 
sample size this approach should also be applied for other crucial soil 
fertility parameters. The maximum of the sample sizes over these soil 
fertility parameters can then be used as the ultimate sample size. An 
alternative approach is to use as the study variable the output of a soil- 
crop simulation model that integrates all relevant soil fertility parame
ters, and to determine the sample size for estimating the mean of the 
model output. 

As mentioned in the Introduction the SHC survey data primarily aims 
at addressing production challenges at the level of individual fields 
though soil maps at district level are developed as well. The data can also 
be used to develop more granular (gridded) maps of the soil fertility 
parameters with digital soil mapping (DSM), so that we have an estimate 
of the soil fertility parameters at any location in the study area, and so 
for any individual field. In other words, SHC aims at answering ques
tions at multiple spatial scales: districts, mandals and individual fields. 
To serve these different aims we search for a sampling design type that is 
efficient both for estimating means and areal fractions of districts 
(mandals), and for DSM. The efficiency of a sampling design type for 
DSM largely depends on the mapping method (Brus, 2019). Mapping 
methods that exploit the availability of maps of covariates related to the 
soil properties of interest, such as terrain attributes, climate variables 
and variables derived from remote sensing imagery, are most promising. 
For these mapping methods spreading of the sampling locations in 
feature space may increase the efficiency. To ensure that the same data 
can also be used for design-based estimation of means and areal frac
tions of districts and mandals, we propose to select the sampling loca
tions by probability sampling, using a design type that results in samples 
that are well-spread in the space spanned by important features. An 
interesting sampling design type for this is the local pivotal method 
(Grafström et al., 2012; Grafström and Tillé, 2013). In further research 
we will analyze how many data are needed for taking decisions on 
fertilization at the level of individual fields. 

The Soil Health Card survey is designed as a monitoring project: 
every two years the fertility of the soil is surveyed. Besides interest in the 
current status of soil fertility parameters, users are also interested in 
changes of the soil fertility parameters over time. An interesting ques
tion in the context of this paper is, for instance, how precise the change 
in the mean of Zn and the areal fraction with Zn deficiency of a district 
can be estimated with the sample sizes reported in this paper. In a fre
quentist approach the variance of the estimated change depends on the 
space–time design (de Gruijter et al., 2006). It is well-known that 
revisiting the same locations of the first sampling round in the second 
sampling round results in the most precise estimate of the change of the 
estimated mean and areal fraction. But for estimating the current status, 
replacing a proportion of the sampling locations by new locations can be 
more efficient. The optimal proportion depends on the correlation of the 
two measurements at the same location (paired data) (de Gruijter et al., 
2006, section 15.2.3). Optimal sampling design for monitoring soil 
fertility is the central topic of further research. 

5. Conclusions 

In SSD uncertainty about the parameter of interest such as the pop
ulation mean or areal fraction can nicely be accounted for in a Bayesian 
approach. 

With the priors chosen in this paper the fully Bayesian and mixed 
Bayesian-likelihood sample sizes are comparable with the frequentist 
sample sizes based on the average length (ALC) or average coverage 
(ACC) of the credible interval. When the worst outcome criterion is used, 
these sample sizes are larger than the frequentist sample sizes, 
depending on the worst level (proportion of most likely data sets). 
However, the fully Bayesian sample sizes for the population mean are 
conservative, assuming a prior sample size of zero points. With more 
realistic prior sample sizes the fully Bayesian sample size can become 
substantially smaller than the frequentist sample size. 

The fully Bayesian and mixed Bayesian-likelihood sample sizes are 
sensitive to the hyperparameters of the prior distributions. The coeffi
cient of variation of the gamma distribution for the precision parameter 
had a strong effect on the sample size (Fig. 5). For the areal fraction with 
Zn deficiency the effect of the prior sample size (used to compute the 
hyperparameters of the beta distribution for the binomial probability 
parameter) on the mixed Bayesian-likelihood sample sizes is strong for 
small prior sample sizes, but then levels off rapidly. The prior sample 
size at which the effect levels off varies from three points to about fifty 
points. At the district level all sample sizes are much smaller than the 
current sample sizes used in the SHC surveys. Even at the mandals level 
for nearly all mandals the current sample sizes are in excess of the 
Bayesian and mixed Bayesian-likelihood sample sizes. 

A sample survey is performed in order to provide information for 
decision makers. Whether the SSD methods are sophisticated or simple, 
the challenge is to explain to the decision makers, who finance the 
survey, not only the recommended sample size, but some idea on how 
these were computed. This communication begins already when deter
mining the precision with which they require information, and it is 
hoped that the trust between statisticians and their clients can be 
established throughout the survey process. 

Software 

Package SampleSizeMeans (Joseph and Bélisle, 2012) is used to 
determine Bayesian sample sizes for normal means, for the fully 
Bayesian and the mixed Bayesian-likelihood approach. 

Sample sizes using the fully Bayesian and the mixed Bayesian- 
likelihood approaches for binomial probabilities (areal fractions) are 
computed with R package SampleSizeBinomial, available at http://www. 
medicine.mcgill.ca/epidemiology/Joseph/software/Bayesian-Sample- 
Size.html. 

Sample sizes for estimating an areal fraction using the frequentist 
approach are computed with R package binomSamSize (Höhle, 2017). 
This package has quite a few functions for computing the sample size. 
The function ciss.wald uses the normal approximation. 

The parameters of the beta distribution, given the limits of an in
terval for the binomial probability, were computed with R function beta. 
parms.fromquantiles.R, available at http://www.medicine.mcgill.ca/e 
pidemiology/Joseph/pbelisle/BetaParmsFromQuantiles.html. 

The parameters of the gamma distribution, given the limits of an 
interval for the precision parameter, are computed with R function 
gamma.parms.fromquantiles.R, available at http://www.medicine. 
mcgill.ca/epidemiology/Joseph/pbelisle/BetaParmsFromQuantiles. 
html. 
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Appendix A. Supplementary material 

The R script and the data can be downloaded from https://github. 
com/DickBrus/RequiredSampleSizes4AndhraPradeshDistricts 
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Grafström, A., Tillé, Y., 2013. Doubly balanced spatial sampling with spreading and 
restitution of auxiliary totals. Environmetrics 24, 120–131. https://doi.org/ 
10.1002/env.2194. 

Grafström, A., Lundström, N.L.P., Schelin, L., 2012. Spatially balanced sampling through 
the pivotal method. Biometrics 68, 514–520. 
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