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1. Introduction

A large body of our current knowledge on taxonomic, 
behavioural and pathobiological aspects of insect host-
pathogens interactions is based on a limited number of 
studies on insect pathogens causing disease outbreaks 
in insects, either in wild or in captive insect populations 
(Boucias and Pendland, 1998; Onstad and Carruthers, 
1990; Steinhaus, 1963; Weiser, 1977). Usually in the past, 
the discovery and description of pathogens took place 
because of striking epidemic disease outbreaks in insect 
populations or they were based on observations on a few 
diseased individuals (Andreadis and Weseloh, 1990; Becnel 
and Andreadis, 2014; Brun, 1984; Majumdar et al., 2008; 
Valles and Chen, 2006). Historically, biological control of 
agricultural insect pests using microorganisms (Lacey et 
al., 2001; Sanchis, 2011; Van Lenteren et al., 2018), diseases 
in honey bees (Bailey, 1968) and in silkworms (Samson et 
al., 1990) have been the focus of many studies of insect 

diseases. Furthermore, insect-microbe interactions have 
also been studied as models to understand epidemiological 
aspects of human diseases (Scully and Bidochka, 2006). 
Insect pathogens have also proven to be beneficial for 
humans in other ways; baculoviruses for example, are used 
for biotechnological applications (i.e. for vaccines, and 
oncological treatments) (Felberbaum, 2015; Hofmann et 
al., 1995; Van Oers, 2006).

The presence of insect diseases in rearing facilities is 
definitely not new. Indeed, the most ancient insect 
husbandry systems developed by humans, apiculture 
(bee keeping) and sericulture (silk farming), have long 
suffered from the effects of diseases (Eilenberg and Jensen, 
2018a; James and Li, 2012). Nevertheless, given the vast 
amount of insect and pathogen species in the world and 
the many different ways in which insects can be useful for 
humanity, there is still a lot to learn about insects and their 
pathogens. This is underlined by the challenge posed by 
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the development of infectious diseases in rearing systems 
of insects produced for food and feed (further referred to 
as edible insects). On the bright side, the widespread use 
of molecular techniques, has increased the discovery of 
(insect) pathogens, especially of viruses (De Miranda et al., 
2021; Junglen and Drosten, 2013; Liu et al., 2015), and the 
understanding of the microbiome of several insect species, 
including that of a number of edible insects (Vandeweyer et 
al., 2017). At the same time, new knowledge is continuously 
being gathered as more research is conducted on the impact 
of known (Lecocq et al., 2021) and understudied pathogens 
(G. Maciel-Vergara et al., unpublished data) on insect health 
in species commonly reared as food and/or feed.

2. Pathogens of insects collected from nature or 
reared as food and feed

Insects form a diverse class of arthropods harbouring a high 
diversity of pathogens associated with individual species. 
Viral, fungal, bacterial, and microsporidian pathogens are 
frequently found to infect insects or in association with 
diseased insects (Supplementary Material Table S1). Insect 
pathogens can be specialists, only infecting one or a few 
taxonomically closely related species like the fungal genus 
Strongwellsea (Eilenberg and Jensen, 2018b), or they can 
be generalists infecting a variety of insect species which 
may not be taxonomically related, which is the case for 
many hypocrealean fungi (Hajek, 1997). Furthermore, 
some insect pathogens are known to be opportunistic or 
facultative. Opportunistic pathogens have a broad host 
range and are often ubiquitous as they can survive and 
proliferate on a range of substrates other than the main host 
(Brodeur, 2012); on the other hand, obligate pathogens need 
their host to fulfil their life cycle (Han and Weiss, 2017). 
Normally, opportunistic pathogens only cause disease when 
insects are subjected to stressful conditions (Jurat-Fuentes 
and Jackson, 2012; Pagnocca et al., 2012; Sikorowski and 
Lawrence, 1994).

Viruses infecting insects and causing concern in mass 
production facilities comprise RNA as well as DNA 
viruses belong to different virus families (reviewed by 
Maciel-Vergara and Ros, 2017). Among these viruses, 
many are host-specific. An exception is the invertebrate 
iridescent virus 6 (IIV-6), known to infect several hosts in 
the orders Orthoptera and Blattodea (Just and Essbauer, 
2001; Kleespies et al., 1999) including gryllids, locusts, and 
cockroaches. In addition, larvae of the great wax moth, 
Galleria mellonella have shown susceptibility to IIV-6 
under experimental conditions (Jakob et al., 2002) as well 
as lepidopteran and dipteran cultured cell lines (Bronkhorst 
et al., 2014; Williams et al., 2009). Most entomopathogenic 
viruses known up to date are taxonomically distant from 
vertebrate viruses (Miller and Ball, 1998).

Viruses have a high potential to cause epizootics in insect 
rearing systems and in some cases they pose a threat to 
whole production stocks. Acheta domesticus densovirus 
(AdDV), an important pathogen of the European house 
cricket A. domesticus, is well known to cause disease 
outbreaks, which in the worst case could lead to major 
losses and to bankruptcy of cricket rearing companies 
(Szelei et al., 2011; Weissman et al., 2012).

Overt viral infections are initially identified by the symptoms 
displayed by infected insect hosts. For example, a disruption 
in moulting, reduced oviposition, or a reduced weight gain 
may be symptoms. Other symptoms may be a translucent 
exoskeleton, swollen and/or translucent abdomen (Figure 
1C), enlarged brownish or milky midgut, or hindgut, watery 
faeces, and paralysis (reviewed by Maciel-Vergara and Ros, 
2017). The particular symptoms depend on the virus and 
the host. Viruses can be transmitted through horizontal 
transmission (between conspecifics), vertical transmission 
(from parent to offspring), and sexual transmission. Often, 
viruses are transmitted through more than one of these 
transmission routes. Methods for the detection of a virus, 
include molecular techniques, virus isolation, serological 
studies, histopathology, and electron microscopy (Eberle 
et al., 2012; Harrison and Hoover, 2012). However, there 
is a need for guidelines for standardised methods to 
increase the reproducibility (including quality control) for 
validation of these diagnostic methods (Maciel-Vergara and  
Ros, 2017).

Entomopathogenic bacteria belong to various groups, 
which differ in biology. They can belong to spore forming 
(genus Bacillus) or non-spore forming bacterial (genera 
Pseudomonas, Serratia and Rickettsiella) groups and 
they can be generalists or specialists. In most cases, they 
infect their hosts orally (Jurat-Fuentes and Jackson, 2012). 
For example, a specialist bacterium, Bacillus popilliae is 
infectious to few selected species in the order Coleoptera 
(Rippere et al., 1998). On the other hand, strains of Bacillus 
thuringiensis var. kurstaki have a broader host spectrum 
within the order Lepidoptera and can infect many species. 
Some generalist and opportunistic bacteria, such as non-
spore forming bacteria from the genera Pseudomonas and 
Serratia, can cause problems in insect colonies subjected 
to stress. They can also multiply rapidly in hosts that are 
wounded and cannibalised by conspecific insects (Maciel-
Vergara et al., 2018). As tested by artificially induced 
infection, a strain of the bacterium Aeromonas hydrophila 
has been reported to be pathogenic to the yellow mealworm 
Tenebrio molitor (Noonin et al., 2011).

A change in coloration, flaccidity, bad odour, and a cease of 
(usual) movement of infected hosts are often first signs of 
bacterial diseases (Figure 1F). However, bacterial pathogens 
like Rickettsiella grylli cause characteristic symptoms 
in their hosts such as a swollen abdomen and liquified 
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viscous inner organs (Figure 1A and D). Diagnosis has to 
be followed by microscopy and molecular methods (Fisher 
and Garczynski, 2012; Tedersoo et al., 2019).

Insect pathogenic fungi can be specialists or generalists. 
Entomophthorales, an ancient order of fungi, is mostly 
comprised of specialists (Boomsma et al., 2014; Vega et 
al., 2012). The species Entomophthora muscae infects the 
house fly Musca domestica. The fungus discharges conidia 
from dead hosts, which increases the likelihood of the 
conidia to be spread effectively to new hosts (Bellini et 
al., 1992). Hypocreales (Ascomycota) is another order of 
fungi that includes genera like Metarhizium and Beauveria; 
species in these genera are mostly generalists and can 
cause diseases in a wide range of insect species. Fungal 
species belonging to the two genera can infect mealworms 
(T. molitor, a coleopteran species), silkworms Bombyx mori, 
(a lepidopteran species), M. domestica (a dipteran species), 
and Locusta migratoria (an orthopteran species) (see 
references in Supplementary Material Table S1). A recent 
study found Beauveria bassiana to be pathogenic to adults 
of the black soldier fly (Hermetia illucens) in laboratory 
infection trials (Lecocq et al., 2021) (Figure 1B). Most 
fungi infect via penetration of the insect cuticle followed 
by growth in the haemolymph, and they sporulate externally 
upon host death. The first diagnosis of a fungal infection can 
be done by observing conidia or other external features on 
dead insects (Figure 1B and E) and by subsequent analysis 

using a microscope to identify the fungal genus. Molecular 
methods such as DNA sequencing help to identify the 
fungal species in most of the cases (Castrillo and Humber, 
2009; Hajek et al., 2012; Humber, 2012; Inglis et al., 2012).

Microsporidia are unicellular parasitic organisms closely 
related to fungi. In order to infect their hosts the spores 
must be orally ingested (Solter et al., 2012a). Most known 
microsporidian species are specialists, although some 
species have been reported to ‘jump’ to another host. 
Microsporidian infections are classified as chronic and 
rarely as acute (Becnel and Andreadis, 2014). Their presence 
is not necessarily immediately lethal to an insect population, 
although they can cause harm upon reaching a critical mass. 
The most studied microsporidian species have been found 
in honey bees and locusts.

Another group of unicellular insect pathogens are gregarines 
(Lange and Lord, 2012), which occur in the insect gut. 
Gregarines are only known to be parasitic to insects and 
mostly non-lethal, but can anyway lower the insects’ fitness. 
They can be present in insect populations without being 
immediately noticed. The reported effects of gregarines 
in adult fall field crickets (Gryllus pennsylvanicus) are 
decreased longevity and weight loss under nutritional stress 
(Zuk, 1987). In addition, a Gregarina sp. isolated from 
the German cockroach Blattella germanica was reported 
as being highly pathogenic, and furthermore as being 

Figure 1. Clinical signs of infections in selected insects produced for food and feed. (A) Adult of the cricket, Teleogryllus sp. 
with inner organs showing a massive cell growth of Rickettsiella grylli. (B) Adult of black soldier fly, Hermetia illucens showing 
advanced mycosis due to an infection with Beauveria bassiana. (C) Nymph of the cricket, Acheta domesticus with swollen 
abdomen and liquified inner tissue (arrows) due to an infection with A. domesticus densovirus (AdDV). (D) Adult of the cricket, 
Gryllus bimaculatus with a strongly swollen abdomen due to an infection with R. grylli. (E) Adult of the cricket, Modycogryllus sp. 
showing advanced mycosis due to an infection with Metarhizium sp. (F) Larvae of the giant mealworm, Zophobas morio showing 
flaccidity and a dark coloration due to advanced septicaemia caused by an infection with Pseudomonas aeruginosa. Photos: 
A, C, D, E and F by Gabriela Maciel-Vergara, and B by Antoine Lecocq.
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able to increase the susceptibility of its host to microbial 
and chemical challenges (Lopes and Alves, 2005). High 
prevalence of gregarines was found in a survey of protozoan 
parasites in edible insect species including Gromphadorhina 
portentosa (Madagascar hissing cockroach), T. molitor, A. 
domesticus, and L. migratoria (Gałęcki and Sokół, 2019). 
Gregarines have also been reported to occur in tenebrionids 
Zophobas morio (Jahnke, 2005) and Alphitobius diaperinus 
(Bala et al., 1990) (Devetak et al., 2013; Steinkraus et al., 
1992). To our knowledge, there is very limited information 
on the effect of gregarines to edible insects in rearing 
systems. Conducting more comprehensive research might 
give insight into the role of gregarines in insect production. 
Insects that are heavily infected with gregarines can exhibit 
symptoms such as a swollen abdomens and lethargy (Lopes 
and Alves, 2005). As for microsporidia, gregarines can 
be detected by examination of gut samples under the 
microscope, and quantification can be achieved by staining 
gut fluid (Solter et al., 2012b).

3. Triggering factors for disease development

In insect rearing systems, the development of insect diseases 
caused by pathogens is determined by several factors (biotic 
and abiotic) related to the host and to the pathogen. Such 
factors are interconnected and largely determined by the 
production conditions inherent to insect mass rearing. 
Often, disease outbreaks occur when stressful conditions for 
an insect population which may converge with favourable 
conditions for a pathogen. Potential triggers that generate 
stressful conditions in insect colonies include changes in 
temperature and/or relative humidity, dietary changes and 
nutrient deficiency, overcrowding, infection with multiple 
natural enemies (i.e. pathogens and/or parasitoids), and 
toxic compounds (Figure 2).

Temperature and relative humidity

Insects are poikilothermic animals; their body temperature 
vary in line with the environmental temperature. Temperature 
and relative humidity have a substantial influence on the 
growth, development and survival of insects and microbes 
alike (Brindley, 1930; Holmes et al., 2012; Ment et al., 
2017; Ratte, 1985). Insects and their pathogens have each 
an optimal temperature range that overlap to a certain 
extent. The optimal temperature range for pathogens 
can be similar among species within a taxon at genus or 
species level (i.e. bacteria, fungi, protozoa), although in 
some cases, the optimal temperature range for a pathogen 
in a certain host-pathogen interaction is pathogen-specific. 
Nevertheless, temperature has a direct effect on insect 
mortality and on the speed at which infected insects become 
symptomatic (Blanford and Thomas, 1999; Hurpin, 1968;  
Inglis et al., 1997).

Four isolates of Metarhizium flavoviridae, a pathogenic 
fungus of the desert locust Schistocerca gregaria, caused 
nearly 100% mortality in 8 days regardless of the incubation 
temperature (25 and 30 °C), but the higher temperature 
(30 °C) increased the pathogen’s growth and significantly 
reduced the time to death (Fargues et al., 1997). Likewise 
two strains of the pathogenic bacteria Serratia sp. showed 
a dose and temperature dependent effect on the mortality 
and LT50 values when infecting the tobacco hornworm 
(Manduca sexta) (Petersen and Tisa, 2012).

At normal hive temperatures, 33 °C for the European honey 
bee (Apis mellifera), the two common microsporidian 
pathogens Nosema apis and Nosema ceranae were equally 
virulent, however N. apis was less infectious than N. ceranae 
at extreme temperatures (below 25 and above 37 °C) 
(Martín-Hernández et al., 2009). Temperature can also 
influence transmission capacity, illustrated by the duration 
and yield of the conidial discharge from insect cadavers for 
the fungus E. muscae after infecting its natural host, the 
common house fly (M. domestica), with higher conidial 
yield at lower temperatures (10 and 20 °C, compared to 
30 and 38 °C) (Watson and Petersen, 1993).

Temperature also has a significant effect on the ability 
of insects to overcome or slow down the infection by 
pathogens in various ways. A well-known example is the 
thermoregulatory behaviour displayed in most species of 
grasshoppers, locusts, and crickets (Order: Orthoptera) 
when infected with fungi (Blanford and Thomas, 1999; 
Carruthers et al., 1992; Inglis et al., 1996), bacteria (Louis 
et al., 1986), and microsporidia (Boorstein and Ewald, 
1987). The migratory locust L. migratoria raises its body 
temperature (behavioural fever) in order to suppress or 
slow down the infection time of fungal diseases caused by 
B. bassiana and Metarhizium anisopliae (Ouedraogo et al., 
2003; Sangbaramou et al., 2018). Moreover, Mediterranean 
crickets (Gryllus bimaculatus) reared in a temperature 
gradient, were able to clear the pathogenic form of R. grylli 
off their bodies by rising their body temperature (due to 
actively moving to a higher temperature zone). However, 
the effectiveness of behavioural fever is dose- and species-
specific, and therefore in some cases, it does not prevent 
pathogens killing their host (Adamo, 1999; Clancy et al., 
2018; Stahlschmidt and Adamo, 2013). Very importantly, 
thermal behaviour is heavily influenced by the intricate 
effects of relative humidity and temperature combined, 
all together determining the dynamics of host-pathogen 
interactions in insect species that are able to thermo
regulate.

Overall, relative humidity and moisture have an effect on 
the development of disease outbreaks in insect colonies 
(Benz, 1987; Chakrabarti and Manna, 2008; Fuxa et al., 
1999; Mostafa et al., 2005). Relative humidity has been 
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studied more extensively as a key factor for infections 
caused by fungal pathogens than for pathogens from other 
taxa (Hajek, 1997; Hall and Papierok, 1982). The effects of 
relative humidity on the virulence, conidial germination 
and other aspects related to the infectivity of fungi such as 
B. bassiana and M. anisopliae on grasshoppers and locusts 
are well documented (Arthurs and Thomas, 2001) (Fargues 
et al., 1997). In another host-pathogen system, mortality 
of Tribolium confusum larvae caused by M. anisopliae 
was negatively correlated with the tested levels of relative 
humidity (55% and 75%) (Michalaki et al., 2006). For E. 
muscae, relative humidity values did not have any effect on 
the infection rate of house flies at a constant temperature 
of 25 °C. However, the effect of the relative humidity on the 
germination rate was isolate-specific (Watson and Petersen, 
1993). Relative humidity did not have a significant effect 
on the efficacy (measured as the median lethal time, LT50) 
of two M. anisopliae strains to infect the red palm weevil, 
Rhynchophorus ferrugineus (Cheong and Azmi, 2020).

Dietary changes and nutrient deficiencies

Diet composition and nutritional stress play an important 
role in the insects’ immune response to pathogens and 
their ability to cope with diseases (Alaux et al., 2010b; 
Ayres and Schneider, 2009; Ponton et al., 2013; Srygley 
et al., 2009). The protein and carbohydrate contents 
are especially important for the immune response and 
survival of insects (Cotter et al., 2011; Ponton et al., 2020). 
Larvae of the Egyptian cotton ball armyworm Spodoptera 
littoralis (potential feed for quail chicks, (Sayed et al., 2019) 
challenged with a baculovirus, showed higher immune 
response and survival when fed on a diet with a high protein 
content relative to carbohydrate content (P:C ratio) (Lee 
et al., 2006). In the same study, a group of larvae were 
allowed to select among diets with varying P:C ratio 
after being challenged with the virus; those larvae who 
survived the infection showed a preference for the diet 
with higher P:C ratio, in comparison to control and dying 
larvae, suggesting a purposeful change in their feeding 

Abiotic factors

Biotic factors

Invertebrate
diseases

Species
Life stage

Genetic strain
Inbreeding
Immunity

Strain
Host specificity

Transmission mode
Inoculum

Pathogenicity
Lethality

Pathogen Insect

Management and hygiene practices

Insect health and welfare

Insect rearing systems

Figure 2. Schematic view of the interrelation of aspects inherent to pathogens and insect hosts with factors (i.e. biotic and abiotic) 
that trigger disease outbreaks and that concern insect health and welfare in insect rearing systems.
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behaviour to compensate for the protein costs of building 
up immunity (Lee et al., 2008).

Similar research on other insect species underlines the 
dynamics of host feeding behaviour in relation to immunity 
and survival (prophylactic and therapeutic effects), and 
adds to the notion that the balance between protein and 
carbohydrates in the diet varies among insect-host systems 
and is key for mounting immunity and overcoming infection 
(Brunner et al., 2014; Povey et al., 2014; Wilson et al., 2019), 
unless another challenge comes along (see section ‘Infection 
with multiple natural enemies’).

Nutritional stress related to food availability or nutrient 
content has also been connected to cannibalism, which is 
known as an important route of transmission for pathogens 
including viruses and bacteria, when healthy individuals 
feed upon heavily infected (or dead) conspecific insects that 
are too weak to avoid being preyed on. Baculoviruses have 
been reported to be transmitted by cannibalism in larvae of 
the corn earworm Helicoverpa armigera (Dhandapani et al., 
1993), the beet armyworm S. exigua (Elvira et al., 2010), and 
the fall armyworm Spodoptera frugiperda (Chapman et al., 
1999). Viruses that are also transmitted due to cannibalism 
are densoviruses in crickets (Weissmann et al., 2012), 
entomopoxviruses in grasshoppers (Streett and McGuire, 
1990), and iridoviruses in a wide range of hosts (Williams 
and Hernández, 2006).

Population density

When the population density reaches levels beyond a 
certain threshold which may be different for each species 
(overcrowding), an insect colony is in theory at high risk 
for diseases to develop, due to an increased transmission 
rate, physiological stress, nutritional stress, and reduced 
immune response (Anderson and May, 1979; May and 
Anderson, 1979). Crowding is a stress factor that may be 
influenced or have an influence on other stressors like 
temperature, relative humidity, and CO2 levels. Additionally, 
in crowded insect populations, increased chances for 
horizontal pathogen transmission occur as large numbers 
of seemingly healthy individuals feed on a big supply of 
food contaminated by the faeces and saliva (i.e. in dipteran 
production systems) of diseased individuals.

Cannibalism is usually observed in crowded populations 
as well, increasing the risks for the entry and spread of 
pathogens through the open wounds that the insects 
inflict on conspecifics (Steinhaus, 1958). Cannibalism 
and scavenging were more prevalent in groups of the 
giant mealworm (Z. morio) larvae, when exposed to the 
opportunistic bacterium P. aeruginosa compared to non-
exposed larvae. Individual larvae that were artificially 
injured prior to exposure to P. aeruginosa, suffered from 
higher mortality rates in comparison to non-exposed 

larvae (Maciel-Vergara et al., 2018). Another opportunistic 
bacterial pathogen, Serratia marcescens, has a higher 
chance to develop in insect colonies (i.e. silkworms) and 
mite colonies, when the hosts were subjected to crowding 
stress (Doane, 1960; Lighthart et al., 1988; Vasantharajan 
and Munirathnamma, 2013). Solitude can on the other 
hand lead to a decrease in the melanisation which is 
part of the immune response as shown in S. exempta 
larvae infected with the virus Spodoptera exigua 
nucleopolyhedrovirus, SpexNPV or in T. molitor infected 
with the fungus M. anisopliae (Reeson et al., 1998; Barnes 
and Siva-Jothy, 2000).

Nevertheless, the effects of crowding on insect health 
are not always negative as such effects also depend on 
behavioural and physiological aspects of specific insects.

Infection with multiple natural enemies

In insects, immune response and disease resistance 
vary when challenged by multiple pathogens/parasites/
parasitoids (simultaneously or sequentially) compared to a 
challenge by only one pathogen (Malakar et al., 1999; Martin 
et al., 2012). In nature, mixed infections are fairly common 
(Virto et al., 2014) and in insect rearing systems, such kind 
of infections may be more common than we may think 
(Maciel-Vergara et al., in preparation). Mixed infections 
can become a stress factor by boosting the pathogenicity 
of one or more other types of pathogens prevalent in the 
same host (Hughes et al., 1993). The dynamics between such 
pathogens in the whole disease process can be synergistic, 
additive, antagonistic, or independent (Carballo et al., 2017). 
For instance, research on the effects of a mixed infection 
by entomopathogenic fungi, showed an additive effect of 
a low virulent B. bassiana strain on the effectiveness of 
a highly virulent strain of Metarhizium acridum when 
infecting S. gregaria (Thomas et al., 2003). Other studies 
on competition among (viral, microsporidian, bacterial, 
and fungal) pathogens to thrive in the same host have been 
conducted using and observing different insect species, 
although most of the knowledge has been generated for 
bees and locusts (Evans and Armstrong, 2006; Tounou et 
al., 2008).

Usually, the shift of a pathogen from being almost 
innocuous to becoming a threat for its host is related to 
the suppression of the immune system by competition 
among various organisms. Similarly, covert viruses can 
turn overt if their host becomes infected with another 
viral pathogen or gets challenged by a parasitoid or a 
parasite. Often, the virus becomes infectious, hosts develop 
disease symptoms, and mortality increases. Examples of a 
covert virus becoming overt due to a secondary infection 
with a non-homologous virus or pathogen are described 
(Hughes et al., 1993), but maybe the most remarkable is 
the activation of a number of naturally present viruses in 
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honey bees due to the prevalence of the Varroa mite in bee 
colonies (Alaux et al., 2011; DeGrandi-Hoffman and Chen, 
2015; Tritschler et al., 2017).

Other stressors and factors related to disease 
development

Although vast knowledge on the effects of CO2 on insect 
development has been collected (reviewed by Guerenstein 
and Hildebrand, 2008; Nicolas and Sillans, 1989; Sage, 2002), 
there is limited evidence of CO2 as stressor to account for 
the development of insect diseases. The effects of high levels 
of CO2 (either as high – and pure – to induce anaesthesia, 
or high in proportion to other gases in a mixture) on the 
insect’s physiology and behaviour are described for the 
house cricket A. domesticus (Edwards and Patton, 1965), the 
German cockroach B. germanica (Tanaka, 1982) and other 
insect species (Bartholomew et al., 2015; Brooks, 1957; 
Gunasekaran and Rajendran, 2005; Krishnamurthy et al., 
1986). Nonetheless, the effects of CO2 seem to vary greatly 
in solitary insects compared to social insects, not only in 
relation to physiological and behavioural aspects but to their 
immune response as well. A positive correlation between 
CO2 anaesthesia and enhanced immunocompetence 
was found for the common eastern bumble bee, Bombus 
impatiens (Amsalem and Grozinger, 2017) and leaf-cutting 
ants (Römer et al., 2018).

In the context of host-pathogen interactions, a unique 
scenario of hyper reactivity to CO2 and associated 
high mortality at high concentrations of CO2 has been 
registered for Drosophila melanogaster infected with the 
rhabdovirus Drosophila melanogaster sigma virus (reviewed 
by (L’Héritier, 1948). Moreover, other rhabdoviruses 
cause hyper reactivity to CO2 in other dipteran species 
(Rosen, 1980). Additionally, in a multifactorial set-up 
where various stressors were tested, reduced virulence of 
entomopathogenic fungi on S. gregaria and A. domesticus 
at increasing CO2 concentration was observed (2015). 
An interesting fact relevant for large scale insect rearing 
systems, is that the effects of CO2 may vary greatly 
depending on the insect’s developmental stage. In this 
regard and for future studies, an analogy to the results found 
by Callier et al. (2015) could apply in the sense that while 
dipteran larvae can thrive in highly hypoxic conditions, 
these same conditions can severely affect individuals in 
the adult stage.

Other stressors to take into consideration are heavy metals, 
toxins and pesticides; chemicals that are known for their 
diverse effects on insect behaviour (Burden et al., 2019; 
Chicas-Mosier et al., 2017; Guo et al., 2014; Hladun et 
al., 2015) and host-pathogen interactions (Jiang et al. 
2021; Odemer et al., 2018), especially with regards to 
the immunocompetence of insect hosts (Mir et al., 2020; 
Shaurub, 2003; Van Ooik et al., 2008). Some studies have 

evaluated the positive effects of specific chemicals (i.e. 
silver nanoparticles, silica nanoparticles) on the survival 
of insects challenged by pathogens (B. mori infected with 
B. mori nucleopolyhedrovirus, BmNPV), however more 
research is needed to evaluate the effectiveness of using 
these and other chemicals to manage disease outbreaks in 
the insect rearing industry (Das et al., 2013; Govindaraju 
et al., 2011). On the contrary, there is ample evidence of 
the detrimental effects that chemical exposure has on 
insect health (particularly pesticide-related chemicals 
and heavy metals). An example of such negative effects 
is the increased prevalence and mortality caused by the 
microsporidian pathogen N. ceranae in honey bees and 
stingless bees exposed to neonicotinoid pesticides (Alaux et 
al., 2010a; Macías-Macías et al., 2020; Tesovnik et al., 2020). 
Honey bees exposed to neonicotinoid pesticides, have 
also been reported to have reduced immunocompetence 
and increased replication of the deformed wing virus (Di 
Prisco et al., 2013).

A couple of factors that are not stressors per se but that have 
a crucial effect on the development of insect diseases are 
the insect developmental stage (Blaser and Schmid-Hempel, 
2005; Briggs and Godfray, 1995), and the prevalence of 
endosymbionts. The effect of endosymbionts (Chrostek et 
al., 2020; Martinez et al., 2014; Rottschaefer and Lazzaro, 
2012; Zug and Hammerstein, 2015) on the insects’ health 
has been explored in the last two decades, although limited 
knowledge is available for most insect species reared as 
food or feed (Dillon et al., 2005; Muhammad et al., 2019).

The insects’ life stage is one more factor that plays a key 
role on the disease dynamics in insect colonies. Usually, 
one or few of the life stages of an insect host are (highly) 
susceptible to specific pathogens while the other life stages 
are less susceptible or not susceptible at all (Engelhard and 
Volkman, 1995; Goulson et al., 1995).

4. Measures to control diseases and pests on 
rearing systems

Disease outbreaks in farmed insects are inevitable and 
unfortunately, most diseases are discovered when there is 
already a significant damage to the insect colony. Depending 
on the severity of each case, the best solution in many cases 
has been to perform a thorough inspection, cleaning and 
eventual disinfection of the production facilities and to 
start the production over again. A routine inspection for 
pathogens should be implemented in every insect rearing 
system. Diagnostics, as suggested by Eilenberg et al. (2018), 
are to be done in collaboration with experts on invertebrate 
diseases. Diagnostic protocols are available for a handful of 
insect pathogens, but the most challenging scenarios are 
posed by the presence of covert infections (i.e. viruses) and 
other chronic diseases (i.e. protozoa and obligate bacterial 
pathogens).
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Covert viral infections can be detected before a disease 
outbreak occurs but their detection does not necessarily 
means that their presence will cause a severe disease 
outbreak in a rearing system, since such epizootics depend 
on many trigger factors (Section 3). Some preventive 
and corrective measures have been used in laboratories, 
insectaries and in insect rearing systems (i.e. sericulture, 
apiculture, sterile insect technique facilities), and have 
helped on the mitigation of insect pathogens (Bindroo 
and Verma, 2014; Formato and Smulders, 2011; Kariithi, 
2013). Such measures are related to the implementation 
of hygiene at different levels of the production facilities, 
to the modification of specific steps in the rearing process 
and to the application of immune-intervention strategies. 
The application and effectiveness of these measures vary 
depending on the type of production system (e.g. open, 
semi-open, closed), on the biology of the insect species, 
and on the pathogens present in each production system, 
as well as, on the legislation in place in each region/country.

Discussions on the risks posed by various insect pathogens 
to different rearing systems have been published, as well as 
general recommendations on how to try keeping insects 
healthy (Eilenberg and Jensen, 2018b; Eilenberg et al., 2015, 
2018). A guide on good hygiene practices has been made 
available by the International Platform of Insects for Food 
and Feed (IPIFF), covering aspects of the insect production 
and the processing of insect-derived products. The advice in 
this guide is related to the general hygiene mainly to avoid 
food-borne pathogens (yet most procedures would also be 
effective for several insect pathogens) (https://ipiff.org/
wp-content/uploads/2019/12/ipiff-guide-on-good-hygiene-
practices.pdf). Lately, advances in methods and equipment 
have been made for the design of a more hygienic, and easy-
to-handle insect production; these advances focus on closed 
high-tech insect production (i.e. crickets and black soldier 
fly – BSF – production) (Joosten et al., 2020; Mellberg 
and Wirtanen, 2018;). In addition, a manual for semi-
open production of crickets has been recently released. 
It provides an overview of the good practices advised for 
the entire rearing process and a guide on how to inspect 
the cricket rearing process and facilities (Hanboonsong 
and Durst, 2020).

Hygiene and good practices

Hygiene is without doubt an essential component of any 
husbandry system and the production of edible insects for 
feed or food is not an exception. It is important to keep in 
mind that an integral approach of the hygiene measures 
and the good production practices should be part of the 
entire rearing process, concerning: the physical structure 
(i.e. building, pens, containers, equipment), the feed, the 
personnel, the insects (i.e. eggs, parent stock), the frass, etc. 
Hygiene and good production practices are basic aspects for 
the prevention of food-borne diseases and insect diseases, 

and are key for starting to engage in the dialogue on insect 
welfare within the edible insect industry. In our view, and 
in agreement with the logic of the Brambell’s five freedoms 
(Van Huis, 2019), insect welfare relates to (among other 
aspects) the ability of captive insect populations to thrive, 
and to experience less the effects of disease outbreaks by 
being reared in ad hoc conditions. In summary, advices 
that reinforce the available general recommendations on 
hygiene and good practices include:
•	 Cleaning and disinfection agents should be used but they 

should be approved disinfectants by the corresponding 
agencies in charge of the regulation of such substances 
(i.e. EPA, ECHA) and especially, in the production of 
insects for food, disinfectants should be approved for 
use in the food industry.

•	 All the equipment and every surface that is in contact 
with the insects should be thoroughly washed, disinfected 
and rinsed every time a new batch of insects is reared.

•	 If available, steam may be used to disinfect rearing 
rooms, equipment, oviposition substrate, etc.

•	 Feed should be inspected (visually) and treated prior to 
use if needed (i.e. heat). It should be stored in proper 
conditions, depending on the nature of the feed.

•	 Fresh feed should be provided regularly to insects 
(depending on each species need), avoiding the formation 
and accumulation of moulds.

•	 Water stagnation and formation of moulds in drinking 
systems (i.e. for crickets) should be avoided by providing 
fresh water regularly and by using/designing devices 
that can be cleaned easily and preferably with materials 
where microorganisms are not able to thrive.

•	 Insect frass should be treated prior to disposal, 
irrespectively if the insect colony was healthy or not, 
by heating up or fermenting (i.e. compost/silage).

•	 If applicable to the rearing system, air filtration 
equipment should be put in place and maintained in 
appropriate functioning conditions.

Differentiated breeding (parent stock and ‘the rest of the 
population’)

Parent stocks may be reared separately from the rearing of all 
other instars (i.e. other isolated room in closed containers), 
as a measure to prevent diseases. Also, more selective and 
nutritious diet and care may be provided to parent stocks 
to ensure the quality of egg production. Keeping the parent 
stock separated from the main production (physically and in 
terms of nutrition, and care) also ensures a higher biological 
quality for the parents and a backup solution if the entire 
production needs to be eventually re-started.

Mechanical control of pests

Ants, flies, parasitic wasps and mites are the most common 
insect pests for insect production. Different methods in 
specific rearing systems are used to keep pests at bay. For 
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example, placing cages or crates for the production of 
dipteran species (i.e. house fly and BSF) and crickets on 
elevated platforms with stands submerged in oil or molasses, 
have been effective to deter ants from entering cages in 
Ghana, Kenya and Uganda. In closed production systems, 
double doors prevent the entrance of pests and the escape 
of insects in rearing systems. Sticky traps and UV-lamp 
traps are also useful to prevent insect pests to remain inside 
production facilities. Mites are a major problem, especially 
in insect rearing systems where substrates have high 
moisture contents and /or high relative humidity prevails. 
The most efficient way to control mites is by cleaning the 
facilities on a regular basis, lowering the relative humidity, 
keeping the trays/pens free of debris, and preventing the 
feed from getting too wet and mouldy. A possibly effective 
but expensive method that might be used to combat mites 
is the use of the predatory mites e.g. Stratiolaelaps scimitus, 
Cheyletus eruditus, and Cheyletus malaccensis (Cabrera 
et al., 2005; Cebolla et al., 2009; Pulpan and Verner, 1965; 
Rangel and Ward, 2018), however more research should 
be done to prove their efficacy.

5. Prospects on the control of insect diseases 
in rearing systems

In the future, novel control strategies can be inspired 
by methods from other life stock production systems or 
developed from a deeper understanding of the biology and 
physiology of host-microbe interactions within the context 
of insect mass-rearing. Practical constraints for the control 
of insect diseases in insect rearing systems are especially 
related to: the insect species, the pathogen species, the size 
and structure of the facility, the technological investment, 
the availability of reliable prevention methods, diagnostic 
tools and direct control methods, and the risk of toxic 
residues if chemical treatment is pursued (i.e. antibiotics 
or antivirals).

Breeding of disease-resistant/ tolerant strains

Selective breeding to improve desirable traits in animals 
and plants has been used by humans for many years and 
breeding for disease resistance is a classical discipline 
found within all production systems e.g. crop production 
(Nelson et al., 2018), aquaculture (Gjedrem, 2015), poultry, 
pigs, (Proudfoot et al., 2019) and honey bees (Guichard et 
al., 2019). One of the challenges in resistance breeding is 
the trade-off with other important traits, which includes 
responses to abiotic factors, nutritional uptake, growth, and 
other fitness traits. In addition, resistance to one pathogen 
might induce susceptibility to another.

In the late 20th century, genomic selection was added to the 
livestock breeding toolbox; by reading specific locations in 
the genome and assigning them to measurable production 
traits, faster improvement in livestock production efficiency 

has been achieved and the novel CRISPR/Cas technology 
even allows for genome editing. The CRISPR/Cas gene-
editing technique has shown promising results as an 
antiviral therapy in silkworms (Wei et al., 2017).

Taking the ethical considerations around genome editing 
into account (i.e. by CRISPR/Cas) (Charo and Greely, 2015; 
Gjerris et al., 2018), and it will be interesting to see if and 
how this technology will be used for disease resistance or 
other functional traits within insects used for mass rearing.

Heat shock/thermal therapy

Temperature plays a key role on the different immune 
responses of insects against pathogens (5.3.1). The severity 
of a heat shock (thermal stress) may impact the duration 
of the immune responses, which varies among insect-
pathogen systems. For instance, subjecting G. mellonella 
to a short heat shock (38 °C, 30 min) prior to infection 
with B. bassiana blastospores reduced the infection rate 
of the fungus, prolonging the host lifetime (Wojda et al., 
2009). Conversely, a prolonged thermal stress (30 and 37 °C, 
24 h), provided G. mellonella only temporary resistance 
against Aspergillus fumigatus (Browne et al., 2014). Thermal 
therapy of honey bees at 42 °C for 4 h and back to the 
normal 32 °C have shown to reduce the viral load of green 
fluorescent tagged SINV-GFP Sindbis virus in honey bees 
(McMenamin et al., 2020)

Gut microbiota/probiotics

Gut microbiota modulate insect immune response, 
enhancing the resiliency of insects against pathogens 
(Muhammad et al., 2019) or assisting the pathogens to 
overcome the immune system of their host (Jakubowska et 
al., 2013). A comprehensive work on this regard has focused 
on honey bee immunity and its response to bacterial, fungal, 
and viral pathogens (Evans and Armstrong, 2006; Moran, 
2015; Reynaldi et al., 2004).

On the other hand, composition of microbial gut 
communities in insects (and other animals as well) (Krams 
et al., 2017; Martínez-Solís et al., 2020; Ponton et al., 2013, 
2015) can vary depending on the insect diet. From the 
perspective of insect rearing, modifying the diet would also 
modify the microbial composition of insect guts, a feature 
that could promote higher disease resistance of insects 
reared under mass-production schemes. As an example, 
an indigenous gut bacterial strain Pediococcus pentosaceus 
showed increased growth and survival of T. molitor larvae 
(Lecocq et al., in press), and an isolate of the bacterium 
Enterococcus mundtii offered the model insect Tribolium 
castaneum protection towards the bacterial pathogen 
B. thuringiensis (Grau et al., 2017). h
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Biological control

To our knowledge, very limited information exists on the 
utilisation of microorganisms to control insect pathogens 
in insect rearing systems. As mentioned earlier in this 
paper, virus discovery has increased over the last decade 
and generally speaking, new viruses that are found by New 
Generation Sequencing (NGS) technology (Datta et al., 
2015) in otherwise healthy hosts, are referred to as insect-
specific viruses (ISV’s). ISV’s are not able to replicate in 
vertebrate hosts and it is suggested that they persist in insect 
populations through vertical (transovarial) transmission. 
Although, we do not exclude the possibility that some 
newly discovered (covert) viruses may end up being 
pathogenic to insects reared under stressful conditions in 
insect rearing systems, the antagonistic interaction between 
(engineered and wild-type) insect-specific viruses (ISV’s) 
and arboviruses vectored by insects (Adelman et al., 2001; 
Airs and Bartholomay, 2017; Bolling et al., 2015; Powers 
et al., 1996), is a starting point to evaluate the trade-offs 
if ISV’s were to be used to increase pathogen resistance 
in edible insect species. Nouri et al. (2018) reviewed the 
potential applications that ISV’s may have for different 
purposes. An additional alternative to investigate is the use 
of bacteriophages for the control of bacterial diseases in 
insects. Bacteriophages have the ability to alter the bacterial 
genomic material, and might thus disrupt the infection 
process (Li et al., 2016b; Zimmer et al., 2013).

RNA interference

RNA interference (RNAi) is a technology used for the 
inhibition of virus replication based on gene-expression 
regulation, by the neutralisation of targeted mRNA 
molecules (Aguiar et al., 2016). This biological process 
is known to protect vertebrate, invertebrate, and plant 
hosts from virus attacks (Burand and Hunter, 2013; La 
Fauce and Owens, 2013; Li et al., 2016a; Sidahmed and 
Wilkie, 2010). RNAi has been used to control (to a low 
extent), the prevalence of Glossina pallidipes salivary 
gland hypertrophy virus in tsetse fly rearing systems (Abd-
Alla et al., 2011a,b). More promising results were seen 
in reducing the prevalence of the Israeli acute paralysis 
virus and deformed wing virus in honey bees using RNAi 
(Brutscher and Flenniken, 2015; Burand and Hunter, 2013; 
Desai et al., 2012; Hunter et al., 2010).

6. Concluding remarks

Although pathogens and beneficial insects have coexisted 
in insect rearing systems since ancient times, the recent 
fast growth of the insect rearing industry (for protein 
production) has exposed the need for a better understanding 
of insect diseases that develop in production facilities. 
Notably, there is more research to be done on the biology 
of insect pathogens and the interactions they have with 

their insect hosts (for the subject of this paper focusing on 
insects produced as food and feed). At the same time, more 
knowledge is needed on the correlation and/or interaction 
between production variables and host-pathogen dynamics. 
Such multifactorial relations are rather complex, with 
stress factors being critical for the development of disease 
outbreaks, with often more than one pathogen involved, 
and several trade-offs that challenge the management of 
insect diseases in insect production processes.

Additionally, and since many aspects of insect production 
have an implication on disease development (from insect 
physiology to in-house hygienic measures), old and novel 
techniques and possibilities should be extensively explored 
as preventative and corrective measures. Needless to say, 
no single solution can address all problems when it comes 
to the management of diseases. Rearing practices should 
be continuously revised and changed accordingly. Doing 
so will allow to find a better balance between enhancing 
productivity (by optimizing the production) and avoiding 
insect disease outbreaks while at the same time, taking into 
account the insects’ health.

Ultimately, a holistic approach in understanding the various 
aspects related to insect diseases in connection with the 
production process should be taken. Such approach is 
relevant for the ongoing development of protocols for the 
management, prevention, and control of diseases.
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Table S1. Literature review of pathogens of insects produced 
or collected in nature as food and feed.
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