
ABSTRACT

Reliable prediction of lifetime resilience early in life 
can contribute to improved management decisions of 
dairy farmers. Several studies have shown that time 
series sensor data can be used to predict lifetime re-
silience rankings. However, such predictions generally 
require the translation of sensor data into biologically 
meaningful sensor features, which involve proper feature 
definitions and a lot of preprocessing. The objective of 
this study was to investigate the hypothesis that data-
driven random forest algorithms can equal or improve 
the prediction of lifetime resilience scores compared with 
ordinal logistic regression, and that these algorithms re-
quire considerably less effort for data preprocessing. We 
studied this by developing prediction models that fore-
cast lifetime resilience of a cow early in her productive 
life using sensor data from the first lactation. We used 
an existing data set from a Dutch experimental herd, 
with data of culled cows for which birth dates, insemi-
nation dates, calving dates, culling dates, and health 
treatments were available to calculate lifetime resilience 
scores. Moreover, 4 types of first-lactation sensor data, 
converted to daily aggregated values, were available: 
milk yield, body weight, activity, and rumination. For 
each sensor, 14 sensor features were calculated, of which 
part were based on absolute daily values and part on 
relative to herd average values. First, we predicted 
lifetime resilience rank with stepwise logistic regression 
using sensor features as predictors and a P-value of 
<0.2 as the cut-off. Next, we applied a random forest 
with the 6 features that remained in the final logistic 
regression model. We then applied a random forest with 
all sensor features, and finally applied a random forest 
with daily aggregated values as features. All models 
were validated with stratified 10-fold cross-validation 
with 90% of the records in the training set and 10% 

in the validation set. Model performances expressed in 
percentage of correctly classified cows (accuracy) and 
percentage of cows being critically misclassified (i.e., 
high as low and vice versa) ± standard deviation were 
45.1 ± 8.1% and 10.8% with the ordinal logistic regres-
sion model, 45.7 ± 8.4% and 16.0% with the random 
forest using the same 6 features as the logistic regres-
sion model, 48.4 ± 6.7% and 10.0% for the random 
forest with all sensor features, and 50.5 ± 6.3% and 
8.4% for the random forest with daily sensor values. 
This random forest also revealed that data collected 
in early and late stages of first lactation seem to be of 
particular importance in the prediction compared with 
that in mid lactation. Accuracies of the models were 
not significantly different, but the percentage of criti-
cally misclassified cows was significantly higher for the 
second model than for the other models. We concluded 
that a data-driven random forest algorithm with daily 
aggregated sensor data as input can be used for the 
prediction of lifetime resilience classification with an 
overall accuracy of ~50%, and provides at least as good 
prediction as models with sensor features as input.
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INTRODUCTION

Resilience of animals refers to their capacity to cope 
with short-term perturbations in their environment and 
return to their undisturbed status (Colditz and Hine, 
2016). Lifetime resilient dairy cows are characterized as 
animals that have a high probability of completing mul-
tiple lactations, exhibit good productive and reproduc-
tive performance, face few health problems that they 
overcome easily, and are efficient and consistent in their 
milk production (Adriaens et al., 2020). Improving re-
silience in dairy cows yields substantial advantages: it 
contributes to animal health and welfare (Mulder and 
Rashidi, 2017), improves the productivity of the farm 
(Colditz and Hine, 2016), reduces the environmental 
impacts of the sector (Herzog et al., 2018), and reduces 
the need for antibiotic usage (König and May, 2019). 
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Additionally, intensification of the livestock sector, with 
increasing herd size and limited availability of labor, 
results in a need for easy-to-manage and healthy herds 
(Elgersma et al., 2018).

Early predictions of lifetime resilience can be used 
as input for decision support tools for farmers and to 
improve resilience through breeding (Berghof et al., 
2019). However, an early identification of cows that will 
smoothly go through multiple lactations remains diffi-
cult. The challenges an animal will encounter cannot be 
predicted and will differ from individual to individual, 
from farm to farm. On top of that, challenges will vary 
in seriousness (e.g., udder infections with minor versus 
major pathogens), and indicators for general resilience 
have currently not been defined (Berghof et al., 2019). 
The ability to cope with these challenges is most clearly 
shown at the end of productive life, and is affected by 
management decisions (van Pelt et al., 2016).

The development of sensor technologies has enabled 
frequent measurement of physiological, behavioral, and 
production indicators on individual cows. These data 
can be used by farmers to improve cow management 
while applying systems known as precision livestock 
farming (Berckmans, 2014). Sensor systems are regu-
larly used on dairy farms nowadays (Steeneveld and 
Hogeveen, 2015; Gargiulo et al., 2018; Groher et al., 
2020; Dela Rue et al., 2020), and this is expected to 
increase in the near future. So far, the majority of man-
agement support tools using sensor data are targeted 
at detecting specific events [e.g., indicating estrous or 
health events (Friggens and Thorup, 2015)], but there 
is also growing interest to exploit sensor data for pre-
dicting more complex phenotypes. Poppe et al. (2020) 
used fluctuations in daily milk production records as 
indicators for resilience and found that log-transformed 
variance of deviations from fitted curves was the 
most promising parameter with a heritability of 0.20 
to 0.24 and favorable genetic correlations with func-
tional traits. Recent technological developments and 
increased usage of other sensors give the opportunity 
to combine continuous data recordings from different 
sensors to further improve the prediction of resilience. 
As an example, Adriaens et al. (2020) reported that 
adding activity sensor data significantly (P < 0.01) 
improved prediction accuracies for resilience compared 
with predictions based on daily milk features alone. 
Both Poppe et al. (2020) and Adriaens et al. (2020) 
tried to construct resilience indicators from a biological 
point of view. Data processing and the construction of 
biologically meaningful features from these sensor data 
to be included in regression models played a crucial role 
in their approaches. Currently, machine learning algo-
rithms play a central role in the recognition of patterns 
in large and complex data sets in other domains (van 

der Heide et al., 2019). One of these algorithms, random 
forest, showed high prediction accuracy and potential 
to unravel conditional relations between variables and 
interactions between variables for subsets of samples 
when applied for pattern recognition, while requiring 
minimal effort for data processing (Touw et al., 2013). 
Machine learning algorithms have not yet been adopted 
for the purpose of predicting resilience in dairy cows, 
but were used to predict survival to second lactation 
(van der Heide et al., 2019), which is a similar trait.

We hypothesized that random forest algorithms, 
particularly suited for situations with a large number 
of explanatory variables (Breiman, 2001), can improve 
the prediction of lifetime resilience scores and that 
these algorithms require less effort for data preprocess-
ing compared with the traditional method (i.e., step-
wise logistic regression). We studied this by developing 
prediction models that forecast lifetime resilience of 
a cow early in her productive life using sensor data 
from the first lactation. First, we developed an ordinal 
logistic regression model (considered as reference) with 
predictive features based on the entire lactation period 
similar to Adriaens et al. (2020). We then compared 
this with several random forest models, where we suc-
cessively changed the set of predictors. This set of pre-
dictors was either based on the entire lactation period 
(similar to the features used in the regression model), 
or on daily sensor measurements.

MATERIALS AND METHODS

Data

Data from 2,127 cows born between March 1993 and 
May 2014 were collected at the research facility Dairy 
Campus, Lelystad, the Netherlands (formerly known as 
Waiboerhoeve). Birth dates, insemination dates, calv-
ing dates, culling dates, and health treatments were 
retrieved from the farm database for all cows for which 
at least one milk yield record was available. Moreover, 4 
types of sensor data were retrieved: milk yield, BW, ac-
tivity, and rumination. The latter 2 were obtained from 
SCR tags provided by Lely Industries. Milk yield was 
recorded either in the milking parlor (twice daily) or 
in a Lely Astronaut automatic milking system (AMS; 
at each milking). Body weight was recorded at entry of 
the parlor or in the AMS.

Calculation of Lifetime Resilience Scores  
and Resilience Classification

From the initial 2,127 cows, lifetime resilience scores 
(LRS) could be calculated for 1,800 cows that fulfilled 
the following requirements:
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• The cow was culled at the time the data were 
collected for this study’s purpose (i.e., before July 
2016)

• Complete data regarding inseminations, calving 
dates, disease, and treatment records were avail-
able throughout the cows lifetime. 

• Age at first calving had to be between 640 and 
1,100 d.

• Similar to the approach of Adriaens et al. (2020), 
LRS was calculated according to the following 
equation:

LRS = × − −( )+ −( )− ( )+
=

=

=

=

∑ ∑500 1 1
2 1

n A A CI CI TD FP
p

p n

p p
p

p n

p n ,

 [1]

where LRS refers to the lifetime resilience score as 
a summation of scores for lactations 1 to n, 500 is 
the standard credit points for each calving, A1 = 
age at first calving in days, A1  = herd average for 
age at first calving in days, CIP = calving interval 
in days for all succeeding parities (P > 1), CIp  = 

herd average for calving interval in days for all 
succeeding parities (P > 1; so, calvings with below 
herd average values receive additional credit 
points and animals with above herd average val-
ues get points subtracted), TDP = number of days 
the cow was curatively treated for a health prob-
lem during parity p, and FPn = 25 × number of 
inseminations in the last lactation. When an ani-
mal was culled within 100 d after the last calving 
the remaining days up to d 100 were regarded as 
days the cow was treated for a health problem.

The A1  for the farm was 735 d and CIp  was 414 d. 

The LRS of the 1,800 cows with 5,771 calvings (1–11 
per cow) ranged from 31 to 6,031, with an average 
value of 1,518. These cows were classified evenly into 3 
categories: high (33% highest LRS), medium, and low 
(33% lowest LRS).

Selection and Processing of Sensor Data

From all available sensor data, only data from d 1 to 
300 during first lactations were included for process-
ing. Raw sensor data were aggregated to daily values; 
for activity and rumination this was done by summing 
all bihourly measures per day; records with incomplete 
information were not taken into account. For BW the 
average of all weight measurements per day was taken 
(usually the cows were weighed at each milking). Fi-

nally, for milk yield, 24-h yields were obtained by sum-
ming all yields during a calendar day, dividing this sum 
by the time interval in minutes from the last milking 
on the preceding day until the last milking of this cal-
endar day and multiplying by 1,440. In this procedure, 
daily yields were discarded when intervals exceeded 
2,160 min (36 h). Moreover, for all 4 sensors, outliers 
of these daily values (mean ± 4 SD) were removed and 
set as missing. For analysis, a data set with records per 
cow and DIM was constructed with data from cows 
that had at least 100 full-day observations for each of 
the 4 sensors. Only 370 of the 1,800 cows (21%) met 
these criteria and were included in this study, with first 
calvings between 2009 and 2016. The main reason not 
to include so many lactations was that activity and 
rumination data were only available from 2007 onward. 
It was not required that days with sensor information 
were identical for all sensors (e.g., cows could have milk 
yield data for d 1–300, BW for d 1–200, and activity 
and rumination data for d 150–300). Milk yield infor-
mation was nearly complete (available for 99.4% of the 
records), activity, rumination, and BW were available 
for 78.1%, 78.8%, and 79.4% of the records, respec-
tively. Rumination data were always available when ac-
tivity data were available and 92% of the records with 
activity data also had BW data. Of the data set, 71.7% 
had information for all 4 sensors. In total, the sensor 
data set had 106,689 daily records (288.3 per lactation 
on average, ranging from 129 to 300). The final data 
set included cow ID, date of recording, DIM, recorded 
sensor value, and herd average for that sensor value 
(based on all sensor information available for the 1,800 
cows for which LRS were constructed for this DIM in 
first lactation) and relative (to herd) sensor value cal-
culated as recorded value − herd average value for each 
sensor (activity, rumination, milk yield, and weight). A 
general overview of the sensor data used for this study 
and the herd mean values is shown in Table 1.

Calculation of Sensor Features

For each of the sensor time series, 14 sensor features 
(i.e., curve parameters) were calculated from the daily 
aggregated measurements, totaling 56 sensor features. 
First, the absolute daily values were made relative to 
the herd average, creating relative curves (Figure 1). 
Subsequently, a linear regression line was fitted through 
this relative curve (Figure 1). The mean, minimum, 
maximum, 25th percentile, 50th percentile, 75th per-
centile, standard deviation, skewness, kurtosis, and 
autocorrelation (lag1) were computed based on the 
relative curve of each cow. The slope and intercept were 
obtained from the regression line through the relative 
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curve of each cow and the residual standard deviation 
was calculated from the residuals of the regression. 
Correlation between the relative curve values and 
fitted values was calculated as an additional feature. 
Additionally, absolute daily sensor values and their 
lactation averages were also used as features, totaling 
1,204 sensor features, but these were only included in 
the random forest analysis.

Statistical Analysis

A logistic regression and 3 random forests (Figure 
2) were constructed to predict LRS classes (high, me-
dium, or low) based on the set of 56 sensor features as 
described in the previous section to explore the predic-
tive power of the sensor data. Random forest (Breiman, 

2001) models were parameterized using a random grid 
search (for each model separately). All models were 
validated with stratified 10-fold cross-validation with 
90% of the records in the training set and 10% in the 
validation set.

We used a structured approach in developing the 
different models. First, an ordinal logistic regression 
model was constructed with all 56 sensor features. In 
a stepwise selection procedure the sensor features with 
the highest P-values were deleted from the model (one 
at a time), until a final model remained with features 
with P-values ≤0.2. Second, a random forest approach 
using those sensor features that were kept in the final 
ordinal logistic regression model was applied. This was 
done to enable a one-to-one comparison of a random 
forest and a logistic regression approach in their ability 
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Table 1. Descriptive statistics of the first-lactation sensor data of dairy cows (n = 370) used for this study

Sensor Mean SD Minimum Maximum Herd average

Activity (count) 417.7 97.2 0.0 838.0 413.4
Rumination (count) 439.7 124.0 15.0 816.0 436.1
Milk yield (kg/d) 27.0 6.0 0.1 67.5 27.5
Weight (kg) 574.1 57.0 351.0 943.0 569.0

Figure 1. Assessment of curve parameters per sensor based on the relative curve (red line), or its regression line (light blue line) of a cow. 
The absolute values of a cow are in dark blue, the absolute herd mean values in green, and the relative herd mean values in black.
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to predict LRS classifications using exactly the same 
information. Third, a random forest approach using all 
56 lactation sensor features that were calculated was 
applied. This was to test whether including features 
that were considered insignificant in the stepwise selec-
tion for the ordinal logistic regression could improve 
the predictive performance of the random forest model. 
Finally, a random forest approach that did not include 
the sensor features but that used all daily sensor values 
and their lactation averages was applied. This was to 
investigate whether the efforts for preprocessing could 
be reduced while maintaining predictive ability. All of 

the data editing and modeling was performed with the 
programming language Python. For both the ordinal 
logistic regression and the random forests an open 
source machine learning library, scikit-learn (https: / 
/ scikit -learn .org/ stable/ modules/ generated/ sklearn 
.pipeline .Pipeline .html), was used. Furthermore, the 
following Python packages and modules were used: 
Pandas, NumPy, Os, SciPy, Matplotlib, Seaborn, and 
Statsmodels.

Model performances were primarily evaluated by the 
accuracy (ACC) of predictions, which is the percent-
age of correctly classified cows. Additionally, we looked 
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Figure 2. Structure of a random forest algorithm on a data set containing N features, 370 observations, and k trees. Random forest is an 
ensemble of many individual decision trees; each individual tree randomly samples from the data set with replacement, resulting in different 
trees. In bag (IB) is used as training data, whereas out of bag (OOB) is used to test the model. The average of all predictions results in the 
final prediction.

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html


Journal of Dairy Science Vol. 104 No. 11, 2021

at the proportion of cows that were misclassified in op-
posing categories (i.e., high in low and vice versa). This 
will be referred to as critically misclassified (CritMis). 
For the last random forest model, feature importances 
were calculated with the Python scikit-learn package. 
The ACC and CritMis of the 4 models were compared 
with a McNemar test to estimate significance levels of 
the differences.

RESULTS

The stepwise selection of the ordinal logistic regres-
sion model resulted in the inclusion of 6 significant 
sensor features. This model yielded an ACC (calculated 
for each replicate) of 45.1 ± 8.1% and a weighted F1-
score (calculated from the aggregated results) of 44.5%. 
The features that were included in the final model were 
slope of the regression line through the relative milk 

yields, standard deviation of the relative BW, minimum 
of the relative activities, skewness of the regression line 
through the relative activities, maximum of the rela-
tive rumination values, and skewness of the regression 
line through the relative rumination values. Prediction 
techniques for categorical variables such as ordinal lo-
gistic regression models calculate probabilities for each 
of the classes and the class with highest probability is 
presented as the predicted class. Relationships of the 
significant features with predicted resilience are given 
in Figure 3, where the range of the feature for which 
the probabilities are plotted is scaled from 0 (minimum 
value as observed in the data set) to 1 (maximum value 
as observed in the data set). The slope of the milk yield 
curve ranged from −0.051 to +0.073 in our data set, 
standard deviation of the relative BW from 9.0 to 59.1 
kg, minimum of the activity curve from −441 to 185 
min/d, skewness of the activity curve from −2.45 to 
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Figure 3. Calculated probabilities of belonging to low, medium, or high resilience categories for observed ranges (0 = minimum, 1 = maxi-
mum) of sensor features that are kept in the final ordinal logistic regression prediction model (assuming the other features are at average values). 
MY = milk yield in kilograms.
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5.99, maximum of the rumination curve from −192 to 
383 min/d, and skewness of the rumination curve from 
−2.61 to 1.89. To create these plots, all other feature 
values were fixed at average values observed in the data 
set.

Figure 3 shows that with increasing slope of the milk 
yield curve, increasing standard deviation of the BW 
curve and increasing skewness of the activity curve the 
probability decreased that a cow will realize a high 
LRS. For a cow with the lowest (most negative) slope 
of the milk yield curve and average values for the other 
features, the predicted probability that it will realize a 
high LRS is around 45%, and that it will realize a low 
LRS is less than 20%. For a cow with the highest (most 
positive) slope of the milk yield curve and average val-
ues for the other features, the predicted probabilities 
are around 12% and close to 60%, respectively. Increas-
ing the minimum of the activity curve and increasing 
the maximum and skewness of the rumination curve 
coincide with increasing probability that a cow will 
realize a high LRS.

Confusion matrices of the 4 models are presented in 
Table 2 and significance levels of the differences for 
ACC and CritMis are in Table 3. Cross-validation accu-
racies reported for the other models were 45.7 ± 8.4% 
for the random forest using the 6 significant features 
from the logistic regression model, 48.4 ± 6.7% for the 
random forest with all 56 available curve features, and 
50.5 ± 6.3% for the random forest with absolute sensor 
values as input variables. None of the differences in 
ACC values was significant, but the second model had 

significantly higher CritMis than the other models (P 
= 0.001 for comparison of models 1 and 2, P = 0.003 
for comparison of models 2 and 3, and P = 0.000 for 
comparison of models 2 and 4). On average, model 4, 
which requires the least amount of preprocessing, had 
at least equal performance compared with the other 
models.

The 1,204 “features” (absolute daily sensor values) 
that were used in the last model were ranked for their 
importance. There were relatively few features with 
considerable importance, and many that only contrib-
uted marginally to the model. The 20 most important 
features in the model with absolute daily sensor data 
(Table 4) contained 12 activity features, 5 rumination 
features, 3 milk yield features, and no BW features. 
The majority of these features were from early lactation 
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Table 2. Normalized confusion matrix, including the percentage of critically misclassified animals (CritMis1) 
for each model2

Model  True classification

Predicted classification

CritMisLow Medium High

1  Low 0.103 0.159 0.062  
  Medium 0.084 0.216 0.081  
  High 0.046 0.116 0.132  
      0.108
2  Low 0.143 0.089 0.092  
  Medium 0.111 0.159 0.111  
  High 0.068 0.073 0.154  
      0.160
3  Low 0.135 0.127 0.062  
  Medium 0.103 0.178 0.100  
  High 0.038 0.086 0.170  
      0.100
4  Low 0.170 0.103 0.051  
  Medium 0.100 0.165 0.116  
  High 0.032 0.092 0.170  
      0.084
1Cows that were misclassified in opposing categories (i.e., high in low and vice versa).
21 = ordinal logistic regression with 6 significant sensor features, 2 = random forest with 6 significant sensor 
features from ordinal logistic regression, 3 = random forest with all 56 sensor features, 4 = random forest with 
absolute sensor values.

Table 3. P-values for pairwise comparison of accuracy and percentage 
of critically misclassified animals (CritMis1) for the different models2

Models compared Accuracy CritMis

1 and 2 0.908 0.001
1 and 3 0.327 0.775
1 and 4 0.135 0.272
2 and 3 0.407 0.003
2 and 4 0.171 0.000
3 and 4 0.530 0.430
1Cows that were misclassified in opposing categories (i.e., high in low 
and vice versa).
21 = ordinal logistic regression with 6 significant sensor features, 2 = 
random forest with 6 significant sensor features from ordinal logistic 
regression, 3 = random forest with all 56 sensor features, 4 = random 
forest with absolute sensor values.
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(DIM 26–66) and some were from late lactation (DIM 
242–300), and none were from mid lactation. Milk yield 
variation only seemed to be related to resilience at the 
end of the lactation, whereas activity and rumination 
contributed both in early and late lactation. Overall, 
the summed importance of all 301 activity features was 
0.315, the summed importance of all 301 rumination 
features was 0.258, the summed importance of all 301 
milk yield features was 0.232, and the summed impor-
tance of all 301 BW features was 0.195.

DISCUSSION

Comparison of Different Models

Classification performances for resilience in the cur-
rent study varied between 45.1 and 50.5% for the differ-
ent models that were developed with data from just one 
(research) farm. This result is in line with a reported 
accuracy of 55.5% (ranging from 46.7 to 84.0% for 27 
farms) for a logistic regression model developed by 
Adriaens et al. (2020) that also used predictive features 
based on first lactation milk yield and activity sensor 
data and used a similar definition of resilience. The 
ACC of the logistic regression and the random forest 
model using the same features were similar (45.1% and 
45.7%, respectively), but the CritMis was significantly 
higher for this random forest (16.0%, compared with 
10.8% for the logistic regression). This indicates that 
the random forest model performed worse when com-
paring these 2 models. However, including features that 
were deemed insignificant by the ordinal logistic regres-

sion improved the ACC of the random forest to 48.4% 
and reduced the CritMis to 10.0%, although these 
values were not significantly different from those of the 
logistic regression model. To put this in perspective: for 
an average Dutch herd with 100 cows 11 cows would 
be completely misclassified with the logistic regression 
model (5 that are high classified as low resilient and 6 
that are low classified as high resilient) versus 10 with 
this random forest (4 that are high classified as low 
resilient and 6 that are low classified as high resilient). 
For comparison, the logistic regression model was also 
evaluated with all 56 features included. This resulted in 
an ACC of 45.7 ± 6.0% and 11.6% CritMis. These find-
ings suggest that predicting resilience using a random 
forest yields similar results compared with a logistic 
regression. This is consistent with a recent study from 
van der Heide et al. (2019) that concluded that regres-
sion and random forest could predict survival to second 
lactation for dairy cows with similar performances. 
Nearly equal prediction performance in our study was 
achieved with a random forest that used daily average 
sensor values. This indicates that the added value of 
preprocessing to determine sensor features with po-
tential biological meaning for the predictions was very 
limited. Our results show that LRS classifications can 
be predicted using a random forest and daily sensor 
values with similar accuracies as more time-consuming 
methods such as a stepwise ordinal logistic regression 
and sensor features, although this result should be veri-
fied for more than one farm.

Biological Interpretation of Features Used in Ordinal 
Logistic Regression

A drawback of a best-prediction oriented approach 
could be that biological interpretation of the relation-
ships between sensor data and resilience is obscured. 
Although these predictions provide insight into model 
performance, they do not clearly illustrate how model 
features are linked with outcomes [e.g., how LRS is 
expected to change when the slope of the regression 
line through the relative milk yields changes from 0 
(smallest value) to 1 (largest value)]. It can be debated 
if the relationships between sensor features and LRS 
as determined from ordinal logistic regression in the 
current study and illustrated in Figure 3 are biologi-
cally interpretable. The study of Adriaens et al. (2020) 
revealed that models were farm specific. This could be 
a matter of relative importance of features, but it could 
also mean that relationships between features and LRS 
were different for different farms. The large variability 
in correlation coefficients between predicted lifetime 
resilience rank at farm level and sensor features sug-
gest the latter. Our ordinal logistic regression results 
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Table 4. Identification and importance of the 20 most important 
features in the random forest model with absolute daily sensor values 
as features

Absolute daily  
value

Days in  
lactation Rank

Importance  
(× 100)

Activity 33 1 1.311
Rumination 33 2 1.109
Rumination 242 3 0.817
Activity 41 4 0.740
Milk yield 246 5 0.674
Rumination 247 6 0.645
Activity 51 7 0.644
Rumination 41 8 0.586
Milk yield 300 9 0.530
Activity 49 10 0.489
Activity 38 11 0.459
Activity 242 12 0.438
Milk yield 244 13 0.432
Activity 66 14 0.428
Rumination 26 15 0.412
Activity 30 16 0.403
Activity 57 17 0.395
Activity 245 18 0.375
Activity 299 19 0.369
Activity 26 20 0.368
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indicate that animals with a relatively large positive 
slope of the first-lactation relative milk yield curve (so, 
lactating heifers with above average persistency) are 
more likely to have low resilience than animals with 
below average persistency. This could be related to 
the antagonistic relationship between milk yield and 
fertility (which is a strong driver of resilience). In the 
low resilience group there will be animals included that 
were culled after first lactation because they were not 
in calf. Thus, the question remains whether high per-
sistency is causally related to low resilience. Increasing 
variation of BW was linked with decreasing resilience. 
This could indicate increased sensitivity for environ-
mental changes, but if this is the underlying cause of 
the relationship the same could be expected for the 
variation of data from the other sensors. Therefore, it 
is remarkable that for BW only, the standard devia-
tion was kept in the logistic regression model after the 
parameter selection. Increasing skewness of activity 
(from negative to positive values), decreasing skewness 
of rumination, increasing minimum of activity, and 
increasing maximum of rumination were linked with 
decreasing resilience. This suggests that animals that 
have relatively many days with below average activity 
or relatively many days with above average rumination 
counts have a higher resilience than animals that show 
the opposite. We have no biological interpretation for 
these phenomena.

Interpretation of Results of Random Forest Models

Our analyses with random forest models have re-
vealed some interesting findings. The lactation curve 
features that were used in the final ordinal logistic re-
gression model and the first random forest model were 
not the features with the highest feature importance 
in the random forest model with all lactation curve 
features included (results not shown). This, but also 
the fact that adding features on average improved the 
predictions, shows that the stepwise feature selection 
procedure used with ordinal logistic regression is prob-
ably not the optimal way to subtract information from 
the data. The random forest with absolute daily sensor 
data, that does not require preprocessing in contrast 
with the other analyses, showed at least equal perfor-
mance. Moreover, this model also revealed that par-
ticularly for activity and rumination information from 
both early and late lactation data contributed more 
to the model predictions than information from mid 
lactation. Weighing information dependent on stage of 
lactation was not included in the calculation of features 
at the lactation level. It should be verified with data 
from other herds if this phenomenon is consistent. Pre-

liminary logistic regression calculations with features 
derived for specific stages of lactation (d 1 −7, d 1 
−60, d 61–150, and d 151–300) did not show clearly 
improved predictions compared with features derived 
for d 1 to 300.

Resilience Predictions from Sensor Data

Although LRS predictions could also be useful in 
relation to health and welfare monitoring, in a lifetime-
approach of resilience the fact that challenges and 
vulnerability are changeable throughout the lifetime is 
ignored. Because the objective was to compare predic-
tions early in the productive life of animals, we only 
used first-lactation sensor data from d 1 to 300 after 
first calving for predictions. Potentially, sensor data 
from later lactations could have improved predictions, 
but this would require the need to account for parity 
effects. Another approach of resilience is described by 
van Dixhoorn et al. (2018). They focused on the transi-
tion period as an informative period where a cow is 
considerably challenged. Usually cows are not milked 
around 6 to 8 wk before a calving, so milk yield will 
often not be available to monitor cows close to calv-
ing. The other sensor data used in this study, however, 
could be obtained throughout the transition phase (also 
before first calving), but were not available due to the 
routines on the experimental farm. Therefore, we could 
not explore their potential to improve the prediction of 
LRS, but we expect that sensor data collected during 
transition periods are very useful, at least to increase 
biological understanding of the concept of resilience.

Limitations of the Study

The data used for this study were obtained during 
a rather long time span, but we have ignored possible 
changes in average age at first calving and calving in-
tervals as well as in first-lactation sensor data [e.g., 
an increase in 305-d milk yield over the years (2009–
2016)]. Moreover, experiments and changeable external 
circumstances may have affected culling decisions. A 
factor that potentially affects the milk yield sensor data 
in particular is that part of the milkings were done with 
an AMS with variable milking frequency, and part in a 
parlor with milking 2 times a day. Although we filtered 
the sensor data for outliers, we encountered substan-
tial irregularities in the patterns for individual cows. 
Perhaps we should reconsider the way to remove er-
roneous records from the data. Care should be taken so 
that true outliers that can be informative for resilience 
are not removed. It is likely that low resilient cows are 
overrepresented in the final data set because we only 
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included cows that were culled at the time this data set 
was constructed. This may have affected the results, 
which is not taken into account.

Our definition of LRS is similar to that of Adriaens 
et al. (2020), but differs in some aspects. We did not 
include milk yield because reliable 305-d yields were 
not available at the time of construction of the data 
set. This could have affected the ranking, but the cor-
relations between LRS calculated with and without 
account for 305-d yields were highly positive (0.854). 
Moreover, average first-lactation 305-d yields were 
similar for the low, medium, and high groups (8,100, 
8,275, and 8,082 kg, respectively). Also the average 
production in comparison with the peers (lactation 
value) was similar for the 3 groups (102, 105, and 104, 
respectively). Therefore, we expect that including milk 
yield in our LRS calculation would not have altered our 
main findings. The main argument of Adriaens et al. 
(2020) to include 305-d yield in calculating LRS was 
that animals with higher yields probably had better 
health. However, we have directly included treatment 
days into our calculation, and on average there was 
hardly any difference between the groups of animals 
with low, medium, or high resilience in the number of 
days they were treated for a disease (2.1, 2.1, and 1.9, 
respectively). This suggests that differences in health 
during first parity were relatively small. The events 
we included were diagnosed and treated; therefore, we 
cannot completely rule out that differences in health 
during first lactation have contributed to differences in 
milk yield. Fertility is taken into account through age 
at first calving and calving intervals, and number of 
inseminations in the last parity. It is assumed that the 
majority of the animals that were not inseminated after 
the last calving were culled for other reasons than poor 
fertility, whereas for animals that were inseminated af-
ter the last calving fertility problems presumably were 
one of the reasons for culling. In first lactation, the 
animals with low LRS on average had 3.6 insemina-
tions, the animals with medium LRS on average had 
2.3 inseminations, and the animals with high LRS on 
average had 2.0 inseminations.

CONCLUSIONS

Performance of ordinal logistic regression and random 
forest to predict lifetime resilience classification from 
sensor features was similar. Instead of features derived 
from sensor data, absolute daily sensor data can be 
used in combination with a random forest algorithm for 
the prediction of lifetime resilience classification with 
similar predictive performance. This has the advantage 
that laborious preprocessing is no longer required. In 
addition, random forest prediction using daily sensor 

data revealed that early and late stages of first lac-
tation are of particular importance in the prediction. 
Further research on the effect of lactation stages when 
data are collected on the model performance is required 
to confirm this finding, but it is due to the application 
of machine learning that we obtained this additional in-
sight. Filtering of outliers from raw sensor data due to 
recording errors while keeping resilience- or challenge-
related deviations deserves more attention.
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