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Propositions  

 

 

 

1. Without data on true pest absences all species distribution modelling analyses are 

bound to remain modelling exercises. 

(this thesis) 

 

2. Capturing economic heterogeneity by stratification does not only refine the overall 

estimate of pest impact but also signals whether unequal consequences from pest 

spread arise to the different strata. 

(this thesis)  

 

3. Good predictive performance does not imply model correctness. 

 

4. Spatially explicit data opens new avenues for interdisciplinary research that address 

key challenges for society. 

 

5. Lunch time is the most creative hour in the day.  

 

6. Strengthening collective efforts requires sacrificing personal freedom.  
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Chapter 1

General Introduction

Given the continuous increase in population across the globe, mankind
is faced with the need to optimize food production [1]. Depending
on the crop, between 10 to 41 percent of the world’s harvests are
lost to weeds, insects, and pathogens [2, 3]. Hence, minimization of
harvest losses has great potential. Globalization of production and
trade continuously leads to the introduction of new pests and poses a
challenge to safeguarding production against yield losses [4–6]. Species
which are non-native to an area and which have adverse effects on the
ecosystem or economies are commonly referred to as invasive species.
Invasive species introductions are driven by global trade and travel
[6, 7]. While the majority of introductions do not result in significant
impacts [8], introductions of hazardous organisms can have severe
consequences. The agricultural sector is particularly vulnerable to
introductions of plant pests [9]. Here, invasive species can lead to a
reduction of food supply which can adversely affect consumers through
higher prices [10, 11], as well as reduced food quality, food safety [12],
and food security [13].

One such invasive species is Xylella fastidiosa which is a bacterium
from the family Xanthomonadaceae first described by Wells et al. [14].
The list of host plants for Xylella fastidiosa currently comprises 563
plant species from the Americas, Europe, the Middle East and Asia [15].
In the European Union, at least 84 host plants have been identified [16].
This species is considered one of the most dangerous plant pathogenic
bacteria worldwide [15, 17]. The bacterium is naturally transmitted
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2 1 General Introduction

by insect vectors which feed on the xylem of host plants [18, 19]. If
expressed in susceptible plant hosts, symptoms of Xylella fastidiosa
include, among others, leaf marginal necrosis, leaf abscission, dieback,
delayed growth and death of plants through the obstruction of the
xylem and a lack of sufficient water flow through the host [20, 21].
The multiplication of the bacteria with the associated clogging of the
xylem will first result in declining yields and reduced fruit quality
due to a decrease in water and nutrient flow [22]. Eventually, this
shortage will result in the host’s death [23]. In 2013, Xylella fastidiosa
subspecies pauca was detected in Olea europaea (olive), Nerium oleander
(oleander) and Prunus dulcis (almond) in Italy [24]. The detection led
to the enactment of control measures, including vector control and
tree felling. The latter resulted in great societal unrest in the affected
region [25, 26].

In general, the management of plant pests is, among other strate-
gies, achieved through the application of approximately 3.5 million
tons of pesticides worldwide [27]. The environmental and health con-
sequences of these agricultural inputs are of societal concern [28].
Various analyses have been conducted to assess whether farmer utilize
such inputs efficiently [29–31], however, usually under the implicit
assumption that farmers operate in isolation from their peers. This
modelling practice contradicts evidence that suggests that peers inter-
act during the decision making [32–35]

Epidemics of native and invasive pests resemble quite closely prob-
lems of pollution [36, 37]. In many cases, it is not possible to determine
the exact point of origin. As control within one area influences density
and dispersal of the pest, management actions directly influence the
costs of control for neighbors [37–39]. This results in mutual depen-
dence in control costs and economic impact among stakeholders. By
restricting analyses to an individual decision-making unit, the best
strategy for pest control might not align with the social optima [37, 40].
Failing to account for the economic and spatial dependence among
farmers, regions, countries, and markets could very well result in
wrong conclusions.
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1.1 Plant Health Policies

Internationally, the design of the General Agreement on Tariffs and
Trade and the associated Sanitary and Phytosanitary Agreement and
Agreement on Technical Barriers to Trade strongly shaped the current
practice of managing invasive species [41, 42]. Public policy aimed
at reducing risks associated with pests often tries to achieve this
by regulating international trade as a primary way of preventing
domestic control costs [43]. Countries have the right to “take sanitary
and phytosanitary measures necessary for protection of human, animal or
plant life or health” (Article 2, WTO Agreement on the Application of
Sanitary and Phytosanitary measures). In addition, the International
Plant Protection Convention (IPPC) provides International Standards
for Phytosanitary Measures (ISPMs) that assist countries in reaching
agreements as a basis for trade relationships [42].

In Europe, the decision-making process on the management of
plant pests is distributed over multiple actors. The European Com-
mission, the European parliament, and the European Council act as
the legislative body with the Standing Committee on Plants, Animals,
Food and Feed supporting the European Commission through opin-
ions on draft measures. Scientific advice is provided by the European
Food Safety Authority (EFSA). The European and Mediterranean Plant
Protection Organization (EPPO) assists regulators by developing in-
ternational standards and risk assessments. National Plant Protection
Organizations (NPPOs) plan and implement management in prac-
tice. While NPPOs follow European requirements in the context of
organisms with quarantine status, the management of non-quarantine
species is decided upon at the national level. Most plant pests fall in
the latter category. This includes species that are either already widely
present in Europe, or that are expected to have low economic impact.
Appending emerging threats to the list of quarantine species is not
easy due to the required depth in analysis [41]. The fact that many
hazardous species are simply unknown, or not on the radar, prior to
them causing impact aggravates the situation [42].

Protecting plant health is important for Europe for two reasons.
First, Europe is one of the centers for international trade in general
[44], and for plant products in particular [45]. As invasive species are
externalities of trade [6, 46], Europe is greatly at risk of suffering
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unintended costs from trade through spread of hazardous species.
Second, Europe’s governmental structure results in a distribution of
mandates regarding the regulation of trade and the control of invasive
pests. On the one hand, Europe is characterized by a very high inte-
gration of countries in terms of free movement of products, services,
and people. On the other hand, member states remain partially in
control in their enforcement of legislation [47], which can create weak
links that undermine countries’ control efforts. For example, while the
Netherlands designed advanced frameworks and procedures to prevent
the introduction and spread of invasive species other member states
do relatively little [48].

The control of pest invasions represents a weakest-link public good
[46, 49]. Public goods generally describe goods for which benefits are
neither rival nor exclusive. Due to the non-excludability, free riding on
pest control is incentivized [50]. Weakest-link public good are public
goods for which the outcome is largely determined by the least effective
peer (i.e., the weakest link). In weakest-link public goods, decision-
making units’ best interest is to cooperate with the weaker links to
incentivize their private control efforts [37].

Over 11,000 species have already spread into Europe with the
average annual rate of establishment progressively increasing over
the last century [41]. Estimates suggest that these species already cost
taxpayers 12.5 billion Euro annually [51]. Considering that for almost 90
percent of invasive species information on impact in Europe is missing,
this arguably represents a rather conservative estimate [52]. Insights
into the mutual dependence in the context of pest invasions might
motivate efforts toward increased cooperation on an international level.
Information on the nature of the mutual dependence, on beneficiaries
and losers from pest invasions, and the general risk of member states
to pest introductions could contribute to a more informed discussion
on management strategies.

1.2 Economic Dependence

A market is a place in which suppliers provide products and services
to consumers in exchange for money [53]. Prices for goods are deter-
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mined by the intersection of aggregate supply and demand. Economic
well-being is generated by producers through profits following prices
exceeding their operational costs. Similarly, consumers derive eco-
nomic benefits through prices below their willingness to pay for the
product [54]. Arguably, the need of having an opposite side on each
trade results in mutual dependence among suppliers and consumers.
Moreover, as the aggregate behavior determines equilibria, which in
turn influences economic well-being, dependence arises also among
individuals of the same actor group. In the context of a large number
of peers, individuals may be influenced by structural changes in behav-
ior of a large number of peers. In markets with a smaller number of
peers, strategic considerations emerge precisely because of this mutual
dependence [55].

Globalization has resulted in interconnected economies [56]. The
European Union is the prime example of successful integration and
harmonization of markets across countries [57]. As value chains in-
creasingly become international [58], the aforementioned mutual de-
pendence of market actors has gained in complexity by adding a
geographic, multi-national, component. Globalization increases the
groups of potential suppliers and consumers, thereby, creating ripple
effects that not seldom are difficult to foresee [59]. While traditional,
physical, marketplaces fell within the jurisdiction of one regulating
entity, in an international context regulatory conditions may vary for
suppliers and consumers located in different countries [60]. Arguably,
many agreements have been reached to harmonize rules [61]. Never-
theless, fundamentally the mutual dependence in economic well-being
across geographic spaces with different legislators can result in adverse
incentives [62, 63]. For example, changes in trade following changes in
aggregate supply, or demand, may benefit one country at the expense
of another. While this insight was already embedded in modelling
efforts during negotiations of several trade agreements [64], models in
a plant health context rarely emphasize this dependence and thereby
fail to investigate whether there might be diverging incentives toward
management among stakeholders.
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1.3 Spatial Dependence

As noted by Tobler [65, p.236], "Everything is related to everything else,
but near things are more related than distant things". In general, due to
the interaction with the surrounding environment, analyses of the agri-
cultural sector can be expected to strongly benefit from the inclusion
of spatial effects [66]. Spatial effects comprise spatial heterogeneity
and spatial dependence [67]. While spatial heterogeneity concerns
differences in the operational environment which consequently lead to
different input requirement and output possibility sets, spatial depen-
dence arises from mutual dependence of measurements in space.

To illustrate, the availability and price of a plot determines whether
a farmer decides to purchase or lease in a particular location. Con-
sequently, fields are usually scattered around a farm and directly
intertwined with plots of other farmers. Focusing on the case of Dutch
farming, around 90 percent of farmers purchase their land within a 6.7
km radius [68]. In turn, fields are not only exposed to environmental
conditions [69], but also to management practices on neighboring
fields.

This mutual dependence is easily comprehensible on a field-level.
However, it similarly holds on a landscape or even on country level.
The increasing degree of interconnectedness in the age of globalization
strengthens this mutual dependence [48]. Pest populations are spatial
phenomena by nature [70]. Consequently, Knipling [71] introduced the
idea of area-wide pest management via collective actions. The lack of
collective actions is a major obstacle to successful pest management
[33, 50]. As nearby control of pest populations affects pest pressure
in the landscape, inefficiency of a farmer in employing pest control
agents is likely influenced by neighboring peers. Similarly, risk mit-
igation on a regional, or country, level is very much depending on
actions of surrounding areas [37]. As plant protection products have
adverse effects on the ecosystem, their total use over the landscape,
as opposed to farm level, should be optimized [38, 72]. Next to the
mutual dependence arising from the spatial nature of pest propagation,
farmers might try to improve their decisions by orientating themselves
on peers’ actions [35, 73]. Such knowledge spillovers can result in
meaningful impacts on the operational efficiency of farms [32, 34], and
influence risk perception [74].
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Spatial dependence arises from spatial structures within the en-
vironment [75]. Spatial dependence in abundance of organisms can
result from large-scale processes such as erosion, meso-scale processes
such as wildfires and fine-scale processes such as organism interac-
tions, for example predator-prey and host-parasitoid dynamics, and
distance-limited dispersal [76, 77]. Similarly, patches of comparable
nutrient availability or other environmental factors will influence the
spatial pattern of pest occurrence. Clearly, contagious biotic processes
will result in spatially autocorrelated occurrences through dispersal
[76, 78, 79].

Spatially explicit insights may benefit the design of policies by
acknowledging local differences, fostering synergies, and allocating
funds in the most cost effective manner [80]. Analyses on the control of
invasive pests must acknowledge population dynamics and dispersal of
the invader [40, 81]. In other words, uniform risk mitigation measures
over a heterogeneous space are likely to be less effective and more
costly than they need to be [80, 82]. Ultimately, the spatial structure of
invaders, hosts, and the environment will have crucial implications for
the design of effective control strategies [39, 83], and must therefore
be accounted for in economic analyses.

1.4 Models and Uncertainties

A scientific model is an attempt to capture a complex system in a
comprehensible analogue [84]. By studying the system, gathering data
or qualitative information and imposing boundaries, modelers attempt
to formulate mathematical relationships which capture the essential
elements on a level of granularity suitable to address the research
question. Models may take theories as input and through the addition
of empirical data allow scholars to generate predictions that theories
alone would now allow for [84]. However, the objective of models
varies widely from developing hypotheses [85], over testing hypotheses
using data [86], to simulating possible futures to inform decisions in
the now [87], among others. In many cases, the process of developing
the model is at least as, if not more, insightful than the numeric results
computed.
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Analyses of potential impacts of, and consequently the design of
management strategies against, pests are subject to inherent uncer-
tainties [36, 88, 89]. These uncertainties may be due to absence of
knowledge on model inputs or the proper model structure [90]. Pest
pressure in the landscape is critically affected by complex interactions
with biotic and abiotic conditions [76]. Variability in environmental
conditions across space will consequently influence the efficacy of
management strategies and lead to uncertainty on best practices [83].
As temporal and spatial variation in pest severity is to be expected
[91, 92], models for decision support may incorporate such variation
[72, 93]. In addition, the production cycle of arable crops results in
farmers, and regulators, having to make decision on the appropriate
management prior to, by humans, perceivable signals on risks and
rewards. Here, simulations of possible scenarios may provide decision
makers with probabilistic advice [94].

Evaluations of past performance are critical to optimize production
systems going forward. Such analyses are important for the continuous
improvements of the environmental and economic costs associated with
agricultural practices [95]. While post-hoc assessments allow deriving
insights on past performance, they often do not allow to support
decision making in the context of novel, invasive, pests that may not
have arrived yet [96]. Simulations and scenario-based approaches of
potential pest risk are commonly employed to generate versions of
possible futures and thereby aid decision makers in the now [97]. Again,
such analyses are plagued by underlying uncertainties. Therefore, the
sensitivity of results must find central attention [91, 98]. For the most
part, there is no such thing as one correct model [84]. Instead, problems
should be analyzed through multiple lenses [99]. Here, it is argued
that models on plant health threats must range from post-hoc analyses
of past managerial performance to simulations of possible futures.
Insights of models into either temporal direction are critical to inform
decisions in the present.
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1.5 Problem Statement

Analyses of the economic impact of, and possible risk mitigation
strategies against, pests often fail to account for spatial and economic
dependencies among the evaluated decision-making units and hetero-
geneity in the environment they operate in. Individuals’ actions in the
presence of mutual dependence may not result in the socially optimal
outcome. The spread of pests may result in diverging consequences to
different actors. Consequently, accounting for the mutual dependence
of actors, regions, and countries is critical for analyzing management
of pests. In this thesis, I develop methodological approaches to include
the spatial nature of pest spread and the mutual dependence of farm-
ers, countries, and markets in bio-economic analyses of plant pests
and their management, to contribute to an informed discussion on
plant health policies in Europe.

1.6 Objective and Research Questions

The objective of this thesis is to develop and implement new method-
ological approaches to account for spatial and economic dependencies
in analyses of economic impact of, and mitigation strategies against,
plant pests. To achieve this objective, four questions are addressed.

1. Do neighbors’ characteristics associate with farmers’ managerial
performance?

Question one aims at providing a methodological approach for
accounting for possible mutual dependence among farms when evalu-
ating their managerial performance. To achieve this, the dissertation
starts by assessing past performance of Dutch arable farms, with a
focus on pest control agents, by making use of data from the Farm
Accountancy Data Network. The frequently applied two-stage Data
Envelopment Analysis framework is extended to incorporate farm char-
acteristics of neighboring observations while optimizing the spatial
neighborhood structure. The results highlight the spatial spillovers
among farmers and the need to employ multiple neighborhood struc-
tures when analyzing spatial dependence.
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2. What are the potential economic impacts from Xylella fastidiosa
subspecies pauca to European olive grower?

Question two aims at providing a forward-looking approach for
economic impact assessments in interdependent markets. Here, a suite
of spatially explicit models is developed with the aim of predicting
climatic suitability, simulating potential future spread, and computing
economic impact for the invasive pest Xylella fastidiosa subspecies
pauca. A dynamic net-present value model on the olive market is
developed to highlight the mutual dependence among growers in
different countries. The results show the economic dependence among
growers and stress the diverging incentives toward mitigation strategies.

3. Who benefits and who loses from the control of Xylella fastidiosa
subspecies pauca?

To answer question three, the spatially explicit climatic suitability
and spread simulations mentioned above are used and the dynamic
net-present value model developed under question two is substituted
with a partial equilibrium model on the olive oil market. The results
highlight the economic dependence among olive oil processors and
consumers in different countries. As affected processors and consumers
are found to jointly bear the economic consequences from further
spread of Xylella fastidiosa subspecies pauca, the study emphasizes
that pest epidemics should be contextualized as a societal challenge,
as opposed to one that affects only producers, in public debates on
management strategies.

4. Can joint analyses of various pests help identify weak-links and
thereby support collective control?

Lastly, to address question four, a prediction of hotspots for pest
introduction in Europe is made to identify areas that could be classified
as weak links due to their elevated risk scores. A machine learning
model was trained on a dataset covering 248 invasive species to map
risk of new pest introduction in Europe as a function of climate, soils,
water, and anthropogenic factors. Results show that the BeNeLux
states, Northern Italy, the Northern Balkans, and the United Kingdom,
and areas around container ports such as Antwerp, London, Rijeka,
and Saint Petersburg were at higher risk for introductions. The analysis
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shows that machine learning can produce hotspot maps for plant pest
introduction with a high predictive accuracy, but that systematically
collected data on species’ presences and absences are required to
further validate and improve these maps.

The thesis consists of six chapters. Following this first chapter,
which provided a general introduction, chapter two to five correspond
to research articles that address the research questions one to four
in that order. Chapter six provides a general discussion. There, all
findings are placed into the context of several related streams of
research, opportunities and challenges of georeferenced economic data
are discussed, policy implications suggested, and avenues for future
work proposed.





Chapter 2

Spatial Spill Overs on Input Specific
Inefficiency of Dutch Arable Farms

Abstract

Traditional benchmarking implicitly assumes that decision making
units operate in isolation from their peers. For arable production
systems in particular, this assumption is unlikely to hold in reality.
This paper quantifies spatial s on input-specific inefficiency using
Data Envelopment Analysis and a second-stage bootstrap truncated
regression model. The bootstrap algorithm is extended to allow for
the estimation of the parameter of the spatial weight matrix, which
captures the proximity between producers. The empirical application
concerns Dutch arable farms for which latitudes and longitudes are
available. Farmers were found to be fully efficiency in output. The
average inefficiency across years was 3.87% for productive inputs and
2.98% for damage abatement inputs under variable returns to scale. For
productive inputs technical inefficiency, statistically significant spillover
effects from neighbors’ age and their degree of specialization depended
on the type of the spatial weight matrix used (inverse distance or k-
nearest neighbors), statistically significant spillover effects of subsidy
payments were adverse and statistically significant spillover effects from
insurance payments were beneficial. For damage abatement inputs
technical inefficiency, statistically significant adverse effects were found
for neighbors’ age and subsidy payments and beneficial effects from
neighbors’ insurance payments and their degree of specialization.

13
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2.1 Introduction

As noted by Tobler [65, p.236], "Everything is related to everything
else, but near things are more related than distant things". In general,
due to the interaction with the surrounding environment, analyses
of the agricultural sector can be expected to strongly benefit from
the inclusion of spatial effects [66]. Spatial effects comprise spatial
heterogeneity and spatial dependence [67]. While spatial heterogeneity
concerns differences in the operational environment which conse-
quently lead to different input requirement and output possibility sets,
spatial dependence arises from interdependencies of measurements in
space.

The availability and price of a plot determines whether a farmer
decides to purchase or lease in a particular location. As a consequence,
fields are usually scattered around a farm and directly intertwined with
plots of other farmers. Focusing on the case of Dutch farming, around
90 percent of farmers purchase their land within a 6.7 km radius
[68]. In turn, fields are not only exposed to environmental conditions
[69], but also to management practices on neighboring fields. For
example, the control of pathogens on nearby fields can be expected
to suppress the populations’ ability to disperse into other territories.
In turn, spillover effects can be generated by neighbors’ management
practices. In addition, spillover effects might be generated through the
social-network via the transfer of knowledge among farmers [32, 34].

The environmental consequences of agricultural inputs such as
fertilizer and plant protection agents are of societal concern [28]. In
the agricultural economics literature, pesticides are commonly referred
to as damage abatement inputs [100]. Damage abatement inputs reduce
potential shortfall rather than further increase output [29]. Parametric
[29] as well as non-parametric [30, 31] approaches have been applied
to assess whether farmers utilize such inputs efficiently. The need
to account for such environmental differences was acknowledged by
T. Skevas, Oude Lansink, & Stefanou [101] and T. Skevas & Serra
[95]. However, under the implicit assumption that farmers operate in
isolation from their peers. Pest populations are spatial phenomena
by nature [70]. Knipling [71] introduced the idea of area-wide pest
management via collective actions. Similarly, we stress that nearby
control of pest populations affects pest pressure in the landscape, which
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in turn influences the inefficiency of a farmer in employing damage
abatement inputs. Hence, different farm characteristics can be expected
to generate externalities for the surrounding farmers. Through social
networks, knowledge and experiences might be transferred among
farmers [34]. This can foster improvements to input or output efficiency
through observation and conversations with peers [32].

The necessity to control for spatial heterogeneity has already been
emphasized in the seminal work of Farrell [102]. While the rise in
georeference data has greatly benefited scientific efforts to improve
the measurement of productivity and efficiency by accounting for un-
observed spatial heterogeneity in recent years [103, 104], the issue of
spatial interdependence has found little attention with the exception
of a handful of studies. The spatial econometric literature is rich in ap-
plications on spatial interdependencies [67]. The developed techniques
have started to attract the attention of research working on productiv-
ity and efficiency. The first contribution in this regard was developed
by Druska & Horrace [105] by modelling spatially correlated error
terms within the stochastic frontier setting. Various studies measured
spatial dependence in efficiency or productivity in non-agricultural
applications [106–108]. For the agricultural sector, Areal, Balcombe,
& Tiffin [109] identified spatial dependence in technical efficiency of
dairy farms in the UK, Martínez-Victoria, Maté-Sánchez-Val, & Oude
Lansink [110] found spatial spillovers in productivity growth for Spanish
agri-food companies and T. Skevas & Grashuis [111] identified spatial
spillover effects on efficiency scores among farm cooperatives in the US.
I. Skevas & Oude Lansink [112] and I. Skevas [113] found spatial spillover
effects on dynamic inefficiency of Dutch dairy farms. The study makes
three distinct contributions beyond I. Skevas & Oude Lansink [112].
Firstly, and most importantly, it advocates for the measurement of
spatial spillovers on output and input-specific scores rather than one
composite measure of farm performance. While this has clear benefits
for policy design and farm management, previous studies on both non-
parametric and parametric approaches have solely relied on measuring
spillovers on one composite farm-level efficiency score. Thereby, possi-
bly diverse spatial influences have been convoluted into one composite
effect that might well provide erroneous insights. Secondly, we con-
tribute by exploiting the advantages of the SLX model by estimating
the spatial weight matrix as opposed to the rule of thumb approach
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employed in I. Skevas & Oude Lansink [112]. Thirdly, in contrast to
I. Skevas & Oude Lansink [112] we employ both a k-nearest-neighbor
and an inverse distance approach. Subsequently, we communicate and
discuss the different results for the two approaches and thereby stress
the need for practitioners to make us of different spatial weight ma-
trix or more clearly motivate their choice for either one. While the
importance of accounting for spatial spillovers is stressed in all the
aforementioned studies, none of the studies simultaneously measured
spillovers on input and output specific inefficiency. Furthermore, the
above studies used arbitrary rule of thumbs to define neighboring
farmers and construct the so-called spatial weights matrix, in their
attempt to estimate spatial spillovers.

The objective of this study is to quantify the effects of spatial
spillovers on input and output specific technical inefficiency in Dutch
arable crop farms. We address two gaps in the literature. First, we
measure spatial spillovers on input and output-specific inefficiency.
This allows for more refined insights regarding which outputs or inputs
are influenced by neighbors’ characteristics in contrast to the afore-
mentioned studies which did not include input and output-specific
inefficiency scores into their analyses. Second, rather than making
an ad hoc selection of the spatial weight matrix, we estimate the pa-
rameter of the spatial weight matrix and report the results for the
two most commonly used types (i.e. inverse distance and k-nearest
neighbours). Previous studies have found results to be sensitive to
the chosen spatial weight matrix, which defines the structure of the
spatial relationship between decision-making units (DMUs) [108, 109].
The ad-hoc selection of the spatial weight matrix is frequently criti-
cized in the econometric literature [114–116]. This problem is addressed
by estimating the parameter of the spatial weight matrix empirically
using farm-level information on coordinates. For this purpose, a two-
stage Data Envelopment Analysis (DEA) approach is used. First, a
non-parametric directional distance function is computed to estimate
inefficiency scores for output, productive inputs and damage abate-
ment inputs. Second, a spatial econometric model is defined, which
incorporates regressors for spatial lags of farm characteristics along-
side other non-lagged explanatory variables and time-period fixed
effects. In contrast to non-spatial efficiency analyses, this framework
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extends the farm-level assessment by relaxing the assumption that
DMUs operate in isolation from their peers.

2.2 Materials and Methods

2.2.1 Directional Distance Function

Suppose # farmers produce & outputs from � productive inputs, �
damage abatement inputs and � quasi-fixed factors. The damage
abatement inputs are exclusively related to plant health within this
study. Non-negative vectors of outputs, productive inputs, damage

abatement inputs and quasi-fixed factors are denoted by y ∈ ℜ&
+ ,

x ∈ ℜ�
+, a ∈ ℜ�

+ and k ∈ ℜ�
+ , respectively. The production technology

for a DMU is fully represented by the input requirement set as ) (y :

k) =
{

(x, a) ∈ ℜ�
+ × ℜ�

+ | (x, a) can produce y, given k
}

. A non-
parametric representation of the technology can be depicted as ) (y :

k) =
{

(x, a) : . ′_ ≥ y8 ,X
′_ ≤ x8 ,A

′_ ≤ a8 ,K
′_ ≤ k8 ,L

′_ = 1, _ ≥ 0
}

Where Y denotes a # × & matrix of observed outputs and y8 is
a vector of observed outputs for farm 8. X is the # × � matrix of
observed productive inputs and x8 is the vector of productive inputs
used by farm 8. A is the # × � matrix of observed damage abatement
inputs and a8 is the vector of damage abatement inputs used by farm
8. K is the # × � matrix of observed quasi-fixed factors and k8 is the
vector of quasi-fixed factors used by farm 8. _ denotes a # × 1 vector
of intensity variables (farm weights) and L denotes the # × 1 unity
vector. Constraining the sum of _ to unity enforces variable returns to
scale [117].

To estimate the input and output specific inefficiency scores, a
directional distance function is computed. Following Chambers, Chung,
& Färe [118], (6 = −6G ,−60, 6H) denotes the directional vector. The
distance function aims to expand output and contract productive as
well as damage abatement inputs, simultaneously. The distance of
DMUs to the frontier (i.e. the inefficiency score) will generally depend
on the chosen directional vector. Choosing the observed quantities
(6 = 6G = G, 60 = 0, 6H = H) allows for a direct interpretation in
percentages. Furthermore, the measure is more in line with the Farrell
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[102] measure of efficiency as noted in Färe & Grosskopf [119]. The
distance function can formally be depicted as follows:

−→
� (x, a, y; 6) = BD?

{

VG , V0, VH : (x − VG6G , a − V060, y + VH6H) ∈ ) (y : k)
}

(2.1)

Within all years ) , the mathematical program aims to identify the
maximum attainable expansion of outputs in direction 6H as well as
the maximum feasible contraction of productive inputs and damage
abatement inputs in direction 6G and 60, respectively. To achieve
this, the following linear programming problem is solved for all #
observations separately for all years. By solving model 2.2 separately
for every year, the reference technology is allowed to vary from year to
year. This is necessary to account for year specific weather conditions
and changes in the technology over time.

−→
� (x, a, y, k, e; 6) = max

VG ,V0 ,VH ,_8
{VG + V0 + VH} (2.2a)

B.C.

#
∑

8=1

_8y8 ≥ y + VH6H (2.2b)

#
∑

8=1

_8x8 ? ≤ x? − VG6G (2.2c)

#
∑

8=1

_8a81 ≤ a1 − V060 (2.2d)

#
∑

8=1

_8k8 5 ≤ k 5 (2.2e)

#
∑

8=1

_8 = 1 (2.2f)

_8 ≥ 0 (2.2g)

where V is the percentage value of the expansion (contraction) of
outputs (inputs). Constraint (2.2b), (2.2c), (2.2d) and (2.2e) impose free
disposability of outputs, productive inputs, damage abatement inputs
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and quasi-fixed factors, respectively. Constraint (2.2f) imposes variable
returns to scale.

2.2.2 Determinants of Inefficiency

The association of farm characteristics with the computed inefficiency
scores is measured with the widely used bootstrap truncated regression
model [120]. As it is customary, farm characteristics are included in the
second stage regression to test for their associations with inefficiency
scores. This has been done in the context of, both, radial distance
functions [121, 122] and directional distance functions [101, 123, 124].
However, this study also tests for spatial spillovers by further including
spatially weighted regressors of the farm characteristics. This specifica-
tion is commonly referred to as the spatial lag of X model (SLX) [116].
The specification is a reduced form approach for measuring spatial
interdependency. In contrast to the spatial lag and the spatial error
model, the SLX model allows for the estimation of the parameter of the
spatial weight matrix and thereby enables practitioners to circumvent
rule of thumb approaches. In addition, in contrast to the spatial lag
model the signs of direct and indirect effects are not restricted to be
similar when employing the SLX model [116]. Lastly, if error terms are
spatially structured yet this structure is not accounted for the estimates
remain unbiased [125]. To avoid overestimation of the spatial spillovers
and to account for the fact that the reference technology is different
across years, temporal fixed effects are included as dummy variables.
The truncated regression model can formally be depicted as follows:

V = U� + [) + X/ + \,/ + n (2.3)

where V is a vector of the dependent variable (i.e. pooled inefficiency
scores for # farmers). Following T. Skevas et al.’s [101] study on Dutch
arable crop farms, we use the inefficiency scores under variable re-
turns to scale for the second stage. This is motivated by the fact that
the variable returns to scale technology represents a less restrictive
formulation of the technology. While the constant returns to scale
formulation requires global adherence to this property, variable returns
to scale allows for increasing, constant or decreasing returns to scale
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locally [30, p.64]. While the observed distribution of V is censored
at zero, true inefficiency remains unobserved. Therefore, the depen-
dent variable in equation 2.3 must be treated as having a truncated
distribution with a point of truncation at zero. I is the vector of ones
associated with the constant term parameter U. T depicts the temporal
fixed effects with the vector of response parameters [. Z denotes the
matrix of � explanatory variables and X denotes the vector of unknown
parameters to be estimated. , is the spatial weight matrix which cap-
tures the spatial proximity between farmers. ,/ depicts the linear
combinations of neighbors’ characteristics obtained by inner products
of the spatial weight matrix with a variable of interest. \ denotes
the vector of parameters of the spatially lagged farm characteristics
and n denotes a vector of independent and identically distributed
error terms with zero mean and variance f2. Despite panel data at
hand, fixed or random effects could not be included into equation 2.3
due to the use of the Simar & Wilson [120] bootstrapping algorithm
[31, 101, 112, 121, 122].

The spatial weight matrix (, ) is constructed based on geographic
proximity. , is always symmetric. F8 9 denotes the elements of , .
We employ two common types of spatial weight matrices. In the
inverse distance spatial weight matrix (�+�), the value of F8 9 is the
inverse distance between farmers 8 and 9 . In the k-nearest neighbor
spatial weight matrix ( ##), distances between farmers 8 and 9 are
computed. Subsequently, a binary matrix is constructed in which, for
every farm, the : smallest distances receive a value of 1 while all
others a value of 0 (see e.g. [110]). While �+� results in larger weights
on characteristics of DMUs in closer proximity, this weight matrix
implicitly assumes that spatial influences extent far beyond the nearby
vicinity. In contrast,  ## restricts the spillovers to : neighbors, but
the spatial influences from these : neighbors are assumed to be of
equal importance. Diagonal elements (F8 9 where 8 = 9 ) are always
set to zero. �+� is standardized by dividing every element by the
maximum eigenvalue of , , whereas  ## is standardized by dividing
, by it’s row-sums [116, 126, 127]. As mentioned above, using �+�
ensures that nearby DMUs exert larger influence compared to distant
DMUs. Nonetheless, a distance cut-off (W) from which onward no
spatial influence is assumed to exist is usually arbitrarily determined
by the scholar (e.g. [111]). In contrast to previous work, we estimate the
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optimal distance cut-off empirically instead of choosing an arbitrary
value. For  ## , we estimate the optimal number of neighbors which
we also denote with W for simplicity. The absence of information on
the true spatial weight matrix is one of the major hurdles of applied
spatial econometrics [114, 115]. A data-driven approach for the selection
of , is therefore one of the major advantages of the SLX model
[116]. The ad-hoc selection of either �+� or  ## is approached by
estimating both to assess the robustness of our results. In traditional
spatial econometric applications, ordinary least squares residuals are
minimized to estimate the optimal spatial structure for the SLX model
[128]. In line with this, we maximize the log-likelihood of observing
the data within the maximum likelihood estimation of the Simar &
Wilson [120, pp.41-42] bootstrap algorithm to search for the optimal
distance cut-off or the optimal number of neighbors. This selection
goes beyond testing a number of pre-defined spatial structures, as it
allows practitioners to optimize the parameter of the spatial weight
matrix empirically.

2.2.3 Estimation

To estimate the parameter of the spatial weight matrix, a non-
standardized (inverse) distance weight matrix is generated first. The
optimization algorithm either searches for the optimum distance cut-
off between 2.5 and 100 kilometers or for the optimum number of
neighbors between 2 and 70. Setting lower and upper bounds ensures
feasible values (e.g. W > 0 for �+�; W < # for  ## ). If the lower
or upper limit is found to be binding (i.e. the evaluated quantiles
for the bootstrapped distribution of W fall on one of the limits), the
search-range for W should be widened. The following steps are taken
within the optimization of the spatial weight matrix.

1. For �+�, F8 9 smaller than 1/W are set to zero. In other words,
spatial influences from neighbors which are further away than the
drawn cut-off value are removed. For  ## , for every farm the
W smallest distances are set to 1 and others to 0. In other words,
only the spatial influences from the W neighbors are retained.
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2. The spatial weight matrix is standardized by the maximum eigen-
value for �+� and row-sums for  ## .

3. Spatially lagged variables are generated by computing inner prod-
ucts of the rows of the particular spatial weight matrix and the
farm characteristics at hand.

4. Equation 2.3 is computed and the AIC returned.

As true inefficiency scores are unobserved and the estimates serially
correlated, we implement the second stage using Algorithm 1 devel-
oped by Simar & Wilson [120, pp.41-42]. First, inefficiency estimates
are computed using model (2.2a). Second, maximum likelihood in a
truncated regression setting is used to obtain estimates of the environ-
mental response parameters as well as the variance of the error term
for the inefficient DMUs. At this stage, the aforementioned optimiza-
tion routine is performed once. Subsequently, the inefficiency scores
are replaced by linear predictions using the environmental response
parameters for the optimal value of W. Third, for 2,000 iterations errors
are sampled out of a truncated normal distribution, the optimization
of W performed and the environmental variables regressed onto the
predicted inefficiencies. Lastly, confidence intervals are constructed
for the empirical distributions of the coefficients as well as W obtained
from the bootstrap.

Following Singbo et al. [124], the bootstrapped coefficients are used
to compute marginal effects at the mean of the variables in / as
follows:

m� (V |/,V>0)
m/

=

{

1 − / ′ X̂∗
f̂∗ × q (/ ′ X̂∗/f̂∗)

Φ(/ ′ X̂∗/f̂∗) −
[

q (/ ′ X̂∗/f̂∗)
Φ(/ ′ X̂∗/f̂∗)

]2}

X̂∗ (2.4)

where V is the estimated inefficiency score, / is the mean of a particular
environmental variable, X̂∗ is the bootstrapped coefficient for the
environmental variable, f̂∗ is the estimated variance of the error term,
q(·) is the standard normal distribution and Φ(·) is the standard
normal cumulative distribution function.



2.2 Materials and Methods 23

2.2.4 Data

The balanced panel data1 on Dutch arable farms are provided by
Wageningen Economic Research and cover the period from 2011 to
2016. The dataset comprises of farm-level information on revenues,
expenses and balance sheet items as well as geographical informa-
tion in the form of longitude and latitude coordinates. Furthermore,
characteristics of the primary operator are at hand. As coordinates
were rounded at one minute by the data provider, we added random
noise by sampling out of a uniform distribution of minus one minute
to plus one minute to prevent DMUs with the exact same coordinate.2

Since this study focuses on farms engaged primarily in the arable
crop production, we have selected farms whose revenue from sales
of arable crops comprises at least 66 percent of their total revenues
within every year the farm is observed. The final dataset constitutes a
balanced panel of 75 farms with 450 observations. Table 2.1 presents
the descriptive statistics. While a larger number of DMUs would have
been desirable, the parsimony of model 2.2 justifies the use of annual
reference technologies. DEA is frequently used in the context of a
small number of DMUs [129]. However, the resulting spatial coverage
requires care when extrapolating the results.

In our data on Dutch arable crop farms, the vast majority of total
revenue is generated by potatoes, barley, sugar-beet, wheat, onions

1 The data was balanced to ensure that the spatial weight matrix does not change
over time. Using unbalanced data would allow for the estimation of the spatial
weight matrix as described above if only one overall W for all year-specific weight
matrices is used. Alternatively, one could estimate year-specific WC . However, this
would significantly increase the complexity of the optimization problem and might
result in numerical instability.
2 The storing of location information in the rounded format resulted in DMUs
with the same location. This would have resulted in (infeasible) implausible values
when computing the (inverse) distances. Omitting duplicate coordinates is highly
undesirable as this would remove DMUs within close proximity which are expected
to be critical in generating spillovers. While adding random noise between minus
and plus one-degree minute means that the spatial weight matrix inherited a
random aspect, in practice the consequences were found to be minimal. We
computed 10000 draws and constructed distance matrices to test the spearman
correlation of DMU distances between them. We found a correlation of 99.96
percent suggesting that the ordering of importance among DMUs is virtually
unaffected by the random noise.
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Table 2.1 Descriptive statistics.

Variable Dimension Mean S.D.

Output 1000 Euro 672.07 608.21

Productive Inputs 1000 Euro 110.99 81.37

Damage Abatement Inputs 1000 Euro 64.01 51.02

Buildings & Machinery 1000 Euro 776.78 817.39

Labor 100 hours 48.53 30.01

Area 100 hectare 1.27 0.92

Age of farmer 10 years 5.23 1.00

Subsidies per ha 100 Euro 3.80 1.73

Insurance per ha 100 Euro 1.14 0.54

HHI [0,1] 0.34 0.13

and vegetables.3 Using 2010 as the base year, a Törnqvist index is
constructed. The deflated total revenue, excluding subsidies, is used
as output (Y). Five categories of inputs are used. First, productive
inputs (X) comprise expenses of seeds and plants, fertilizers, energy,
other crop-specific costs and contract work, which were deflated with
a Törnqvist index. Second, chemical and biological crop protection
agents (A) are measured by deflating the aggregated expenditures for
both using the price index for crop protection agents. Third, buildings
and machinery are measured in deflated book values using a Törnqvist
index. Fourth, total labor is measured in man-hours and consists of
family and hired labor. Fifth, total utilized agricultural area is measured
in hectares and includes owned, as well as rented land. Capital, labor
and area are included in the matrix of quasi-fixed factors (K).

For the second stage, information on the farmers’ age, the received
subsidies and insurance payments are obtained from the dataset. Sub-
sidies and insurance payments are included as payments per hectare
to avoid measuring farm-size effects [130]. The Herfindahl-Hirschman
Index (HHI) is computed as proxy for the farm specialization (see e.g.
[129, 131, 132]). The HHI is computed by summing the squared revenue
shares of ware potatoes, energy crops, barley, grass-seed, oats, other
arable crops, other cereals, pulse, seed potatoes, rye, sugar-beet, wheat,
fodder crops, onions, starch potatoes, flower bulbs, turnips, vegetables,

3 Differences in the revenue shares from these crops were found not to be associated
with differences in technical inefficiency.
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other horticulture, cattle, cut flowers, pigs, poultry and other sources
of revenue. The effects of farm specialization, or diversification, have
previously been analyzed not only in single-output models [129, 133],
but also in the context of one overall farm-level score [124, 134–136].
Despite our one-output approach, economies of scope would become
apparent through positive estimates for the coefficient with respect to
HHI. This would reflect that lower input-specific technical inefficien-
cies are associated with lower scores for the HHI (i.e. more diversified
farms). Finally, the available latitude and longitude coordinates are
used to calculate the distance between farmers. Within the previously
described algorithm, the spatially lagged variables for age, subsidies
per hectare, insurance payments per hectare and the HHI are com-
puted as inner products of the spatial weights matrix with the farms’
characteristics. 4

Age can be associated with lower inefficiency through the accumu-
lated knowledge from learning-by-doing. On the other hand, it can
be associated with higher inefficiency due to decreased motivation
or health [137]. The literature is split regarding the potential effects
of subsidies on farm-level efficiency [130]. Subsidies may improve the
ability to invest in new technology which would have beneficial effects
on efficiency. Alternatively, subsidies can deteriorate the eagerness to
make economically rational decisions and thereby decrease efficiency
[135]. A higher degree of insurance coverage might result in farmers
undertaking more risky investments into new technology [138, 139],
which could reduce inefficiency. However, larger payments might be
associated with higher inefficiency of pesticides as farmers’ perception
of yield risk might influence their degree of insurance coverage [140],
as well as their tendency to overuse damage abatement inputs. The
degree of specialization is expected to be associated with lower inef-
ficiency due to more experience in producing the particular product
as well as the ability to better optimize production processes [141].
In terms of neighbors’ characteristics, the neighbors’ age could be
associated with lower inefficiency due to knowledge spillovers [32, 142].
Theory regarding the expected effect of the neighbors’ subsidies per
hectare are absent from the literature. One exception is Storm et al.

4 Ideally, additional farm characteristics such as education and agricultural training
would be included in the second stage regression. However, such information is
not available in the utilized dataset.
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[125] who found adverse effects on farm survival from increased sub-
sidy payments to neighboring farms. Storm et al. [125] hypothesized
that neighbors’ subsidy payments increase land prices in the vicinity
which negatively affects the ability to optimize the scale of production.
Risk averse farmers are more likely to have higher insurance coverage
[143]. Spatial effects from higher insurance payments of neighboring
farms might measure spillovers of risk attitudes. On the one hand, this
could result in adverse effects on pesticide inefficiency through social
pressure to safeguard against pathogen multiplication. On the other
hand, risk averse neighbors might increase vigilance toward pests and
thereby improve technical inefficiency of damage abatement inputs
through collective efforts as well as through a reduced pest pressure in
the landscape as a result of improved phytosantiary conditions on their
own fields. Finally, the neighbors’ degree of specialization is expected
to be associated with reduced inefficiency due to experience spillovers
[32].

2.3 Results

2.3.1 Directional Distance Function

Table 2.2 presents the annual average inefficiency for output, produc-
tive inputs and damage abatement inputs under Constant Returns to
Scale (�'() and Variable Returns to Scale (+'(). The mean ineffi-
ciency scores under �'( of 0, 4.52 and 4.54 suggest that the potential
for producing output is fully exploited whereas farmers can decrease
the use of productive inputs and damage abatement inputs by 4.52
and 4.54 percent, respectively. Under +'(, the average inefficiency
across years are slightly smaller indicating that the farmers operate at
an almost optimal size with average scale inefficiencies of 0 percent
for output, 0.65 percent for productive inputs and 1.56 percent for
damage abatement inputs.

It is important to note that the technical and scale inefficiency
scores are not comparable between years, due to the fact that the
within-year computations result in a different reference technology.
This is accounted for in the second stage bootstrap truncated regres-
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Table 2.2 Average annual inefficiency scores in percent for the output (VH ), pro-
ductive inputs (VG ) and damage abatement inputs (V0 ).

2011 2012 2013 2014 2015 2016 Mean

Constant returns to scale
VH 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VG 5.85 3.72 2.56 6.24 3.60 5.14 4.52

V0 4.17 3.53 4.44 4.40 5.10 5.61 4.54

Variable returns to scale
VH 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VG 5.91 3.60 3.06 5.47 2.55 2.61 3.87

V0 2.51 2.35 2.98 4.00 3.73 2.34 2.98

Scale inefficiency
VH 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VG −0.06 0.13 −0.51 0.78 1.05 2.53 0.65

V0 1.66 1.19 1.46 0.40 1.37 3.27 1.56

sion by including temporal fixed effects. The technical inefficiencies of
2014 are comparatively high with means of 5.47 percent for productive
inputs and 4 percent for damage abatement inputs under +'(. In
contrast, year 2016 was comparatively low with means of 2.61 percent
for productive inputs and 2.34 percent for damage abatement inputs,
respectively. Across years, the average productive inputs inefficien-
cies fluctuated between 2.55 and 5.91 percent under +'(. Damage
abatement input inefficiencies varied between 2.34 and 4 percent.

2.3.2 Determinants of Inefficiency

Table 2.3 and 2.4 present the results of the bootstrap truncated regres-
sion of productive inputs and damage abatement inputs, respectively.
The bootstrap truncated regression was not feasible for outputs due to
lack of variation in output specific inefficiency.

For the regression of +'( technical inefficiency of productive in-
puts, 80 percent and 66 percent of the parameters are significant (at
the 10 percent level or lower) for the �+� and  ## model, respec-
tively. For the scale inefficiency on the other hand, only 33 and 20
percent of the parameters are significant for the �+� and  ## mod-
els. Table 2.3 also shows that the results of the productive input-specific
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Table 2.3 Bootstrapped regression results for productive inputs (VG ).

Technical Scale
IVD KNN IVD KNN

Intercept 0.2033*** 0.9103*** −0.0522 0.4230

2012 −0.0502*** −0.0314*** −0.0317 −0.0138
2013 −0.0547*** −0.0349** 0.0142 0.0463

2014 −0.0037 0.0087 −0.0268 0.0002

2015 −0.0651*** −0.0351** 0.0033 0.0477

2016 −0.0614*** −0.0185 0.0541*** 0.1186*

age −0.0103*** −0.0173*** 0.0079* 0.0076

subsidies −0.1558*** −0.1288*** 0.0450 0.0543

insurance −0.0878 −0.0354 0.1548* 0.0937

HHI −0.0893*** 0.0022 −0.1167*** −0.0921**
W_age 0.0247** −0.1286*** −0.0070 −0.0178
W_subsidies −0.1267 0.1774** 0.0375 −0.3206
W_insurance −1.0656*** −0.4869 0.2875 −1.8914
W_HHI 0.1381* −0.2188*** −0.0860 −0.2389
sigma 0.0380*** 0.0393*** 0.0367*** 0.0373***

AIC -1397 -1382 -1411 -1384
W 42.3 16 54.3 38
W 90% CI [15.4, 87.1] [11, 19] [14.7, 91.2] [17, 56]
***=p<0.01;**=p<0.05;*=p<0.10

technical and scale inefficiency are sensitive to whether an �+� or a
 ## spatial weight matrix was used. The results in Table 2.3 show
that the signs of the statistically significant parameters generally (with
the exception of,_064 and,_���) do not change when using either
�+� or  ## . However, some variables are only significant in one of
the models (e.g. ��� , ,_BD1B8384B and ,_8=BDA0=24 for the +'(
inefficiency and 064 and 8=BDA0=24 in the scale inefficiency).

For damage abatement input inefficiency, a similar pattern arises
with 60 percent and 66 percent of the parameters being significant (at
the 10 percent level or lower) for the +'( technical inefficiency regres-
sion of the �+� and  ## models, respectively. For scale inefficiency,
only 33 percent and 13 percent of the parameter were significant for
the �+� and  ## models, respectively. The signs of the statistically
significant parameters generally do not change when using the �+�
or  ## model, but the statistical significance of some variables does
depend on choosing �+� or  ## (e.g. ,_064, ,_BD1B8384B and
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Table 2.4 Bootstrapped regression results for damage abatement inputs (V0 ).

Technical Scale
IVD KNN IVD KNN

Intercept 0.0894** 0.5338 −0.0410 0.3392

2012 −0.0096 0.0018 −0.0164 −0.0067
2013 0.0272* 0.0427* −0.0073 0.0105

2014 0.0521*** 0.0664*** −0.1025*** −0.0777**
2015 0.0473*** 0.0968*** −0.0141 0.0056

2016 0.0215 0.1177*** 0.0231** 0.0427

age −0.0156*** −0.0135** 0.0085** 0.0054

subsidies −0.2316*** −0.2182*** 0.0291 0.0280

insurance 0.1213 −0.0350 0.1113* 0.1123*

HHI 0.0135 −0.0069 −0.0361 −0.0239
W_age 0.0276** 0.0271 −0.0006 −0.0676
W_subsidies 0.1687 0.2552** −0.0818 −0.1742
W_insurance −1.0186*** −3.5406*** 0.1504 −0.1728
W_HHI −0.1404 −0.8167*** 0.0077 0.1478

sigma 0.0394*** 0.0470*** 0.0381*** 0.0370

AIC -1530 -1437 -1786 -1798
W 57.5 29 54.8 30
W 90% CI [25.3, 86.7] [27, 31] [15.2, 94.2] [17, 49]
***=p<0.01;**=p<0.05;*=p<0.10

,_��� for the +'( inefficiency, and farmers’ 064 for scale ineffi-
ciency).

For productive inputs, the optimal distance cut-off was estimated
to be 42.3 km for technical inefficiency and 54.3 km for scale ineffi-
ciency. However, the 90 percent confidence interval obtained from the
bootstrap suggests rather large intervals ranging 15.4 to 87.1 and 14.7
to 91.2 km for technical and scale inefficiency, respectively. This could
be caused by the sizable error terms sampled within the bootstrap. In
addition, it is critical to note that only a sub sample of the population
is included in the data. Consequently, the estimation of distance decay
effects is certainly aggravated. Arguably, the large confidence intervals
suggest a minor influence of the distance cut-off on model performance.
This seems plausible given the strong weight of close-by DMUs when
constructing spatially lagged regressors using the �+� weight matrix.
The optimal number of neighbors was estimated to be 16 for technical
inefficiency and 38 for scale inefficiency. The 90 percent confidence
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interval ranged 11 to 19 for technical inefficiency and 17 to 56 for scale
inefficiency. For damage abatement inputs, the optimal distance cut-off
was estimated to be 57.5 km for technical inefficiency and 54.8 km
for scale inefficiency. The 90 percent confidence interval ranged 25.3
to 86.7 km and 15.2 to 94.2 km for technical and scale inefficiency,
respectively. The optimal number of neighbors was estimated to be 29
for technical inefficiency and 30 for scale inefficiency. The confidence
interval ranged 27 to 31 neighbors for technical inefficiency and 17 to
49 neighbors for scale inefficiency.

In terms of model performance, the �+� based regressions ob-
tained a lower AIC score compared to the  ## equivalents for all
inefficiencies except the scale inefficiency of damage abatement in-
puts. This suggests that including influences from near-by DMUs, and
weighting them more, was able to explain the inefficiency scores bet-
ter than including influences of the near-by community of : farmers.
However, practitioners should be careful when extrapolating this result
to other data. The �+� and  ## approach could very well perform
differently if a more complete spatial coverage would be available. The
balanced panel data used for this analysis comprises only 75 DMUs
which are distributed across the Netherlands. Consequently, measur-
ing influences from : nearest neighbors does not necessarily reflect
: tightly connected farms in space. The �+� matrix takes distance
into account more directly and places majority of the weight on the
farmer(s) in close proximity. As near things tend to be more related
than distant things [65], it might well be that �+� was able to explain
the data better than  ## given the spatial coverage at hand.

To allow for interpretation of the association, marginal effects are
calculated at the mean of the data after equation 2.4. The marginal
effects are depicted in Table 2.5. An increase of the farmers age by
ten years is associated with a decrease in productive input technical
inefficiency by around 0.17 percent and an increase of 0.53 percent in
scale inefficiency. For damage abatement inputs, a ten-year increase in
farmers’ age is associated with a decrease in technical inefficiency of
0.17 to 0.2 percent and an increase in scale inefficiency by 0.58 percent.
A rise in subsidy payments of 1000 Euro per hectare is associated with
a decrease of productive input technical inefficiency by 2.22 to 2.26
percent. For damage abatement input, the results suggest an association
with a decrease in technical inefficiency of 2.35 to 2.85 percent. An
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Table 2.5 Marginal effects on productive inputs and damage abatement inputs
inefficiency.

Technical Scale
IVD KNN IVD KNN

Productive inputs
age −0.0016*** −0.0017*** 0.0053* 0.0049

subsidies −0.0226*** −0.0222*** 0.0215 0.0272

insurance −0.0272 −0.0121 0.0745* 0.0403

HHI −0.0200*** 0.0008 −0.0221*** −0.0201**
W_age 0.0223** −0.0004*** −0.0017 −0.0016
W_subsidies −0.0290 0.1460** 0.0158 −0.0199
W_insurance −0.1240*** −0.0765 0.1457 −0.0469
W_HHI 0.0775* −0.0270*** −0.0228 −0.0241
Damage abatement inputs
age −0.0017*** −0.0020** 0.0058** 0.0031

subsidies −0.0235*** −0.0283*** 0.0125 0.0121

insurance 0.0542 −0.0121 0.0492* 0.0500*

HHI 0.0052 −0.0024 −0.0108 −0.0076
W_age 0.0261** 0.0268 −0.0002 −0.0007
W_subsidies 0.1093 0.2314** −0.0217 −0.0218
W_insurance −0.1201*** −0.0464*** 0.0649 −0.0457
W_HHI −0.0313 −0.0197*** 0.0029 0.1095

***=p<0.01;**=p<0.05;*=p<0.10

increase in insurance payments of 1000 Euro per hectare is associated
with an increase in scale inefficiency for productive inputs by 7.45
percent. For damage abatement inputs, higher insurance payments are
associated with increased scale inefficiency by 4.92 to 5 percent. For
�+�, a one unit increase in the degree of specialization is associated
with a decrease in productive input technical inefficiency by 2 percent.
For both spatial weight matrices, a one unit increase in the degree of
specialization was associated with a 2.01 to 2.21 percent decrease in
scale inefficiency for productive inputs.

For �+�, a cumulative increase in the neighbors’ age is associated
with an increase in productive input technical inefficiency of 2.23 per-
cent. For  ## , a statistical association with a decline in productive
input technical inefficiency of 0.04 percent is obtained. For damage
abatement inputs, a cumulative increase in the neighbors’ age is asso-
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ciated with increased technical inefficiency by 2.61 percent if an �+�
matrix was used.

For  ## , a cumulative increase of 1000 Euro in the subsidy
payments per hectare is associated with an increase in productive
input technical inefficiency by 14.60 percent. For damage abatement
inputs, an increase in the neighbors’ subsidy payments is associated
with an increase in technical inefficiency by 23.14 percent when using
 ## .

For �+�, a cumulative increase in the neighbors insurance pay-
ments per hectare by 1000 Euro is associated with a decrease in
productive input technical inefficiency by 12.40 percent. For damage
abatement inputs, a cumulative increase in neighbors’ insurance pay-
ments is associated with a decrease in technical inefficiency by 4.64
percent for  ## and 12.01 percent for �+�.

Lastly, for �+� a cumulative increase in the neighbors’ degree of
specialization by one unit is associated with an increase in the tech-
nical inefficiency for productive inputs by 7.75 percent. However, for
 ## the regression suggests a decrease in productive input technical
inefficiency by 2.7 percent. For damage abatement inputs, a cumulative
increase in the neighbors’ degree of specialization is associated with a
decrease in technical inefficiency by 1.97 percent if  ## was used.

2.4 Discussion

The estimated technical inefficiency scores for productive inputs and
damage abatement inputs are in line with earlier findings by T. Skevas
et al. [101] and T. Skevas et al. [31] who identified lower technical
inefficiency scores (0.03 to 0.10) for productive inputs in the Nether-
lands during 2003 to 2007. The slight difference between results on
the productive input technical inefficiency can be explained by our
access to more recent data as well as T. Skevas et al.’s [101] inclusion of
undesirable inputs and outputs. For the years 2003 to 2007, T. Skevas
et al. [31] estimated annual averages of output technical inefficiency
to range between 7 and 13 percent for Dutch arable farmers. Our
results suggest that Dutch arable crop farms were efficient in terms
of their output during the years 2011 to 2016 with the annual average
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inefficiency of 0 percent. A low output-specific technical inefficiency
in Dutch farms was also found in other studies [144]. Furthermore,
to ease the estimation of the spatial weight matrix we decided to
focus on a balanced panel. Consequently, we restricted our sample
to commercial arable farms which stayed within the FADN reporting
system for a significant number of years. On the one hand, this justifies
comparing the DMUs under one reference technology. On the other
hand, these criteria might result in a selection of DMUs which is more
homogeneous. This could also explain why we find no inefficiency in
output and very low inefficiencies in inputs.

The results from the second stage regression suggest that older
farmers are associated with lower technical inefficiency of productive
inputs and damage abatement inputs. This could stem from their accu-
mulated knowledge and past experiences [137]. However, a cumulative
increase in the neighbors’ age is associated with higher input technical
inefficiency scores. Tveteras & Battese [32] suggest that firms which
operate next to knowledge-intensive producers less likely make man-
agerial decisions that increase technical inefficiency. Younger farmers
might be more up to date with recent developments and in turn could
provide signals to neighboring peers that improve their decision mak-
ing. Age is also associated with a higher scale inefficiency suggesting
that older farmers operate farms at a sub-optimal scale. This finding
could be explained from the shorter time horizon for older farmers,
resulting in a lower incentive to invest in scale changes [145].

Our results suggest that higher subsidies are associated with lower
technical inefficiencies of productive and damage abatement inputs.
The literature is divided regarding the effects of subsidies on farm-level
efficiency [130, 136]. For the Netherlands, previous studies have iden-
tified small impacts of subsidies or a significant positive associations
between subsidies and technical inefficiency [146, 147]. The conflicting
results in our study might be related to differences between our ap-
proach of measuring output and input-specific inefficiency scores and
the approach used in previous studies. Our findings could suggest that
subsidies allow for investments in improved technologies that might
operate more efficiently [136]. Similarly, Reidsma, Ewert, Oude Lansink,
& Leemans [148] found direct effects of subsidies per hectare on input
intensity per hectare and further argue that increased intensity can
lead to a more profitable use of the area. In terms of spatial spillovers,
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our results for subsidies were statistically insignificant for �+�. How-
ever, for  ## the results suggest a statistically significant positive
association with technical inefficiency of productive inputs and damage
abatement inputs. The sensitivity of results to the choice of the spatial
weight matrix was also stressed in previous studies [108, 109]. Our
results highlight the importance of employing multiple approaches
and to report on the robustness of results. The spatial spillover effect
of subsidies does not occur for scale inefficiency. Storm et al. [125]
found adverse effects of neighbors’ subsidy payments on farm survival.
Higher subsidy payments can improve farmers’ ability to purchase
land and thereby increase land prices in the vicinity [125]. Our results
for scale inefficiency reject Storm et al.’s [125] hypothesis.

Higher insurance payments per hectare are associated with larger
scale inefficiency. This might stem from the need of farmers with
sub-optimal scales of production to more rigorously safeguard their
income. Alternatively, this could suggest that a base-level of insurance
is seen as essential by Dutch arable farmers. Consequently, farms with
sub-optimal scales might have to stem larger payments per hectare
due to the inability to increase their area of production. Whereas the
farm’s own insurance payments are negatively associated with scale
inefficiency (and not with the farm’s technical inefficiency), our results
on the spatial spillover of neighbors’ insurance payments suggest
statistically significant negative relations with the technical inefficiency
of productive input and damage abatement input. Farmers with a
high perception of yield risk might opt for higher insurance coverage
[140]. At the same time, these farmers might be more likely to control
diseases in their fields more rigorously to avoid a shortfall in yield.
This extra effort could improve the bio-security in the vicinity and
could thereby benefit their neighbors.

Consistent with the literature, the degree of specialization is asso-
ciated with lower technical inefficiency in productive inputs. Special-
ization comes along with expertise in producing the particular good
[134, 135]. Arguably, expertise allows for better judgment regarding
input use. Furthermore, larger concentration on a small number of
products allows to optimize operational processes [141]. As with the
spillover effect of subsidies, our results on productive inputs were sen-
sitive to the choice of the spatial weight matrix. For productive inputs,
having more specialized neighbors is associated with an increase in
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inefficiency if an �+� is used or a decrease in inefficiency if  ## is
used. Albeit that our results for �+� were only marginally significant
at the 90 percent confidence interval. For damage abatement inputs,
results suggest beneficial effects from more specialized neighbors if an
 ## matrix was used. This could be related to exchange of knowledge
on best practices or improved phytosanitary control on specialized
neighboring farms and in turn reduced pressure of pathogens in own
fields.

The mixed results for �+� and  ## are likely related to the
different nature of the spatial weight matrices. While �+� strongly
emphasizes the degree of proximity,  ## treats the selected number
of neighbors as equally important. In turn, our results shed light on
the different effects that could arise from an individual versus a com-
munity of neighbors. The mixed results for the spatial spillovers could
suggest that distance itself is of greater importance when measuring
effects of certain farm characteristics. We argued that many of the
spillover effects on damage abatement input technical inefficiency from
different farm characteristics are rooted in the interdependence among
fields which arises through pathogen multiplication and dispersal. In
contrast, spatial spillovers on technical inefficiency of productive in-
puts are hypothesized to arise through the social network of farmers.
Consequently, it might well be that different effects arise depending on
whether proximity is taken into account directly, as in �+�, or whether
a near-by community of : neighbors is investigated jointly. Certainly, in
line with Areal et al. [109] and Pede et al. [108] our analysis stresses the
need to communicate the robustness of results in spatial econometric
applications in dependence of different formulations of the spatial
weight matrix.

While some research has evaluated community-effects on individ-
uals’ behavior [149–152], more work is needed on such effects within
the context of production economics. Signals for improving opera-
tional processes could very well differ depending on whether individual
peers or the general neighborhood characteristics are referenced by
the decision making unit. Certainly, a clearer distinction between
individual-centric versus community-based spillovers is necessary to
improve the design of policy. As evident from our results on the
spillover effect from subsidies, adverse effects might go unnoticed if
analyses do not aim at capturing the different channels of influence.
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2.5 Conclusions

The objective of this study was to empirically quantify the effects of
spatial spillovers on output and input-specific technical inefficiency in
Dutch arable crop farms. For this purpose, a two-stage Data Envel-
opment Analysis (DEA) approach was used. First, a non-parametric
directional distance function was computed to estimate technical and
scale inefficiency scores for output, productive inputs and damage
abatement inputs. Second, a spatial econometric model was estimated
which incorporates regressors for spatial lags of farm characteristics
alongside other non-lagged explanatory variables and time-period
fixed effects. The paper avoids an ad hoc selection of the type of
weight matrix, by using both the inverse distance weight matrix and
the binary k-nearest-neighbors weight matrix. In addition, the distance
cutoff and the optimal number of neighbors were estimated empirically
rather than imposing rules of thumb.

The average technical inefficiency across years was found to be 0
percent for output, 3.87 percent for productive inputs and 2.98 percent
for damage abatement inputs. Results of spatial spillovers were sensi-
tive to the choice of the spatial weight matrix. This stresses the need
for scholars to apply multiple lenses towards estimating the spatial
spillovers in spatial econometric applications. The differences in the
results of the two approaches are attributed to the different types of
spillovers generated, where the inverse distance approach emphasizes
close-by neighbors and the k-nearest neighbors assigns equal impor-
tance to every farmer in the community of : neighbors. For productive
inputs technical inefficiency, statistically significant spillover effects
from neighbors’ age and their degree of specialization depended on the
type of the spatial weight matrix used, statistically significant spillover
effects of subsidy payments were adverse and statistically significant
spillover effects from insurance payments were beneficial. For damage
abatement inputs technical inefficiency, statistically significant adverse
effects were found for neighbors’ age and subsidy payments and bene-
ficial effects from neighbors’ insurance payments and their degree of
specialization. For scale inefficiency, no spatial spillover effects were
found.

Accounting for spillover effects in estimating the determinants of
technical and scale inefficiency relaxes the assumption that farmers
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operate in isolation from their peers. Fostering the influx of young
farmers is often emphasized by EU policy makers (e.g. [153]). Our
results suggest that young farmers could not only lead to more optimal
scales of production but benefit the close-by network of peers. The
need for farm subsidy payments is often strongly debated in the
literature (e.g. [130]). We found sizable adverse spillover effects from
subsidy payments on the technical inefficiency of both productive
inputs and damage abatement inputs. Hence, the discussion on the
need for subsidies should be broadened to also include spillovers to
the near-by community of peers. We found that insurance payments
are not statistically associated with the technical inefficiency of the
insured. However, sizable beneficial spillover effects were found for
both productive inputs inefficiency and damage abatement inputs
technical inefficiency. The spatial insurance coverage could inform
insurance design by signaling the risk awareness of a community
of farmers. The beneficial spillover effects might suggest that risk
premia could be lowered if a community of farmers is insured. The
spatial nature of pathogens certainly results in a mutual dependence
between farmers, which is best approached through collective actions
[71]. The optimal degree of specialization is subject to discussion
in the agricultural economics literature [131, 154]. While results for
productive inputs technical inefficiency differed for the two spatial
weight matrices, having a community of specialized neighbors seems
to benefit own inefficiency for productive inputs and damage abatement
inputs. Accounting for these beneficial spillover effects is necessary
when designing policy that could affect farm specialization.

Certainly, acknowledging externalities generated by different farm
characteristics is crucial for policy design. Traditional farm-level as-
sessments do not allow to account for positive or negative externalities
which are generated by different farm characteristics. In turn, insights
are obtained that could very well communicate an incomplete picture
to the regulators. As stressed in this analysis, farm characteristics will
not only influence the own operation but also the community of peers
neighboring it. Future research could investigate whether other farm
characteristics exert influence on inefficiency. The developed frame-
work could also very well be applied to other industries in which input
and output-specific assessments of spatial spillovers are expected.





Chapter 3

Impact of Xylella fastidiosa subspecies
pauca in European Olives

Abstract

Xylella fastidiosa is the causal agent of plant diseases that cause mas-
sive economic damage. In 2013, a strain of the bacterium was for the
first time detected in the European territory (Italy) causing the Olive
Quick Decline Syndrome. We simulate future spread of the disease
based on climatic suitability modeling and radial expansion of the
invaded territory. An economic model is developed to compute impact
based on discounted foregone profits and losses in investment. The
model projects impact for Italy, Greece and Spain as these countries
account for around 95 percent of the European olive oil production.
Climatic suitability modeling indicates that, depending on the suit-
ability threshold, 95.5 to 98.9, 99.2 to 99.8 and 84.6 to 99.1 percent
of the national areas of production fall into suitable territory in Italy,
Greece and Spain, respectively. For Italy, across the considered rates of
radial range expansion the potential economic impact over 50 years
ranges from 1.9 to 5.2 billion Euro for the economic worst-case sce-
nario in which production ceases after orchards die off. If replanting
with resistant varieties is feasible, the impact ranges from 0.6 to 1.6
billion Euro. Depending on whether replanting is feasible, between
0.5 and 1.3 billion Euro can be saved over the course of 50 years if
disease spread is reduced from 5.18 km to 1.1 km per year. The analysis
stresses the necessity to strengthen the ongoing research on cultivar
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resistance traits and application of phytosanitary measures including
vector control and inoculum suppression by removing host plants.

Significance Statement

Xylella fastidiosa is one of the most dangerous plant pathogenic bacteria
worldwide. Regulatory measures were enacted in response to the
detection of the subspecies pauca (Xfp) in Italian olives in 2013, but
the current impact is nevertheless major. We developed a spatially
explicit bio-economic model to compute potential future economic
impact of the Xfp strain. Uncertainty on spread is accounted for by
simulating different scenarios. The majority of orchards were found
to be within climatically suitable territory. Even under slow disease
spread and the ability to replant with resistant cultivars, projections
of future economic impact in affected countries run in the billions of
Euro. Our findings highlight the importance of minimizing disease
spread and implementing adaptation measures in affected areas.

3.1 Introduction

Xylella fastidiosa (Xf ) is a bacterium from the family Xanthomonadaceae
and was first described by Wells et al. [14]. The list of host plants
for Xf currently comprises 563 plant species from the Americas,
Europe, the Middle East and Asia [15]. In the European Union (EU),
at least 84 host plants for Xf have been identified [16]. This species
is considered one of the most dangerous plant pathogenic bacteria
worldwide [15, 17]. The bacterium is naturally transmitted by insect
vectors which feed on the xylem of host plants [18, 19]. If expressed
in susceptible plant hosts, symptoms of Xf include, among others,
leaf marginal necrosis, leaf abscission, dieback, delayed growth and
death of plants through the obstruction of the xylem and a lack of
sufficient water flow through the host [20, 21]. The multiplication of
the bacteria with the associated clogging of the xylem will first result
in declining yields and reduced fruit quality due to a decrease in water
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and nutrient flow [22]. Eventually, this shortage will result in the host’s
death [23].

In 2013, Xf subspecies (subsp.) pauca (Xfp) was detected in Olea
europaea (olive), Nerium oleander (oleander) and Prunus dulcis (almond)
in Italy [24]. The detection led to the enactment of control measures,
including vector control and tree felling. The latter resulted in great
societal unrest in the affected region [25, 26]. Unfortunately, the size of
the area currently affected and the hidden reservoir of symptomless
but infectious host plants is likely to hinder any attempts of disease
eradication [155]. Furthermore, recent studies suggest that the tight
network of olive orchards in Apulia (Italy) can be expected to serve as
a European reservoir of Xfp [156]. Nevertheless, the removal of infected
trees and vector control along the border of the infected area may act
as a cordon sanitaire reducing disease spread.

Currently in the EU, Xf is present in Italy, France, Spain and Por-
tugal including the subsp. pauca, multiplex and fastidiosa [157]. Since
there is no practical cure for Xf under field conditions [158, 159], con-
trol strategies applied in the EU focus on eradication or containment
of the disease by host removal, vector control and restrictions on the
production and movement of plant materials for planting. Research
efforts are currently targeting the identification of resistance traits and
biological control [160–168]. The use of non-host species or resistant
cultivars of host species seems the most feasible and promising long-
term strategy to adapt to Xf in affected regions [17, 22]. Important
advances have been made with regard to the identification of resistant
cultivars. In particular, symptom expression in the olive varieties FS-17
and Leccino is drastically reduced compared to other cultivars. The
enacted regulatory measures prohibit replanting of hosts within the
infected zone. Exceptions were made for FS-17 and Leccino which are
currently the only olive cultivars that may be replanted in the infected
zone [169].

Here, we develop a spatially explicit bio-economic model that
accounts for disease spread and economic characteristics of olive cul-
tivation systems in different European countries. The model projects
impact for Italy, Greece and Spain as these countries account for
around 95 percent of the European production [170]. Impact is com-
puted over a 50-year time horizon employing a suite of models. The
climatically suitable territory is assessed using an ensemble predic-



42 3 Impact of Xylella fastidiosa subspecies pauca in European Olives

tion based on ten species distribution models (SDMs). The spatial
distribution of olive orchards is obtained from land cover data. The
disease spread is simulated using a cellular automaton model with
mixed neighborhood processes (rook’s and queen’s case contiguity) to
approximate a radial spread process at spread rates obtained from
expert knowledge elicitation. We account for the uncertainty in the
annual rate of dispersal by using three quantiles of the expert-elicited
distribution of spread rates [157]. An economic model is developed to
compute impact to growers as discounted foregone profits and losses
in investment due to the premature death of infected trees. Additional
profits to non-affected growers, as a result of price responses to changes
in the European supply, are accounted for. For all disease spread sce-
narios, two economic scenarios are explored. In the first, production is
assumed to cease once production in an orchard becomes unprofitable
due to the disease. In the second, infected orchards are replanted with
a resistant cultivar. These two extremes bracket the plausible range
of impact. The bio-economic scenarios are compared to a baseline in
which Xfp is absent. The difference between both economic scenarios
approximates the benefit from resistant cultivars.

Consequently, this study derives various insights. First, we report
on the climatic suitability of the European olive production sites for
establishment and spread of Xf. Second, we explore the bandwidth of
economic impact that results from uncertainty regarding the annual
rate of dispersal. Here, we also compare results for different spread
rates to provide insights on the economic benefit that might be secured
through means of reducing the rate of spread such as vector control
and host removal. Third, we analyze economic impact from possi-
ble introductions into Greece and Spain. This allows us to identify
high-risk areas for disease introduction and establishment, discuss
differences between countries in the sensitivity of results with regard
to the uncertainty on the annual rate of dispersal as well as compare
the magnitude of the potential future economic impact between Italy,
Greece and Spain.

The uncertainty on various aspects was taken into consideration.
First, while previous work explored the importance of long-distance
jumps for spread of Xfp [171], data to accurately parameterize such
jumps is currently not available. Therefore, our spread model simplifies
the dispersal process into a composite spread comprising local dis-
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persal and probabilistic jumps. Second, we make use of country-wide
averages of prices and operational costs per ton of olives due to the
unavailability of data at finer spatial resolution. Third, the economic
model intends to derive insights into the potential impacts to olive
growers. Processors and consumers are not included into the analysis.
We discuss consequences of this simplification and address expected
market effects in more detail below. Fourth, changes in fruit quality
due to Xfp are not considered. Reductions in oil yield per ton of
olives may reduce the willingness to pay on the side of processors.
Consequently, the periods for which continued production on infected
plots is profitable would be shortened, and impacts slightly higher as a
result. Fifth, for the replanting scenario, we assume that the replanted
trees are fully resistant or tolerant to the pathogen and produce the
same profits as their susceptible predecessors. While full resistance
is achievable, partial resistance or reductions in full-bearing yields
might be the outcome of breeding for resistance or tolerance. Lastly,
we present an economic best-case scenario in which infected orchards
are replanted with resistant equivalents. Many of the olive tree culti-
vars have been inherited from generation to generation over the last
centuries. Arguably, these trees represent a sizable cultural heritage
value for many growers and other citizens across Europe [25, 26].
Furthermore, olive orchards provide a landscape value which benefits
other sectors such as tourism [172]. Due to the difficulties of quanti-
fying cultural heritage and landscape values in monetary terms, we
omit these aspects from our analysis. Nevertheless, this study intends
to contribute to a more informed discussion among stakeholders by
exploring the direct economic impact that can be expected from Xfp
for European olive growers.

3.2 Results

The results on climatic suitability were obtained in the form of a
continuous variable which can range from zero to one for a given
location in Europe. The continuous scores were converted to a binary
prediction (suitable or unsuitable) based on three different thresholds.
The thresholds are numerical cut-offs such that locations with higher
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Fig. 3.1 Binary suitability maps and olive production sites for Italy.
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Fig. 3.2 Binary suitability maps and olive production sites for Greece.

values are classified as suitable. A threshold of 0.165 (T1) was used to
ensure that the model correctly predicted at least 90 percent of the
locations in which Xf was confirmed to be present as suitable (90
percent sensitivity). A threshold of 0.132 (T2) maximizes the sum of the
accuracy of predicting occupied sites to be suitable and unoccupied
sites to be unsuitable (i.e. maximizing the sum of sensitivity and
specificity) and a value of 0.093 (T3) minimizes the difference between
the accuracy of predicting occupied sites to be suitable and unoccupied
sites to be unsuitable (i.e. minimum difference between sensitivity and
specificity) [157]. Spatially explicit information on the distribution of
European olive orchards was incorporated via the Coordination of
Information on the Environment (CORINE) land cover map which was
aggregated to a 1 km resolution. The ensemble prediction from the
SDMs suggest that for the three thresholds between 95.5 to 98.9, 99.2
to 99.8 and 84.6 to 99.1 percent of the national area of production
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Fig. 3.3 Binary suitability maps and olive production sites for Spain.

falls into climatically suitable territory in Italy, Greece and Spain,
respectively (see Figure 3.1, 3.2, 3.3).

The radial range expansion model requires a point of origin and
simulates radial dispersal around this point assuming that all climat-
ically suitable cells within this range may be affected. In our model,
spread of the disease is realized through cell-to-cell transmissions.
While these transmissions require that the invaded cells are climati-
cally suitable, they do not depend on olives to be present. Consequently,
our spread model simulates temporal as well as spatial spread by ac-
knowledging the spatially explicit distribution of olive production sites
under the assumption that alternative hosts assist dispersal through
climatically suitable habitat. There is still very incomplete knowledge
on the rate of spread of Xfp [171, 173]. While monitoring data on the
outbreak in Apulia is available, the sampling design in the region dras-
tically changed over time since the first detection. This presumably
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is related to a change in priorities of authorities from detection to
containment of the disease. Consequently, estimating epidemiological
parameters is severely aggravated if not impossible. In addition, the
observed epidemic in Apulia is likely to be a worst-case scenario due
to the tight network of orchards and the abundance of suitable vectors
[156, 171]. Therefore, extrapolating estimated parameters for Apulia to
continental Europe would be questionable.

To take the uncertainty on the spread rate into account, we utilize
the 5, 50 and 95 percentiles of a distribution of spread rates obtained
by formal expert knowledge elicitation. The quantiles correspond
to a rate of radial range expansion of 1.10 (RR05), 5.18 (RR50) and
12.35 (RR95) km per year [157]. The elicited rates account for the
heterogeneous landscape in Europe, differences in vector abundance
and application of control measures as is currently done. Long-distance
jumps due to plant trade are not considered in the spread simulations
within countries. However, they are accounted for when studying
introductions into Spain or Greece (see below). For Italy, we analyzed 9
different spread scenarios resulting from the combination of the three
spread rates and three thresholds for the binary climatic suitability
map. As the elicited rates intend to gauge the pace of spread beyond
the current extent, we classified the extent known to be affected in
2019 as infected at the starting point of our modeling time horizon.
Subsequently, spread was simulated beyond the infected zone for
the three different rates (see Figure 3.4a and 3.4b). For Greece and
Spain, the uncertainty on the potential point of introduction of the
disease was accounted for by randomly infecting one olive cell within
climatically suitable territory. For every suitability threshold, 1000
points of introduction were generated per country. Subsequently, for
each point of introduction spread was simulated for RR05, RR50
and RR95. In turn, 9000 spread scenarios were analyzed for Greece
and Spain, respectively. A visualization of all generated points of
introduction is provided in the Supplementary Material (Fig. 3.5).

For RR05, around 22 percent of the Italian area of production
was affected at the end of the 50-year time horizon. The suitability
thresholds did not alter these results, because cells within the extent
reached fall into suitable territory regardless of the chosen threshold.
For RR50, depending on the climatic suitability threshold between
50.3 and 52.9 percent of the Italian area of production was infected
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(a) (b)

Fig. 3.4 Simulated geographical distribution of Xfp in year 5 (a) and 50 (b) with
the median of the elicited rate of radial range expansion (5.18 km per year) and a
climate suitability threshold of 0.132 in the ensemble SDM. Grey depicts suitable
territory. Blue depicts non-suitable olives. Green depicts suitable olives. Red depicts
infected olives.

at the end of the 50-year time horizon. For RR95, depending on
the climatic suitability threshold between 68.6 and 75.3 percent of
the Italian area of production was infected at the end of the 50-year
time horizon. For Greece, on average across the random points of
introduction, depending on the climatic suitability threshold, between
7.7 to 8.0, 28.2 to 28.9 and 34.5 to 38.5 percent of the national area of
production was infected for RR05, RR50 and RR95, respectively. For
Spain, on average across the random points of introduction, depending
on the climatic suitability threshold, between 11.4 to 12.3, 62.9 to 69.6
and 74.5 to 94.8 percent of the national area of production was infected
for RR05, RR50 and RR95, respectively.

The uncertainty on the point of introductions of the disease in
Greece and Spain sensitively influenced the area reached by the
pathogen and in turn the economic impact. Irrespective of the an-
nual rate of dispersal, the share of the national area infected was found
to differ substantially across the randomized points of introduction
(Supplementary Material, Fig. 3.7, 3.9, 3.11). For Greece, introductions
into Crete, Attica and western or central Greece resulted in sizable
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shares of the national area infected whereas introduction onto islands
in the northern or southern Aegean as well as central Macedonia re-
mained isolated from the country’s main areas of olive production. For
Greece, the consequences of differences in the annual rate of spread
were not as pronounced as for the other two countries. The Greek main
areas of production are divided between mainland regions and Crete.
The sea, as a natural barrier for spread, prevented the epidemic from
reaching more than 38.5 percent of the national area of production,
on average across the random points of introduction, even for larger
annual rates of spread. For Spain, the different climatic thresholds not
only influenced the share of the national area of production within
climatically suitable territory more strongly compared to the other two
countries, but also more sensitively determined the area reached by
the epidemic compared to Italy and Greece. The spatial continuity of
the climatically suitable area in central Spain influenced whether intro-
ductions into Catalonia and the Valencian Community were contained
within those regions or whether they spread over Castilla La Mancha
into the country’s main area of olive production in Andalusia (Figure
3.3). Visualizations of changes in high-risk points of introduction de-
pending on the suitability threshold are provided in the Supplementary
Material (Fig. 3.8, 3.10).

The spread scenarios resulted in different extents of the European
olive production lost and in turn different price responses following
reductions in European supply if replanting is not feasible. For spread
in Italy, depending on the climatic suitability threshold around 5.5,
12.6 to 13.2 and 17.7 to 18.9 percent of the European supply was lost
in year 50 for RR05, RR50 and RR95, respectively. Consequently,
prices were estimated to increase by approximately 2.9, 6.5 to 6.9 and
9.2 to 9.8 percent across Europe. For spread in Greece, depending
on the climatic suitability threshold around 1.4, 5.3 to 5.4 and 6.7
to 7.4 percent of the European supply was lost in year 50 for RR05,
RR50 and RR95, respectively. As a result, prices were estimated to
increase by 0.7, 2.8 and 3.8 percent across Europe. For spread in Spain,
depending on the climatic suitability threshold 5.4 to 5.8, 32.4 to 35.4
and 40.8 to 50.6 percent of the European supply was lost in year 50.
Prices were estimated to increase by 2.8 to 3.0, 16.8 to 18.4 and 21.2 to
26.3 percent across Europe.
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Table 3.1 depicts the economic impact over the course of 50 years
in terms of present value. For Italy, the differences in the economic
results for the different climatic suitability thresholds were negligible.
To improve readability, only the results for T2 are presented. Results
for all thresholds can be found in the Supplementary Material (3.4).
For Italy, total impact ranged between 1.86 billion for RR05 and 5.17
billion Euro for RR95 if replanting is not feasible. Notably, the increase
in producer prices following reductions in Italian supply positively
affected Greek and Spanish growers. Depending on the spread rate and
in turn the magnitude of the Italian supply reduction, the additional
profits ranged between 0.68 billion to 1.59 billion Euro for Greece
and 1.71 billion to 3.99 billion Euro for Spain. Summed over the
countries additional profits to growers ranged between 0.74 billion
to 1.02 billion Euro. Under the replanting scenario, impact in Italy
ranged between 0.59 billion and 1.57 billion Euro. The recovery of the
Italian supply diminished the price increase which resulted in reduced
additional profit flows for Greek and Spanish growers when compared
to the scenario without replanting. Nevertheless, the additional profits
ranged between 0.10 billion to 0.24 billion Euro for Greece and 0.26
billion to 0.62 billion Euro for Spain. Summed over the three countries
losses in profits ranged between 0.02 billion and 0.1 billion Euro.
Regardless of the economic scenario, between 0.21 to 0.61 billion Euro
worth of investments were lost due to the premature death of trees in
Italy. The rainfed-intensive and rainfed-traditional cropping systems
were responsible for most of these losses with shares on the losses in
investment of 28 and 27 percent, respectively. The benefit of resistant
cultivars to Italy ranged between 1.27 billion to 3.60 billion Euro.
Evidently, non-affected producers would benefit if Italian growers were
not able to recover their supply using resistant trees.

For Greece and Spain, all impacts presented below represent av-
erages across the 1000 random points of the future introduction
scenarios. The distributions of all economic results for each spread
scenario can be found in the Supplementary Material (Fig. 3.12 & 3.13).
For Greece, total impact ranged between 0.21 billion for RR05 to 1.94
billion Euro for RR95 if Xfp is introduced and replanting is not feasible.
Again, the increase in producer prices following reductions in Greek
supply positively affected producer profits in the other two included
countries. Depending on the spread rate and in turn the magnitude
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of the Greek supply reduction, the additional profits ranged between
0.18 billion to 1.60 billion Euro for Spain and 0.09 billion to 0.76
billion Euro for Italy. Summed over the countries additional profits
to growers ranged between 0.10 billion to 0.71 billion Euro. Under
the replanting scenario, Greek impacts ranged between 0.09 billion
and 0.58 billion Euro. The recovery of the Greek supply diminished
the price increase which reduced the additional profits to the other
countries compared to the scenario were replanting is not feasible. The
additional profits ranged between 0.03 billion to 0.19 billion Euro for
Spain and 0.01 billion to 0.09 billion Euro for Italy. Regardless of the
economic scenario, between 0.04 billion to 0.29 billion Euro worth of
investments were lost due to the premature death of trees in Greece.
The irrigated-intensive and irrigated-traditional cropping systems were
responsible for most of these losses with shares on the total losses in
investment of 35 and 27 percent, respectively. The benefit of resistant
cultivars to Greece ranged between 0.13 billion to 1.36 billion Euro.
For Spain, total impact ranged between 0.71 billion for RR05 to 16.86
billion Euro for RR95 if Xfp is introduced and replanting is not feasible.
Again, the increase in producer prices following reductions in Spanish
supply positively affected the other two included countries. Depending
on the spread rate and in turn the magnitude of the Spanish supply
reduction, the additional profits ranged 0.21 billion to 3.76 billion Euro
for Greece and 0.25 billion to 4.50 billion Euro for Italy. Summed over
the countries foregone profits to growers ranged between 0.07 billion
to 6.48 billion Euro. Under the replanting scenario, Spanish impact
ranged between 0.39 billion and 4.98 billion Euro. The recovery of
the Spanish supply diminished the price increase which reduced the
additional profits to the other countries compared to the scenario were
replanting is not feasible. The additional profit flows ranged 0.05 to
0.61 for Greece and 0.06 billion to 0.73 billion Euro for Italy. Summed
over the countries foregone profits to growers ranged between 0.10
billion to 1.51 billion Euro. Regardless of the economic scenario, be-
tween 0.17 billion to 2.12 billion Euro worth of investments were lost
due to the premature death of trees in Spain. The irrigated-traditional
and rainfed-traditional cropping systems were responsible for most of
these losses with shares on the total losses in investment of 32 and 22
percent, respectively. The benefit of resistant cultivars to Spain ranged
between 0.32 billion to 11.88 billion Euro.
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Evidently, the magnitude of the economic impact differed between
the three countries. This can be attributed to the differences in the
total area of production, distribution of this area into the different
cropping systems and country-specific profitability of olive production
per hectare. However, as described above, spatial characteristics of the
three countries crucially determined the area of production that was
reached by Xfp within the time horizon for the different spread rates.
On average across the random points of introduction, the natural barri-
ers around areas of production in Greece prevented impacts above 1.94
billion Euro. Due to the spatial continuity of the climatically suitable
territory in Spain and the spatial concentration of olive production in
Andalusia, impact drastically exceeded the impact computed for Italy
for RR50 and RR95. The calculated impacts for Spain and Greece are
contingent on introduction of the pathogen within these countries at
the start of the time horizon.

The economic benefit that might be secured by reducing the annual
rate of spread was found to differ among the evaluated countries. For
Italy, a reduction in the rate of spread from 5.18 km to 1.1 km per year
was found to reduce the overall impact by around 41 and 44 percent
in the scenarios without replanting and with replanting, respectively.
In other words, around 1.29 or 0.46 billion Euro would be saved. For
Greece and Spain, the economic benefit from reducing the annual rate
of dispersal is larger with reductions in the overall impact by around
81 and 91 percent, respectively. This corresponds to economic savings
of 0.87 billion Euro for Greece and 7.12 billion Euro for Spain if the
rate of spread would be reduced from 5.18 km to 1.1 km per year and
replanting is not feasible. The difference in the sensitivity of the results
with regard to the annual spread rate can be explained by the different
types of starting conditions. For Italy, we initiated spread beyond the
currently known infected zone which already comprises 17 percent of
the national area of production. For Greece and Spain, the simulations
were initiated on a randomly generated suitable olive cell. In turn, the
area infected within the time horizon is more sensitively influenced
by the annual rate of spread which resulted in the differences in the
economic benefit from delaying the further dispersal of the disease.

A global sensitivity analysis of the economic model based on
spread in Italy using variance decomposition showed that only a few
out of 31 parameters had statistically significant first order indices at
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Table 3.2 First and total order sensitivity indices of significant economic parame-
ters without replanting (S1), with replanting (S2) and resistance benefits (RB) for
impact in Italy.

Parameter First Order Total Order
S1 S2 RB S1 S2 RB

Price Italy 0.664 0.619 0.480 0.717 0.756 0.629

Costs Italy 0.165 0.142 0.117 0.169 0.223 0.149

Discount Rate 0.033 0.074 0.070 0.160

Yield decline 0.039 0.191

Cost change 0.039 0.163

5 percent level. Uncertainty regarding the prices and costs per ton of
olives in Italy, the discount rate as well as the changes in yield and
operational costs due to Xfp were found to sensitively influence the
results. Table 3.2 depicts the first and total order sensitivity indices
for the statistically significant parameters. Detailed results for all
parameters can be found in the Supplementary Material (Tab. 3.5
to 3.10). Price per ton of olives was most influential and caused 72
and 76 percent of the variance in impact with and without replanting,
respectively. The profitability per ton of olives will crucially determine
the profits foregone and in turn the total impact. This indicates that the
effects of the observed empirical variation in prices and costs outweigh
the uncertainty in replanting costs as well as other orchard-specific
parameters such as the longevity of the cropping systems. Research on
the expected annual decline of yield following infection with Xfp as
well as data on changes in operational costs following infection would
benefit further modeling efforts.

3.3 Discussion

While impacts were not sensitively influenced by the climatic limits for
Italy and Greece, the different climatic suitability thresholds did more
strongly influence the maximum extent and the dispersal path of Xfp
in Spain. Locations and timing of future introductions of the pathogen,
if any, are highly uncertain. More research on the climatic suitability
for Xf in Castilla La Mancha could provide important information on
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the spatial continuity of the suitable area. This continuity will crucially
determine whether non-detected introductions into coastal areas can
be expected to be contained by unsuitable climatic barriers or whether
the disease is able to relatively quickly spread into the main olive
production sites in Andalusia.

Our analysis revealed that sizable impact can be expected from new
introductions of Xfp into olive-dense production areas, irrespective
of the annual rate of spread. This stresses the need for growers to be
vigilant and promptly report possible infections to the national plant
protection organizations. Unfortunately, the ability to promptly report
introductions and initiate actions to prevent further dispersal crucially
depends on the length of the asymptomatic period following infection.

The results show that the economic benefit that might be secured
through reducing the rate of dispersal depends on the existence of
natural barriers for disease spread and the distribution of olive pro-
duction sites in a country. Once Xfp is well established in an area and
has reached a large geographical extent, eradication is considered not
practical [156]. Therefore, phytosanitary regulations focus mainly on
reducing the rate of disease spread by felling trees and suppressing
vectors at the border of the infected area [169, 174]. In particular for
Italy and Spain, our results suggest sizable benefit from reducing the
annual spread rate. This indicates that current phytosanitary measures
to reduce disease spread via inoculum suppression and vector control
are of great importance. Further efforts to identify additional effective
measures, as done in Serio et al. [159], are called for. However, our
results also indicate that introductions into islands of Greece might
be managed by early detection, containment and eradication. While
reductions in the spread rate still resulted in a sizable benefit in Greece,
the natural barriers contained even spread at a larger rate compar-
atively well. This could render eradication and containment efforts
more feasible. Hence, countries with a more continuous climatically
suitable territory and a concentration of olive production sites seem
to benefit more strongly from means of reducing the annual spread
rate. Certainly, more work is needed to provide a sound analysis of
territory-based control strategies against Xfp. The development of
vector-based spread models will greatly benefit future work on this
[175].
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The planting of resistant cultivars or the substitution of olive
production by other land uses seems the most feasible and promising
strategy to control Xf in those regions where the pathogen is no longer
eradicable [17, 22]. Current regulations allow planting of two resistant
olive cultivars within the infected zones in the containment areas in
Italy [169]. Our analysis revealed a clear benefit, for affected countries,
of replanting with resistant varieties. The olive cultivars FS-17 and
Leccino present promising points of departure [160, 161, 164, 166].
However, more research is needed on their performance under field-
conditions in different cropping systems and different parts of Europe.
To prevent landscapes with genetically uniform trees, further breeding
efforts are crucial.

Earlier studies on perennials did not account for the possibility of
a continued production on partially infected plots [176]. We found that
continuing cultivation for a limited period was economically rational.
However, early clearing of infected trees might limit the spread of the
disease [177]. Therefore, the social benefits derived from the removal
of entire infected orchards can be viewed as a public good, suggesting
that the costs of eradication warrant compensation from authorities
[49]. The analysis revealed that our conservative assumption on the
annual decline (increase) of yield (operational cost) by 10 percent
resulted in negative profit margins within two to four years after first
infection, depending on the country and cropping system. In turn,
commercial farmers can be expected to cease production relatively
quickly following symptom expression of Xfp. This might increase the
European loss in production beyond what is expected when solely
focusing on the biological yield decline [157]. If olives harvested from
infected trees result in lower oil yield per ton of olives, willingness
to pay on the side of the processor might be reduced which would
slightly increase impacts by shortening the periods for which continued
production under infection is profitable.

Our analysis focused on the impacts to growers to narrow down
on the intersection of biology and economics. By taking the cropping
system specific conditions into account, we were able to simulate the
replanting scenario and derive impacts which arise solely through the
premature death of trees. In general, invasive species tend to result in
reductions in yield which, if the extent of the epidemic is sufficiently
large, result in changes in the country’s total production. In cases in
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which the affected country is a significant contributor to the European
(or world) supply, the reduction in the production is likely to result in
an increase in price [178]. As highlighted within this analysis, higher
producer prices will benefit non-affected growers [10, 179, 180]. Most
olives are used as an input for processing into olive oil. In turn, the
simulated price increase would result in higher costs of production
for oil processors. This could affect the consumer price for olive oil.
However, the degree to which the change in production costs could
be transferred to consumers and the degree to which higher consumer
prices for olive oil would be transmitted back to olive growers depends
on magnitude, speed and asymmetry of price transmissions in the
supply chain [181]. Among other aspects, these factors are influenced
by the existence of market power of processors [182], as well as the
consumers’ willingness to switch to alternative products. Future work
could build on the framework developed within this study and narrow
down on modeling these supply chain related aspects. This could
add insights into the potential impacts to processors, consumers and
competing markets.

Some of our assumptions may be too optimistic. First, the profit
flows understate the value generated through olive processing. If the
level of analysis is extended to olive oil, the economic impact would
be greater due to the larger profit margins in the oil production [183].
In 2017, the production value of olives was around 2.4 billion Euro
whereas the production value of olive oil was around 6.7 billion Euro
[184]. Second, farms were assumed to be able to replant. However, the
olive sector in Europe is characterized by relatively small-scale farming
and some farms may not have the financial means for replanting
[183, 185]. In our study, resistant cultivars were defined as those not
suffering reductions in yield or quality when planted in an infected
area. This applies both to completely resistant cultivars, where the host
and the pathogen are incompatible, or completely tolerant cultivars,
where the host is infected but without yield loss [186]. While full
resistance is achievable, partial resistance or reductions in full-bearing
yields might be the outcome of breeding efforts. In addition, tolerant
cultivars remain hosts for the pathogen and are inoculum reservoirs
[187], which might support disease spread. Lastly, vigilant growers
might aim to stay ahead of the disease by additional monitoring
efforts and preventive measures prior to their orchards being infected.
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Consequently, associated increases in operational costs due to these
preventive measures outside of the radial range of infection would
increase total impact beyond what was computed here.

Replanting sometimes centuries old or even millennial trees by
young trees has severe consequences in terms of cultural heritage and
provision of a landscape that is attractive for tourism and recreation.
Quantifying these losses in monetary terms was not within the scope
of this analysis. Furthermore, the slow development of olive orchards
can be expected to result in considerable nurturing costs. Additional
income support schemes might be necessary to ensure that farmers
remain financially capable to nurture the orchards back into a pro-
ductive state that contributes to cultural heritage and an attractive
landscape in the affected areas.

Xfp is known to affect various economically important hosts, includ-
ing besides olives, also cherries and almonds. Additional assessments
on other host species would inform the discussion on risks associated
with new introductions of Xf or the further dispersal of the strain
detected in Italy. Certainly, the importance of the European wine sector
calls for an assessment of subsp. fastidiosa in grapevine. The modelling
framework developed within this study could very well be used for this.
The overall potential impact of Xf in Europe may thus far exceed the
impact evaluated here for the subspecies pauca in one host, olive.

3.4 Materials and Methods

3.4.1 Climatic Suitability Map

Species distribution models (SDMs) explore the relationship between
geographical occurrences of species and environmental variables [188,
189]. SDMs draw statistical inference on drivers of species ranges
from a snapshot of occurrence data by finding statistical correlations
between species’ distributions and environmental factors. We make
use of occurrence data of Xf from the Update of the Xf host database
[15], local datasets of outbreaks in Italy, France and Spain which
were obtained from the national plant protection organizations (i.e.
Osservatorio Fitosanitario Regione Puglia, Italy; Servicio de Sanidad
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Vegetal, Generalitat Valenciana, Spain; Conselleria de Medi Ambient,
Agricultura i Pesca del Govern de les Illes Balears, Spain; Bureau de
la Santé des Végétaux, Ministère de l’Agriculture et de l’Alimentation,
France) as well as recent records of Xf in Porto, Tuscany and Hula
Valley [190–192].

The presence records were filtered in three ways: first, by selecting
only records from infection observed under natural inoculum pressure
either during surveys or research activities on natural habitat. Thereby,
omitting records from greenhouse, screenhouse or interceptions; sec-
ond, by selecting records with precise geographic coordinates; third,
by only using records with confirmed positives. To reduce spatial auto-
correlation, the presence records were further submitted to a spatial
filtering approach. In this procedure, the presence records are ran-
domly selected according to a minimum nearest neighbor distance
of at least 5 km between each locality. This distance is equal to the
spatial resolution used for the climatic data. The procedure was re-
peated four times obtaining four different spatially filtered data sets.
We generated weighted pseudo-absence data to simulate a prevalence
of 0.1. To explore and reduce the uncertainty of the random sampling,
we repeated this process four times to generate four pseudo-absence
datasets per model replication.

Climate data was obtained from Chelsa Climatology [193]. The
data ranged from 1979 to 2013 and is a downscaled version of the
European Centre for Medium-Range Weather Forecasts Reanalysis
Interim (ERA-Interim) global circulation model. We use data at a 5
km resolution. Nineteen bioclimatic variables were analyzed out of
which nine were included into the prediction after controlling for
multicollinearity (variance inflation factor <10). The ensemble predic-
tion followed the methodology described within Bragard et al. [157].
However, for this study we refined the spatial prediction from a res-
olution of 10 km to 5 km. We made use of ten modeling techniques,
namely, bioclim, boosted and regression trees, classification and regres-
sion trees, domain, generalized additive models, multivariate adaptive
regression splines, maximum entropy, random forest, recursive par-
titioning and regression trees and support vector machines. Model
performance was evaluated using the true skill statistic [194]. In total,
we computed 800 models comprising four spatially filtered data sets,
four pseudo-absence sampling replicates, ten modeling techniques and
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five cross-validation runs. The final prediction combined the individual
predictions with a true skill statistic larger than or equal to 0.7 [195].

The output of this prediction is a continuous variable that can
range from zero to one for a given location in Europe. To better
integrate the suitability map with the needs of the disease spread
simulation, the continuous scores were downscaled from the 5 km
resolution to a 1 km resolution using bilinear interpolation. This
ensures that unsuitable barriers such as waterbodies are accurately
accounted for when simulating spread. Furthermore, this improves
the coverage of the predicted area in coastal areas with irregular
shapes such as in Greece which is crucial as many of the olive cells
are located near the coast. Lastly, the downscaled map was converted
into a binary prediction (suitable or unsuitable) for each 1 by 1 km
cell using three different thresholds. Threshold 1 (0.165) is particularly
informative for models based on presence-only data and ensures that
a correct prediction on species presence of at least 90 percent is made.
Threshold 2 (0.132) was used to maximize the sum of the accuracy
of predicting occupied sites to be suitable and unoccupied sites to be
unsuitable (i.e. sum of sensitivity and specificity) and 0.093 (T3) was
used to minimize the difference between the accuracy of predicting
occupied sites to be suitable and unoccupied sites to be unsuitable (i.e.
minimum difference between sensitivity and specificity) [196].

3.4.2 Disease Spread Simulation

Data on the olive production sites in Europe was obtained from the
CORINE land cover map1 and aggregated to a 1 km resolution to
reduce the computational time. To simulate spread, we use a basic
radial range expansion model proposed for risk analyses in Robinet et
al. [197]. The model is the mathematical solution of a two-dimensional
population growth model (exponential or logistic) with random disper-
sal, also known as the Skellam model [198–200]. Despite the model’s
simplicity, past population expansions have been found to compare
reasonably well to such a radial range expansion approach [201]. The
model has a single parameter called the rate of radial range expansion

1 https://land.copernicus.eu/pan-european/corine-land-cover

https://land.copernicus.eu/pan-european/corine-land-cover
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(AA ) which depends on population growth and dispersal characteristics
which are collapsed into a single parameter. For the value of AA , we
used the 5, 50 and 95 percent quantiles of a distribution elicited from
experts using formal methods for expert knowledge elicitation (EKE)
[157]. The quantiles correspond to radial rates of range expansion of
1.10, 5.18 and 12.35 km per year.

The structured EKE followed the methodology described in the
European Food Safety Authority Guidance on Uncertainty [202]. Our
concise overview of the approach follows the description in Baker et al.
[203]. The ad hoc group included experts who defined the methodology
as well as internationally recognized experts on the disease and on
relevant agricultural practices. First, the parameter was reviewed and
clarifications provided to the experts if needed. Second, evidence was
provided and discussed to derive a list of evidence and uncertainties.
The corresponding evidence table is published in Bragard et al. [157].
Third, overall uncertainties were summarized. Fourth, the parameter
was elicited by a structured expert judgement following the Quartile
Method of the Sheffield protocol [204]. Here, each of the seven invited
experts was asked to individually estimate the following quantiles
in this order 1) 1st and 99th percentile, 2) median value, 3) inter
quantile ranges. Afterwards, estimates were discussed and a consensus
distribution agreed upon by the group. Lastly, the fitted distribution
was reviewed and agreed upon. In this EKE, the rate of radial range
expansion was defined as the mean distance (km) which will comprise 90
percent of the area containing the newly infected plants around an infected
area within 1 year [157]. Assumptions focused on disease spread by
infected vectors, due to their natural dissemination or human-assisted
movements but not plant movements for trade. The estimates consider
the heterogeneity of the European territory, the differences in vector
abundance as well as current control measures.

Radial range expansion is modelled using a cellular automaton
model with mixed neighborhood sequences (rook and queen) to gener-
ate cell to cell spread on a grid of 1 by 1 km cells. For this purpose, the
discrete annual time steps are further broken down into within-year
time steps. The number of within-year time steps depends on AA . For
example, a rate of 5.18 km per year is approximated by 41 years of 5
and 9 years of 6 within-year time steps. This generates 259 steps in
total and 5.18 steps per year on average. The ordering of the number
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of within-year steps across years is randomized. By ensuring that a
proportion of 2 −

√
2 of steps are taken in rook’s fashion and

√
2 − 1

in queen’s fashion, a spread pattern is generated which conforms to
a regular octagon which closely encloses a circle [205]. The step-type
(rook or queen) is randomly assigned to every step while ensuring that,
over the course of the time horizon, the aforementioned proportions of
rook and queen steps are obtained exactly. As corners of the octagon
marginally over-estimate spread, the area infected at every time step is
constrained by a radial range model with the radius expanding at the
elicited rate. Invasion into a cell is only accepted if it is climatically
suitable which ensures that unsuitable territories are not travelled
through.

3.4.3 Economic Model

To account for economic differences between the countries and crop-
ping systems, it was decided to stratify the population into I cropping
systems indexed with i in C countries indexed with c. The total olive
growing area in Europe (�0) was assumed to be constant at 4.6 million
hectares for the entire planning horizon of 50 years [206]. A planning
horizon of 50 years was chosen due to the slow development of olive
orchards as well as their natural longevity. The percentage distribution
of the area of production into density (<140, 140-399, >400 trees per
hectare) and age (<5, 5-11, 12-49, >50 years) classes for all countries
was obtained from Eurostat [206]. Additionally, Eurostat information
on the national percentage of irrigated olive hectares was obtained.
The density classes were further sub-divided into rainfed and irrigated
on the assumption that the irrigated share is the same across density
classes. Within age-classes, hectares were uniformly distributed. A
dynamic model was built and run over a planning horizon of ) years
at an annual time step indexed by C. Orchard age is indexed by 0.
The area of production for country 2, cropping-system 8, of age 0
is denoted �280. Once the maximum longevity was reached, it was
assumed that replanting is undertaken in the following year.

The prices are denoted (?2C ). Future monetary flows were dis-
counted by the discount rate A . The replanting costs ('�8 ) were ac-
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counted for by equivalent annual costs (�'�8 ). Equation 3.1 converts
the establishment costs of an orchard to annual costs in dependence
of the different longevities (<8 ) of the evaluated cropping systems.

�'�8 =
'�8 · A

1 − (1 + A)−<8
(3.1)

Yield in tons per hectare is specific for the country, cropping system
and tree age (.280). We use cropping-system specific information on
full-bearing ages and full-bearing yield potential to linearly interpolate
yield for all tree ages. Subsequently, we re-scaled yields such that the
simulated total production equals the 5-year averages prior to the
detection of the pathogen (2007 to 2013) after FAOstat data. This
equates to around 3.19 million, 2.37 million, 6.69 million tons in Italy,
Greece and Spain, respectively. The yield was multiplied with the price
(?2C ) to get the yearly revenue per hectare. The country, cropping
system and orchard age specific operating costs (�280) as well as the
equivalent annual costs for replanting (�'�8 ) were subtracted from the
revenue to obtain the profit (c280C ) in Euro per hectare. Inner products
of �280 and c280C were computed to obtain the annual profit flow for
the particular cropping system in country 2 and year C (Π28C ). In other
words, we multiplied the country, cropping-system and age specific
area with the corresponding profit and aggregated across all orchard
ages. The total annual profit flows from olive production within Europe
(ΠC ) in year C, was computed by summing the annual profit flows for
all cropping systems across countries and across cropping systems.
The net present values for the annual profit flows were obtained by
discounting with the rate A by multiplying (ΠC ) with (1 + A)−C .

The total production area affected by Xfp in country 2 at time
C is denoted as �G

2C and was obtained by the spread simulations in
percent of the total national olive cells. The susceptible but disease-
free area ((G28C ) for cropping system 8, country 2, orchard age 0 at
time C was calculated by subtracting the total area affected in year C
from the total area (�280). The inner products of (G28C and the c280C
were computed to obtain the annual profit flow of disease-free hectares
for the particular cropping system (Πℎ

28C
). In other words, the area

across orchards ages within a given country and cropping system was
multiplied with the corresponding profits and the resulting profits
aggregated over all orchard ages.
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To store the disease progression within infected trees, tensors
(MG

28CG
) were generated in which rows depict the different orchard-ages,

columns depict different points in time and each element depicts the
vector of different ages-of-infection. We denote by Δ�G

2C the area of
olives that was newly found to be infected in country 2 in year C,
calculated by the difference of the cumulative percentage infected in
succeeding discrete time steps. The newly infected area for cropping
system 8, country 2, orchard age 0 in year C, was obtained by mul-
tiplying the percent of newly infected cells with the total number of
hectares for the particular combination. The yield of infected orchards
(. G

280,0G
) declines with every discrete time step under infection (0G ).

The country, cropping system and age-of-infection specific operating
costs (�G

28,0G
) as well as the equivalent annual costs for replanting

(�'�8 ) were subtracted from the revenue to obtain the profit in Euro
per hectare (cG

280G
). Orchards remain in production as long as their

profit margins are non-negative. Thenceforth, it was assumed that
the production ceases and no profit is generated from the infected
orchards. Inner products of the Δ�G

2C and the cG
280G

were computed
to obtain the annual profit flow of infected hectares for the particular
cropping system (ΠG

28C
). In other words, the infected area across or-

chards ages within a given country and cropping system was multiplied
with the corresponding profits under infection and the resulting profits
aggregated over all orchard ages.

As most of the orchards die off prematurely compared to the
natural production cycles, additional costs arise due to the loss of
investment. For an orchard of age 0 at the point of death, the farmer
will have utilized 0 periods of the equivalent annual replanting costs.
If orchards die before their maximum longevity (<8 ) is reached, the
system-specific equivalent annual replanting costs for the remainder of
periods are accounted for as losses of the investment (!80) (equation
3.2). To compute all possible losses of investment, vectors for all
combinations of cropping system (8) and orchard age (0) were generated
(LI8 ). The inner products of the died-off population (v3

28C
) and LI8 were

computed to obtain the total amount of lost investments in year C (L28C ).
In other words, the area of unprofitable orchards across orchards ages
within a given country and cropping system was multiplied with
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the corresponding losses in investment and the resulting losses were
aggregated over all orchard ages.

!80 = [�'�8 · (<8 − 0)] (3.2)

To model a price response following the decrease in European
supply, we computed the reduction in supply in percent (Δ&) at the
end of every time step. Subsequently, prices were updated by adding
(Δ& × ?A × ?2C ) and profits (c280C and cG280G

) recomputed for use in
the following year. To estimate the price response parameter (?A), we
collected panel data from FAOstat on produced quantities of olives,
the area of production and price indices for Italy, Spain and Greece
from 1991 to 2017. As prices may influence the produced quantities
and vice versa, parameter estimates obtained from ordinary least
squares estimates would suffer from endogeneity bias. We addressed
this problem by instrumenting the produced quantities with the area
of production. We estimated equation 3.3. Where log(%) and log(&)
are log-transformed prices and produced quantities, respectively. .40A
represents a time-trend, �>D=CAH dummy variables for country-effects,
log(%C−1) a lag to control for autocorrelation. g, \, d and V are param-
eters to be estimated and n the independent and identically distributed
error term. The coefficient (V) of log(&) (−0.52, % < 0.001) was used
as an estimate for the price response parameter in our model.

log(%) = g.40A + \�>D=CAH + d log(%C−1) + V log(&) + n (3.3)

To obtain the total annual profit flows from olive production within
Europe in year C under the Xfp epidemic, all profits from disease-free
(Πℎ

28C
) and infected (ΠG

28C
) hectares are to be considered as well as the

losses of investment (L28C ). For the total annual profit flow (ΠG
C ), it was

aggregated across countries, cropping systems and discounted with
rate A (equation 3.4).

Π
G
C =

�
∑

2=1

�
∑

8=1

[Πℎ
28C + Π

G
28C − L28C ] · (1 + A)−C (3.4)
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We denote by Δ�A28C the area of olives that is newly replanted in
year C. The areas of replanted orchards are denoted �A28C ,0A . The yield
and profit were assumed to be similar to the susceptible equivalents.
For the best-case economic scenario, the total annual profit flows in
year C under the Xfp epidemic is obtained by considering profits from
disease-free (Πℎ

28C
), infected (ΠG

28C
) and resistant (ΠA

28C ) hectares as well
as the losses of investment (L28C ). For the total annual profit flow (ΠA

C ),
it was aggregated across countries, cropping systems and discounted
with rate A (equation 3.5).

Π
A
C =

�
∑

2=1

�
∑

8=1

[Πℎ
28C + Π

G
28C + Π

A
28C − L28C ] · (1 + A)−C (3.5)

Economic impact for both scenarios (�� G and ��A ) was computed
by aggregating the differences between the profit flows without Xfp
and profit flows ΠG

C and Π
A
C over ) . The difference between Π

G
C and Π

A
C

is expected to provide an exploration of the potential economic benefit
associated with ongoing research on resistance traits ('�). While �� G ,
��A and '� will depend on the choice of ) , the discounting effect in
the later years of the time horizon will results in only small differences
if the number of years is slightly reduced or increased.

3.4.4 Global Sensitivity Analysis

To assess the parameter sensitivity, we conducted a global sensitivity
analysis using a variance decomposition method [207]. Sensitivity
indices report the variance in the output . attributable to variation in
input -8 (first-order indices) as well as through higher-order interactions
between this variable and other inputs (e.g. second-order indices). The
total effect on the output caused by the input -8 is called the total-
order sensitivity index [208]. The conditional variance of input -8 and
model output . can be written as +-8

(�-∼8 (. |-8)) with -∼8 denoting
the matrix of all inputs except -8 . The inner expectation operator
is the mean of output . taken over all possible values of the input
matrix except -8 . The outer variance is taken over all possible values
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of -8 . This is generally referred to as the top marginal variance of
input -8 [209]. The top marginal variance determines the reduction in
output variation if the input is fixed with the true value. In contrast,
�-∼8 (+-8

(. |-∼8)) is the expected variance that would remain if all
inputs except -8 would be fixed. This is generally referred to as the
bottom marginal variance. The first-order sensitivity indices are bound
between 0 to 1 and provide a measure of relative importance with
higher values implying larger effects on the outcome. The first-order
sensitivity indices ((8 ) and the total-order sensitivity indices (() 8 ) can
be obtained by the following equations [209].

(8 =
+-8

(�-∼8 (. |-8))
+ (. ) (3.6)

() 8 =
�-∼8 (+-8

(. |-∼8))
+ (. ) = 1 − +-∼8 (�-8

(. |-∼8))
+ (. ) (3.7)

First-order and total-order indices were computed after Sobol [210].
To sample the input parameter space, 10,000 draws were generated
from each input distribution. The computational time was improved by
applying the Saltelli [208] sampler which generated an input matrix of
length # (: + 2) where # is the number of draws and : is the number
of model inputs. The implementation used the improved formulas
of Jansen [211] and Saltelli et al. [209]. In total, 31 parameters were
included which resulted in 330,000 rows of input values for which
economic impact was computed using one spread model (T2 – RR50
in Italy).

3.4.5 Economic Data

A detailed overview is provided in the Supplementary Material (Tab.
3.3). Prices and costs for olives in Euro per ton were obtained from the
European Commission [185] with average prices in 2000 to 2009 of
481 and 497 Euro in Spain and Italy, respectively. The average costs of
247 and 316 Euro per ton for Spain and Italy comprise specific costs
(fertilizers, crop protection, fuel, water, other specific costs), farming
overheads (building and machinery upkeep, energy, contract work,
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other direct costs), depreciation and external factors (wages, rent,
interest). Prices of Spain were above Italian prices from 2000 to 2005.
Since then, Italian prices have been higher than Spanish prices. This
might be related to the recent droughts in Italy. In addition, we might
expect the higher prices to be related to (perceived) differences in
product quality as well as the culinary focus of the Italian culture
which might result in consumers that are willing to pay more for their
food products. Due to absence of published information on prices
and costs from Greece we consulted an expert which resulted in an
estimated price of 560 Euro and estimated costs of 387 Euro per
ton. For the global sensitivity analysis, Italian prices (and costs) were
sampled out of a normal distribution based on the computed means
and standard deviations of 115 (52). The discount rate was set to 3
percent for the deterministic computation. For the global sensitivity
analysis, the discount rate was sampled out of a uniform distribution
between 3 and 7 percent which comprises values frequently used in
similar studies [212, 213]. The prices were estimated to increase by
0.52 percent following a one percent decrease in supply. For the global
sensitivity analysis, the estimated standard deviation of 0.1 was used
to sample out of a normal distribution.

There is uncertainty in the agronomical literature regarding the
longevity of the different cropping systems. The effects of higher tree
densities on the longevity of orchards is not yet fully understood [214].
Rallo et al. [215] reported minimum values for the longevity of >100,
>100, >40, >40, >20, >15 years, for the rain-fed-traditional, irrigated-
traditional, rain-fed-intensive, irrigated-intensive, rain-fed-high-density
and irrigated-high-density system, respectively. Data from Eurostat
suggests that around 23.47 and 0.68 percent of orchards in the density
classes intensive and high density, respectively, are older than 50 years.
To allow for the empirically observed ages within the different density
classes, the longevities were set to 75 and 55 years for the intensive
and high-density systems, respectively. To acknowledge the differences
between cropping systems after Rallo et al. [215], the longevity of
the traditional systems was set to 135 years for the deterministic
computation. For the global sensitivity analysis, the longevities were
sampled from uniform distributions ranging from 135-270, 75-150, 55-
110 for the traditional, intensive and high-density systems, respectively.
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The full bearing tree ages were obtained from Rallo et al. [215].
For the global sensitivity analysis, the ranges reported by Rallo et
al. [215] were sampled out of a uniform distribution. The full bearing
yield potential was obtained from Rallo et al. [215]. For the global
sensitivity analysis, the ranges reported by Rallo et al. [215] were
sampled from a uniform distribution. The full bearing ages and full
bearing yields were used to linearly interpolate the yields across ages.
Subsequently, yields were rescaled to result in the empirically observed
total production of olives according to FAOstat. For this, we made
use of the 5-year averages (2007 to 2013) for Italy (3.19 million tons),
Greece (2.37 million tons) and Spain (6.69 million tons). For the global
sensitivity analysis, the estimated standard deviation for Italian supply
(2007 to 2013) was used to sample out of a normal distribution. The
replanting costs in Euro per hectare were obtained from Rallo et
al. [215] for the deterministic assessment. For the global sensitivity
analysis, the uncertainty regarding possible costs for uprooting as
well as geographic differences in replanting costs was approached
by sampling uniformly between the reported costs and double the
amount.

The annual yield decline due to Xfp was set to 10 percent. The
annual increase in cost due to Xfp was set to 10 percent. For the global
sensitivity analysis, the absence of knowledge on these parameters
was approached by sampling out of a uniform distribution minus 5 to
minus 50 percent and minus 25 to plus 25 percent, respectively.

3.4.6 Data Archival

All computations were performed on a high-performance computing
cluster. Data and R scripts are available at https://doi.org/10.
5281/zenodo.3672794.

https://doi.org/10.5281/zenodo.3672794
https://doi.org/10.5281/zenodo.3672794
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Fig. 3.5 All randomized points of introduction for Greece and Spain.
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Fig. 3.6 Points of introduction which resulted in an infected area less than (blue)
and more or equal to (red) 30 percent of the Greek area of production for the 5.18
km per year spread rate and a climatic suitability threshold of 0.132 (suitable area
in yellow).
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Fig. 3.7 Uncertainty of the Greek area of production infected over time for the 1.1
km (a), 5.18 km (b) and 12.35 km (c) per year spread rate and a climatic suitability
threshold (T2) of 0.132. The mean of 1000 epidemics from 1000 random points
of introduction is indicated in red. The grey area represents the 90 percent range
(from the 5 to 95 percentile) of the 1000 simulated epidemics.
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Fig. 3.8 Points of introduction which resulted in an infected area less than (blue)
and more or equal to (red) 50 percent of the Spanish area of production for the
5.18 km per year spread rate and a climatic suitability threshold of 0.132 (suitable
area in yellow).
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Fig. 3.9 Uncertainty of the Spanish area of production infected over time for the 1.1
km (a), 5.18 km (b) and 12.35 km (c) per year spread rate and a climatic suitability
threshold (T2) of 0.132. The mean of 1000 epidemics from 1000 random points
of introduction is indicated in red. The grey area represents the 90 percent range
(from the 5 to 95 percentile) of the 1000 simulated epidemics.
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Fig. 3.10 Points of introduction which resulted in an infected area less than (blue)
and more or equal to (red) 50 percent of the Spanish area of production for the
12.35 km per year spread rate and a climatic suitability threshold of 0.093 (suitable
area in yellow).
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Fig. 3.11 Uncertainty of the Spanish area of production infected over time for
the 1.1 km (a), 5.18 km (b) and 12.35 km (c) per year spread rate and a climatic
suitability threshold (T3) of 0.093. The mean of 1000 epidemics from 1000 random
points of introduction is indicated in red. The grey area represents the 90 percent
range (from the 5 to 95 percentile) of the 1000 simulated epidemics.
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(d) Benefit of resistant orchards

Fig. 3.12 Distribution of economic results across all random points of introduction
in Greece for all spread scenarios.
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(a) Total impact without replanting

●●●
●●●●●●

●

●
●
●●

●●●●●

●

●

●

●●●●●

●

●●

●

●

●

●
●●
●●
●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●

●

●
●

●
●●●●

●

●

●●

●●●

●●
●
●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●●

●

●

●

●●●

●●

●●●●●●
●

●

●

●

●

●

●
●
●●●●●
●
●
●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●
●

●

●●●

●

●●●●●●
●

●

●

●●●

●

●●

●

●

●

●●

●
●

●

●●

●

●●
●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0

1

2

3

4

5

6

T
1

_
R

R
0

5

T
2

_
R

R
0

5

T
3

_
R

R
0

5

T
1

_
R

R
5

0

T
2

_
R

R
5

0

T
3

_
R

R
5

0

T
1

_
R

R
9

5

T
2

_
R

R
9

5

T
3

_
R

R
9

5

P
re

s
e
n
t 
va

lu
e
 l
o
s
s
e
s
 w

it
h
 r

e
p
la

n
ti
n
g
 (

b
n
 E

u
ro

)

(b) Total impact with replanting

●●●●●●●●●●

●

●●●●●

●

●●

●

●

●

●

●
●●
●●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●

●

●
●

●
●●●●

●

●

●●

●●●

●●
●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●●
●

●●

●●●●●●
●

●

●

●

●

●

●●●
●●●●
●
●
●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●

●

●●●

●

●
●●●●●
●

●

●

●●
●

●

●●

●

●

●

●
●

●
●

●

●●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

T
1

_
R

R
0

5

T
2

_
R

R
0

5

T
3

_
R

R
0

5

T
1

_
R

R
5

0

T
2

_
R

R
5

0

T
3

_
R

R
5

0

T
1

_
R

R
9

5

T
2

_
R

R
9

5

T
3

_
R

R
9

5

P
re

s
e
n
t 
va

lu
e
 l
o
s
s
e
s
 i
n
 i
n
ve

s
tm

e
n
ts

 (
b
n
 E

u
ro

)

(c) Losses in investment

●

●●●●●

●

●●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●

●

●
●

●
●●●●

●

●

●●

●●●

●●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●
●●

●●●

●●

●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●●●●●●

●

●

●
●
●●●●

●

●●●

●

●●●●●●

●

●

●

●

●●●

●

●●

●

●

●

●●●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

0

2

4

6

8

10

12

14

16

T
1

_
R

R
0

5

T
2

_
R

R
0

5

T
3

_
R

R
0

5

T
1

_
R

R
5

0

T
2

_
R

R
5

0

T
3

_
R

R
5

0

T
1

_
R

R
9

5

T
2

_
R

R
9

5

T
3

_
R

R
9

5

P
re

s
e
n
t 
va

lu
e
 b

e
n
e
fi
t 
o
f 
re

s
is

ta
n
t 
o
rc

h
a
rd

s
 (

b
n
 E

u
ro

)

(d) Benefit of resistant orchards

Fig. 3.13 Distribution of economic results across all random points of introduction
in Spain for all spread scenarios.
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Table 3.3 Economic parameters for the deterministic analysis as well as the global
sensitivity analysis.

Parameter Deterministic Global Sensitivity Analysis
Distribution Mean/Min. SD/Max.

Planning Horizon (H40AB) 50 - - -
Total area of production in Europe (ℎ0) 4,600,000 - - -
Total production in Italy (C>=B) 3,188,712 normal 3,188,712 175,940
Total production in Greece (C>=B) 2,367,466 - - -
Total production in Spain (C>=B) 6,689,447 - - -
Price in Italy (�DA> C>=−1) 496 normal 496 116
Price in Greece (�DA> C>=−1) 560 - - -
Price in Spain (�DA> C>=−1) 481 - - -
Operating Costs in Italy (�DA> C>=−1) 316 normal 316 52
Operating Costs in Greece (�DA> C>=−1) 387 - - -
Operating Costs in Spain (�DA> C>=−1) 247 - - -
Price response (%) 0.52 normal 0.52 0.1
Discount rate (%) 3 uniform 3 7
Xfp yield-decline (%) 10 uniform -50 -5
Xfp cost-change (%) 10 uniform -25 25
Full-bearing age RT (H40AB) 10 uniform 10 15
Full-bearing age IT (H40AB) 8 uniform 8 10
Full-bearing age RI (H40AB) 6 uniform 6 8
Full-bearing age II (H40AB) 5 uniform 5 7
Full-bearing age RHD (H40AB) 4 uniform 4 5
Full-bearing age IHD (H40AB) 3 uniform 3 6
Yield potential RT (C>= ℎ0−1) 2.5 uniform 1 5
Yield potential IT (C>= ℎ0−1) 5 uniform 5 10
Yield potential RI (C>= ℎ0−1) 5 uniform 4 6
Yield potential II (C>= ℎ0−1) 8 uniform 8 10
Yield potential RHD (C>= ℎ0−1) 5 uniform 4 6
Yield potential IHD (C>= ℎ0−1) 10 uniform 10 16
Replanting cost RT (�DA> ℎ0−1) 500 uniform 500 1000
Replanting cost IT (�DA> ℎ0−1) 2500 uniform 2500 5000
Replanting cost RI (�DA> ℎ0−1) 750 uniform 750 1500
Replanting cost II (�DA> ℎ0−1) 3000 uniform 3000 6000
Replanting cost RHD (�DA> ℎ0−1) 3000 uniform 3000 6000
Replanting cost IHD (�DA ℎ0−1) 6000 uniform 6000 12000
Longevity RT (H40AB) 135 uniform 135 270
Longevity IT (H40AB) 135 uniform 135 270
Longevity RI (H40AB) 75 uniform 75 150
Longevity II (H40AB) 75 uniform 75 150
Longevity RHD (H40AB) 55 uniform 55 110
Longevity IHD (H40AB) 55 uniform 55 110

Cropping systems are rainfed-traditional (RT), irrigated-traditional (IT), rainfed-intensive (RI), irrigated-intensive (II),
rainfed-high-density (RHD) and irrigated-high-density (IHD)
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Table 3.5 First order sensitivity indices for all parameters for the economic impact
without replanting.

Parameter Index Bias Std.Error Min. CI Max. CI

Price in Italy (�DA> C>=−1) 0.6643 −0.0001 0.0069 0.6509 0.6785

Price response (%) 0.0034 −0.0003 0.0145 −0.0234 0.0348

Costs in Italy (�DA> C>=−1) 0.1649 −0.0008 0.0134 0.1388 0.1925

Total production IT (C>=) −0.0004 −0.0003 0.0147 −0.0274 0.0315

Discount rate (%) 0.0331 0.0000 0.0165 0.0024 0.0687

Xfp yield-decline (%) 0.0226 −0.0004 0.0146 −0.0044 0.0526

Xfp cost-change (%) 0.0196 −0.0005 0.0146 −0.0069 0.0504

Longevity RT (H40AB) 0.0008 −0.0003 0.0146 −0.0264 0.0328

Longevity IT (H40AB) 0.0007 −0.0003 0.0146 −0.0259 0.0318

Longevity RI (H40AB) 0.0038 −0.0003 0.0145 −0.0228 0.0351

Longevity II (H40AB) −0.0002 −0.0003 0.0146 −0.0272 0.0318

Longevity RHD (H40AB) 0.0000 −0.0003 0.0146 −0.0269 0.0315

Longevity IHD (H40AB) 0.0002 −0.0003 0.0146 −0.0265 0.0319

Replanting cost RT (�DA> ℎ0−1) 0.0008 −0.0003 0.0145 −0.0260 0.0319

Replanting cost IT (�DA> ℎ0−1) 0.0000 −0.0003 0.0145 −0.0269 0.0316

Replanting cost RI (�DA> ℎ0−1) 0.0002 −0.0003 0.0146 −0.0266 0.0311

Replanting cost II (�DA> ℎ0−1) 0.0004 −0.0003 0.0145 −0.0266 0.0317

Replanting cost RHD (�DA> ℎ0−1) 0.0001 −0.0003 0.0146 −0.0268 0.0316

Replanting cost IHD (�DA ℎ0−1) 0.0002 −0.0003 0.0146 −0.0266 0.0319

Full-bearing age RT (H40AB) 0.0002 −0.0003 0.0145 −0.0266 0.0318

Full-bearing age IT (H40AB) 0.0002 −0.0003 0.0146 −0.0266 0.0318

Full-bearing age RI (H40AB) 0.0001 −0.0003 0.0145 −0.0268 0.0317

Full-bearing age II (H40AB) 0.0002 −0.0003 0.0146 −0.0266 0.0318

Full-bearing age RHD (H40AB) 0.0002 −0.0003 0.0146 −0.0266 0.0318

Full-bearing age IHD (H40AB) 0.0002 −0.0003 0.0146 −0.0266 0.0318

Yield Potential RT (C>= ℎ0−1) 0.0001 −0.0003 0.0145 −0.0268 0.0319

Yield Potential IT (C>= ℎ0−1) 0.0000 −0.0003 0.0146 −0.0271 0.0316

Yield Potential RI (C>= ℎ0−1) 0.0003 −0.0003 0.0145 −0.0267 0.0319

Yield Potential II (C>= ℎ0−1) 0.0001 −0.0003 0.0145 −0.0269 0.0318

Yield Potential RHD (C>= ℎ0−1) −0.0001 −0.0003 0.0146 −0.0270 0.0315

Yield Potential IHD (C>= ℎ0−1) 0.0001 −0.0003 0.0146 −0.0268 0.0317

Cropping systems are denoted:
rainfed-traditional (RT), irrigated-traditional (IT)
rainfed-intensive (RI), irrigated-intensive (II)
rainfed-high-density (RHD) and irrigated-high-density (IHD)
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Table 3.6 Total order sensitivity indices for all parameters for the economic impact
without replanting.

Parameter Index Bias Std.Error Min. CI Max. CI

Price in Italy (�DA> C>=−1) 0.7171 0.0007 0.0123 0.6922 0.7410

Price response (%) 0.0039 0.0000 0.0001 0.0037 0.0040

Costs in Italy (�DA> C>=−1) 0.1689 0.0002 0.0034 0.1620 0.1760

Total production IT (C>=) 0.0044 0.0000 0.0001 0.0041 0.0046

Discount rate (%) 0.0703 0.0000 0.0018 0.0667 0.0737

Xfp yield-decline (%) 0.0727 0.0001 0.0023 0.0679 0.0770

Xfp cost-change (%) 0.0577 0.0001 0.0018 0.0542 0.0612

Longevity RT (H40AB) 0.0020 0.0000 0.0000 0.0019 0.0021

Longevity IT (H40AB) 0.0008 0.0000 0.0000 0.0008 0.0008

Longevity RI (H40AB) 0.0030 0.0000 0.0001 0.0028 0.0031

Longevity II (H40AB) 0.0007 0.0000 0.0000 0.0007 0.0007

Longevity RHD (H40AB) 0.0002 0.0000 0.0000 0.0002 0.0002

Longevity IHD (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Replanting cost RT (�DA> ℎ0−1) 0.0010 0.0000 0.0000 0.0009 0.0010

Replanting cost IT (�DA> ℎ0−1) 0.0005 0.0000 0.0000 0.0005 0.0005

Replanting cost RI (�DA> ℎ0−1) 0.0008 0.0000 0.0000 0.0007 0.0008

Replanting cost II (�DA> ℎ0−1) 0.0002 0.0000 0.0000 0.0002 0.0003

Replanting cost RHD (�DA> ℎ0−1) 0.0001 0.0000 0.0000 0.0001 0.0001

Replanting cost IHD (�DA ℎ0−1) 0.0000 0.0000 0.0000 0.0000 0.0000

Full-bearing age RT (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Full-bearing age IT (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Full-bearing age RI (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Full-bearing age II (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Full-bearing age RHD (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Full-bearing age IHD (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Yield Potential RT (C>= ℎ0−1) 0.0006 0.0000 0.0000 0.0006 0.0007

Yield Potential IT (C>= ℎ0−1) 0.0003 0.0000 0.0000 0.0002 0.0003

Yield Potential RI (C>= ℎ0−1) 0.0004 0.0000 0.0000 0.0003 0.0004

Yield Potential II (C>= ℎ0−1) 0.0001 0.0000 0.0000 0.0001 0.0002

Yield Potential RHD (C>= ℎ0−1) 0.0001 0.0000 0.0000 0.0001 0.0001

Yield Potential IHD (C>= ℎ0−1) 0.0000 0.0000 0.0000 0.0000 0.0000

Cropping systems are denoted:
rainfed-traditional (RT), irrigated-traditional (IT)
rainfed-intensive (RI), irrigated-intensive (II)
rainfed-high-density (RHD) and irrigated-high-density (IHD)
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Table 3.7 First order sensitivity indices for all parameters for the economic impact
with replanting.

Parameter Index Bias Std.Error Min. CI Max. CI

Price in Italy (�DA> C>=−1) 0.6186 0.0001 0.0112 0.5976 0.6405

Price response (%) −0.0117 0.0001 0.0192 −0.0481 0.0275

Costs in Italy (�DA> C>=−1) 0.1421 0.0000 0.0194 0.1050 0.1837

Total production IT (C>=) −0.0129 0.0001 0.0194 −0.0504 0.0271

Discount rate (%) −0.0096 0.0001 0.0215 −0.0510 0.0348

Xfp yield-decline (%) −0.0065 0.0001 0.0212 −0.0482 0.0373

Xfp cost-change (%) −0.0260 0.0003 0.0219 −0.0687 0.0191

Longevity RT (H40AB) −0.0108 0.0001 0.0190 −0.0475 0.0286

Longevity IT (H40AB) −0.0129 0.0001 0.0190 −0.0497 0.0269

Longevity RI (H40AB) −0.0043 0.0001 0.0189 −0.0408 0.0347

Longevity II (H40AB) −0.0153 0.0001 0.0190 −0.0527 0.0241

Longevity RHD (H40AB) −0.0148 0.0001 0.0190 −0.0517 0.0248

Longevity IHD (H40AB) −0.0151 0.0001 0.0190 −0.0524 0.0244

Replanting cost RT (�DA> ℎ0−1) −0.0126 0.0001 0.0191 −0.0501 0.0268

Replanting cost IT (�DA> ℎ0−1) −0.0148 0.0001 0.0190 −0.0519 0.0249

Replanting cost RI (�DA> ℎ0−1) −0.0102 0.0002 0.0190 −0.0472 0.0296

Replanting cost II (�DA> ℎ0−1) −0.0140 0.0001 0.0190 −0.0509 0.0249

Replanting cost RHD (�DA> ℎ0−1) −0.0146 0.0001 0.0190 −0.0520 0.0255

Replanting cost IHD (�DA ℎ0−1) −0.0152 0.0001 0.0190 −0.0525 0.0245

Full-bearing age RT (H40AB) −0.0156 0.0001 0.0190 −0.0529 0.0240

Full-bearing age IT (H40AB) −0.0152 0.0001 0.0190 −0.0526 0.0246

Full-bearing age RI (H40AB) −0.0150 0.0001 0.0190 −0.0521 0.0249

Full-bearing age II (H40AB) −0.0152 0.0001 0.0190 −0.0524 0.0246

Full-bearing age RHD (H40AB) −0.0153 0.0001 0.0190 −0.0525 0.0245

Full-bearing age IHD (H40AB) −0.0152 0.0001 0.0190 −0.0526 0.0246

Yield Potential RT (C>= ℎ0−1) −0.0133 0.0001 0.0190 −0.0504 0.0265

Yield Potential IT (C>= ℎ0−1) −0.0161 0.0001 0.0191 −0.0534 0.0239

Yield Potential RI (C>= ℎ0−1) −0.0144 0.0001 0.0190 −0.0515 0.0261

Yield Potential II (C>= ℎ0−1) −0.0151 0.0001 0.0190 −0.0524 0.0246

Yield Potential RHD (C>= ℎ0−1) −0.0152 0.0001 0.0191 −0.0528 0.0248

Yield Potential IHD (C>= ℎ0−1) −0.0153 0.0001 0.0190 −0.0526 0.0245

Cropping systems are denoted:
rainfed-traditional (RT), irrigated-traditional (IT)
rainfed-intensive (RI), irrigated-intensive (II)
rainfed-high-density (RHD) and irrigated-high-density (IHD)
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Table 3.8 Total order sensitivity indices for all parameters for the economic impact
with replanting.

Parameter Index Bias Std.Error Min. CI Max. CI

Price in Italy (�DA> C>=−1) 0.7565 0.0001 0.0151 0.7266 0.7853

Price response (%) 0.0029 0.0000 0.0001 0.0027 0.0031

Costs in Italy (�DA> C>=−1) 0.2231 0.0002 0.0064 0.2092 0.2352

Total production IT (C>=) 0.0038 0.0000 0.0002 0.0033 0.0042

Discount rate (%) 0.0595 0.0000 0.0030 0.0534 0.0654

Xfp yield-decline (%) 0.0965 0.0002 0.0039 0.0889 0.1039

Xfp cost-change (%) 0.0907 0.0000 0.0040 0.0824 0.0984

Longevity RT (H40AB) 0.0082 0.0000 0.0002 0.0077 0.0086

Longevity IT (H40AB) 0.0033 0.0000 0.0001 0.0031 0.0035

Longevity RI (H40AB) 0.0104 0.0000 0.0003 0.0098 0.0110

Longevity II (H40AB) 0.0026 0.0000 0.0001 0.0025 0.0028

Longevity RHD (H40AB) 0.0008 0.0000 0.0000 0.0008 0.0009

Longevity IHD (H40AB) 0.0001 0.0000 0.0000 0.0001 0.0001

Replanting cost RT (�DA> ℎ0−1) 0.0049 0.0000 0.0001 0.0046 0.0052

Replanting cost IT (�DA> ℎ0−1) 0.0023 0.0000 0.0001 0.0022 0.0024

Replanting cost RI (�DA> ℎ0−1) 0.0056 0.0000 0.0002 0.0051 0.0060

Replanting cost II (�DA> ℎ0−1) 0.0015 0.0000 0.0000 0.0014 0.0016

Replanting cost RHD (�DA> ℎ0−1) 0.0005 0.0000 0.0000 0.0004 0.0005

Replanting cost IHD (�DA ℎ0−1) 0.0000 0.0000 0.0000 0.0000 0.0000

Full-bearing age RT (H40AB) 0.0002 0.0000 0.0000 0.0002 0.0002

Full-bearing age IT (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Full-bearing age RI (H40AB) 0.0002 0.0000 0.0000 0.0002 0.0002

Full-bearing age II (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Full-bearing age RHD (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Full-bearing age IHD (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Yield Potential RT (C>= ℎ0−1) 0.0019 0.0000 0.0002 0.0016 0.0022

Yield Potential IT (C>= ℎ0−1) 0.0005 0.0000 0.0000 0.0004 0.0006

Yield Potential RI (C>= ℎ0−1) 0.0008 0.0000 0.0001 0.0006 0.0009

Yield Potential II (C>= ℎ0−1) 0.0002 0.0000 0.0001 0.0001 0.0003

Yield Potential RHD (C>= ℎ0−1) 0.0001 0.0000 0.0000 0.0001 0.0002

Yield Potential IHD (C>= ℎ0−1) 0.0000 0.0000 0.0000 0.0000 0.0000

Cropping systems are denoted:
rainfed-traditional (RT), irrigated-traditional (IT)
rainfed-intensive (RI), irrigated-intensive (II)
rainfed-high-density (RHD) and irrigated-high-density (IHD)
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Table 3.9 First order sensitivity indices for all parameters for the benefit of
resistance breeding.

Parameter Index Bias Std.Error Min. CI Max. CI

Price in Italy (�DA> C>=−1) 0.4805 −0.0001 0.0128 0.4560 0.5060

Price response (%) 0.0018 −0.0006 0.0164 −0.0303 0.0338

Costs in Italy (�DA> C>=−1) 0.1166 0.0000 0.0156 0.0856 0.1478

Total production IT (C>=) −0.0034 −0.0007 0.0166 −0.0357 0.0291

Discount rate (%) 0.0743 −0.0007 0.0189 0.0386 0.1138

Xfp yield-decline (%) 0.0398 −0.0005 0.0163 0.0091 0.0739

Xfp cost-change (%) 0.0388 −0.0009 0.0164 0.0083 0.0729

Longevity RT (H40AB) −0.0015 −0.0006 0.0164 −0.0336 0.0309

Longevity IT (H40AB) −0.0016 −0.0006 0.0164 −0.0338 0.0309

Longevity RI (H40AB) −0.0013 −0.0006 0.0164 −0.0336 0.0309

Longevity II (H40AB) −0.0016 −0.0006 0.0164 −0.0337 0.0308

Longevity RHD (H40AB) −0.0017 −0.0006 0.0164 −0.0340 0.0308

Longevity IHD (H40AB) −0.0015 −0.0006 0.0164 −0.0337 0.0310

Replanting cost RT (�DA> ℎ0−1) −0.0015 −0.0006 0.0164 −0.0332 0.0311

Replanting cost IT (�DA> ℎ0−1) −0.0013 −0.0006 0.0164 −0.0338 0.0308

Replanting cost RI (�DA> ℎ0−1) −0.0019 −0.0005 0.0164 −0.0337 0.0309

Replanting cost II (�DA> ℎ0−1) −0.0017 −0.0006 0.0164 −0.0336 0.0306

Replanting cost RHD (�DA> ℎ0−1) −0.0016 −0.0006 0.0164 −0.0339 0.0309

Replanting cost IHD (�DA ℎ0−1) −0.0016 −0.0006 0.0164 −0.0337 0.0310

Full-bearing age RT (H40AB) −0.0010 −0.0006 0.0164 −0.0332 0.0316

Full-bearing age IT (H40AB) −0.0016 −0.0006 0.0164 −0.0337 0.0309

Full-bearing age RI (H40AB) −0.0019 −0.0006 0.0164 −0.0339 0.0304

Full-bearing age II (H40AB) −0.0016 −0.0006 0.0164 −0.0339 0.0310

Full-bearing age RHD (H40AB) −0.0016 −0.0006 0.0164 −0.0338 0.0309

Full-bearing age IHD (H40AB) −0.0016 −0.0006 0.0164 −0.0338 0.0309

Yield Potential RT (C>= ℎ0−1) −0.0030 −0.0006 0.0164 −0.0351 0.0296

Yield Potential IT (C>= ℎ0−1) −0.0015 −0.0006 0.0164 −0.0338 0.0308

Yield Potential RI (C>= ℎ0−1) −0.0024 −0.0006 0.0164 −0.0344 0.0302

Yield Potential II (C>= ℎ0−1) −0.0022 −0.0006 0.0164 −0.0341 0.0301

Yield Potential RHD (C>= ℎ0−1) −0.0019 −0.0006 0.0164 −0.0342 0.0307

Yield Potential IHD (C>= ℎ0−1) −0.0017 −0.0006 0.0164 −0.0339 0.0308

Cropping systems are denoted:
rainfed-traditional (RT), irrigated-traditional (IT)
rainfed-intensive (RI), irrigated-intensive (II)
rainfed-high-density (RHD) and irrigated-high-density (IHD)
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Table 3.10 Total order sensitivity indices for all parameters for the benefit of
resistance breeding.

Parameter Index Bias Std.Error Min. CI Max. CI

Price in Italy (�DA> C>=−1) 0.6297 −0.0002 0.0120 0.6057 0.6541

Price response (%) 0.0045 0.0000 0.0001 0.0043 0.0047

Costs in Italy (�DA> C>=−1) 0.1486 0.0000 0.0036 0.1416 0.1557

Total production IT (C>=) 0.0057 0.0000 0.0002 0.0053 0.0060

Discount rate (%) 0.1603 0.0003 0.0035 0.1530 0.1673

Xfp yield-decline (%) 0.1905 −0.0004 0.0079 0.1758 0.2060

Xfp cost-change (%) 0.1630 −0.0001 0.0066 0.1495 0.1761

Longevity RT (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Longevity IT (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Longevity RI (H40AB) 0.0002 0.0000 0.0000 0.0002 0.0002

Longevity II (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Longevity RHD (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Longevity IHD (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Replanting cost RT (�DA> ℎ0−1) 0.0004 0.0000 0.0000 0.0004 0.0005

Replanting cost IT (�DA> ℎ0−1) 0.0002 0.0000 0.0000 0.0002 0.0002

Replanting cost RI (�DA> ℎ0−1) 0.0011 0.0000 0.0001 0.0008 0.0013

Replanting cost II (�DA> ℎ0−1) 0.0002 0.0000 0.0000 0.0002 0.0002

Replanting cost RHD (�DA> ℎ0−1) 0.0001 0.0000 0.0000 0.0001 0.0001

Replanting cost IHD (�DA ℎ0−1) 0.0000 0.0000 0.0000 0.0000 0.0000

Full-bearing age RT (H40AB) 0.0001 0.0000 0.0000 0.0001 0.0002

Full-bearing age IT (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Full-bearing age RI (H40AB) 0.0002 0.0000 0.0000 0.0002 0.0002

Full-bearing age II (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Full-bearing age RHD (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Full-bearing age IHD (H40AB) 0.0000 0.0000 0.0000 0.0000 0.0000

Yield Potential RT (C>= ℎ0−1) 0.0014 0.0000 0.0001 0.0013 0.0016

Yield Potential IT (C>= ℎ0−1) 0.0005 0.0000 0.0000 0.0004 0.0005

Yield Potential RI (C>= ℎ0−1) 0.0008 0.0000 0.0000 0.0007 0.0009

Yield Potential II (C>= ℎ0−1) 0.0003 0.0000 0.0000 0.0002 0.0003

Yield Potential RHD (C>= ℎ0−1) 0.0002 0.0000 0.0000 0.0001 0.0002

Yield Potential IHD (C>= ℎ0−1) 0.0001 0.0000 0.0000 0.0000 0.0001

Cropping systems are denoted:
rainfed-traditional (RT), irrigated-traditional (IT)
rainfed-intensive (RI), irrigated-intensive (II)
rainfed-high-density (RHD) and irrigated-high-density (IHD)





Chapter 4

On Consumer Impact from Xylella
fastidiosa subspecies pauca

Abstract

The introduction of Xylella fastidiosa in Apulia has resulted in the
desiccation of millions of olive trees. Here, we employ a multi-country
partial equilibrium model to analyze the possible distribution of eco-
nomic impacts among olive oil processors and consumers. The results
suggest that the majority of the impacts would fall on consumers as
a consequence of higher prices. If the disease disperses beyond the
current extent in Italy the decline in consumer welfare ranges from
4.1 billion to 10.3 billion Euro over the course of 50 years depending
on the rate of disease spread. In other words, each of the 195 million
households in Europe would incur additional costs ranging 63 cents
to 1.6 Euro every year over the course of 50 years. Introductions of
the pathogen into Greece or Spain could cost European consumers
between 0.4 billion to 3.3 billion Euro and 1.8 billion to 53 billion Euro,
respectively. This would correspond to additional annual household
costs ranging 6 to 51 cents and 27 cents to 8.2 Euro, respectively.
As significant economic consequences from further dispersal of the
disease are borne by consumers, the economic threat is not limited to
producers but should be contextualized as a societal problem.
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4.1 Introduction

The introduction of invasive species can have major impacts on
economies, ecosystems and societies, and can cost taxpayers billions
of dollars annually [216, 217]. New invasive species introductions are
driven by global trade and travel [5, 7]. While the majority of in-
troductions do not result in significant impacts [8], introductions of
hazardous organisms can have severe consequences. The agricultural
sector is particularly vulnerable to introductions of livestock diseases
or plant pathogenic organisms [9]. Here, invasive species can lead to a
reduction of food supply which can adversely affect consumers through
higher prices [10, 11], as well as reduced food quality, food safety [12],
and food security [13].

Olives have been at the agronomical, cultural and culinary heart
of the Mediterranean basin for centuries [218, 219]. Olive trees can
get very old, in the order of hundreds of years [215], and old trees
contribute to the agro-ecological landscape and cultural heritage in
the Mediterranean basin. The vast majority of the harvested olives are
processed into oil [170, 219]. Around 3 billion tonnes of olive oil are
produced globally out of which nearly three quarters originate from
Italy, Greece and Spain [170].

The European olive production is under threat due to the invasion
of the bacterium Xylella fastidiosa subspecies pauca (Xfp). Xylella fas-
tidiosa (Xf) can infect several hundred plant species and is considered
one of the most dangerous plant pathogenic bacteria worldwide [15, 17].
The subspecies pauca was first detected in the European territory in
2013 and is causing the Olive Quick Decline Syndrome which has
spread across the southern part of the province Apulia in Italy [24].
In susceptible hosts, Xf obstructs the xylem leading to desiccation
[20, 22]. The detection of the bacterium and the devastating impacts of
the disease led to the enactment of control measures including vector
control and felling of healthy trees to prevent spread by establishing
a cordon sanitaire around the infected area [169, 174]. The implemen-
tation of tree felling as a measure raised dramatic societal unrest in
the affected region [25, 26]. Insights into potential consequences to
citizens from further spread of the pathogen could inform the public
debate on appropriate measures against Xfp.
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Market responses to further spread of the pathogen, and conse-
quences to consumers, will crucially depend on the ability of suppliers
to adapt. The elasticity of supply provides a measure of the respon-
siveness of a production system to price changes. Various factors
determine the ability of producers to adapt the production volume to
price changes, such as the length of a production cycle, the mobility
of the operation and the ability to store the product. Price responses
following reductions in supply due to an invasive species can be partic-
ularly severe if the supply of the host plant is inelastic. Inelastic supply
is inherently connected with the production of olives, which requires
considerable up-front investments [220], putting a ‘natural’ barrier on
market entry; in addition, olive trees take several years to reach a full
bearing state [215], thereby causing a considerable delay between a
price signal and adaptations in production.1

This paper aims to inform the ongoing discussion on measures
against invasive species by developing insights into potential economic
consequences to European consumers in the case of Xfp. It is argued
that the problem of invasive species should be contextualized as
a societal challenge in public debates on appropriate management
strategies since negative consequences arise to both affected producers
and consumers. From a methodological point of view, this paper
stresses the need to employ multi-country models in the context of
biological invasions into interdependent markets [221]. Furthermore,
we show how a joint use of scenarios, global sensitivity analyses and
stochastic evaluations can prioritize future work for policy makers and
scholars under uncertainty. This study contributes to the literature
in several ways. To the best of our knowledge, multi-country partial
equilibrium models are rarely used in the analysis of the economic
consequences of invasive species, whereas global sensitivity analyses
have not been used yet in the context of partial equilibrium modeling.

1 Additional production as a results of higher prices might stem from more input
usage on existing plots or from the establishment of new orchards. While high tree
density systems reach their full-bearing state in three to four years, olives are often
cultivated on marginal land due to their robustness. Traditional orchards may take
up to a decade to reach their full-bearing state [215]. Environmental and social
factors will constrain the establishment of new plots. For example, the availability
of ground water for irrigation and learning costs will influence the decision of
producers to establish olives as a modern high density system or as a traditional
orchard.
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Furthermore, this paper adds to the literature by being the first to
generate insights on consumer impacts for the case of Xfp in Europe.

4.2 Materials and Methods

This study employs a suite of models. First, a prediction of climatic
suitability is generated to delineate the national supply which could
potentially be affected by the pathogen and the areas through which
dispersal might occur. Second, simulations of future spread provide
scenario-based estimates of the olive oil supply affected at each time
step depending on the spread rate. The disease spread simulations are
based on an assumption of radial invasion of the climatically suitable
habitat while taking the spatial distribution of olive orchards into
account. We account for the uncertainty in the annual rate of dispersal
by using three quantiles of an expert-elicited distribution of spread
rates [157]. The corresponding spread rates are 1.10 (RR05), 5.18 (RR50)
and 12.35 (RR95) km per year. The economic model assumes that the
percentage of orchards infected in a country equals the percentage of
the country’s olive oil supply affected. The simulation results project
the expected supply reductions from further dispersal of the pathogen
over 50 years in Italy and new introductions into Greece or Spain.
Lastly, a multi-country partial equilibrium model on the olive oil
market is computed to shed light on the potential economic impact
of Xfp to European consumers. The model explicitly projects welfare
changes for Italy, Greece, Spain and the Rest of Europe (RoEU). The
economic model computes changes in welfare to affected processors,
non-affected processors and consumers compared to the baseline in
which Xfp is absent. Impact is computed over a 50-year time horizon
and presented as present values.

4.2.1 Climatic Suitability Map

The main purpose of the climatic suitability map is to predict the area
of production within each country that could potentially be affected
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by the disease. Furthermore, dispersal paths within the disease spread
simulations were limited to climatically suitable habitat. Consequently,
the realized speed of the invasion depended on the continuity of
the predicted climatically suitable area within a region. In principle,
disease introductions into climatically suitable regions could remain
contained by climatic barriers if these were to surround the area of
introduction. Hence, a prediction of the climatically suitable area is
crucial to delineate the potential maximum extent of the invasion
as well as to obtain a more realistic spread progression by taking
geographic information on climatic suitability into account within the
disease spread simulation.

The climatic suitability map is described in more detail within
Schneider et al. [222]. Disease occurrences were filtered by keeping only
confirmed positives with precise coordinates under natural inoculum
pressure (i.e. records from greenhouses, screenhouses and interceptions
were omitted). To reduce spatial autocorrelation, the remaining pres-
ence points were thinned by enforcing a minimum distance of 5 km
between points which is equal to the spatial resolution of the climate
data. Due to the randomness associated with the thinning, the proce-
dure was repeated four times. Ten species distribution models (bioclim,
boosted and regression trees, classification and regression trees, do-
main, generalized additive models, multivariate adaptive regression
splines, maximum entropy, random forest, recursive partitioning and
regression trees and support vector machines) were used to explore
the relationship between occurrences of Xf and environmental vari-
ables. Subsequently, an ensemble prediction was generated taking the
relative model performances into account. The ensemble prediction
provided a continuous score ranging from zero to one for locations in
Europe. These scores were bilinearly interpolate from a 5 km to a 1
km resolution to meet the needs of the disease spread model. Lastly,
the downscaled map was converted to a binary map, i.e. indicating
whether a given location is suitable or not, using three different thresh-
olds. Threshold 1 (0.165) is particularly informative for models based
on presence-only data and ensures that a correct prediction on species
presence of at least 90 percent is made. Threshold 2 (0.132) was used
to maximize the sum of the accuracy of predicting occupied sites to be
suitable and unoccupied sites to be unsuitable (i.e. sum of sensitivity
and specificity) and Threshold 3 (0.093) was used to minimize the
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difference between the accuracy of predicting occupied sites to be
suitable and unoccupied sites to be unsuitable (i.e. minimum difference
between sensitivity and specificity) [196].

4.2.2 Disease Spread Simulation

The purpose of the disease spread simulation is to provide the dynamic
change of the area of production affected by the pathogen over the
time horizon of 50 years. This is particularly important in dynamic
economic assessments, because future impacts must be discounted
[178]. As there are still significant uncertainties on crucial aspects of
the dispersal process of Xfp such as long-distance jumps [171], we
simulated various spread scenarios.

The disease spread simulation is described in more detail within
Schneider et al. [222]. Spread was modelled as a radial range expansion
process [197]. Dispersal characteristics are collapsed into a single
parameter described as the rate of radial range expansion (AA). To
circumvent the issue of simulating an expanding circle using grid cells,
the radial dispersal is simulated using a cellular automaton model with
alternating step-types, namely rook and queen’s case contiguity, at a
ratio of 2−

√
2 and 2−

√
1, respectively [205]. The annual time-steps are

broken down into within-year-time-steps such that the elicited rate is
obtained. Step-types are randomly assigned to every within-year-step
such that the aforementioned ratios are obtained. As a result, a spread
pattern is generated which resembles a regular octagon. As spread is
slightly over-predicted into corner-directions of the octagon, the radial
range model is used to tightly contain the newly infected cells within
the elicited radius by removing over-predicted cells.

Invasion into a cell is only accepted if the cell is climatically
suitable, however, does not depend on whether or not olives are
present. While this ensures that climatically unsuitable territories are
not travelled through, the model implicitly assumes that alternative
hosts assist dispersal of Xfp. We justify this assumption by the facts
that the host range of the pathogen spans several hundred plant species
and any xylem feeding insect is currently considered to be a potential
vector [15, 157].
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To acknowledge the uncertainty on future disease spread, nine
scenarios were analyzed for Italy resulting from three climatic suit-
ability thresholds and three spread rates. While for Italy spread was
simulated beyond the currently infected zone, the uncertainty on the
point of introduction in Greece and Spain was evaluated by stochastic
simulations with points of introduction randomly selected from the
olive cells within the climatically suitable territory. For all combina-
tions of climatic suitability threshold and spread rate, 1000 points of
introduction were generated for both Greece and Spain. Consequently,
9000 instances of future epidemics were generated for each of the
countries.

4.2.3 Economic Model

Let C denote discrete annual points in time and the time horizon within
which the impacts are assessed as ) . Italy, Greece, Spain and the Rest
of Europe (RoEU) were included as interdependent markets (�) into
the analysis. The markets within Europe are denoted by the subscript 2.
The following set of equations are solved on a European level. Thereby,
we implicitly model intra-European trade and assume that supply can
freely flow within Europe to meet demand. The European market
interacts with the Rest of the World (ROW) through trade of excess
supply or demand.2

To model the change in supply due to reduced yields and changes
in operational costs, the spread simulations were used to compute
the newly infected share of the national areas in the four included
countries (I2C,0G). Different ages of infection are denoted with 0G.
We assume a one to one translation of the percentage of orchards
infected to the percent of national supply of olive oil affected. We
discuss this limitation in more detail below. We denote �C and (C
as the total demand and total supply in the European Union at time
C, respectively. (�C and (#C denote the supply by the affected and
non-affected producers, respectively. %C2 is the equilibrium price in
market 2 at time C. The market-specific equilibrium prices are coupled

2 Europe is a net-exporter of olive oil and remained so in the disease spread
scenarios.
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to the world market price ,%C , and only differ by a constant country-
specific wedge, `2 . The wedges capture, for example, differences in
transportation costs among countries and are assumed to be constant
over time. [2 and \2 denote the elasticities of demand and supply
in the different European markets. j2 and d2 are parameters. The
parameter ℎ denotes the horizontal percentage shift in the supply
curve due to a reduction in yield (i.e. ℎ equals -0.10 for an annual yield
decrease of 10 percent). 6 denotes a simultaneous vertical percentage
shift in the supply curve due to the increased production costs (i.e. 6
equals -0.10 for an annual cost increase of 10 percent). Parameters ℎ, 6,
and I2C,0G represent the supply shifter #2C within the equation for the
producer surplus (8%(C ) below. The European market can be depicted
as follows:

�C =

∑

2∈�
j2 · %−[2

C2 (4.1)

(C =(�C + (#C (4.2)

(�C =
∑

2∈�

)
∑

0G=1

(1 + ℎ)0G · d2 · ((1 + 6)0G · %C2) \2 · I2C,0G (4.3)

(#C =

∑

2∈�
d2 · (%C2) \2 · (1 −

)
∑

0G=1

I2C,0G) (4.4)

,%C =%C2 − `2 (4.5)

We let �C and -C denote the excess supply and demand of the Eu-
ropean Union, respectively. l denotes the elasticity of excess demand
(negative) or supply (positive) in the rest of the world. a is a parameter
calibrated on market data. The European Union interacts with the rest
of the world via excess domestic supply or demand as follows:

�C =(C − �C (4.6)

-C =a · (,%C )l (4.7)

-C =�C (4.8)
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The economic impact is computed as the sum of total discounted
future welfare losses (8), ), due to the spread of the disease and
associated changes in the equilibrium price and quantity [223]. Impact
on total welfare comprises the sum of impacts on total producer
surplus (8%(C ) and total consumer surplus (8�(C ) which are expressed
in monetary units. The total producer and consumer surpluses on the
European level comprise the producer and consumer surpluses in the
included countries. The producer surplus, consumer surplus and as
a result the overall impact are discounted using the discount rate A .
We let (0C (·) denote the supply function in absence of the infection,
while (1C (·) is the supply function after introduction of the pathogen. 0
and 1 denote the intersection of the supply curves with the y-axis. #2C

denotes the supply shifter for the different countries. The supply and

demand function adhere to the following properties [223]: X(C
X%C

> 0,
X(C
X#C

< 0 and X�C

X%C
< 0

8%(C =
∑

2∈�

(

(

∫ %C2

0

(0C (%C2)X%C2

−
∫ %C+1,2

1

(1C (%C2 , #2C )X%C2

)

· (1 + A)−C
) (4.9)

8�(C =
∑

2∈�

(

(

∫ %C+1,2

%C2

�C (%C2)X%C2

)

· (1 + A)−C
)

(4.10)

8), =

)
∑

C=1

(8%(C + 8�(C ) (4.11)

4.2.3.1 Estimation of the supply elasticity

The absence of published information on supply elasticities was ap-
proached by estimating a European supply elasticity econometrically.
We used panel data for the years 1990 to 2016 (see next section), to es-
timate a partial adjustment model (equation 4.12) which is also known
as the Nerlove Supply Response Model [224]. Using the Cobb-Douglas
functional form, we included a time trend (. ), country-fixed effects
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(�), first lags of prices (%C−1) and first lags of production (&C−1) and
regressed on current production (&C ). U, g, V and ` are parameters
and ^ a vector of parameters. _ captures the inertia and is generally
expected to be 0 < _ < 1. The model was estimated as equation 4.13
in which q denote the set of parameters and hC the error term ('2

of 0.921). The formulation allows to derive short-run and long-run
supply elasticities. The short run elasticity is obtained through the
coefficient estimate for first lags of prices (q3). The long run elasticity
(V) is obtained by computing the expectation of _ and dividing the
coefficient for the first lag prices by this expectation (equation 4.14 and
4.15). In the deterministic calculations, we used the estimate for the
long run supply elasticity (0.3241). In the global sensitivity analysis,
this estimate was varied by plus and minus 50 percent. The resulting
interval comprises the estimated short run supply elasticity (0.2513).
Table 4.5 in the Supplementary Material depicts the fitted model.

&C =_(U + g. + ^� + V%C−1 + nC ) + (1 − _)`&C−1 (4.12)

&C =q0 + q1. + q2� + q3%C−1 + q4&C−1 + hC (4.13)

_̂ =1 − q4 (4.14)

V̂ =q3/_̂ (4.15)

Notably, our approach is not able to capture structural changes of
actors’ behavior over the 50-year time horizon. The sizable market
shock within some of the spread scenarios and our long time horizon
of 50 years could fundamentally alter actors’ ability to respond to price
signals. Our reliance on historical data to estimate the supply elasticity
and our assumption that this estimate is constant over the 50-year
time horizon are critical limitations of our analysis. We address these
limitations through sensitivity analyses (see section 4.2.5), and through
further discussion below.

4.2.4 Data

For the climatic suitability modeling, presence data was derived from
the Update of the Xf host database [15], data from the national plant
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protection organizations and records of outbreaks in Porto, Tuscany
and Hula Valley [190–192]. Weighted pseudo-absence data was simu-
lated at a prevalence of 0.1. Climate data ranging from 1979 to 2013
was obtained from Chelsa Climatology at a 5 km spatial resolution
[193].

For the disease spread simulations, data on olive production sites
was obtained from the Coordination of Information on the Environ-
ment (CORINE) land cover map3 and aggregated to a 1 km resolution
to reduce the computational time. For the radial range expansion (AA ),
we used the 5, 50 and 95 percent quantiles of a distribution elicited
from experts [157]. The elicitation followed a structured methodology
as described in [202] and [203]. The seven invited experts are interna-
tionally recognized experts on the disease and on relevant agricultural
practices. The parameter was defined as the mean distance, in kilo-
meters, which will comprise 90% of the area containing the newly
infected plants around an infected area within one year [157]. The
elicited quantiles correspond to a radial range expansion of 1.10, 5.18
and 12.35 km per year.4

To calibrate the economic model, various data were gathered
(Table 4.1). The total production and consumption for the European
Union, Italy, Greece and Spain was obtained from the International
Olive Oil Council [225, 226]. Five-year averages, for 2012 to 2016,
were constructed and used as estimates of the equilibrium quantities.
Corresponding standard deviations were computed for use in the
global sensitivity analysis. Country-specific prices for olive oil were
obtained from Eurostat. Five-year averages for the same time-period
were used as estimates of the equilibrium prices. For the rest of the
European Union (RoEU), the five-year average price was constructed
as a, by production-share, weighted price of Croatia, Portugal and
Slovania as these countries represent the other European producers
besides Italy, Greece and Spain. Again, standard deviations were
computed for use in the global sensitivity analysis. The world price
was computed as the, by production-share, weighted average European
price. This is justified by the fact that the European market is the

3 https://land.copernicus.eu/pan-european/corine-land-cover
4 The climatic suitability map and spread simulations can be accessed via Zenodo
(https://doi.org/10.5281/zenodo.3672794). Visualizations of both maps are
provided in the Supplementary Material of the previous chapter.

https://land.copernicus.eu/pan-european/corine-land-cover
https://doi.org/10.5281/zenodo.3672794
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Table 4.1 Overview of the economic parameter values.

Parameter Symbol Dimension Deterministic Global Sensitivity Analysis
Distribution Mean/Min. SD/Max.

Demand Italy �C 1,000 tons 559.96 truncated normal 559.96 67.72
Demand Greece �C 1,000 tons 139.00 truncated normal 139.00 24.17
Demand Spain �C 1,000 tons 488.26 truncated normal 488.26 26.26
Demand RoEU �C 1,000 tons 416.70 truncated normal 416.70 8.69
Supply Italy (C 1,000 tons 351.62 truncated normal 351.62 124.29
Supply Greece (C 1,000 tons 260.98 truncated normal 260.98 84.13
Supply Spain (C 1,000 tons 1187.16 truncated normal 1187.16 413.13
Supply RoEU (C 1,000 tons 91.28 truncated normal 91.28 21.82
Price Italy %C,2 Euro per ton 4067.22 truncated normal 4067.22 685.98
Price Greece %C,2 Euro per ton 2855.42 truncated normal 2855.42 364.92
Price Spain %C,2 Euro per ton 2611.02 truncated normal 2611.02 498.28
Price RoEU %C,2 Euro per ton 4242.16 truncated normal 4242.16 522.46
Demand elasticity Italy [2 Dimensionless -0.842 uniform -1.263 -0.421
Demand elasticity Greece [2 Dimensionless -0.760 uniform -1.140 -0.380
Demand elasticity Spain [2 Dimensionless -0.485 uniform -0.728 -0.243
Demand elasticity RoEU [2 Dimensionless -0.350 uniform -0.525 -0.175
Demand elasticity RoW l Dimensionless -0.350 uniform -0.525 -0.175
Supply elasticity Italy \2 Dimensionless 0.3241 uniform 0.1621 0.4862
Supply elasticity Greece \2 Dimensionless 0.3241 uniform 0.1621 0.4862
Supply elasticity Spain \2 Dimensionless 0.3241 uniform 0.1621 0.4862
Supply elasticity RoEU \2 Dimensionless 0.3241 uniform 0.1621 0.4862
Yield decline ℎ percent -10 uniform -100 -5
Cost change 6 percent -10 uniform -100 -5
Discount rate A percent 3 uniform 3 7

�C and (C denote European demand and supply at time C and are obtained by aggregating over the four markets.

world leader in olive oil production and consumption [170]. Hence, the
world market price can be expected to be determined by the European
market. Country specific price wedges were calibrated by subtracting
the country prices from the world price. Information on the demand
elasticities was gathered from the scientific literature [227–229]. For
the global sensitivity analysis, these estimates were varied by plus and
minus 50 percent. To estimate the supply elasticity, the same data
from the International Olive Oil Council [225] and Eurostat were used
but for the years 1990 to 2016 (see section 4.2.3.1). Notably, highly
incomplete timeseries for Croatia and Slovania forced us to rely on
data for Portugal as proxy for the RoEU.

4.2.5 Sensitivity Analyses

The sensitivity of the results with regard to the parameter values
used was explored using a global sensitivity analysis through variance
decomposition [209]. To calculate the Sobol sensitivity indices [230],
a computational experiment was set up in which input parameters
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were sampled out of defined distributions (Table 4.1). To sample the
input parameter space, 10000 draws were generated from each input
distribution. The computational time was improved by applying the
Saltelli [208] sampler which generated an input matrix of length # (: +
2) where # is the number of draws (10,000) and : is the number of
model inputs. The implementation was achieved via the sensitivity
package for R [231], using the improved formulas of Jansen [211] and
Saltelli et al. [209]. In total, 24 parameters were included which resulted
in 260000 rows of input values for which impact was computed for
one spread simulation (Italy following RR50 and threshold T2).

In addition to the global sensitivity analysis, the influence of pa-
rameter uncertainty on welfare changes was analyzed in more detail
for the supply elasticities (\2 ), the yield decline (ℎ) and the cost change
(6). The reason for this selection is our reliance on historical data for
the estimation of the supply elasticity, and the absence of scientific
information on the other two parameter. To analyze the influence of
uncertainty in these parameters, 10000 draws from their distributions
(Table 4.1) were generated. Subsequently, while fixing all other parame-
ter at their deterministic values welfare changes were computed using
all draws for \2 , ℎ or 6.

4.3 Results

The climatic suitability modelling shows that the vast majority of olive
orchards are within the climatically suitable territory for establishment
and spread of Xfp [222]. Thereby, Xfp is threatening nearly three
quarters of the world’s production of olive oil. The different spread
scenarios resulted in varying price responses across Europe (Table
4.1). Following spread beyond the current extent in Italy, for RR05 the
prices for olive oil increased by 5.2 percent in Greece, 5.7 percent in
Spain, 3.6 percent in Italy and 3.4 percent in the RoEU. For RR50
prices increased up to 13.6, 14.9, 9.3 and 8.9 percent in Greece, Spain,
Italy and the RoEU, respectively. For RR95 prices increased up to
21.3, 23.5, 14.6 and 14.0 percent in Greece, Spain, Italy and the RoEU,
respectively. As a consequence of higher prices, the consumption in
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Fig. 4.1 Change in the consumption of olive oil for spread of Xfp in Italy beyond
the current extent.

Europe declined between 2.5 percent for RR05 and 9.2 percent for
RR95 (Figure 4.1).

Following spread in Greece, on average over the 1000 points of
introduction for RR05 prices increased up to 1.2 percent in Greece, 1.3
percent in Spain, 0.8 percent in Italy and 0.8 percent in the RoEU. For
RR50, prices increased up to 4.8, 5.3, 3.3 and 3.1 percent in Greece,
Spain, Italy and the RoEU, respectively. For RR95, prices increased up
to 6.8, 7.5, 4.6 and 4.4 percent in Greece, Spain, Italy and the RoEU,
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respectively. The decline in the total European consumption ranged
between 0.6 percent for RR05 to 3.2 percent for RR95.

Following spread in Spain, on average over the 1000 points of
introduction for RR05 prices increased up to 8.4 percent in Greece,
9.3 percent in Spain, 5.7 percent in Italy and 5.5 percent in the RoEU.
For RR50, prices increased up to 93.1, 102.7, 63.6 and 60.8 percent
in Greece, Spain, Italy and the RoEU, respectively. For RR95, prices
increased up to 187.6, 207.0, 128.1 and 122.5 percent in Greece, Spain,
Italy and the RoEU, respectively. The decline in the total European
consumption ranged between 3.6 percent for RR05 to 40.8 percent for
RR95.

Table 4.3 depicts the welfare changes over 50 years expressed
as present value based on a discounting rate of three percent per
year. We advise to read the table as follows: The three horizontal
blocks correspond to Xfp spread simulations in Italy, Greece and
Spain. The rows within each block depict different scenarios for the
climatic suitability threshold and the spread rate. Readers might start
by looking at the column on the very right hand side which depicts the
total impact to welfare across Europe obtained by summing the total
welfare changes for each country. As changes in total welfare comprises
changes in producer surplus and consumer surplus, readers might want
to continue by looking at these columns. Total change to consumer and
producer surplus is discussed below and was computed by aggregating
over countries. Surplus generated by affected producers pertains to
affected producers in the country in which spread was simulated
(i.e. Italy, or Greece, or Spain). Results for country specific changes
to welfare are depicted in Tables 4.6 to 4.8 in the Supplementary
Material.

If the pathogen spreads beyond the current extent in Italy, the
decline in consumer welfare due to higher prices for olive oil ranged
between 4.1 billion for RR05 to 10.3 billion Euro for RR95 across
Europe. While total producer surplus increased between 0.2 to 0.4
billion Euro across Europe, producer surplus in Italy declined between
3.8 and 9.9 billion Euro.

Results from introductions of Xfp into Greece and Spain are pre-
sented as averages across the 1000 randomized points of introduction.
The distributions of welfare changes over all points of introduction
for one climatic suitability threshold (T2) are depicted in Figure 4.2a
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Table 4.3 Changes in welfare over 50 years in billion Euro for all spread scenarios.

Spread Scenario Consumer Producer Non-Affected
Producer

Affected
Producer

Total
Suitability

Threshold

Spread

Rate

Spread in Italy
T1 RR05 −4.09 0.18 −0.50 0.68 −3.91
T2 RR05 −4.09 0.18 −0.50 0.68 −3.91
T3 RR05 −4.09 0.18 −0.50 0.68 −3.91
T1 RR50 −6.27 0.19 −1.02 1.21 −6.08
T2 RR50 −6.32 0.19 −1.03 1.22 −6.12
T3 RR50 −6.40 0.18 −1.07 1.25 −6.20
T1 RR95 −9.80 0.36 −1.46 1.82 −9.45
T2 RR95 −9.91 0.36 −1.49 1.85 −9.56
T3 RR95 −10.29 0.38 −1.56 1.94 −9.91

Spread in Greece∗

T1 RR05 −0.37 0.13 0.07 0.06 −0.24
T2 RR05 −0.36 0.13 0.07 0.06 −0.22
T3 RR05 −0.37 0.13 0.07 0.06 −0.22
T1 RR50 −1.82 0.70 0.43 0.27 −1.12
T2 RR50 −1.79 0.69 0.42 0.26 −1.10
T3 RR50 −1.79 0.69 0.43 0.26 −1.09
T1 RR95 −3.23 1.28 0.87 0.41 −1.96
T2 RR95 −3.31 1.30 0.86 0.43 −2.02
T3 RR95 −3.27 1.29 0.86 0.43 −1.98

Spread in Spain∗

T1 RR05 −1.76 0.77 0.46 0.31 −0.99
T2 RR05 −1.76 0.77 0.45 0.32 −0.99
T3 RR05 −1.81 0.78 0.45 0.33 −1.03
T1 RR50 −18.64 8.02 5.16 2.86 −10.63
T2 RR50 −20.31 8.68 5.55 3.13 −11.63
T3 RR50 −21.33 9.08 5.77 3.31 −12.25
T1 RR95 −42.64 18.62 13.55 5.07 −24.02
T2 RR95 −47.58 20.56 14.83 5.73 −27.03
T3 RR95 −53.00 22.57 15.84 6.72 −30.43

EL=Greece. ES=Spain. IT=Italy. RoEU=Rest of Europe.
∗averaged over all random points of introduction.
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Fig. 4.2 Distribution of changes in total welfare and consumer surplus following
introductions of Xfp into Greece (a) or Spain (b) and spread over 50 years with a
suitability threshold of 0.135.

and 4.2b. Following spread in Greece, consumer welfare across Europe
declined between 0.4 billion to 3.3 billion Euro. Total producer surplus
increased between 0.1 to 1.3 billion Euro across Europe and declined
in Greece between 0.2 and 2.2 billion Euro. Following spread in Spain,
consumer welfare across Europe declined between 1.8 billion and 53
billion Euro. Total producer surplus in Europe increased between 0.8
to 22.6 billion Euro, and producer surplus in Spain declined between
0.1 to 13.3 billion Euro.

The results of the sensitivity analysis show that out of 24 parame-
ters only four parameters had statistically significant first order indices
at the critical 5 percent level (Table 4.4). Uncertainty regarding supply
from Italy and Spain, price of olive oil in Italy and the discount rate
had statistically significant first order indices. For example, the varia-
tion in the Italian supply caused 33.5 percent in the variance of impact
to total welfare through direct effects (21.3 percent) and higher order
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Table 4.4 First and total order sensitivity indices of statistically significant eco-
nomic parameters (% < 0.05) .

Parameter First Order Total Order
Index Min. Max. Index Min. Max.

Supply Italy 0.213 0.175 0.258 0.335 0.316 0.354

Supply Spain 0.219 0.180 0.260 0.345 0.327 0.363

Price Italy 0.108 0.069 0.152 0.186 0.176 0.195

Discount Rate 0.113 0.072 0.160 0.208 0.199 0.217

interactions with other parameter. Sensitivity indices for all economic
parameter are shown in Table 4.9 in the Supplementary Material.

For the deterministic economic analyses (Table 4.3), we used an
econometrically estimated long run supply elasticity and very conser-
vative values for the yield decline and cost change under Xfp pressure.
The absence of scientific information for the yield decline and cost
change under infection as well as our reliance on historical data to esti-
mate suppliers’ adaptability to price changes was approached through
stochastic evaluations for one spread scenario (Figure 4.3a, 4.3b & 4.3c).
The deterministic results for spread in Italy, following RR50 with a
suitability threshold T2, were a decline of 6.3 billion Euro in consumer
welfare and 6.1 billion Euro in total welfare. The evaluated range of
the supply elasticity resulted in impacts to consumers ranging 5.8 to
7.1 billion Euro and total impacts ranging 5.9 to 6.4 billion Euro. The
evaluated range of the yield decline under Xfp resulted in impacts to
consumers ranging 5.3 to 8.4 billion Euro and total impacts ranging
6.0 to 7.0 billion Euro. The evaluated range of the cost change under
Xfp resulted in impacts to consumers ranging 6.1 to 8.3 billion Euro
and total impacts ranging 5.7 to 7.0 billion Euro. In comparison to
the uncertainty on the spread rate or likely points of introductions in
Greece and Spain, these intervals for impact are narrow (cf. Table 4.3
and Figure 4.2a & 4.2b).

As evident from Figure 4.3a, more inelastic supply elasticities
widened the gap between consumer impact and total impact. In other
words, markets characterized by less adaptable producers resulted in
higher prices following supply shocks due to Xfp which left consumers
worse off as a result. Comparable insights were obtained for the
yield decline and the cost change under Xfp (Figure 4.3b and 4.3c).
Both parameters determine the annual reduction in supply of affected
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Fig. 4.3 Stochastic evaluation of welfare changes under uncertainty of supply
elasticity (a), yield decline (b) and cost change (c). The vertical line depicts the
deterministic value used.
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producers. Higher values resulted in more drastic reductions and
in turn higher prices for olive oil which left consumers significantly
worse off compared to the deterministic results. Consequently, while
we believe that our derived conclusions are robust to our assumptions
on these parameters the deterministic results are likely conservative
estimates.

4.4 Discussion

Our analysis shows that consumers can be expected to bear the major-
ity of the economic impacts from further dispersal or new introductions
of Xfp in Europe. While producer surplus in affected countries might
decline, increasing prices for olive oil across Europe would generate
additional profits to processors at the expense of consumers. Conse-
quently, control measures to prevent future spread of the disease can
be expected to more strongly benefit consumers rather than processors.
In turn, regulatory measures such as the preventive felling of trees
should find public acceptance with regard to economic considerations.
Unfortunately, consumers might not be aware that they are beneficia-
ries of the control of invasive plant diseases such as Xfp. This stresses
the need for improving the communication of pest risk assessments to
the public.

The results highlight that introductions of Xfp into Spain can be
expected to significantly disrupt the European olive oil market. Spain
is the world’s largest producer of olive oil. Consequently, reductions
in supply from Spain sensitively affect world prices. Public actions to
foster vigilance among growers and citizens to prevent an introduction
and further spread of Xfp in other olive growing regions of Europe are
crucial. Further dissemination of information on Xfp to citizens in olive
growing hot-spots could increase awareness and thereby improve the
likelihood of spotting possible introductions promptly. Unfortunately,
in-field detection is aggravated due to the absence of precise informa-
tion on the asymptomatic period following infection [22]. Therefore,
further research on the epidemiology and early detection methods is
important [232, 233].
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Preferences for invasive species control vary among citizens [234,
235], and economic concerns could very well not be the first priority for
some. Unfortunately, Xfp is currently not curable under field conditions
and sensitive cultivars can be expected to die off quickly following
infection [157]. Consequently, the establishment of a cordon sanitaire to
prevent spread of the disease through felling of healthy trees is likely to
spare many more trees than are felled. An intelligible communication
of this information to stakeholders maybe could have prevented the
societal unrest in the affected region.

The results of our analysis demonstrate that affected producers
and consumers jointly carry the economic risk associated with Xfp.
To mitigate the risk, research currently targets the identification of
resistant traits in olive varieties [160–166], biological control of the
vectors [168], early detection of the disease [232], and the establishment
of a cordon sanitaire by removing host plants near the infected zone.
Evidently, all these measures aim at growers taking action to prevent
further impacts. Unfortunately, most strategies have in common that
they pose a significant financial burden on growers in the affected
area, and with profit margins for olives historically being small already
[185], this could result in a significant portion of farmers having to
cease production entirely. The prevention of further spread can be
seen as a public good and, therefore, compensation payments are
justified [49]. Policy makers must ensure that compensation schemes are
intelligible and appropriately budgeted to minimize adverse behavior
of not reporting possible infections [236–238]. Further research could
investigate to which extent market instruments might assist growers’
risk mitigation. For example, farmers nearby the infected zone might
not yet classify for official compensation schemes, however, they could
already benefit from participation in insurance programs which aim
at alleviating possible financial burden associated with replanting
orchards with a resistant variety in case Xfp continuous to spread.

The case on the Olive Quick Decline Syndrome exemplifies the
drastic impact to consumers which can arise from biological invasions
solely through price responses following reductions in supply. Fortu-
nately, other aspects such as food safety and food security are not
affected here. However, the losses in cultural heritage and landscape
value from the desiccation of century old olive trees are additional
factors which need to be considered in the design of policy. Given
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the existing level of globalization, the risk of biological invasions is
likely to prevail in the future [5]. For inelastic production systems in
particular, consumers can be expected to bear a sizeable share of
the economic consequences. Therefore, regulators should ensure that
phytosanitary authorities can react promptly to emerging threats. To
improve response, information exchange between public bodies, sci-
ence and farmers must be fostered. In addition to continued support of
policy makers for research on adaptation strategies to Xfp in Europe,
it is essential that both public bodies and scientists play a role in
involving citizens through intelligible communication of new insights.

While our analysis aims at contributing to the ongoing public
debate on Xfp through an exploration of potential consequences to
consumers, uncertainty on various aspects on the side of the pathogen
as well as absence of more granular economic data resulted in some
limitation. In what follows, we discuss these limitations and possible
consequences of our assumptions.

We assumed that the percentage of orchards infected in a coun-
try equals the percentage of the country’s olive oil supply affected.
This simplification is required because the used land-cover data only
provides a binary indication of whether olives are present in a given
grid cell. To obtain a grid cell specific contribution to the national
production, information on the olive density within a grid, or ideally
data on the grid cell specific production, would be needed. While the
inclusion of the binary land-cover data still added significantly to the
disease spread simulation, it might well be that our simulation of the
olive oil supply affected fails to account for granular differences in the
areas’ contribution to the national supply.

The disease spread model employed, while being relatively straight-
forward, predicted past population expansions well [201], and the
model has been proposed as a suitable tool for pest risk assessments
[197]. Nevertheless, strengthening the integration among all employed
models would be desirable. Information on the relation between cli-
matic suitability and the spread rate of Xfp might improve the disease
spread simulations by allowing for varying spread rates depending on
local conditions. Furthermore, insights into the efficacy of management
strategies, such as vector control, on the spread rate would allow to
better link economic models with the disease spread simulations for
Xfp and thereby enable analyses of different strategies.
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The olive oil market is known to be a segmented market with
different quality grades. However, due to the absence of data on
production volumes of different olive oil quality grades and cross price
elasticities between qualities, the model developed for this analysis
assumes one composite olive oil market and thereby is not able to
demonstrate impacts for producers of high versus low quality olive
oils. As a response to price increases, consumers may substitute high
quality olive oil with a lower quality alternative which could worsen the
economic impacts for high quality olive oil producers in Italy, Greece
and Spain.

The absence of information on the countries’ supply elasticities
was approached with an econometric estimation using panel data
ranging the years 1990 to 2016. Through the use of a global sensitivity
analysis and stochastic evaluations of the economic impact under
different values for this parameter, we provided additional insights and
points for discussion. However, market shocks as severe as simulated
in some of the disease spread scenarios could very well fundamentally
alter actors’ behavior and thereby contradict estimates obtained from
historical data alone. Nevertheless, our analysis shows that improving
producers’ adaptability to price changes is likely to reduce total impacts
and in particular impacts to consumers. Consequently, regulatory
support to foster adaptability of producers is called for.

4.5 Conclusions

While previous research has analyzed possible impacts of Xylella
fastidiosa subspecies pauca to olive growers [222], the distribution of
economic consequences among olive oil producers and consumers has
not yet found attention. By using a multi-country partial equilibrium
model, we show that price responses following reductions in supply due
to the invader are likely to redistribute the negative economic impacts
to consumers. This market response is expected to be particularly
strong due to the inelastic nature of the production system. If the
pathogen spreads beyond the current extent in Italy, the decline in
European consumer welfare, due to higher prices for olive oil, ranged
between 4.1 billion and 10.3 billion Euro over the course of 50 years
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depending on the spread rate. In other words, each of the 195 million
households in Europe [239], would incur additional costs ranging
approximately 63 cents to 1.6 Euro every year over the course of 50
years.5 Introductions into Greece and Spain could cost consumers
between 0.4 to 3.3 and 1.8 to 53 billion Euro depending on the spread
rate, respectively. This would correspond to additional annual costs
ranging approximately 6 to 51 cents and 27 cents to 8.2 Euro for every
household in Europe, respectively.

Our analysis stresses the importance of public actions to foster
vigilance among growers and citizens to prevent additional introduc-
tions and further spread of the disease. Improving the communication
of pest risk assessments to the public is crucial to create a better
understand of the economic consequences if control measures were to
be unsuccessful. Given the mutual ownership, between consumers and
producers, of the risks associated with invasive species, the problem
should be contextualized as a societal challenge in public debates on
appropriate management strategies.

Further research is crucial on various fronts. Insights into the im-
pact the pathogen has on yields and costs for different cultivars under
different cultivation practices are important. Our understanding of
the epidemiology needs to be deepened through further analyses of
drivers for spread and speed with which dispersal might occur. It seems
unlikely that Xylella fastidiosa subspecies pauca will be eradicated from
Europe. Consequently, science and stakeholders must collaborate in
finding feasible strategies for long term adaptation. Here, the devel-
opment of resistant varieties and improved means of environmentally
responsible vector control are invaluable avenues for further work. The
need for enduring surveillance and control calls for additional research
on cost effective detection methods.

5 Equivalent annual costs of the losses to consumers were computed by dividing the
total present value losses to consumers (see Table 4.3) by the annuity factor [240],
using a discount rate of 3 percent and a time horizon of 50 years. The equivalent
annual costs were then divided by the number of households in the EU-27 in 2019
[239]
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4.6 Supplementary Material

Table 4.5 Regression output for the elasticity estimation.

Regressed on log-transformed production
Coefficient Std. Error

Intercept −12.721 11.408

year 0.008 0.005

Spain 0.816∗∗∗ 0.144

Italy 0.265∗∗ 0.109

Other −1.503∗∗∗ 0.229

Log-transformed first lag of price 0.251 0.171

Log-transformed first lag of production 0.224∗∗ 0.102

R2
0.921

Adj. R2
0.916

Number of observations 101

∗∗∗ ? < 0.01; ∗∗ ? < 0.05; ∗ ? < 0.1.
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Table 4.9 First and total order sensitivity indices for all economic parameter.

Parameter First Order Total Order
Index Min. Max. Index Min. Max.

Demand Italy −0.050 −0.090 −0.004 0.008 0.007 0.008

Demand Greece −0.054 −0.093 −0.008 0.002 0.002 0.002

Demand Spain −0.055 −0.094 −0.010 0.002 0.002 0.002

Demand RoEU −0.055 −0.095 −0.009 0.000 0.000 0.000

Supply Italy 0.213 0.175 0.258 0.335 0.316 0.354

Supply Greece −0.040 −0.080 0.008 0.017 0.016 0.019

Supply Spain 0.219 0.180 0.260 0.345 0.327 0.363

Supply RoEU −0.054 −0.094 −0.008 0.001 0.001 0.001

Price Italy 0.108 0.069 0.152 0.186 0.176 0.195

Price Greece −0.055 −0.095 −0.010 0.001 0.001 0.001

Price Spain −0.050 −0.091 −0.005 0.011 0.010 0.012

Price RoEU −0.055 −0.095 −0.009 0.001 0.000 0.001

Demand Elasticity Italy −0.058 −0.099 −0.013 0.004 0.004 0.005

Demand Elasticity Greece −0.055 −0.095 −0.010 0.001 0.000 0.001

Demand Elasticity Spain −0.054 −0.095 −0.008 0.003 0.003 0.004

Demand Elasticity RoEU −0.056 −0.096 −0.011 0.001 0.000 0.001

Demand Elasticity RoW −0.053 −0.094 −0.007 0.002 0.001 0.002

Supply Elasticity Italy −0.045 −0.085 0.000 0.015 0.014 0.015

Supply Elasticity Greece −0.056 −0.096 −0.010 0.000 0.000 0.000

Supply Elasticity Spain −0.052 −0.092 −0.007 0.005 0.005 0.006

Supply Elasticity RoEU −0.055 −0.095 −0.010 0.000 0.000 0.000

Yield Decline −0.054 −0.095 −0.009 0.002 0.002 0.003

Cost Change −0.054 −0.095 −0.009 0.003 0.002 0.003

Discount Rate 0.113 0.072 0.160 0.208 0.199 0.217
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Chapter 5

Predicting hotspots for invasive species
introduction in Europe

Abstract

Plant pest invasions cost billions of Euros each year in Europe. Under-
standing where hotspots of pest introduction are located could greatly
help prevention and management. Here, we assess whether data-driven
risk maps produced by machine learning methods could supplement
the costly species-specific risk analyses currently conducted by gov-
ernmental agencies. An elastic-net algorithm was trained on a dataset
covering 248 invasive species to map risk of new introductions in Eu-
rope as a function of climate, soils, water, and anthropogenic factors.
Results revealed that the BeNeLux states, Northern Italy, the Northern
Balkans, and the United Kingdom, and areas around container ports
such as Antwerp, London, Rijeka, and Saint Petersburg were at higher
risk for introductions. Our analysis shows that machine learning can
produce hotspot maps for pest introductions with a high predictive
accuracy, but that systematically collected data on species’ presences
and absences are required to further validate and improve these maps.

5.1 Introduction

Biological invasions describe inadvertent introductions of organisms
into new territories. While many entries may not lead to long-term
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establishment [8], successful establishments of hazardous species can
have major consequences for ecosystems and economies [216, 217].
A reliable prioritization of areas for potential introduction would be
invaluable to inform surveillance effort [241, 242].

By definition, introduction of a species comprises entry and estab-
lishment [243]. Entry of a pest describes its movement into an area
and establishment the perpetuation of the species within an area after
successful entry [243]. Species distribution models (SDMs)1 are popular
data-driven tools that aim at predicting species’ niches on the basis of
environmental characteristics of known locations of occurrences [245].
Subsequently, a prediction of the potential area of establishment is de-
rived by assessing the similarity in environmental conditions in other,
possibly unsampled, locations. SDMs are commonly developed for
specific species. While results from such analyses help to identify risky
areas, estimate potential impact and develop management strategies
[222, 246], they require species-specific data acquisition, calibration
and validation. As a consequence of the time, effort and expertise
required for this task, such species-specific analyses are only available
for a few hazardous invaders [41]. A generic approach that could help
to identify areas that are generally more at risk for pest introduction,
without having to first develop a range of species-specific models,
would greatly improve evidence-based prevention and management.

The vast majority of SDMs rely exclusively on climatic data to
predict where a particular species may establish and maintain a pop-
ulation without the need for further immigration [247]. For invasive
species, a growing body of literature stresses the role of anthropogenic
factors in the introduction of species [5, 48, 99, 201, 248, 249]. Con-
sequently, such data could very well improve predictions of hotspots
for species introduction [250]. Nevertheless, there have been limited
efforts to include anthropogenic features (i.e., predictor variables) into
such models [99]. The type of approach determines how to interpret
results. SDMs based exclusively on climate data map areas suitability
for establishment. While some anthropogenic features are expected to
ease establishment, others are related to entry, such as distances to
container ports and road density. Consequently, maps derived from

1 Also known as bioclimatic models, climate envelopes, ecological niche models,
habitat models, resource selection functions, range maps, among others [244]
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such features would not assess the risk of establishment but depict the
suitability for introduction (i.e., entry and establishment).

We aim to develop a generic modelling approach to identify
hotspots for plant pest introductions. We assess the risk of presence
in Europe for the whole group of 248 invasive species on the priority
lists (A1 and A2) of the European and Mediterranean Plant Protection
Organization (EPPO). The A1 list contains species that are absent
from Europe while the A2 list contains species with a geographically
limited presence. We obtained worldwide data on the presence of
these species from the Global Biodiversity Information Facility (GBIF).
Background data2 were generated using three standard methods rec-
ommended by the literature [251, 252]. Global georeferenced data on
a wide range of potential predictors related to climate, soils, water,
and anthropogenic factors were collected, and an elastic-net machine
learning algorithm was trained on around 400,000 observations across
the globe to predict new introduction of invasive species as a func-
tion of the predictors. The hyperparameters3 were tuned using three
cross-validation techniques. Although the resulting risk maps all have
high predictive performance, they show striking differences depending
on the background data generating techniques and cross-validation
methods considered. Our analysis shows that machine learning can
produce hotspot maps for plant pest introduction with a high predictive
accuracy, but that systematically collected data on species’ presences
and absences are required to further validate and improve these maps.

2 Background data characterize the feature space and act as pseudo-absences to
which presence data are compared within the classification model. They do not
necessarily aim to be true absence points, but rather provide a characterization of
possible values features could take throughout the studied geographic area.
3 The term hyperparameter denotes a parameter that controls the learning process
of the algorithm but that is not directly inferred from the training (i.e., fitting) of the
model as is the case for coefficients. In other words, hyperparameters hold settings
that influence the structure of the model. A standard approach is to tune these
hyperparameters (i.e., optimize) by running the learning algorithm for different
values and choosing the hyperparameter value that results in the best performance
according to a cross-validation procedure. The elastic-net has two hyperparameters
(section 5.3.4).
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5.2 Results and Discussion

Irrespective of the cross-validation technique, 20 percent of the data
were randomly selected, withheld from training steps, and used for
testing performance of the models on unseen data. On the 80 percent
remaining data, we implemented and compared three cross-validation
techniques to optimize the model hyperparameters (i.e., the param-
eters of the penalty term of the elastic-net). First, we followed the
most widely used approach of randomly splitting the data into folds4

[253]. Second, we separated data into continental spatial blocks (Sup-
plementary Material: Figure 5.16). This technique intends to assess
the transferability of the model across geographic space [253–255].
Lastly, we used temporal splits for cross-validation in which presences
were separated by their year of record. Through forward chaining of
the temporal folds5, we intended to test the model’s ability to predict
future introductions.

For each cross-validation technique, we used three methods to
generate background data representing pseudo-absences as opposed
to true absences corresponding to absences verified by field surveys.
First, we followed the most widely used approach of randomly gen-
erating background data across the studied area (denoted random)
[251], being the entire globe (Supplementary Material: Figure 5.6). Sec-
ond, we generated data from a biased background (denoted kdbias).
This approach intends to mimic the geographic bias in the presence
database [252, 257]. Lastly, we combined the kdbias approach with

4 A fold is a term used in machine learning to describe subsets of the data. For
example, five randomly split folds correspond to five data partitions each holding
20 percent of the training data.
5 We refer to forward chaining to describe an out-of-sample approach in which the
temporal order of the cross-validation folds is considered. In the first iteration, the
cross-validation starts by training the algorithm on data from the first time-period
and validating performance on data from the second time-period. In the second
iteration, data from the first and the second time-period is used for training and
performance validated on data from the third time-period, and so on. Hence,
data available for training is growing over time. The first time-period is not used
for validation, whereas the last time-period is not used for training within the
cross-validation. This cross-validation, and comparable variations, is commonly
used for time-series analyses. The technique is reviewed under the name prequential
growing window within Cerqueira et al. [256]
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Barbet-Massin et al.’s [251] recommendation for geographic exclusion
(denoted kd05dfar). Here, we again generated data from a biased
background but subsequently reduced the bias by removing data
that were less than 5 decimal degrees away from any presence data
(Supplementary Material: Figure 5.8).

5.2.1 European Hotspots for Pest Introductions

As our objective is the analysis of hotspots to improve the management
of future introductions, we believe that temporal cross-validation most
closely represents our objective. However, the spatial-block design best
mimics spatial transferability6 [253, 258, 259]. We will discuss average
results, across different background generation approaches, for models
tuned on temporal and continental splits.

Figure 5.1 depicts the average predicted risk of new introduction,
across the three approaches for background data generation, for mod-
els tuned using temporal and continental cross-validation. Irregular,
polygon-like, surfaces in the maps are results from the input data on
water indicators which came in the form of spatial-polygons. More
importantly, hotspots, i.e., areas with high probability of presence
of at least one invasive species, were consistently predicted to fall
into highly anthropogenically-impacted areas. The BeNeLux states,
Northern Italy, the Northern Balkans, and the United Kingdom were
generally predicted to be at higher risk of future introductions. The
contrast between regions at low and high risk was higher in models
tuned on temporal folds compared to models tuned on spatial folds.

5.2.2 Feature Contributions

The importance of each feature (i.e., variable) was computed using
the Feature Importance Ranking Measure [260, 261]. Here, we discuss

6 Transferability describes the ability of the model to generalize and correctly
predict new areas or time periods.
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Fig. 5.1 Probability of new introduction of at least one invasive species across
Europe. The mean risk levels across different models tuned using temporal (a) and
spatial (b) cross-validation.
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feature contributions based on their average score across the different
background generation approaches.

For models tuned on temporal splits, the highest ranked features
were soil sand content and temperature-related features. While loca-
tions characterized by sandier soil at a 60 cm depth were associated
with higher risk scores, higher sand content at a 30 cm depth was
associated with decreased risk. This could be related to different land
uses for soils characterized by less sandy topsoil. Many of the analyzed
species are forestry pests. As forests are often characterized by sandier
soils, it could explain why higher values for the soils’ sand content
were found to increase risk. Minimum and maximum temperatures in
the different months had varying effects. For example, higher minima
in February consistently increased risk while higher minima in January
consistently decreased it. Next to soil and temperature features, port
connectivity, water availability, water withdrawal, access to cities, the
minimum distance to a port, a spatial proxy of the Gross Domestic
Product (GDP), and the road density of highways were important.
Higher values for anthropogenic features were generally associated
with higher risk scores.7

For models tuned on continental splits, the feature ranking differed
considerably compared to the models tuned to predict into future time
periods. Here, anthropogenic features dominated the ranking. Across
all approaches to background data, the degree of nightlight radiance,
being our spatial proxy of GDP, consistently ranked very high as a risk
increasing factor. Accordingly, access to cities, minimum distance to a
port, the human impact on the environment, road densities for various
road types, water withdrawal, population density, and the degree of
human modification of terrestrial systems were important features.
In general, effect directions again suggested that areas with a higher
anthropogenic impact are at a higher risk. Next to anthropogenic fea-
tures, higher values for drought severity, elevation, seasonal variation
in water, precipitation seasonality, and the land cover classification
for cultivated and managed cropland decreased risk, while the biome
classification for temperate sclerophyll woodland and shrubland, and
higher values for flood occurrences, biodiversity intactness, sand con-

7 Access to cities and minimum distance to a port are inversely related to anthro-
pogenic pressure as higher values correspond to longer driving times to a city and
larger distances to a port, respectively.
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tent in the soil, and precipitation in the driest quarter were associated
with increased risk.

5.2.3 Model Performance

Model performance depended on both the cross-validation technique
and the background generation approach (see Table 5.1). In terms
of cross-validation, the highest performance scores were obtained
by randomly splitting data into folds, followed by temporal splits
and lastly continental splits. Randomly splitting not only resulted in
higher average performance scores across validation folds, but also in
a severely reduced variation of performance across folds compared
to the temporal and continental techniques (Supplementary Material:
Figures 5.17 to 5.19). The high performance with random splitting is
likely related to spatial clustering of species presence. This violates the
independence assumption and leads to models that overfit to residual
dependencies, resulting in overoptimistic model performance [253].

Concerning the background generation approach, the highest per-
formance scores were obtained with the random approach, followed
by the geographic exclusion approach, and lastly the biased data gen-
eration technique. While the very good performance of the random
technique is likely inflated by the large geographic scale considered
here [262, 263], the lower performance for the biased approach is
arguably over-pessimistic as the approach results in a large number of
data points in the exact same locations yet opposing classifications for
the dependent variable (Supplementary Material: Figure 5.7).

While the temporal and spatial block approaches did result in
lower performance scores compared to randomly split folds, they test
and optimize traits of the model that are desirable for our purpose
which led us to present the models above. The performance of mod-
els to predict introduction into new geographic spaces or to provide
a prioritization of areas for future introductions, is most appropri-
ately estimated by cross-validation techniques that also simulate those
behaviors. In addition, cross-validation techniques that simulate the
modelling objective result in hyperparameter values that are optimized
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Table 5.1 Overview of model performances for all cross-validation and background
generation techniques. Performance was measured by the area under the ROC
curve computed by cross-validation or using an independent test dataset. An
AUC of 1 indicates perfect classification while an AUC of 0.5 indicates random
classification.

Cross
validation

Background

data

Cross validation Test data*
AUC Sens. Spec. AUC Sens. Spec.

random random 0.99 0.95 0.94 0.99 0.95 0.94

random kdbias 0.91 0.82 0.84 0.91 0.82 0.84

random kd05dfar 0.99 0.95 0.96 0.99 0.95 0.96

spatial random 0.95 0.78 0.92 0.97 0.92 0.92

spatial kdbias 0.85 0.64 0.83 0.85 0.73 0.80

spatial kd05dfar 0.95 0.78 0.88 0.97 0.91 0.93

temporal random 0.97 0.89 0.94 0.99 0.95 0.94

temporal kdbias 0.87 0.71 0.86 0.91 0.82 0.84

temporal kd05dfar 0.98 0.90 0.96 0.99 0.95 0.96

Sensitivity (Sens.) and specificity (Spec.) were computed for a threshold of 0.5.
*test data refers to 20% of randomly split withheld data.

for the task. As a result of the hyperparameter values, feature selection
and model fitting are optimized for the research objective as well.

Performance was reasonably good, even for rigorous validation
approaches such as temporal and continental splits, indicating that
top-down analyses, through the bundling of species, do not necessarily
sacrifice performance per se. Interestingly, global presence patterns
were quite stable over time (Supplementary Material: Figures 5.10 to
5.15). As hotspots for pest introductions did not change considerably
over the time horizon 1970 to 2021, the cross-validation scores obtained
from temporal splits suggest that the models are very much able to
predict future introductions based on past ones.

5.2.4 Sensitivity

Despite their somewhat comparable accuracies, the generated risk
maps as well as the importance of the features of the corresponding
models were drastically different (Figure 5.2). Similar to Austin [264],
our analysis shows that equivalent performance metrics can result in
very different models and outputs.
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Figure 5.3 depicts the difference between the maximum and min-
imum probability values across the three approaches of generating
background data for models tuned using temporal and continental
cross-validation. The different background generation approaches re-
sulted in sizable changes in predicted risk for large parts of France,
Germany, Northern Spain, and Moldova. Individual maps for all ap-
proaches are provided in the Supplementary Material (Figures 5.29 to
5.43).

Figures 5.4 and 5.5 depict the 50 most important features, on
average across different approaches to generating background data,
for models tuned using temporal and continental cross-validation,
respectively. The importance of features, and occasionally coefficient
directions, varied considerably suggesting that very different models
were created. See Figures 5.45 to 5.51 in the Supplementary Material for
further examples of feature importance in different models. The results
stress the diversity in models that can be built using the same presence
data. Arguably, this underscores the need to explore sensitivity of
results beyond computing several learning algorithms using the same
data generating process, especially if clear data on true species absence
are unavailable.

5.2.5 Implications for Pest Surveys

The lack of systematically surveyed species presence and true absence
restricted us from disentangling whether predictions were a result of
monitoring or reporting bias, or of area characteristics that indeed
promote the introduction of invasive species. As an example, areas
around container ports such as Antwerp, London, Rijeka, and Saint
Petersburg, were generally predicted to be at high risk. The literature
frequently discusses the involvement of international trade [5, 46, 201],
in particular via boats and roads [48, 265], in the introduction of inva-
sive species. Ecosystems characterized by a high level of anthropogenic
disturbance are expected to facilitate species entry and establishment
[46, 48]. Consequently, our results would be in line with the expecta-
tions from the literature. However, because regulators, scholars, and
citizens expect that these areas likely contain new introductions, these
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Fig. 5.2 Spearman correlation of the European prediction across all combinations
for cross-validation and background data generation.

locations are also often highly monitored, which could lead to reporting
bias (Supplementary Material: Figure 5.44).

Systematic survey data on species presences and, equally important
[99, 266], true absences would suspend these concerns entirely. Such
data would allow to measure to what extent pest presences are driven
by anthropogenic features, without having to ponder whether these
characteristics were exclusively, or partially, related to biases [258, 267–
269]. The inclusion and analysis of anthropogenic features is critical to
further our understanding of externalities from human-driven land-use
change, infrastructure, and trade. Efforts to include anthropogenic
features into models, except for attempts to correct for data biases,
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Fig. 5.3 Difference between maximum and minimum risk level values for Europe
across different background generation approaches for models tuned using temporal
(a) and continental spatial-blocks (b) for cross-validation.
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Fig. 5.4 Fifty most important features across different background generation
approaches for models tuned using temporal split cross-validations. The average
is depicted as a dot. The line range shows the minimum and maximum values. If
coefficients were consistently negative (i.e., risk decreasing) across all approaches
for background data generation, the graph is colored green. If coefficients were
consistently positive (i.e., risk increasing) across all approaches, the graph is
colored red. If the coefficient direction changed between the different approaches
to generating background data, it is colored blue.

are lacking [99]. The unavailability of systematic data for the left-hand
side of the equation is likely a major reason for that.

Absence of a species may be due to one of the following causes
[266]. First, environmental absence describes locations with unsuitable
environmental conditions. Second, contingent absence describes loca-
tions which are suitable per se, but due to dispersal limitations, local
extinctions, or an inadequate size of the suitable patch, among other
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Fig. 5.5 Fifty most important features across different background generation
approaches for models tuned using spatial-block split cross-validations. The average
is depicted as a dot. The line range shows the minimum and maximum values. If
coefficients were consistently negative (i.e., risk decreasing) across all approaches
for background data generation, the graph is colored green. If coefficients were
consistently positive (i.e., risk increasing) across all approaches, the graph is colored
red.

factors, they remained free of the species at the time of observation.
Lastly, methodological absence describes locations which are falsely
classified due to underlying biases, or incomplete coverage, in the
available calibration data. SDMs predicting the fundamental niche aim
to correctly classify environmental absences from presences, whereas
contingent absences become particularly important when predicting
the realized niche [99, 266]. Methodological absences taint predictions
regardless of modelling purpose yet are likely to prevail in most data
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used for SDM research [85]. While appropriate surveying for true
absences requires considerable labor input [270], without such data,
all analyses are bound to remain modelling exercises.

Global estimates suggest that the impact of invasive species runs
in the trillions of Dollars [271]. For Europe, conservative estimates of
annual impacts range from 12.5 to 20 billion Euro [51]. Several thousand
species have already invaded Europe and the annual rates of new
establishments are progressively increasing [41, 48]. The continuous
rise in flow of products and people will likely only aggravate the risk
of biological invasions in the future [4–6, 180]. Nevertheless, compared
to estimates on current and future impacts, expenses for management
and surveillance remain low [272]. While the process of hazardous
invasions will remain random, predictive models in combination with
the ever-increasing amount of georeferenced data can improve support
of decision making in the future.

Harmonizing species surveys and making the resulting data avail-
able for research can further improve the prediction of hotspots. For
invasive species on EPPO’s priority lists, annual surveys are already
conducted by the European member states. These data remain un-
harmonized across states, inaccessible to researchers, and without
records of true absences. The inclusion of true absences in such efforts
is as important for predictive models as the systematic collection of
presences [99, 266].

While our analysis is a critical call for the need of systematic survey
data, we believe the obtained results are a reason for optimism. In the
last decades, previously unimaginable advances have been made in the
breadth and quality of georeferenced environmental and anthropogenic
data and computing technologies. Consequently, the quality of our
predictions is more than ever bottlenecked by the lack of open data
on results of systematic surveys and records on absence. Considering
the current and potential future impact of invasive species to our
ecosystems and economies, additional funding for species surveys
would likely result in significant paybacks by informing the design of
management strategies using predictive models.
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5.3 Materials and Methods

5.3.1 Data

5.3.1.1 Species presence

The list of species was obtained from the A1 and A2 list of EPPO (ver-
sion 2020-09).8 Both lists contain species that are recommended for
regulation as quarantine pests in Europe. The A1 list contains species
that are absent from Europe while the A2 list contains species with
limited presence. Subsequently, on the 30th of March 2021, 490,323
occurrences were obtained from the Global Biodiversity Facility (GBIF)
(10.15468/dl.fc5kva). The raw data was cleaned by removing all points
with any of the following characteristics: reporting year prior to 1970,
fossil specimen, literature-based observations, preserved specimen,
location falling exactly on the centroids of capitals, or centroids of
countries, or into sea, or on biodiversity institutions assuming that
those are part of a collection [273]. Furthermore, presences with dupli-
cated values across all features (i.e., input variables of the models) were
removed, thereby, we effectively thinned presences at the scale of the
finest environmental predictors. Similar criteria are often employed to
determine the thinning radius [222]. The final set of 213,616 presence
data, for which complete and unique combinations of feature data were
available, spans 248 species, 92 families, 52 orders, 21 classes and 13
phyla, or more specifically 138 Arthropoda, 37 Tracheophyta, 2 Mollusca,
18 Ascomycota, 1 Negarnaviricota, 15 Basidiomycota, 19 Proteobacteria, 4
Oomycota, 2 Cressdnaviricota, 5 Nematoda, 2 Actinobacteriota, 4 Kitri-
noviricota, and 1 Chytridiomycota. For model training, we classified
presence of any species as a 1 and pseudo-absence as 0 (see next
section).

8 https://www.eppo.int/ACTIVITIES/plant_quarantine/A1_list;
https://www.eppo.int/ACTIVITIES/plant_quarantine/A2_list

https://www.eppo.int/ACTIVITIES/plant_quarantine/A1_list
https://www.eppo.int/ACTIVITIES/plant_quarantine/A2_list
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5.3.1.2 Background data

The GBIF data come as presence-only and it was thus necessary
to generate background data representing pseudo-absences to train
and test our models, as commonly done in SDMs [251]. While this
is common practice in the SDM literature, there is no consensus
regarding the best approach [259]. The issue of generating background
data is aggravated when presence data is biased [252]. While GBIF is
extensively used in ecological research [274], geographic bias is very
likely [268, 275]. We tested three ways to generate pseudo-absence
data all of which find support in the literature [251, 252, 257].

First, random data were generated on a global scale covering all
parts of the world except the poles. Randomly sampling background
data is the default strategy in SDMs and frequently recommended
[251]. The approach implicitly assumes that the entire geographic
extent is equally relevant for the analysis and that the entire possible
feature space should be used as a comparison to the presence data.
Second, conceptually close to the bias-file approach of the popular
SDM algorithm MaxEnt, we generated data from a biased background
which aims at mimicking the geographic bias in the GBIF database
[252, 257]. Here, presences were counted within 5 decimal degree grids.
Next, a two-dimensional Gaussian kernel density was estimated on the
count-grids and rescaled such that all values sum to unity. Subsequently,
the resulting value was used as the probability of a background data
point being generated in a location. With this second approach, the
background data tend to remain close to the presence data, as would be
the case if the sampling areas were kept close to each other. Thereby, an
implicit assumption is made that only areas nearby known presences
are relevant for the analysis and that the feature space used as a
comparison to the presences should be restricted to nearby conditions.
Lastly, we combined the biasing approach with Barbet-Massin et al.’s
[251] recommendation for geographic exclusion. Here, we generated
a larger number of data from a biased background and subsequently
removed data that were less than 5 decimal degrees away from any
presence data. From the remaining background data, a random subset
was sampled such that the resulting data had a balanced number of
presences and background data. Notably, while Barbet-Massin et al.
[251] recommended a distance of two degrees, in latitude or longitude,
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this criterion would have resulted in a questionable comparison in
our case due to the large number and geographic spread of species
presences in our database. Nevertheless, our approach intends to
provide more background data within proximity of the presences [252],
without heavily overlapping background data with presence data as
done in the pure biasing approach as employed in MaxEnt. Hence, as
with the second approach, the implicit assumption is made that only
areas nearby known presences are relevant for the analysis, however,
here the feature space used as a comparison to the presences does
not comprise conditions of areas where pest presence is reported. We
denote the three approaches as “random”, “kdbias”, and “kd05dfar”,
respectively. The data generated by the three approaches are shown
in the Supplementary Material (Figure 5.6 to 5.8). The final datasets
had a balanced distribution of presences and pseudo-absences, i.e., a
sampling prevalence of 50 percent [251, 276].

5.3.1.3 Features

Various georeferenced data were gathered. Table 5.2 in the Supplemen-
tary Material Provides an overview for the features and Table 5.3 for
the raw data. Data on climate were obtained from Karger et al. [193].
Soil characteristics were obtained through OpenLandMap [277–286].
An indicator of erosion risk was obtained from the World Resource
Institute [287]. Information on landcover was obtained from Buchhorn
et al. [288]. A dataset on water related indicators was obtained from
the World Resource Institute [289]. An indicator of biodiversity in-
tactness was obtained from Newbold et al. [290]. Data on population
density were obtained from the Joint Research Centre [291]. Data on
road densities for different road types were obtained from Meijer,
Huijbregts, Schotten, & Schipper [292]. An indicator of anthropogenic
pressure on the environment was obtained from Venter et al. [293].
Data on human-driven modification of terrestrial systems was obtained
from Kennedy et al. [294]. A spatial layer on accessibility to cities,
measured in driving time, was obtained from Weiss et al. [295]. Studies
advocated for the use of the Gross Domestic Product (GDP) in analyses
of invasive species [41, 265]. However, GDP is generally only available
at course, country-level, resolution. Therefore, we decided to proxy
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GDP using spatial data on radiance of nightlights which were obtained
from Hengl [296] [297–299]. Lastly, georeferenced data for container
ports was obtained from Bartholdi, Jarumaneeroj, & Ramudhin [300].
These data comprise longitude and latitude as well as connectivity
indices for 200 container ports around the world. For each presence
and background point, the minimum distances to a port and the mean
distance to all ports were computed. Subsequently, connectivity indices
of the closest port, as well as connectivity indices for all ports, weighted
by their inverse distances to a particular point, were used as features.

5.3.2 Data processing

First, observations with incomplete data were omitted. For categorical
features, the 19 most frequent categories were kept, and other cate-
gories were grouped into one. Next, categorical features were dummy
encoded. In addition to the spatially weighted port connectivity in-
dices, the following continuous features were engineered: the average
annual photosynthetically active radiation, the standard deviation of
the photosynthetically active radiation across months, the change in
population density between 1975 and 2015, and the change in human
impact on the environment between 1993 and 2009. All continuous
features were transformed to normality, centered, and scaled. The best
transformation to normality was estimated from a set of candidate
functions using only the training data [189]. The final datasets, for
the three approaches to background data, have 427,232 points, half of
those being presences and the other half background data, with com-
plete data for 246 features. Out of those, 181 features were continuous,
and 65 features were dummy encoded categories. Twenty percent of
the data was kept from training for testing model performance.

5.3.3 Cross-validation techniques

After exclusion of 20 percent of the data for testing, three different
cross-validation techniques were implemented on the remaining data.
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First, we followed the most frequently used approach of randomly
splitting the data into folds. To manage computational time, we used
five folds. Second, we separated data into continental spatial blocks.
Here, six folds were generated corresponding to the continents Africa,
Asia, Australia, Europe, North America, and South America (Supple-
mentary Material: Figure 5.16). As such, we intended to assess the
transferability of the model across geographic space [253–255]. Lastly,
we used temporal splits for cross-validation in which presences were
separated by their year of record and background data randomly
assigned, without replacement, such that a balanced fold was obtained.
With the temporal cross-validation, we intended to test whether the
model can predict future presences. Due to the exponential increase
in presence records over time (Supplementary Material: Figure 5.9),
we divided them into unequal time periods corresponding to the years
1970-2005, 2006-2011, 2012-2014, 2015-2016, 2017-2018, 2019, 2020-
2021, resulting in seven folds with an approximately equal number of
presences in each. Subsequently, models were trained and validated
by forward chaining the folds (Supplementary Material: Figure 5.10 to
5.15).

5.3.4 Algorithm and hyperparameter tuning

The model is a generalized linear model based on a logit link, equiva-
lent to a logistic model. The model includes regression coefficients that
are estimated using a learning algorithm called elastic-net [301, 302].
The algorithm is a regularization technique that combines the L1 (sum
of absolute coefficient magnitudes) and L2 (sum of squared coefficient
magnitudes) coefficient penalties into the loss function. In doing so, the
model is a generalization of the lasso and ridge regression approaches
and allows for the estimation of pure versions of the two as well as
mixed variants.

We decided to use this training algorithm because of its ability
to find an optimal balance between bias and variance. The elastic
net reduces variance at the cost of introducing bias to minimize the
prediction error. This approach is called regularization and is designed
to optimize the predictive performance of the model. The algorithm
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is computationally relatively fast, memory efficient, and robust to
correlated features. It is thus well-adapted to large scale practical
applications.

The parameters are estimated using a penalized log likelihood
objective function [302]. The likelihood is based on a binomial distri-
bution and the penalization is based on the elastic net penalty. The
elastic net includes a penalty term defined by two hyperparameters
named U and _. The hyperparameter U describes the mixing of the
L1 and L2 penalties. If U equals 1, the elastic net would essentially be
a lasso regression whereas U equal to 0 would result in a pure ridge
regression. The hyperparameter _ denotes the degree of regularization
employed. In the elastic-net algorithm, the regularization determines
the extent to which coefficient magnitudes affect the loss function.
Consequently, the regularization determines the extent to which coeffi-
cients are shrunk toward zero. By shrinking coefficient values, a model
fit is obtained that might generalize the underlying relationships better.

Both hyperparameters were tuned using a grid search to maximize
the AUC value computed successively with the three above-mentioned
cross-validation techniques. The AUC metric measures the correctness
in rankings between locations which is directly related to our modelling
objective of identifying areas at risk [257, 303]. However, whenever true
absences are not available, performance metrics represent heuristic
measures only and should therefore be cautiously interpreted [254, 304].
Sensitivity and specificity receive equal attention in our results. The
presented values correspond to values obtained at a cut-off of 0.5.
For U, values between 0 and 1 were searched at 0.1 increments and
for _ values between 0 and 1 at 0.025 increments, resulting in a total
of 451 combinations. In the Supplementary Material, Figures 5.20
to 5.28 depict the tuning results, and Table 5.4 depicts the optima,
for each cross-validation technique and background data generation
approach. Surprisingly, only the spatial block cross-validation resulted
in regularized models, while the random and temporal splits suggested
that no regularization yielded the best performance. No regularization
(_ = 0) essentially collapses the elastic net into a standard generalized
linear model with binomial distribution. The tuning results for random
and temporal cross-validation could be related to the spatial clustering
of data which resulted in small regularization values in other studies
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[303]. Following the hyperparameter tuning, the model coefficients
were estimated using the entire training data.

To summarize, 20 percent of the data were withheld for testing
performance on unseen observations, whereas 80 percent of the data
were used for training. Within the cross-validation techniques, these
training data were split into folds to tune the hyperparameters and ob-
tain cross-validation-based performance metrics. Subsequently, using
the tuned hyperparameter values, the feature coefficients were esti-
mated on the entire training dataset (i.e., 80 percent of all data). Lastly,
performance (AUC, sensitivity, and specificity) of the fitted model on
unseen data was computed on the 20 percent of withheld testing data.

5.3.5 Prediction and Mapping

To circumvent the problem of differences in the resolution of input
layers, longitude, and latitude coordinates for around 870,000 points
across Europe were generated. The number of points was chosen such
that the modelling steps are feasible in terms of computational time
and memory requirements. Subsequently, for all points feature data
were extracted and processed as described above. To minimize empty
spaces in the risk map, due to systematically missing input data in
certain locations, individual features were imputed for 73,380 points,
with values of the geographically closest point within a maximum
distance of 1 decimal degree. Points with partially missing data mostly
fall on coastlines and on in-land waterbodies. Consequently, missing
data is likely due to resolution-related artifacts of pixels which fall
on non-linear country borders and unavailable information for some
features.

The trained and tuned models were used to generate a continuous
probability score for introduction at all points in Europe. All maps are
point-based. Each point was colored using the probability score. The
figures shown within the manuscript depict the average probability
score across the three background data approaches, for models tuned
on temporal and continental cross-validation techniques. The sensi-
tivity of this probability to the background data approach is shown
through visualizations of the range of the probability score which
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was computed by taking the difference between the maximum and
minimum values for each point. Individual maps for all approaches
are provided in the Supplementary Material (Figures 5.29 to 5.43).



144 5 Predicting hotspots for invasive species introduction in Europe

5.4 Supplementary Material
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Fig. 5.9 Number of presence records over time and chosen cut-offs for the temporal
cross-validation (red). The temporal folds correspond to 1970-2005, 2006-2011,
2012-2014, 2015-2016, 2017-2018, 2019, and 2020-2021
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Fig. 5.10 Presence and random background points used for training (cumulative
over time) and validating in the first fold of the temporal cross-validation.
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Fig. 5.11 Presence and random background points used for training (cumulative
over time) and validating in the second fold of the temporal cross-validation. Note,
the training data is growing over time which means that the top row in the plot
shows the data of, both, the first and second time periods.
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Fig. 5.12 Presence and random background points used for training (cumulative
over time) and validating in the third fold of the temporal cross-validation. Note,
the training data is growing over time which means that the top row in the plot
shows the data of the first, second and third time periods.
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Fig. 5.13 Presence and random background points used for training (cumulative
over time) and validating in the fourth fold of the temporal cross-validation. Note,
the training data is growing over time which means that the top row in the plot
shows the data from the first to the fourth time periods.
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Fig. 5.14 Presence and random background points used for training (cumulative
over time) and validating in the fifth fold of the temporal cross-validation. Note,
the training data is growing over time which means that the top row in the plot
shows the data from the first to the fifth time periods.
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Fig. 5.15 Presence and random background points used for training (cumulative
over time) and validating in the sixth fold of the temporal cross-validation. Note,
the training data is growing over time which means that the top row in the plot
shows the data from the first to the sixth time periods.
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Fig. 5.17 Cross validation performance, in terms of area under the ROC, for all
approaches for cross validation and background point generation. The dots show
the average scores, and the line ranges show the minimum and maximum values
obtained across the different folds.
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Fig. 5.18 Cross validation performance, in terms of Sensitivity, for all approaches
for cross validation and background point generation. The dots show the average
scores, and the line ranges show the minimum and maximum values obtained
across the different folds.
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Fig. 5.19 Cross validation performance, in terms of Specificity, for all approaches
for cross validation and background point generation. The dots show the average
scores, and the line ranges show the minimum and maximum values obtained
across the different folds.
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Fig. 5.20 Hyperparameter tuning for random split cross validation and kd05dfar
background points. The objective function of the elastic net includes a penalty
term defined by two hyperparameters named U (“Mixing Percentage”) and _

(“Regularization Parameter”). The hyperparameter U describes the mixing of the L1
and L2 penalties. If U equals 1, the elastic net would essentially be a lasso regression
whereas U equal to 0 would result in a pure ridge regression. The hyperparameter
_ denotes the degree of regularization employed. Both hyperparameters were tuned
using a grid search to maximize the area under the ROC. For U, values between
0 and 1 were searched at 0.1 increments and for _ values between 0 and 1 at
0.025 increments resulting in a total of 451 combinations. No regularization (_ = 0)
essentially collapses the elastic net into a standard generalized linear model with
binomial distribution. Table 3 below depicts the optima, for each cross-validation
technique and approach to generating background data.
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Fig. 5.21 Hyperparameter tuning for random split cross validation and kdbias
background points. The objective function of the elastic net includes a penalty
term defined by two hyperparameters named U (“Mixing Percentage”) and _

(“Regularization Parameter”). The hyperparameter U describes the mixing of the L1
and L2 penalties. If U equals 1, the elastic net would essentially be a lasso regression
whereas U equal to 0 would result in a pure ridge regression. The hyperparameter
_ denotes the degree of regularization employed. Both hyperparameters were tuned
using a grid search to maximize the area under the ROC. For U, values between
0 and 1 were searched at 0.1 increments and for _ values between 0 and 1 at
0.025 increments resulting in a total of 451 combinations. No regularization (_ = 0)
essentially collapses the elastic net into a standard generalized linear model with
binomial distribution. Table 3 below depicts the optima, for each cross-validation
technique and approach to generating background data.



5.4 Supplementary Material 161

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.25 0.50 0.75 1.00

Regularization Parameter

R
O

C
 (

C
ro

s
s
−

V
a
lid

a
ti
o
n
)

Mixing Percentage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 5.22 Hyperparameter tuning for randomly split cross validation and random
background points. The objective function of the elastic net includes a penalty
term defined by two hyperparameters named U (“Mixing Percentage”) and _

(“Regularization Parameter”). The hyperparameter U describes the mixing of the L1
and L2 penalties. If U equals 1, the elastic net would essentially be a lasso regression
whereas U equal to 0 would result in a pure ridge regression. The hyperparameter
_ denotes the degree of regularization employed. Both hyperparameters were tuned
using a grid search to maximize the area under the ROC. For U, values between
0 and 1 were searched at 0.1 increments and for _ values between 0 and 1 at
0.025 increments resulting in a total of 451 combinations. No regularization (_ = 0)
essentially collapses the elastic net into a standard generalized linear model with
binomial distribution. Table 3 below depicts the optima, for each cross-validation
technique and approach to generating background data.
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Fig. 5.23 Hyperparameter tuning for spatial-block cross validation and kd05dfar
background points. The objective function of the elastic net includes a penalty
term defined by two hyperparameters named U (“Mixing Percentage”) and _

(“Regularization Parameter”). The hyperparameter U describes the mixing of the L1
and L2 penalties. If U equals 1, the elastic net would essentially be a lasso regression
whereas U equal to 0 would result in a pure ridge regression. The hyperparameter
_ denotes the degree of regularization employed. Both hyperparameters were tuned
using a grid search to maximize the area under the ROC. For U, values between
0 and 1 were searched at 0.1 increments and for _ values between 0 and 1 at
0.025 increments resulting in a total of 451 combinations. No regularization (_ = 0)
essentially collapses the elastic net into a standard generalized linear model with
binomial distribution. Table 3 below depicts the optima, for each cross-validation
technique and approach to generating background data.
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Fig. 5.24 Hyperparameter tuning for spatial-block cross validation and kdbias
background points. The objective function of the elastic net includes a penalty
term defined by two hyperparameters named U (“Mixing Percentage”) and _

(“Regularization Parameter”). The hyperparameter U describes the mixing of the L1
and L2 penalties. If U equals 1, the elastic net would essentially be a lasso regression
whereas U equal to 0 would result in a pure ridge regression. The hyperparameter
_ denotes the degree of regularization employed. Both hyperparameters were tuned
using a grid search to maximize the area under the ROC. For U, values between
0 and 1 were searched at 0.1 increments and for _ values between 0 and 1 at
0.025 increments resulting in a total of 451 combinations. No regularization (_ = 0)
essentially collapses the elastic net into a standard generalized linear model with
binomial distribution. Table 3 below depicts the optima, for each cross-validation
technique and approach to generating background data.
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Fig. 5.25 Hyperparameter tuning for spatial-block cross validation and random
background points. The objective function of the elastic net includes a penalty
term defined by two hyperparameters named U (“Mixing Percentage”) and _

(“Regularization Parameter”). The hyperparameter U describes the mixing of the L1
and L2 penalties. If U equals 1, the elastic net would essentially be a lasso regression
whereas U equal to 0 would result in a pure ridge regression. The hyperparameter
_ denotes the degree of regularization employed. Both hyperparameters were tuned
using a grid search to maximize the area under the ROC. For U, values between
0 and 1 were searched at 0.1 increments and for _ values between 0 and 1 at
0.025 increments resulting in a total of 451 combinations. No regularization (_ = 0)
essentially collapses the elastic net into a standard generalized linear model with
binomial distribution. Table 3 below depicts the optima, for each cross-validation
technique and approach to generating background data.
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Fig. 5.26 Hyperparameter tuning for temporal cross validation and kd05dfar
background points. The objective function of the elastic net includes a penalty
term defined by two hyperparameters named U (“Mixing Percentage”) and _

(“Regularization Parameter”). The hyperparameter U describes the mixing of the L1
and L2 penalties. If U equals 1, the elastic net would essentially be a lasso regression
whereas U equal to 0 would result in a pure ridge regression. The hyperparameter
_ denotes the degree of regularization employed. Both hyperparameters were tuned
using a grid search to maximize the area under the ROC. For U, values between
0 and 1 were searched at 0.1 increments and for _ values between 0 and 1 at
0.025 increments resulting in a total of 451 combinations. No regularization (_ = 0)
essentially collapses the elastic net into a standard generalized linear model with
binomial distribution. Table 3 below depicts the optima, for each cross-validation
technique and approach to generating background data.
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Fig. 5.27 Hyperparameter tuning for temporal cross validation and kdbias back-
ground points. The objective function of the elastic net includes a penalty term
defined by two hyperparameters named U (“Mixing Percentage”) and _ (“Regular-
ization Parameter”). The hyperparameter U describes the mixing of the L1 and
L2 penalties. If U equals 1, the elastic net would essentially be a lasso regression
whereas U equal to 0 would result in a pure ridge regression. The hyperparameter
_ denotes the degree of regularization employed. Both hyperparameters were tuned
using a grid search to maximize the area under the ROC. For U, values between
0 and 1 were searched at 0.1 increments and for _ values between 0 and 1 at
0.025 increments resulting in a total of 451 combinations. No regularization (_ = 0)
essentially collapses the elastic net into a standard generalized linear model with
binomial distribution. Table 3 below depicts the optima, for each cross-validation
technique and approach to generating background data.



5.4 Supplementary Material 167

0.5

0.6

0.7

0.8

0.9

0.00 0.25 0.50 0.75 1.00

Regularization Parameter

R
O

C
 (

C
ro

s
s
−

V
a
lid

a
ti
o
n
)

Mixing Percentage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 5.28 Hyperparameter tuning for temporal cross validation and random
background points. The objective function of the elastic net includes a penalty
term defined by two hyperparameters named U (“Mixing Percentage”) and _

(“Regularization Parameter”). The hyperparameter U describes the mixing of the L1
and L2 penalties. If U equals 1, the elastic net would essentially be a lasso regression
whereas U equal to 0 would result in a pure ridge regression. The hyperparameter
_ denotes the degree of regularization employed. Both hyperparameters were tuned
using a grid search to maximize the area under the ROC. For U, values between
0 and 1 were searched at 0.1 increments and for _ values between 0 and 1 at
0.025 increments resulting in a total of 451 combinations. No regularization (_ = 0)
essentially collapses the elastic net into a standard generalized linear model with
binomial distribution. Table 3 below depicts the optima, for each cross-validation
technique and approach to generating background data.
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Fig. 5.45 Fifty most important features across all approaches. The average is
depicted as a dot. The line range shows the minimum and maximum values. If
coefficients were consistently negative (i.e., risk decreasing) across all approaches,
the graph is colored green. If coefficients were consistently positive (i.e., risk
increasing) across all approaches, the graph is colored red. If the coefficient
direction changed between the different approaches to generating background data,
it is colored blue. Descriptions for all features can be found in Table 1 below.
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Fig. 5.46 Fifty most important features across different approaches to generating
background points for models tuned on random splits for cross validations. The
average is depicted as a dot. The line range shows the minimum and maximum
values. If coefficients were consistently negative (i.e., risk decreasing) across all ap-
proaches for background data generation, the graph is colored green. If coefficients
were consistently positive (i.e., risk increasing) across all approaches, the graph is
colored red. If the coefficient direction changed between the different approaches
to generating background data, it is colored blue. Descriptions for all features can
be found in Table 1 below.
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Fig. 5.47 Fifty most important features across different approaches to generating
background points for models tuned on spatial-block splits for cross validations.
The average is depicted as a dot. The line range shows the minimum and maxi-
mum values. If coefficients were consistently negative (i.e., risk decreasing) across
all approaches for background data generation, the graph is colored green. If
coefficients were consistently positive (i.e., risk increasing) across all approaches,
the graph is colored red. If the coefficient direction changed between the different
approaches to generating background data, it is colored blue. Descriptions for all
features can be found in Table 1 below.
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Fig. 5.48 Fifty most important features across different approaches to generating
background points for models tuned on temporal splits for cross validations. The
average is depicted as a dot. The line range shows the minimum and maximum
values. If coefficients were consistently negative (i.e., risk decreasing) across all ap-
proaches for background data generation, the graph is colored green. If coefficients
were consistently positive (i.e., risk increasing) across all approaches, the graph is
colored red. If the coefficient direction changed between the different approaches
to generating background data, it is colored blue. Descriptions for all features can
be found in Table 1 below.
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Fig. 5.49 Fifty most important features across different approaches to cross-
validation for models trained on kd05dfar background points. The average is
depicted as a dot. The line range shows the minimum and maximum values. If
coefficients were consistently negative (i.e., risk decreasing) across all approaches,
the graph is colored green. If coefficients were consistently positive (i.e., risk
increasing) across all approaches, the graph is colored red. If the coefficient
direction changed between the different approaches to generating background data,
it is colored blue. Descriptions for all features can be found in Table 1 below.
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Fig. 5.50 Fifty most important features across different approaches to cross-
validation for models trained on kdbias background points. The average is depicted
as a dot. The line range shows the minimum and maximum values. If coefficients
were consistently negative (i.e., risk decreasing) across all approaches, the graph
is colored green. If coefficients were consistently positive (i.e., risk increasing)
across all approaches, the graph is colored red. If the coefficient direction changed
between the different approaches to generating background data, it is colored blue.
Descriptions for all features can be found in Table 1 below.
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CHELSA_bio10_17
CHELSA_tmin10_10

veg_fapar_sep
ProbaV_discrete_classification.100
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pnv_biometype.31

CHELSA_tmax10_5
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Fig. 5.51 Fifty most important features across different approaches to cross-
validation for models trained on random background points. The average is
depicted as a dot. The line range shows the minimum and maximum values. If co-
efficients were consistently negative (i.e., risk decreasing) across all approaches, the
graph is colored green. If coefficients were consistently positive (i.e., risk increasing)
across all approaches, the graph is colored red. Descriptions for all features can be
found in Table 1 below.



5.4 Supplementary Material 191

Table 5.2: Overview of features.

Variable name Description

access_to_cities Accessibility to cities in driving
time

biodiv Index of biodiversity intactness
CHELSA_bio10_1 Annual Mean Temperature 1979-

2013
CHELSA_bio10_10 Mean Temperature of Warmest

Quarter 1979-2013
CHELSA_bio10_11 Mean Temperature of Coldest

Quarter 1979-2013
CHELSA_bio10_12 Annual Precipitation 1979-2013
CHELSA_bio10_13 Precipitation of Wettest Month

1979-2013
CHELSA_bio10_14 Precipitation of Driest Month 1979-

2013
CHELSA_bio10_15 Precipitation Seasonality 1979-2013
CHELSA_bio10_16 Precipitation of Wettest Quarter

1979-2013
CHELSA_bio10_17 Precipitation of Driest Quarter

1979-2013
CHELSA_bio10_18 Precipitation of Warmest Quarter

1979-2013
CHELSA_bio10_19 Precipitation of Coldest Quarter

1979-2013
CHELSA_bio10_2 Mean Diurnal Range 1979-2013
CHELSA_bio10_3 Isothermality 1979-2013
CHELSA_bio10_4 Temperature Seasonality 1979-2013
CHELSA_bio10_5 Max Temperature of Warmest

Month 1979-2013
CHELSA_bio10_6 Min Temperature of Coldest Month

1979-2013
CHELSA_bio10_7 Temperature Annual Range 1979-

2013
CHELSA_bio10_8 Mean Temperature of Wettest Quar-

ter 1979-2013
Continued on next page
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Table 5.2 – Continued from previous page
Variable name Description

CHELSA_bio10_9 Mean Temperature of Driest Quar-
ter 1979-2013

CHELSA_prec_1 Average precipitation January 1979-
2013

CHELSA_prec_10 Average precipitation October
1979-2013

CHELSA_prec_11 Average precipitation November
1979-2013

CHELSA_prec_12 Average precipitation December
1979-2013

CHELSA_prec_2 Average precipitation February
1979-2013

CHELSA_prec_3 Average precipitation March 1979-
2013

CHELSA_prec_4 Average precipitation April 1979-
2013

CHELSA_prec_5 Average precipitation May 1979-
2013

CHELSA_prec_6 Average precipitation June 1979-
2013

CHELSA_prec_7 Average precipitation July 1979-
2013

CHELSA_prec_8 Average precipitation August 1979-
2013

CHELSA_prec_9 Average precipitation September
1979-2013

CHELSA_temp10_1 Average temperature January 1979-
2013

CHELSA_temp10_10 Average temperature October 1979-
2013

CHELSA_temp10_11 Average temperature November
1979-2013

CHELSA_temp10_12 Average temperature December
1979-2013

CHELSA_temp10_2 Average temperature February
1979-2013

Continued on next page
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Table 5.2 – Continued from previous page
Variable name Description

CHELSA_temp10_3 Average temperature March 1979-
2013

CHELSA_temp10_4 Average temperature April 1979-
2013

CHELSA_temp10_5 Average temperature May 1979-
2013

CHELSA_temp10_6 Average temperature June 1979-
2013

CHELSA_temp10_7 Average temperature July 1979-
2013

CHELSA_temp10_8 Average temperature August 1979-
2013

CHELSA_temp10_9 Average temperature September
1979-2013

CHELSA_tmax10_1 Max temperature January 1979-
2013

CHELSA_tmax10_10 Max temperature October 1979-
2013

CHELSA_tmax10_11 Max temperature November 1979-
2013

CHELSA_tmax10_12 Max temperature December 1979-
2013

CHELSA_tmax10_2 Max temperature February 1979-
2013

CHELSA_tmax10_3 Max temperature March 1979-2013
CHELSA_tmax10_4 Max temperature April 1979-2013
CHELSA_tmax10_5 Max temperature May 1979-2013
CHELSA_tmax10_6 Max temperature June 1979-2013
CHELSA_tmax10_7 Max temperature July 1979-2013
CHELSA_tmax10_8 Max temperature August 1979-2013
CHELSA_tmax10_9 Max temperature September 1979-

2013
CHELSA_tmin10_1 Min temperature January 1979-2013
CHELSA_tmin10_10 Min temperature October 1979-

2013
Continued on next page
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Table 5.2 – Continued from previous page
Variable name Description

CHELSA_tmin10_11 Min temperature November 1979-
2013

CHELSA_tmin10_12 Min temperature December 1979-
2013

CHELSA_tmin10_2 Min temperature February 1979-
2013

CHELSA_tmin10_3 Min temperature March 1979-2013
CHELSA_tmin10_4 Min temperature April 1979-2013
CHELSA_tmin10_5 Min temperature May 1979-2013
CHELSA_tmin10_6 Min temperature June 1979-2013
CHELSA_tmin10_7 Min temperature July 1979-2013
CHELSA_tmin10_8 Min temperature August 1979-2013
CHELSA_tmin10_9 Min temperature September 1979-

2013
human.footprint.1993 Index of human pressure on the

environment in 1993
human.footprint.2009 Index of human pressure on the

environment in 2009
land_change Global human modification of ter-

restrial systems
ProbaV_bare_coverfraction Bare soil coverfraction
ProbaV_crops_coverfraction Crop coverfraction
ProbaV_grass_coverfraction Grass coverfraction
ProbaV_moss_coverfraction Moss coverfraction
ProbaV_tree_coverfraction Tree coverfraction
ProbaV_urban_coverfraction Urban coverfraction
dtm_curvature Profile curvature
dtm_downlslope_curvature Downslope curvature
dtm_dvm Digital terrain models
dtm_dvm2 Digital terrain models
dtm_elevation Elevation
dtm_negopeness Negative openness
dtm_slope Slope
dtm_tpi Topographic position index
dtm_vbf Valley Bottom Flatness
sol_clay_0cm Clay content (%) at 0cm depth

Continued on next page
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Table 5.2 – Continued from previous page
Variable name Description

sol_clay_100cm Clay content (%) at 100cm depth
sol_clay_10cm Clay content (%) at 10cm depth
sol_clay_200cm Clay content (%) at 200cm depth
sol_clay_30cm Clay content (%) at 30cm depth
sol_clay_60cm Clay content (%) at 60cm depth
sol_ocarbon_0cm Organic carbon (kg/m2) at 0cm

depth
sol_ocarbon_100cm Organic carbon (kg/m2) at 100cm

depth
sol_ocarbon_10cm Organic carbon (kg/m2) at 10cm

depth
sol_ocarbon_200cm Organic carbon (kg/m2) at 200cm

depth
sol_ocarbon_30cm Organic carbon (kg/m2) at 30cm

depth
sol_ocarbon_60cm Organic carbon (kg/m2) at 60cm

depth
sol_ph_0cm Ph (in H2O) at 0cm depth
sol_ph_100cm Ph (in H2O) at 100cm depth
sol_ph_10cm Ph (in H2O) at 10cm depth
sol_ph_200cm Ph (in H2O) at 200cm depth
sol_ph_30cm Ph (in H2O) at 30cm depth
sol_ph_60cm Ph (in H2O) at 60cm depth
sol_sand_0cm Sand content (%) at 0cm depth
sol_sand_100cm Sand content (%) at 100cm depth
sol_sand_10cm Sand content (%) at 10cm depth
sol_sand_200cm Sand content (%) at 200cm depth
sol_sand_30cm Sand content (%) at 30cm depth
sol_sand_60cm Sand content (%) at 60cm depth
sol_watercontent_
1500kPa_0cm

Soil water content (at 1500 kPa) at
0cm depth

sol_watercontent_
1500kPa_100cm

Soil water content (at 1500 kPa) at
100cm depth

sol_watercontent_
1500kPa_10cm

Soil water content (at 1500 kPa) at
10cm depth

Continued on next page



196 5 Predicting hotspots for invasive species introduction in Europe

Table 5.2 – Continued from previous page
Variable name Description

sol_watercontent_
1500kPa_200cm

Soil water content (at 1500 kPa) at
200cm depth

sol_watercontent_
1500kPa_30cm

Soil water content (at 1500 kPa) at
30cm depth

sol_watercontent_
1500kPa_60cm

Soil water content (at 1500 kPa) at
60cm depth

sol_watercontent_
33kPa_0cm

Soil water content (at 33 kPa) at
0cm depth

sol_watercontent_
33kPa_100cm

Soil water content (at 33 kPa) at
100cm depth

sol_watercontent_
33kPa_10cm

Soil water content (at 33 kPa) at
10cm depth

sol_watercontent_
33kPa_200cm

Soil water content (at 33 kPa) at
200cm depth

sol_watercontent_
33kPa_30cm

Soil water content (at 33 kPa) at
30cm depth

sol_watercontent_
33kPa_60cm

Soil water content (at 33 kPa) at
60cm depth

veg_fapar_apr Average photosynthetically active
radiation in April for 2014 to 2019

veg_fapar_aug Average photosynthetically active
radiation in August for 2014 to
2019

veg_fapar_dec Average photosynthetically active
radiation in December for 2014 to
2019

veg_fapar_feb Average photosynthetically active
radiation in February for 2014 to
2019

veg_fapar_jan Average photosynthetically active
radiation in January for 2014 to
2019

veg_fapar_jul Average photosynthetically active
radiation in July for 2014 to 2019

veg_fapar_jun Average photosynthetically active
radiation in June for 2014 to 2019

Continued on next page
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Table 5.2 – Continued from previous page
Variable name Description

veg_fapar_mar Average photosynthetically active
radiation in March for 2014 to 2019

veg_fapar_may Average photosynthetically active
radiation in May for 2014 to 2019

veg_fapar_nov Average photosynthetically active
radiation in November for 2014 to
2019

veg_fapar_oct Average photosynthetically active
radiation in October for 2014 to
2019

veg_fapar_sep Average photosynthetically active
radiation in September for 2014 to
2019

nightlights Global radiance calibrated night-
time lights (proxy for GDP)

POP_1975 Population density in 1975
POP_1990 Population density in 1990
POP_2000 Population density in 2000
POP_2015 Population density in 2015
W_PCIinbound Inverse-distance weighted port con-

nectivity index for incoming ship-
ments

W_PCIoutbound Inverse-distance weighted port con-
nectivity index for outgoing ship-
ments

W_Degree Inverse-distance weighted degree of
port within network

W_InDegree Inverse-distance weighted network
degree as importer

W_OutDegree Inverse-distance weighted network
degree as exporter

W_ClosenessFrom Inverse-distance weighted recipro-
cal of sum of shortest distances
from a port to all others

Continued on next page
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Table 5.2 – Continued from previous page
Variable name Description

W_ClosenessTo Inverse-distance weighted recipro-
cal of sum of shortest distances
from all other ports to this port

W_BetweennessLinks Inverse-distance weighted distance
to the two other ports if port is
closest

W_BetweennessTime Inverse-distance weighted number
of times this port appears as short-
est distance between two other
ports

minport_PCIinbound Port connectivity index for incom-
ing shipments for closest port

minport_PCIoutbound Port connectivity index for outgo-
ing shipments for closest port

minport_Degree Degree of port within network for
closest port

minport_InDegree Network degree as importer for
closest port

minport_OutDegree Network degree as exporter for
closest port

minport_ClosenessFrom Reciprocal of sum of shortest dis-
tances from a port to all others for
closest port

minport_ClosenessTo Reciprocal of sum of shortest dis-
tances from all other ports to this
port for closest port

minport_
BetweennessLinks

Distance to the two other ports if
port is closest for closest port

minport_
BetweennessTime

Number of times this port appears
as shortest distance between two
other ports for closest port

mindist Minimum distance to any port
meandist Mean distance to all ports
grip4_area_land_km2 m2 land area per 5 arcminute cell
grip4_total_dens_m_km2 density for all roads, equally

weighted
Continued on next page
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Table 5.2 – Continued from previous page
Variable name Description

grip4_tp1_dens_m_km2 density for GRIP type 1 - highways
grip4_tp2_dens_m_km2 density for GRIP type 2 - primary

roads
grip4_tp3_dens_m_km2 density for GRIP type 3 - secondary

roads
grip4_tp4_dens_m_km2 density for GRIP type 4 - tertiary

roads
grip4_tp5_dens_m_km2 density for GRIP type 5 - local

roads
WITHDRAWAL Total withdrawal
BA Available blue water
BWS_s Baseline water stress indicator

scores
WSV_s Interannual water variability indi-

cator scores
SV_s Seasonal water variability indicator

scores
HFO_s Flood Occurrence indicator scores
DRO_s Drough severity indicator scores
ECO_S_s Upstream Protected Land indicator

scores
MC_s Media Coverage indicator scores
DEFAULT Default weight overall water risk
veg_fapar_mean Average photosynthetically active

radiation for 2014 to 2019 across
months

veg_fapar_sd Standard deviation of photosynthet-
ically active radiation for 2014 to
2019 across months

POP_change Change in population density be-
tween 1995 to 2015

HF_change Change in human footprint be-
tween 1993 to 2009

erosion.0 Erosion risk category 0
erosion.1 Erosion risk category 1
erosion.2 Erosion risk category 2

Continued on next page
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Table 5.2 – Continued from previous page
Variable name Description

erosion.3 Erosion risk category 3
erosion.4 Erosion risk category 4
erosion.5 Erosion risk category 5
ProbaV_discrete_
classification.20

Landcover classification for shrubs

ProbaV_discrete_
classification.30

Landcover classification for herba-
ceous vegetation

ProbaV_discrete_
classification.40

Landcover classification for culti-
vated and managed cropland

ProbaV_discrete_
classification.50

Landcover classification for urban
areas

ProbaV_discrete_
classification.60

Landcover classification for bare or
sparse vegetation

ProbaV_discrete_
classification.80

Landcover classification for perma-
nent water bodies

ProbaV_discrete_
classification.90

Landcover classification for herba-
ceous wetland

ProbaV_discrete_
classification.100

Landcover classification for moss
and lichen

ProbaV_discrete_
classification.111

Landcover classification for closed
evergreen needleleaf forests

ProbaV_discrete_
classification.112

Landcover classification for closed
evergreen broadleaf forests

ProbaV_discrete_
classification.113

Landcover classification for closed
deciduous needleleaf forests

ProbaV_discrete_
classification.114

Landcover classification for closed
deciduous broadleaf forests

ProbaV_discrete_
classification.115

Landcover classification for closed
mixed forests

ProbaV_discrete_
classification.116

Landcover classification for closed
unknown forests

ProbaV_discrete_
classification.121

Landcover classification for open
evergreen needle leafforests

ProbaV_discrete_
classification.122

Landcover classification for open
evergreen broad leafforests

Continued on next page
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Table 5.2 – Continued from previous page
Variable name Description

ProbaV_discrete_
classification.124

Landcover classification for open
deciduous broad leafforests

ProbaV_discrete_
classification.125

Landcover classification for open
mixed forests

ProbaV_discrete_
classification.126

Landcover classification for open
unknown forests

ProbaV_discrete_
classification.other

Landcover classification for any
other category

pnv_biometype.1 Tropical evergreen broadleaf forest
pnv_biometype.2 Tropical semi-evergreen broadleaf

forest
pnv_biometype.3 Tropical deciduous broadleaf forest
pnv_biometype.4 Warm-temperate evergreen and

mixed forest
pnv_biometype.7 Cool-temperate rainforest
pnv_biometype.8 Cool evergreen needleleaf forest
pnv_biometype.9 Cool mixed forest
pnv_biometype.13 Temperate deciduous broadleaf for-

est
pnv_biometype.14 Cold deciduous forest
pnv_biometype.15 Cold evergreen needleleaf forest
pnv_biometype.16 Temperate sclerophyll woodland

and shrubland
pnv_biometype.17 Temperate evergreen needleleaf

open woodland
pnv_biometype.18 Tropical savanna
pnv_biometype.20 Xerophytic woods and scrubs
pnv_biometype.22 Steppe
pnv_biometype.27 Desert
pnv_biometype.28 Graminoid and forb tundra
pnv_biometype.30 Erect dwarf shrub tundra
pnv_biometype.31 Low and high shrub tundra
minport_Port.Adelaide Closest port is Adelaide
minport_Port.Antwerp Closest port is Antwerp
minport_Port.
Baltimore MD

Closest port is Baltimore

Continued on next page
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Table 5.2 – Continued from previous page
Variable name Description

minport_Port.
Dutch Harbor AK

Closest port is Dutch Harbor

minport_Port.
Houston TX

Closest port is Houston

minport_Port.Karachi Closest port is Karachi
minport_Port.Kemi Closest port is Kemi
minport_Port.Melbourne Closest port is Melbourne
minport_Port.Mobile AL Closest port is Mobile
minport_Port.Montreal Closest port is Montreal
minport_Port.
New York NY/NJ

Closest port is New York

minport_Port.
Novorossiysk

Closest port is Novorossiysk

minport_Port.
Prince Rupert BC

Closest port is Prince Rupert

minport_Port.Rijeka Closest port is Rijeka
minport_Port.
St Petersburg

Closest port is is Saint Petersburg

minport_Port.Sydney Closest port is Sydney
minport_Port.
Vostochniy

Closest port is Vostochniy

minport_Port.
Xingang/Tianjin

Closest port is Xingang

minport_Port.Yingkou Closest port is Yinkou
minport_Port.other Closest port is other port not listed

above
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Table 5.3: Overview of raw data with spatial information.

Description Data type/reso-

lution

Name of species Character string
Latitude Decimal degrees
Longitude Decimal degrees
Annual Mean Temperature 1979-2013 30 arc sec
Mean Temperature of Warmest Quarter 1979-2013 30 arc sec
Mean Temperature of Coldest Quarter 1979-2013 30 arc sec
Annual Precipitation 1979-2013 30 arc sec
Precipitation of Wettest Month 1979-2013 30 arc sec
Precipitation of Driest Month 1979-2013 30 arc sec
Precipitation Seasonality 1979-2013 30 arc sec
Precipitation of Wettest Quarter 1979-2013 30 arc sec
Precipitation of Driest Quarter 1979-2013 30 arc sec
Precipitation of Warmest Quarter 1979-2013 30 arc sec
Precipitation of Coldest Quarter 1979-2013 30 arc sec
Mean Diurnal Range 1979-2013 30 arc sec
Isothermality 1979-2013 30 arc sec
Temperature Seasonality 1979-2013 30 arc sec
Max Temperature of Warmest Month 1979-2013 30 arc sec
Min Temperature of Coldest Month 1979-2013 30 arc sec
Temperature Annual Range 1979-2013 30 arc sec
Mean Temperature of Wettest Quarter 1979-2013 30 arc sec
Mean Temperature of Driest Quarter 1979-2013 30 arc sec
Average precipitation January 1979-2013 30 arc sec
Average precipitation October 1979-2013 30 arc sec
Average precipitation November 1979-2013 30 arc sec
Average precipitation December 1979-2013 30 arc sec
Average precipitation February 1979-2013 30 arc sec
Average precipitation March 1979-2013 30 arc sec
Average precipitation April 1979-2013 30 arc sec
Average precipitation May 1979-2013 30 arc sec
Average precipitation June 1979-2013 30 arc sec
Average precipitation July 1979-2013 30 arc sec
Average precipitation August 1979-2013 30 arc sec

Continued on next page
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Table 5.3 – Continued from previous page
Description Data type/reso-

lution

Average precipitation September 1979-2013 30 arc sec
Average temperature January 1979-2013 30 arc sec
Average temperature October 1979-2013 30 arc sec
Average temperature November 1979-2013 30 arc sec
Average temperature December 1979-2013 30 arc sec
Average temperature February 1979-2013 30 arc sec
Average temperature March 1979-2013 30 arc sec
Average temperature April 1979-2013 30 arc sec
Average temperature May 1979-2013 30 arc sec
Average temperature June 1979-2013 30 arc sec
Average temperature July 1979-2013 30 arc sec
Average temperature August 1979-2013 30 arc sec
Average temperature September 1979-2013 30 arc sec
Max temperature January 1979-2013 30 arc sec
Max temperature October 1979-2013 30 arc sec
Max temperature November 1979-2013 30 arc sec
Max temperature December 1979-2013 30 arc sec
Max temperature February 1979-2013 30 arc sec
Max temperature March 1979-2013 30 arc sec
Max temperature April 1979-2013 30 arc sec
Max temperature May 1979-2013 30 arc sec
Max temperature June 1979-2013 30 arc sec
Max temperature July 1979-2013 30 arc sec
Max temperature August 1979-2013 30 arc sec
Max temperature September 1979-2013 30 arc sec
Min temperature January 1979-2013 30 arc sec
Min temperature October 1979-2013 30 arc sec
Min temperature November 1979-2013 30 arc sec
Min temperature December 1979-2013 30 arc sec
Min temperature February 1979-2013 30 arc sec
Min temperature March 1979-2013 30 arc sec
Min temperature April 1979-2013 30 arc sec
Min temperature May 1979-2013 30 arc sec
Min temperature June 1979-2013 30 arc sec
Min temperature July 1979-2013 30 arc sec

Continued on next page
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Table 5.3 – Continued from previous page
Description Data type/reso-

lution

Min temperature August 1979-2013 30 arc sec
Min temperature September 1979-2013 30 arc sec
Profile curvature 250 meter
Downslope curvature 250 meter
Digital terrain models DVM 250 meter
Digital terrain models DVM2 250 meter
Elevation 250 meter
Negative openness 250 meter
Slope 250 meter
Topographic position index 250 meter
Valley Bottom Flatness 250 meter
Predicted biome type 250 meter
Clay content (%) at 0cm depth 250 meter
Clay content (%) at 10cm depth 250 meter
Clay content (%) at 100cm depth 250 meter
Clay content (%) at 200cm depth 250 meter
Clay content (%) at 30cm depth 250 meter
Clay content (%) at 60cm depth 250 meter
Organic carbon (kg/m2) at 0cm depth 250 meter
Organic carbon (kg/m2) at 10cm depth 250 meter
Organic carbon (kg/m2) at 100cm depth 250 meter
Organic carbon (kg/m2) at 200cm depth 250 meter
Organic carbon (kg/m2) at 30cm depth 250 meter
Organic carbon (kg/m2) at 60cm depth 250 meter
Ph (in H2O) at 0cm depth 250 meter
Ph (in H2O) at 10cm depth 250 meter
Ph (in H2O) at 100cm depth 250 meter
Ph (in H2O) at 200cm depth 250 meter
Ph (in H2O) at 30cm depth 250 meter
Ph (in H2O) at 60cm depth 250 meter
Sand content (%) at 0cm depth 250 meter
Sand content (%) at 10cm depth 250 meter
Sand content (%) at 100cm depth 250 meter
Sand content (%) at 200cm depth 250 meter
Sand content (%) at 30cm depth 250 meter

Continued on next page
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Table 5.3 – Continued from previous page
Description Data type/reso-

lution

Sand content (%) at 60cm depth 250 meter
Soil water content (at 1500 kPa)
at 0cm depth

250 meter

Soil water content (at 1500 kPa)
at 10cm depth

250 meter

Soil water content (at 1500 kPa)
at 100cm depth

250 meter

Soil water content (at 1500 kPa)
at 200cm depth

250 meter

Soil water content (at 1500 kPa)
at 30cm depth

250 meter

Soil water content (at 1500 kPa)
at 60cm depth

250 meter

Soil water content (at 33 kPa) at 0cm depth 250 meter
Soil water content (at 33 kPa) at 10cm depth 250 meter
Soil water content (at 33 kPa) at 100cm depth 250 meter
Soil water content (at 33 kPa) at 200cm depth 250 meter
Soil water content (at 33 kPa) at 30cm depth 250 meter
Soil water content (at 33 kPa) at 60cm depth 250 meter
Average photosynthetically active radiation
in April for 2014 to 2019

250 meter

Average photosynthetically active radiation
in August for 2014 to 2019

250 meter

Average photosynthetically active radiation
in December for 2014 to 2019

250 meter

Average photosynthetically active radiation
in February for 2014 to 2019

250 meter

Average photosynthetically active radiation
in January for 2014 to 2019

250 meter

Average photosynthetically active radiation
in July for 2014 to 2019

250 meter

Average photosynthetically active radiation
in June for 2014 to 2019

250 meter

Average photosynthetically active radiation
in March for 2014 to 2019

250 meter

Continued on next page
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Table 5.3 – Continued from previous page
Description Data type/reso-

lution

Average photosynthetically active radiation
in May for 2014 to 2019

250 meter

Average photosynthetically active radiation
in November for 2014 to 2019

250 meter

Average photosynthetically active radiation
in October for 2014 to 2019

250 meter

Average photosynthetically active radiation
in September for 2014 to 2019

250 meter

Bare soil coverfraction 100 meter
Crop coverfraction 100 meter
Classification of land uses 100 meter
Grass coverfraction 100 meter
Moss coverfraction 100 meter
Tree coverfraction 100 meter
Urban coverfraction 100 meter
Erosion risk 15 arc sec
Total withdrawal (m3) Spatial polygons
Available blue water (m3) Spatial polygons
Baseline water stress indicator scores (0-5) Spatial polygons
Interannual Variability indicator scores (0-5) Spatial polygons
Seasonal variability indicator scores (0-5) Spatial polygons
Flood Occurrence indicator scores (0-5) Spatial polygons
Drough severity indicator scores (0-5) Spatial polygons
Upstream Protected Land indicator scores (0-5) Spatial polygons
Media Coverage indicator scores (0-5) Spatial polygons
Default weight overall water risk Spatial polygons
Biodiversity intactness 1 kilometer
Population density in 1975 250m
Population density in 1990 250m
Population density in 2000 250m
Population density in 2015 250m
m2 land area per 5 arcminute cell 5 arc minutes
density for all roads, equally weighted 5 arc minutes
density for GRIP type 1 - highways 5 arc minutes
density for GRIP type 2 - primary roads 5 arc minutes

Continued on next page
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Table 5.3 – Continued from previous page
Description Data type/reso-

lution

density for GRIP type 3 - secondary roads 5 arc minutes
density for GRIP type 4 - tertiary roads 5 arc minutes
density for GRIP type 5 - local roads 5 arc minutes
Human pressure on the environment
in 1993 (index)

1 kilometer

Human pressure on the environment
in 2009 (index)

1 kilometer

Ports‘ Latitude Decimal degrees
Ports‘ Longitude Decimal degrees
Port name Character string
Port connectivity index for incoming shipments Numeric
Port connectivity index for outgoing shipments Numeric
Degree of port within network Numeric
Network degree as importer Numeric
Network degree as exporter Numeric
Reciprocal of sum of shortest distances
from a port to all others

Numeric

Reciprocal of sum of shortest distances
from all other ports to this port

Numeric

Distance to the two other ports if port is closest Numeric
Number of times this port appears as shortest
distance between two other ports

Numeric

Global human modification of terrestrial systems 1 kilometer
Accessibility to cities in driving time 1 kilometer
Global radiance calibrated nighttime lights 30 arc sec
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Table 5.4 Overview of tuned hyperparameters for all approaches to cross valida-
tion and the generation of background points.

Cross-Validation Background points U _

random random 0.90 0.00

random kdbias 0.40 0.00

random kd05dfar 0.90 0.00

spatial blocks random 0.40 0.05

spatial blocks kdbias 0.10 0.40

spatial blocks kd05dfar 0.70 0.03

temporal random 1.00 0.00

temporal kdbias 0.70 0.00

temporal kd05dfar 0.90 0.00





Chapter 6

General Discussion

The thesis provided four research chapters that addressed distinct
yet connected objectives. The methodologies used are diverse and,
consequently, the research articles that resulted out of the work pre-
sented here contributed to several research streams. The contributions
made were in part methodological and in part through critical insights
obtained from applications to damage abatement input use, potential
impacts from the invader Xylella fastidiosa subspecies pauca, and risk
toward pest introduction across Europe.

Chapter 2 provided an empirical approach to measure spatial
spillover effects of decision-making units’ characteristics with manage-
rial performance of neighbors. This allowed to relax the assumption
that decision-making units operate in isolation from their peers. The
study extended the widely used bootstrap truncated regression model
to estimate the parameter of the spatial weight matrix. The steps
proposed for the estimation of this parameter are transferable to other
modelling work, possibly unrelated to efficiency measurement, in which
a maximum likelihood estimator is used and a spatial lag in X (SLX)
model employed. In addition, the application contributed to the on-
going discussion on spatial dependence in managerial performance.
In contrast to previous work, the chapter stressed the benefits of mea-
suring spatial spillovers for input- and output-specific inefficiencies
separately, as opposed to using an overall efficiency score.

The first research question was: Do neighbors’ characteris-

tics associate with farmers’ managerial performance? I addressed

211
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this question in chapter 2 and found that: Yes, neighbors’ charac-

teristics were found to associate with farmers’ managerial perfor-

mance. However, how the characteristics associate with farmers’

performance was found to depend on the definition of the neigh-

borhood.

Chapter 3 provides an integrated framework that derives insights
from climatic suitability, spread modelling, and economic modelling.
Building on previous work, we computed an ensemble climatic suit-
ability model based on 10 machine learning algorithms. Furthermore,
we extended the radial range expansion model to (i) take the climatic
suitability into account within the dispersal process, (ii) use a mixed
neighborhood structure for the pixel-to-pixel transmission to result in
a radial spread pattern despite the underlying square grids, (iii) include
host presence, and (iv) capture uncertainty in the point of introduc-
tion via stochastic simulations using a High-Performance Computing
Cluster. The economic model showed that (a) losses in investments of
perennial hosts can be captured through foregone annuities, (b) het-
erogeneity among different cropping systems can be integrated using
regional statistics on host-density and irrigation, (c) net-present value
models can be extended to include price responses, and (d) worst-
and best-case economic scenarios allow to bracket a range of impacts
that can provide information on the value of mitigation strategies. In
terms of application, the chapter has produced crucial information for
risk managers, scientists, and the public on the potential economic
impact further spread of Xylella fastidiosa subspecies pauca may cause
to European olive growers.

The second research question was: What are the potential

economic impacts from Xylella fastidiosa subspecies pauca to

European olive grower? I addressed this question in chapter 3

and found that: For Italy, across the considered spread rates the

potential economic impact over 50 years ranged from 1.86 to

5.17 billion Euro for the economic worst-case scenario in which

production ceases after orchards die off. If replanting with re-

sistant varieties is feasible, the impact ranged from 0.59 to 1.57

billion Euro. For Greece, across the considered spread rates the

potential economic impact over 50 years ranged from 0.21 to

1.94 billion, if replanting is not feasible, and 0.09 to 0.58 billion,

if replanting is feasible. For Spain, across the considered spread
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rates the potential economic impact over 50 years ranged from

0.71 to 16.86 billion, if replanting is not feasible, and 0.39 to 4.98

billion, if replanting is feasible. Even under slow spread rates and

the ability to replant with resistant cultivars, economic impact

from further spread of Xylella fastidiosa subspecies pauca was

sizable and warrants regulatory response.

Chapter 4 has contributed to the literature by illustrating how
spatially explicit pest spread models can be translated to suit the needs
of partial equilibrium models. Furthermore, the chapter has shown
how global sensitivity analyses can be used in the context of partial
equilibrium models. The application highlighted that the largest share
of the potential future impact from Xylella fastidiosa subspecies pauca
in the olive oil market would fall on consumers because of higher prices
following reductions in supply due to the invasion. This redistribution
of impact to consumers is expected to be particularly severe due to the
inelastic nature of the market. The analysis highlights that the problem
of invasive pests should be contextualized as a societal challenge as
opposed to one that affects only producers. The chapter stressed the
fact that consumers are beneficiaries of pest control. I argued that this
must be communicated to the public to raise awareness that invasive
pest control efforts benefit citizens.

The third research question was: Who benefits and who loses

from the control of Xylella fastidiosa subspecies pauca? I ad-

dressed this question in chapter 4 and found that: Due to the

inelastic supply and demand, the main beneficiaries of control

measures against Xylella fastidiosa subspecies pauca are con-

sumers. Under disease spread, competitors in areas unlikely to

be affected are worse off from control efforts.

Chapter 5 has shown that a joint analysis of several hundred pests
is able to produce hotspot maps with a high accuracy. This approach
to mapping might be one way to address the overwhelming absence
of information for many hazardous organisms which results out of the
considerable time and labor requirements for species-specific analyses.
By combining spatial data from various sources ranging climate, soil,
water, and anthropogenic factors, the chapter has produced a solid
base of georeferenced data that can easily be used for future work. The
chapter has also contributed to discussions within the species distribu-
tion modelling literature on appropriate techniques for pseudo-absence
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generation and cross-validation. In terms of application, the results
presented in chapter 5 clearly stress the need to generate harmonized
systematically collected presences. Furthermore, I highlighted the need
to include true absences into pest surveys and make these data publicly
available.

The fourth research question was: Can joint analyses of vari-

ous pests help identify weak-links and thereby support collective

control? I addressed this question in chapter 5 and found that:

Yes, joint analyses of various pests could help to identify weak-

links and inform collective control. However, harmonized, sys-

tematic, species survey data comprising also true absences are

required to further validate and improve these maps.

The thesis, as a collection of these articles, has contributed to the
literature by providing methodological approaches which (i) capture
spatial dependencies, (ii) account for environmental and economic
heterogeneity at the level of granularity feasible under the available
data, (iii) acknowledge the temporal nature of pest spread and eco-
nomic impact in perennial hosts, (iv) highlight the actionable insights
sensitivity analyses can generate, and (iv) propose cost-effective mod-
elling strategies to address the absence of risk maps for many invasive
species.

In the remainder of this chapter, I will first discuss implications
of economic and spatial dependencies and heterogeneity for pest risk
assessments and analyses of optimal pest control by placing the results
of this thesis into the context of related research. In section 6.2, I
will discuss opportunities and challenges for agri-environmental data
integration which can be achieved through a proper spatial indexation
of economic data. In section 6.3, I derive policy implications. In
section 6.4, I discuss limitations of the work presented in this thesis
and propose avenues for future work. Lastly, section 6.5 lists the main
conclusions.
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6.1 Implications of mutual dependence and
heterogeneity

The foundational economic principle that demand and supply jointly
determine price which in turn influences economic wellbeing of market
participants is widely understood. The pricing mechanism is the link
that creates mutual dependence in outcome among producers and
between producers and consumers. The economic dependence via
prices results in competition and strategic decisions of market partic-
ipants [305]. Thereby, economic dependence among individuals lays
the foundation for the very vast stream of research on game theory
[55, 62]. Yet, this dependence is often ignored in analyses on pest
control and impact. Invasive species control requires a coordination
among stakeholders and across countries. Hence, as shown in chapter 3
and 4, modelling economic dependencies in pest risk assessments can
generate critical information on possibly diverging incentives among
the different actors. This can support discussions and allow to find
common ground on, for example, budget allocation for management,
the design of policy such that vulnerable stakeholders are supported
especially, and by engaging stakeholders that lack private (economic)
incentives to ensure collective efforts.

Traditionally, farm-level decision making of pest control was an-
alyzed under the damage abatement framework [100]. In a nutshell,
models derived optimal control levels such that marginal costs of
actions equate to their marginal benefits [223, 306]. The underlying
theoretical foundation of such modelling efforts was the idea that costs
and benefits are readily observable by the decision-making units. The
assumption that one decision maker can decide upon the level of
control effectively constrains the geographic space analyzed to the
unit’s own property. Such analyses fail to recognize that marginal costs
of pest control are a function of pest pressure which itself is a function
of neighbors’ actions [97, 307]. Our identification of spatial spillovers
in chapter 2 provides empirical support of this. Consequently, the
marginal cost and benefit functions of pest control extend beyond a
single decision-making unit and farm-level decision analyses can be
expected to fail in capturing the entirety of costs and benefits which
may result in suboptimal strategies.
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Compared to spatial dependence, temporal dependence has found
significantly more attention in the literature. Economic modelling
work has recognized that on-farm profit maximization might not be
appropriately modelled as a one-period problem, but rather a dynamic
optimization of long-term profits is needed to better capture a farmer’s
objective function [308]. Similarly, control of pests in the current year
might influence the populations’ reproductive cycle and thereby result
in spillover effects which influence the pest pressure in the following
year [31].

There certainly is a case to be made on the need to refine temporal
analyses. Impact assessments in perennial hosts require temporal
considerations. Chapter 3 contributed to temporal aspects by showing
how losses in undertaken investments, due to the premature death
of hosts, could be captured through the foregone annuities. However,
often, as shown in chapter 3 and 4, temporal models use discrete annual
time steps and thereby fail to acknowledge within-year dynamics, such
as the different development stages of a pest, that might be highly
relevant for optimizing control [175].

While there is a need to improve the temporal resolution of analy-
ses, I believe the spatial dimension remains significantly more under-
utilized in economics. Just as temporal problems involve choosing a
strategy that comprises a path of decisions which are interdependent
across time [309], optimal control in a spatial system involve simul-
taneously choosing actions across an interconnected landscape [39].
It is crucial to understand that the, in economics, traditionally asked
questions on when and how much control should be employed are
inseparable from the complex spatial question on where these efforts
should be targeted [39].

Through chapter 2, I showed that managerial performance of a
farm can be associated to neighbors’ characteristics. While I did find
that spatial spillovers were associated with input-specific farm perfor-
mance, the coefficient directions for some characteristics depended on
the definition of the neighborhood. It seems plausible that there might
be differences in community effects versus individuals influencing their
immediate neighbors. However, while our study advocated for practi-
tioners to test different model specifications, I must acknowledge the
lack of sound theoretical work on possible peer effects.
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The spatial econometric techniques are traditionally computed
using geographic distances as a basis for defining the neighborhood
structure among observations [126]. While some work has been done
using alternative proxies for closeness such as the size of trade flows be-
tween regions [310], there is a critical lack of work on how economists
could capture knowledge spillover effects in a world in which social
networks are digital and easily span across the globe. Neighborhood
structures which are based on geographic distances will remain appro-
priate for capturing biological interdependencies such as effects from
pest spread, but they may be meaningless for modelling exchanges of
knowledge in a world in which people feel more closely connected to a
digital representation of a person sitting on the other end of the world
compared to a neighbor living right next door. Nevertheless, chapter
2 contributes to the discussion on the need of extending decision
analyses beyond a single farm, certainly in analyses of optimal pest
control.

Spatial heterogeneity results from differences in the operational
environmental that lead to different input requirement and output
possibility sets. The need to correct for heterogeneity is widely ac-
knowledge in econometric work and most commonly approached
through panel estimators that aim to control heterogeneity implic-
itly through random or fixed effects [311, 312]. Similarly, the need to
carefully consider environmental differences between decision-making
units when comparing their managerial performance has already been
stressed in the seminal work of Farrell [102]. While some work has
addressed spatial heterogeneity in efficiency and productivity analy-
ses (e.g., [103, 104]), majority of benchmarking studies do not include
any environmental data. While the inclusion of quasi-fixed factors
is often done to acknowledge economic differences among decision-
making units, incorporating data to account for differences in the
physical environment remains to be the exception. Fortunately, this
issue has started to attract the attention of scholars in recent years
(e.g., [104, 313–317]). Ignorance of potential differences in the opera-
tional environment among decision-making units risks that (spatial)
heterogeneity is falsely attributed to managerial inefficiency [316]. Un-
fortunately, despite initially planning to do so, in chapter 2 I was also
not able to appropriately correct for environmental heterogeneity as no
data on relevant environmental factors were available. After receiving
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access to the data, I realized that the geographic information provided
was shifted to retain anonymity of farmers. Consequently, external
environmental data could not be added to the analysis.

Acknowledging heterogeneity is also important for pest risk assess-
ments. Differences in the environmental conditions of locations, i.e.,
spatial heterogeneity, are fundamental to species distribution models
which predict differences in areas suitability for establishment precisely
because of variation in environmental conditions [244, 318]. Simi-
larly, spread modelling work has long recognized the need to capture
environmental heterogeneity in the landscape [75, 93]. Despite this,
economic pest risk assessments often compute potential impacts using
aggregate markets (e.g., [4, 179, 223, 319, 320]). Arguably, heterogeneity
will result in varying impacts and consequences from management
practices. In chapter 3, I have stratified the olive production into dif-
ferent cropping systems. This turned out to be particularly relevant
when simulating replanting of olive orchards as high-density system
reach a profitable state significantly faster than traditional, low-density,
orchards.

Hence, while stratification is useful to refine the aggregated country-
level estimates, in my view, the more important benefit of acknowl-
edging heterogeneity, e.g., through stratification, is that it allows to
assess whether there are unequal consequences from pest spread to
different strata. For example, due to the differences in the orchard’s
growth speed [215], highly commercialized high-density systems could
potentially recover relatively quickly from further spread of the pest
if resistant cultivars were available. Small-scale growers that cultivate
traditional orchards might not only lack the financial means for re-
planting, due to the system’s lower profitability, but they would also
have to bear a longer nurturing period following replanting in which
trees are not producing significant yields. Such insights are not possible
if homogeneity of the population is assumed. Yet, these results are
highly relevant for the design of policies that may aim at supporting
more vulnerable strata especially. Having said that, the stratification
as done in chapter 3 is far from perfect. I will revisit this point in more
detail in the next section and in the section on limitations below.

The lack of spatial modelling work in economic analyses of pest
impact and control is unlikely to be related to the unavailability of
spatial biological models. Economic models severely lag behind in
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their ability to integrate spatial components. Yet, spatial economic
models are very much needed to derive optimal strategies [321]. Many
economic analyses use non-spatial numerical simulations that provide
estimates of the supply affected in non-spatial, aggregated, markets
[4, 96, 320]. However, as shown in chapter 3 and 4 even if spatially
explicit models for pest spread are at hand, results of them must
often either be translated into a non-spatial representation or one that
aggregates from precise geographic locations to country-level estimates.
I will discuss my view on why this might be the case at the end of the
section and more extensively in the next section of this chapter.

Non-spatial numerical simulations are unable to acknowledge po-
tential spatial clustering of hosts and they are unable to derive insights
on locations in which a pest introduction would result in drastic impact.
Not seldom, the production of host plants is somewhat concentrated
in certain areas. This aspect is critical to the realization of pest spread
and impact [321]. Spatial clustering of host cultivation results out of
differences in habitat suitability, as well as potential economic bene-
fits from agglomeration [32], or an area’s reputation for a particular
product which can generate price premia and thereby incentivize
cultivation [322, 323]. While the effect of monocultures on pest risk
traditionally received attention [324], here I do not necessarily refer
to monocultures but merely to differences in the regional focus on
certain crops. As evident from the used landcover data in chapter 3,
olive cultivation is heavily concentrated in certain parts of Europe.
In Spain, this concentration is in Andalusia, whereas in Greece the
concentration is on Crete.

The spatial clustering of hosts has crucial implication for pest
epidemics for two reasons. First, depending on the pathosystem, and
the dispersal process of the pest, the likelihood of pest introduction
might be higher in areas with more hosts present. The larger the
number of hosts within an area, the higher might be the likelihood
of introduction there, which aggravates risk. Second, if hazardous
pests are introduced into a host hotspot even slow, very localized,
spread rates can result in devasting impacts. This was evident from the
stochastic results of spread over time for Xylella fastidiosa subspecies
pauca following simulated introductions into Greece or Spain. Similarly,
Strona et al. [325] show that a clustered network of hosts may result in
vast geographic areas essentially become a small world. If the network
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of hosts is sufficiently tight epidemiological uncertainties may become
close to irrelevant [156]. As host locations matter, the geographic point
of pest introduction becomes a critical component of the modelling
work [39]. Consequently, deriving the sensitivity of results with respect
to different points of introduction allows for actionable insights on
areas that should be prioritized in pest surveys. The simplification of
pest spread using non-spatial models essentially results in a smoothed
progression of the invasion over time which implicitly assumes that
hosts are homogeneously spread over the landscape. As many host
crops are cultivated in a clustered way, such simplified spread modelling
ignoring the spatial patterns of host cover can result in wrong insights
on the potential epidemiological progression and, as a result, economic
impact.

The spatial dimension comprises more than intangible interactions
of individuals’ actions across geographic areas. Including spatial as-
pects into modelling work means acknowledging the heterogeneity
of areas and understanding that the landscape configuration itself is
critical for the epidemiological progression, pest control, and impact
assessments [81, 83, 93, 326]. Chapter 3 discussed economic benefits
from resistant olive cultivars to control the spread of Xylella fastid-
iosa subspecies pauca. It was assumed that replanting followed the
pest affecting an orchard. Thereby, spread continued throughout the
landscape and replanting was merely a reactive response. Resistant
varieties may still contribute to transmission [187], however, if the
inoculum provided by resistant cultivars is sufficiently small the spatial
configuration of where hosts are replanted, possibly before the pest
arrives, can become a critical factor in managing the invasion.

Differences in the landscape configuration might also result in
differences in the environmental burden from control measures such as
pesticide applications [72, 327]. Therefore, not only environmental im-
pact assessments for pesticides must take the landscape configuration,
and possible future changes of it, into account [328], but also analyses
of optimal pest control strategies should take the heterogeneity of the
analyzed landscape and its configuration into account to minimize
environmental burden. As pesticide applications are in the millions of
tons worldwide [27], this is a critical issue that deserves more attention
in future modelling work.
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As a silver lining: including information on the landscape config-
uration does not solely add complexity without providing benefits.
Epanchin-Niell & Wilen [39] show that control strategies can become
more effective when using information on host locations, natural barri-
ers, and dispersal geometries. This was similarly visible in our spread
modelling efforts for Xylella fastidiosa subspecies pauca. In Greece, the
country topography, with many waterbodies separating areas of pro-
duction, might be exploitable and thereby could result in eradication
efforts becoming more feasible compared to other regions in Europe if
the pest were to be introduced in the future. In addition, by constrain-
ing spread to climatically suitable habitat I simulated epidemics that
had to travel around non-suitable hurdles such as mountain ranges.
This not only delayed realized spread, through the additional path
that was required to spread around the hurdle, which is relevant for
measuring discounted economic impact, but non-penetrable hurdles
also opened opportunities for control strategies that exploit these
boundaries. By strategically incorporating landscape features into the
control strategy, the invasion front and consequently impact can be
reduced, and control strategies can become more cost effective [39].
While certainly far from perfect, through inclusion of information on
climatic suitability and host locations I did succeed in capturing some
of these spatial aspects in chapters 3 and 4. An integration of addi-
tional landscape features into the spread model developed in chapter
3 could easily be achieved using gridded data which provides a binary
indication of whether a given pixel can be spread through or not.

A strategic placement of hosts can reduce the pest risk [321]. The
fact that the distances between hosts matters has been introduced to
everyone around the globe in the recent COVID crises through social
distancing measures. The same applies to plant pests. By acknowledg-
ing the landscape configuration of hosts, the continuity of spread can
be disrupted and risk for future pest invasions can be reduced. This
also allows to minimize the application of ecotoxic control agents such
as pesticides and fungicides as these could be placed more strategi-
cally as opposed to large-scale spraying on every field in a region [321].
While the idea of spatial barriers between hosts is already applied
in intercropping and strip-cropping techniques [329–331], achieving
this across a landscape would require a coordination of collective
efforts across many individual decision-making units. Minimizing risks
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associated with spatially clustered hosts could result in discontinuous,
patchy, surfaces of host availability such that the maximum extent
of a pest epidemic would be somewhat limited in absence of long-
distance jumps [331]. The decrease in economic risk and the benefits
of a slowing down of potential neighbor to neighbor transmission
should be considered in analyses on sound landscape configurations
for agricultural production [326, 332–334].

The dissertation has provided four research chapters which em-
phasize the crucial importance of space in economic analyses. The
discussion within this section has further substantiated why “space
matters” [321, p. 395]. Hence, the question emerges: why do many eco-
nomic analyses continue to ignore the spatial dimension? I believe this
is likely related to two factors of which none has to do with the added
complexity of spatial modelling work, and both need to be remedied.
First, in contrast to temporal models, spatial modelling techniques
remain largely absent from undergraduate and graduate curricula in
economics. Consequently, many young economists have limited to no
exposure to spatial techniques before starting their research career.
This likely constrains the conceptual breath in which many researchers
think when approaching a problem that may have underlying spatial
dynamic structure such as pest spread. Second, most economic data
lack a proper spatial indexation. Including the time, in years, months,
days, or even hours and minutes, a record was observed alongside
the measured value has become common practice. Yet, the majority
of economic data has either no spatial index at all, or very coarse
information indicating the country or, if lucky, the NUTS-2 region in
which a measurement was taken. In the rare cases in which precise geo-
graphic information is available in microeconomic data, confidentiality
restrictions often prevent that these data are provided to researchers.
Time-series analysts would likely not be able to learn very much from
data with a temporal resolution in decades or centuries. The same
applies to coarse spatial information. I believe in economic research
in general, but for agricultural economics in particular, we need to
drastically change this norm and acknowledge that not only when but
also where a measurement was taken is crucial for analyses. In what
follows, I will take a closer look at opportunities and challenges for
agri-environmental data integration which can be achieved through a
proper spatial indexation.
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6.2 Agri-environmental Data Integration

Above, I have argued that spatial heterogeneity and dependence matter
in analyses on impact and control of pests. I have also noted that
many economic analyses remain non-spatial, and that this fact is
likely not related to the unavailability of spatial biological models.
Carrasco et al. [97] noted that improving the integration of biological
and economic models would require information on the marginal
and average cost function over the landscape. This directly relates
to the point made above on the need to extend analyses on optimal
control beyond a single farm. In chapter 2, I was unable to incorporate
environmental data to account for spatial heterogeneity. In chapters 3
and 4, the precise geographic spread simulations had to be aggregated
to country-level estimates. The sole reason for these limitations was
the unavailability of a finer spatial indexation for economic data.

Despite early recognition of the importance of time in empirical
models [311, 312], prior to 1970 even simple regression models took up
to a day to compute on the available electromechanical desk computers
which, among other factors, resulted in mostly cross-sectional analyses.
In subsequent years, the statistical developments proliferated and over
time economic research more and more tried to replace cross-sectional
analyses by panel techniques which account for heterogeneity among
observations [335]. Arguably, these developments were enabled by bet-
ter computing technologies and driven by an increasing understanding
that temporal effects cannot only be exploited to control for individ-
ual heterogeneity, but that the temporal dimension itself might hold
valuable information that can be analyzed.

Geographic information systems are direct successors of the
centuries-old practice of map making [336]. Therefore, the idea of
having georeferenced information is by no means new. While early
use of spatial data was driven by environmental disciplines in which
space itself is fundamental such as geography, soil science, and cli-
matology, the value of spatial data is more and more recognized in
interdisciplinary research [337]. In the social sciences, the regional sci-
ences are probably the most prominent advocates and users of spatial
economic data. Here, undergraduate and graduate textbooks provide
students with knowledge on diverse spatial modelling techniques [338,
pp. 1105-1674]. Most general economists and agricultural economists



224 6 General Discussion

lag behind in their expertise on including spatial data into modelling
work. Similarly, methodological contributions by scholars focusing on
spatial econometric models were for a long time marginalized and not
taken seriously by traditional econometricians [67]. Whether spatial
econometric models are useful tools remains contested [114].

In what follows, I will discuss opportunities of including longitude
and latitude information alongside economic data, as well as challenges
that must be overcome to ensure proper use and allow for the full
benefits. While I believe this point relates to many, if not all, economic
datasets, to keep the discussion focused, I will highlight opportunities
and challenges using the case of the Farm Accountancy Data Network
(FADN).

The FADN data underlie the empirical application in chapter 2.
The microeconomic data is collected every year throughout Europe
and managed by the European Commission. The data comprises rep-
resentative samples for different farm types and holds information on
the generated revenues, expenses, balance sheet positions, and general
farm characteristics. To access the microeconomic data, researchers
must file a request and motivate every variable they would like to
get access to. The FADN data is extensively used in productivity and
efficiency analyses (e.g., [101, 112, 136, 339]), but also in other areas
within the agricultural economics domain (e.g., [340, 341]). For the
project under which chapter 2 was enabled I obtained shifted longi-
tude and latitude information that retained exact distances among
farmers without providing us the real locations. Interestingly, a closer
look into the FADN suggests that the exact longitude and latitude data
are commonly collected when surveying the farms.1 Hence, these data
are already available but simply not utilized besides the provision of
regional indicators. Considering data privacy, it appears defensible
to provide only regional dummies when data is handed to external
researcher. However, there are serious disadvantages from the lack
of environmental data integration into the FADN. Considering the

1 After requesting access to the microeconomic data at DG AGRI, an Excel sheet
with thousands of variables is provided out of which a selection is to be made.
Three variables labeled A_LO_40_N0, A_LO_40_N1, A_LO_40_N2 may provide
NUTS-0, NUTS-1, or NUTS-2 level indicators which are “estimate by DG AGRI based
on geographic information of farm”. Through my work on chapter 2, I am aware that
similarly labeled variables denote the precise longitudes and latitudes in the raw
database.
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sensitivity of the geographic information, this data integration could
at least be achieved within the European Commission. The new Farm
to Fork strategy discusses the intended transformation from the Farm
Accountancy Data Network to the Farm Sustainability Data Network
which will add data on biodiversity targets and sustainability indi-
cators [342]. However, it appears as if the strategy fails to recognize
the need for utilizing the already available geographic information for
this pursuit because it is suggested that these additional data will be
“collected”.

6.2.1 Opportunities

Most data are broadly considered to be static, meaning that researchers
often view a given compilation of measurements as fixed. Scholars
may work on the same dataset over several projects, or different
teams of researchers try to obtain various insights out of the same
dataset. However, in both scenarios the data remain unchanged, and
the insights scholars can derive are somewhat predetermined by what
had been collected when the dataset was compiled. Having a spatial
indexation turns a static dataset into one that can dynamically grow,
forever. The reason for this is that essentially all other data that is
collected, predicted, or simulated on anything that might relate to the
original data can be retroactively merged into the dataset based on a
shared geographic indexation such as longitudes and latitudes. In my
view, it is difficult to overemphasize how this simple fact fundamentally
alters opportunities for societal knowledge generation. Our ability to
identify and explain patterns in data would no longer be constrained
to the set of variables that were judged to be relevant, and therefore
collected, at the time. Instead, historic datasets would be allowed to
grow alongside new technologies, methodological developments, and
our understanding of which aspects might matter.

As an example, in recent years the work on satellite imagery pro-
liferated [343]. While satellite images have already been collected for
decades, the relatively recent development of powerful cloud comput-
ing technologies in combination with methodological advancements in
machine learning now allows for large scale processing of the collec-
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tions [344]. These advancements opened up opportunities to process
decades of data and generate predictions of environmental properties
in space and time [345]. Newly generated predictions of environmen-
tal properties such as temperatures [193], precipitation [193], extreme
weather events [346], soil characteristics [279, 281, 283], pollution
[347, 348], or other factors that are relevant to, or directly caused
by, agricultural production could all be integrated into historic FADN
records if a spatial indexation would be available. It may not have
been possible to collect some of these data, for example, in the 1970s.
Of course, this principle holds for any future developments that would
provide new measurements of variables in space and time where both
space and time coincide with historically collected, otherwise static,
economic observations.

Consequently, georeferencing FADN data would result in an explo-
sion of explanatory variables that could be investigated and allow for
a genuine integration of knowledge, in the form of concrete data, from
different research disciplines into agricultural economics. In addition,
by sharing a spatial index, the burden of data collection does not exclu-
sively fall on the people conducting the surveys. For example, in recent
years there rightfully is a growing interest in including environmental
aspects into productivity and efficiency analyses (e.g., [349]). This re-
quires information on emissions or other pollutants which are difficult
to measure. Farmers might not necessarily be aware of these data and
even if asked during the data collection process, they would not be
able to provide sound estimates. As the list of variables demanded
by scientists increases, the time needed to complete the survey would
drastically exceed what farmers could cope with. At the same time,
sophisticated models are being developed to predict emissions across
space [350, 351]. Hence, there is no need to include such questions
into surveys if data can be retroactively merged through other sources.
A shared spatial index, such as longitude and latitude, allows for data
collection to become a multi-disciplinary collective effort.

In chapters 3 and 4, I conducted pest impact assessments based on
country-level economic data that was used to calibrate the economic
models. While I tried to capture heterogeneity by modelling different
cropping systems and countries, georeferenced economic data would
clearly allow to better capture the heterogeneity in economic conditions
in different areas and therefore allow to obtain more precise estimates
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of potential pest impact. Deriving differences in the regional impacts
could deliver actionable insights that would allow to prioritize areas for
management. Having georeferenced FADN data would indeed provide
empirical information on the marginal and average cost function across
the landscape [97]. In addition to improving pest risk assessments by
allowing to better capture economic heterogeneity, spatially indexed
economic data might also allow deriving insights on the biological
process of pest spread in data scarce situations.

Not seldom, analyses of novel pest epidemics are hampered by the
unavailability of information on the biology of the pathosystem. As
seen in chapters 3 and 4, information on the spread rate of Xylella
fastidiosa subspecies pauca was highly uncertain and experts’ opinions
were elicited to get a sense of possible speeds with which future spread
might occur. The first detection of the bacteria was in 2013 [24]. In
the following years, more and more olive orchards were reported to
be infected in Apulia. Olive growers are routinely included in the
FADN surveys and, presumably, the infected region in Apulia was
included in the Italian surveys. Under availability of longitude and
latitude information, it likely would have been possible to exploit the
panel nature of the FADN data and econometrically measure unusual
changes in profits for olive growers in the infected zone over time. This
would not only have allowed for an estimation of realized impacts,
based on empirical data, which would greatly inform local authorities
and risk managers, but this estimation could also have provided an
indication of the speed with which spread might have occurred over the
landscape by revealing spatio-temporal patterns of unusual changes in
profits. In absence of better biological information, this estimate could
be used to parameterize spread models.

By estimating relationships based on historic data, real-time pre-
dictions can be made to inform decision makers and farmers on the
ongoing production cycle. While many data, such as FADN, are col-
lected and recorded at discrete annual time steps, many modern data
sources such as satellite imagery provide new data every few days.
If historic data were used to train models to relate, for example, the
normalized difference vegetation index (NDVI) to realized crop yields,
the higher frequency of satellite imagery could be exploited to pro-
vide close to real-time insights on the current status of production
[352, 353]. This information can help facility decision making, allow
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for preparedness management in case of disastrous weather events or
pest outbreaks, and thereby help to safeguard food security in vul-
nerable regions [354–356]. While such tools are already being heavily
developed, the lack of data is often approached by using synthetic data
which is generated based on process-based models that relate vegeta-
tion indices to simulated crop yields [343]. Georeferenced economic
data would add valuable calibration data by providing on-the-ground
information on realized revenues which can be deflated to implicit
quantities,2 as well as local differences in technologies, measured for
example by the capital stock, and farmers’ input usage.

6.2.2 Challenges

In my view, there are three domains that require careful attention in
the pursuit of agri-environmental data integration. The first domain is
on aspects related to data privacy and governance. Precise geographic
information clearly undermines anonymity of farmers in the FADN.
For spatial econometric models such as the one presented in chapter
2, distances among farmers suffice. However, for the aforementioned
opportunities of georeferenced economic data precise information on
locations is required. Arguably, these data should not be openly shared.
However, data scientists at the European Commission could assist
external researchers in merging desired spatial databases to records
within the FADN based on longitudes and latitudes. This would allow
to utilize many of the advantages of a spatial indexation without having
to provide modelers with the sensitive data on locations. In addition,
protocols with increased security checks could be established such that
scholars may be granted access to the geographic information under
strict security standards.

Regardless of these two suggestions, at least scientists directly
employed under the European Commission should make use of the
ability to integrate environmental data for their research on the FADN.
The new Farm to Fork strategy mentions that additional data on

2 Deflation describes the process of computing quantities by dividing monetary
variables, such as expenses and revenues, by corresponding price indices. The
obtained estimates are usually referred to as implicit quantities.
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biodiversity targets and sustainability indicators will be “collected”
and added to the FADN [342]. The huge variety, and high quality, of
available spatial data on these aspects should be utilized by using the
already available geographic information to match external data to
FADN records. Solely relying on additional survey questions and FADN-
based calculations of indicators would be a huge loss of opportunity. As
the additional value of having spatially indexed data is immense, in my
opinion the question is not whether European authorities should foster
such a spatial indexation scheme but rather in which way this must be
enabled to comply with privacy laws and address security concerns.
Clearly, this requires further work from experts on governance, law,
and information technology.

The second domain that, in my view, requires further attention is
the spatial granularity of the indexation. The longitude and latitude
information that is already collected in the FADN surveys describe
the centroid of a farm. As discussed in the General Introduction and
chapter 2, fields are usually scattered around a farm. Hence, centroids
are suboptimal indices to match with environmental data as they
only allow for point estimates at locations that are not necessarily
relevant for the production process. Furthermore, centroid points do
not allow to capture the spatial heterogeneity in the environmental
conditions across the farmer’s fields. Ideally, FADN would include
spatial geometry (i.e., polygon) objects on all individual fields for each
farm. This would allow to clearly relate individual fields to economic
observations, account for fields’ heterogeneity by enabling field-level
data integration on environmental properties and, very importantly,
provide spatially explicit data on planted crops. As highlighted in the
previous section, spatial information on hosts is critical for spread
simulations and economic analyses. The olive landcover data used in
chapter 3 and 4 – in fact, to the best of my knowledge all landcover
products – are predictions of land use which are based on classification
algorithms that assign a land use class based on the pixel composition
of a satellite image [357]. Of course, these approaches come with
classification errors that are unobservable to the user. Furthermore,
most landcover products provide classifications of categories that
are differentiable by the algorithms such as forests versus cropland
versus urban areas. Correctly classifying different arable crops from
space is significantly more difficult and consequently spatially explicit
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information on, for example, potatoes versus wheat versus corn is
unavailable for Europe as far as I am aware. Notably, the United
States Department of Agriculture is already publishing arable crop-
specific spatial data which is updated annually.3 These predictions
were enabled by field-level labels on planted crops.

Field-level polygons with ground-truth on which crop was planted
in the field each year would provide three invaluable benefits. First, for
areas in which this information is available modelers could use these
data directly and thereby avoid having to build spread and economic
models on top of predictions that most likely contain errors. Pest risk
assessments typically develop a map for the potential establishment of
the evaluated pest. Overlaying this map with data on where hosts are
cultivated would provide valuable insights on the actual risk. Second,
these data would provide valuable calibration data for algorithms
that are being trained to provide large-scale land cover classifications.
With these additional data, arable crop-specific predictions across
Europe might be achievable in the future. Lastly, field polygons allow
for landscape-wide field-level analyses which could, and arguably
should, be used to derive insights that directly benefit farmers. The
new Farm to Fork strategy explicitly mentions the need to provide
“tailored advisory services” to farmer [342]. Field-level polygons that can
be related to economic observations would enable scalable solutions
to allow for tailored advisory services in a cost-effective way.

Lastly, the third domain that requires attention is the establishment
of proper pilot projects that clearly communicate the immense value a
spatial indexation scheme can generate for scientists and farmers, as
well as society at large. Currently, there are a few pilot projects that
aim to include satellite imagery into spatial farm-level analyses. For
example, the Sen4CAP4 project aims to improve the spatial monitoring
of farmers using satellite imagery to better enforce environmental
regulations. In my view, I struggle to find a worse objective if the goal
is to get stakeholders excited about what these technologies have to
offer. Farmers are already heavily scrutinized on their environmental
performance while facing increasing price pressure. The success of
establishing, for example, a field-level spatially indexed FADN database
depends on the willingness of farmers to participate. By introducing

3 https://nassgeodata.gmu.edu/CropScape/
4 http://esa-sen4cap.org/

https://nassgeodata.gmu.edu/CropScape/
http://esa-sen4cap.org/
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these technologies as a sophisticated tool to spy on farmers and enforce
regulations, a narrative is created that there is nothing to gain but
much to lose if farmers were to accept increased levels of transparency
through georeferenced information. There is a critical need to initiate
pilot projects that place farmers’ benefits first. This could, for example,
be achieved by providing field-level analyses that generate actionable
information to participating farmers free of charge.

6.3 Policy Implications

Plant health is a public good and is generally considered a positive
externality [49]. The “consumption” of plant health does not reduce
its availability to others (non-rivalness) and excluding individuals is
not feasible (non-excludability) [49]. However, its protection not only
has positive spillover effects but also negative ones. While insufficient
control can result in increased pest pressure in the landscape, too much
control, for example through pesticide applications, may unnecessarily
pollute the environment and might inadvertently selects for resistance
in the pest species [306]. As often the case with public goods, market
allocation is likely inefficient and policy interventions are warranted [43,
46, 49]. As shown in chapter 4, in markets characterized by inelastic
supply and demand consumers are the main beneficiaries of pest
control efforts due to the economic dependencies among producers
and consumers. Hence, using public funds for policy interventions is
justified as it benefits taxpayers.

What complicates the public good characteristic of plant health is
the fact that it is a so called weakest-link public good [46, 49]. As the
lack of performance of a single decision-making unit can jeopardize the
biosecurity level for a whole area, the success of control is determined
by the worst performing unit (i.e., the weakest link). Through areas’
differences in climate, ecosystems, and the frequency of introductions,
among other factors, heterogeneity in control costs arise that may
result in decision-making units with higher costs not acting sufficiently.
Differences in the hosts value at risk similarly result in heterogeneity in
direct benefits from control efforts which can deteriorate individuals’
motivation to control pests [37, 39]. As the number of non-acting units
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becomes larger, the economic incentives to all other decision-making
units for establishing pest control approach zero [38, 46, 307]. Game
theoretical modelling suggests that public signals of own control efforts
are required to overcome this deadlock [307]. Ideally, cooperative
efforts should be spear-headed by decision-making units that have the
highest economic incentive to prevent pest spread [307]. In fact, it is
in the best interest of the decision-making units to cooperate with the
weaker link and increase their incentives to control [37]. As a result,
earlier work has often stressed the need for a global coordination and
cooperation in the management of invasive species [46]. By mapping
hotspots for pest introductions, as done in chapter 5, discussions
among decision-making units can be informed and decision making
on collective management supported.

In chapters 3 and 4, the diverging interest between stakeholders in
controlling the pest became very apparent. The economic dependence
between competitors results in economic benefits from shortages in
supply. Consequently, control strategies, such as the breeding of re-
sistant cultivars, were disadvantageous to unaffected producers that
would have profited from price increases due to supply shortages under
pest spread. By including price responses into a pest risk modelling
work, economic dependencies are captured and diverging interests
can be spotted by computing changes in monetary flows to different
stakeholders. Arguably, the computed gains in profit to some growers
as a result of affected growers not being able to replant do not consider
any empathy or feelings of solidarity such growers might have, nor do
they account for the possibility that even non-affected growers might
derive value from merely knowing that a Xylella fastidiosa subspecies
pauca resistant cultivar exists in case they ever needed one. Further-
more, non-affected growers could profit in the long term from resistant
varieties because such varieties could slow down pest spread such that
it would never reach the non-affected growers. The pure competitive
nature of the economic computation might not apply in its entirety
to the real world. Nevertheless, such information can support public
discourse by providing context to why stakeholders might respond
differently to proposed management strategies.

For the invader Xylella fastidiosa subspecies pauca, chapter 3 and 4
provide economic evidence that regulatory measures are warranted.
Both chapters indicated that the further spread of the disease must be
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avoided and introductions into new territories, especially into Spain,
should be prevented. As consumers were the main beneficiaries of the
control of Xylella fastidiosa subspecies pauca, using public funds to
support containment and surveillance efforts is warranted. Chapter
3 has highlighted the sizable economic benefits adaptation strategies,
such as resistant cultivars, would generate to affected countries. Hence,
decision makers must continue their support of research that aims to
deliver long-term adaptation strategies to Xylella fastidiosa subspecies
pauca in Europe. Unfortunately, the continued cultivation under pest
pressure was found to likely be unprofitable in as little as three to four
years due to the olive orchards’ relatively low profitability. Depending
on the cropping system, financial support for up to a decade might be
needed to ensure that farmers who are keen to transition to a resistant
cultivar are able to do so as olives require a sizable period in which
inputs must be employed but no, or very limited amounts, of output
is generated. While the complete ceasing of production following
the desiccation of the orchards is a rather strong worst-case scenario,
many olive cropping systems operate on marginal land due to the trees’
robustness. Hence, it is likely that not many, if any, alternative crops
could be cultivated in affected areas. Therefore, management strategies
must prevent spread and, if available, promptly move to resistant
cultivars to avoid large losses in investment and an accumulation of
foregone profits in the future.

The general susceptibility of areas to pest invasion is, among other
factors, determined by the anthropogenic disturbance of the ecosystem
[46]. The volume and direction of trade are good empirical predictors
where invasive pests are introduced [6, 46]. Hence, the extent to
which countries should hold an interest in fostering multi-national
collaboration should be related to their involvement in, and derived
benefits from, international trade. As pest invasions are externalities
from international trade, solutions should aim to internalize, as best
as possible, these costs [46]. Strategies that heavily rely on border
inspections fail to acknowledge that costs for the strategy will largely
be determined by the source countries’ ability to control pest pressure.
As evident in the case of Xylella fastidiosa subspecies pauca, hazardous
species often emerge from areas where the capacity and incentive to
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control may be limited.5. Consequently, the question arises whether a
sink country’s best strategy is indeed to put most (monetary) efforts
into border inspection, or if extension services in source countries
could yield better returns on investment. Analyses like the hotspot
prediction of chapter 5 allow identifying which areas require increased
vigilance. This could be the basis for additional work that derives
optimal budget allocation among member states on grounds of areas’
risk of pest introduction.

The complexity of spatial spillovers and interdependency in ac-
tions of individual decision-making units might lead to the insight
that “pest management decisions may be better made at a regional level
rather than at the individual farm level” [306, p.228]. Joint efforts
may not only increase the likelihood of success, but also decreases
the required monitoring and information costs for individual farmers
[306]. As deriving insights through data-driven information systems
is easily scalable across vast areas, the cost per user is a function of
the number of participants. Arguably, the more decision-making units
are involved the more difficult it becomes to coordinate control [38].
A shared information exchange system would greatly assist such coor-
dination in particular if accompanied by tools that foster interactive
communication among peers [50, 359].

Spatially uniform policies over a spatially heterogeneous landscape
likely result in inefficient outcomes [80]. While this holds true for many
domains, the agricultural sector, and pests in particular, might be
the most obvious example of this. As pest growth and dispersal is
spatially heterogeneous, management response must reflect this. The
feasibility of spatially heterogeneous policies is often debated on the
grounds of the required information that would result in such efforts
being too costly [306]. In addition to georeferenced economic data,
insights obtained through hotspot analyses such as chapter 5 could
be used to inform spatially heterogeneous policies through the design
of legislation that takes areas’ risk scores into account. Unfortunately,
nature is stochastic as, for example, the weather and pest pressure
changes from year to year. Hence, ideally this would require policies to
be dynamic as well which is likely difficult in practice. Due to spillover
effects, traditional policy impact analyses conducted on individual

5 Xylella fastidiosa subspecies pauca might have been introduced through coffee
plants sourced from Costa Rica [358]
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farm-level may be inappropriate and should be extended to include
potential community effects [35].

While involving citizens in data collection has found significant
attention and gained in popularity [360, 361], I believe the full potential
of citizen science remains largely underutilized. Chapter 5 highlighted
the sizable amounts of data that is already produced by citizen science
using one example, the Global Biodiversity Information Facility. The
chapter stressed the statistical problems that arise in citizen science
data due to the opportunistic sampling scheme [275]. Citizen science
data has a huge potential because it can scale with the number of
people that participate [360]. Species surveying is a time-consuming
task that, consequently, costs significant amounts of money. In chapter
5, I emphasized the need to include true absences into surveys which
would make those even more time-consuming [270]. While some life
forms, such as bacteria, viruses, and nematodes are difficult to spot and
therefore certainly require experts for surveying, other species such
as trees, plants, birds, or even insects could very likely be correctly
identified by laymen if given proper instructions. Regulators may
strengthen citizen science by supporting an app-based coordination of
laymen’s search efforts [362–364]. Through a coordination of collective
search efforts, it might be possible to generate properly sampled
datasets based on citizens’ reporting.

6.4 Limitations and Future Work

Without repeating too much of the previous section, I briefly discuss
a couple of limitations that arose due to issues of data availability.
In chapter 2, the spatial coverage of the arable crop farms was not
ideal. To improve the optimization of the parameter of the spatial
weight matrix, I decided to work with a balanced panel that spans
six years and comprises 75 farms. Unfortunately, the small number of
farms resulted in a sparse spatial coverage that very likely not only
affected the estimation of the parameter of the spatial weight matrix,
which might be evident from the large confidence intervals for the
distance cutoff, but it also resulted in the need to be very careful
when extrapolating the obtained insights on the spillover effects. In
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addition, the small number of farms may have resulted in issues with
the dimensionality of the linear programming problem that could have
led to the small estimates for technical inefficiency. In retrospect, it
might have been a better decision to extract a balanced dataset for
a smaller number of years. Being less restrictive with the number of
years each farm needs to be observed would have allowed to extract
larger cross-sections that would provide a denser spatial coverage and
a better discrimination in the linear programming model. As temporal
dynamics were not central to the analysis, the cost of having six years
of data (i.e., the smaller number of decision-making units in each year)
might have outweighed the benefits. Hence, omitting some years to
increase the number of farms in each year might have been a better
decision.

As briefly discussed before, the FADN data used for chapter 2 pro-
vided centroids of farms. The underlying motivation for the chapter
was the idea that management decisions on neighboring fields affect,
for example, pest pressure on other fields. As data on field locations
were not available, the centroids of the farms were used and geographic
distances between centroids formed the basis of the proximity struc-
ture. However, it would be more in line with the chapter’s motivation
to compute distances between the actual fields. Furthermore, as briefly
discussed above, modelling social knowledge spillovers might be better
approached by proximity structures that are not only based on geo-
graphic distances. Further work is needed to find a proper measure of
social distance which could form the basis of proximity structures.

In chapter 3 and 4, country-level data was used to calibrate the eco-
nomic models. More granular economic data would have significantly
improved both analyses as it would have allowed to better capture
heterogeneity. The country-level estimates for prices and costs used
in chapter 3 were mostly obtained from the Olive Oil Farm Report
[185]. The research chapters were not developed in the exact order as
presented in this dissertation. Consequently, while the Olive Oil Farm
Report provided aggregated statistics based on FADN data, at the time
I was only vaguely aware of the FADN data and did not realize that I
could request access to the farm-level data. In retrospect, it might have
been a good idea to request Italian, Spanish, and Greek microeconomic
FADN data for olive growers and, if the spatial coverage would have
allowed, calibrate the economic model to producers’ economic condi-
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tions in the different NUTS-2, or even NUTS-3, regions. While price
data is not included in the FADN, at least heterogeneity in operational
costs could have been better captured in this way. Furthermore, better
data on biological components of the model such as the annual yield
decline due to Xylella fastidiosa subspecies pauca would have improved
the analysis.

The main limitation for chapter 5 was the absence of systematic
data on pest presences and absences. As this is extensively discussed
within the chapter itself, I will not repeat too much here. However,
it is important to acknowledge that the underlying motivation for
the chapter was the question whether it would be possible to bundle
several species together and jointly analyze them to save resources.
This approach could be one way to address the overwhelming gap
of information on areas’ suitability for establishment or introduction
that exists for most invasive species. While I found that this modelling
approach resulted in very well-performing models, the ability to jointly
analyze species of course depends on the availability of harmonized
data for every species that one is interested in. As I had to rely on
the GBIF database for this information, I was not able to disentangle
whether the predictions are a consequence of reporting bias or whether
the included anthropogenic factors indeed promote pest introduction.
Hence, while joint analyses could save resources in the modelling stage,
the feasibility of this strategy would likely require additional resources
on the stage of data collection and harmonization.

Next to the limitation on available data, computational limitations
also prevented me from estimating several algorithms and, possibly,
creating an ensemble prediction in chapter 5. Ensemble predictions are
often used to improve model performance. As performance was very
good already, I judge this limitation to be minor. Nevertheless, com-
paring the sensitivity in results related to different algorithms to the
sensitivity in results related to the background data approach would
have been an interesting contribution to the species distribution mod-
elling literature. Training multiple algorithms on the datasets would
be straightforward but would require a High-Performance Computing
Cluster. The cluster would require additional funding that, due to the
memory requirements that result out of the data’s high dimensionality,
would likely be expensive.
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While work presented in this thesis did partially succeed in cap-
turing spatial and temporal aspects, a critical limitation remains our
ability to model feedback mechanisms between the biological and
economic systems. One of the underlying motivations for chapter 2
was the idea that farmers’ management influences the pest pressure in
the vicinity of the farm which consequently might influence neighbors’
operational performance. However, in chapters 3 and 4 the modelling
pipeline was clearly compartmentalized and unidirectional. First, cli-
matic suitability mapping provided a binary indication whether spread
can occur in locations. Next, spread simulations dispersed through
suitable habitat under the assumption that control efforts failed. Lastly,
the impact to farmers was computed. Arguably, the unidirectional
integration of the three models is a simplification. In reality, the con-
tinuous score for the climatic suitability might result in different local
spread rates, knowledge on the climatic suitability might influence
farmers’ preparedness, the realized speed with which spread occurs
might influence farmers’ responses and management strategies which
in turn would affect spread rates as well. More sophisticated spread
models as employed here tend to acknowledge the role of the pop-
ulation density in spread [171, 365]. Arguably, farmers’ actions can
influence population density and consequently spread [221].

The inherent interconnectedness between the biological and eco-
nomic models clearly requires further work [72, 366, 367]. Human re-
sponses to epidemics can significantly alter their progression [40, 368].
Ignorance of such feedback mechanisms can result in institutional
failures [369]. Certainly, this fact should raise optimism as it essen-
tially means that analyses of appropriately integrated socio-ecological
systems may provide improved strategies for pest control. However,
this of course also challenges modelers by significantly increasing the
complexity of our work. The need for a better integration of epidemi-
ological and economic models has already been stressed for over a
decade [40, 321]. Previous work that aimed to account for such feed-
backs often used agent based approaches [97, 370, 371]. However, in my
view, models including these feedbacks quickly become unintelligible
and data limitations often turn such efforts into pure modelling exercise
with limited to no ability to validate whether the simulated patterns
conform to the real world or merely to our subjective understanding
of it. A calibration of more complex models which include feedbacks
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requires more in-depth data that allows to tease out the biological and
economic relationships. I believe georeferenced economic data would
be a great start for this.

Future work could investigate legislative solutions for pest control
that might incorporate spatial and temporal variability in better ways
as done to date. It might be possible to reach parametric solutions, like
weather index insurances [372–374], in which environmental conditions
are directly considered through a computation of an pest-risk-related
index that is spatially and temporally variable and used to tailor the
applicable legislation to the individuals’ condition.

The DAISIE6 project resulted in a database comprising over 11,000
invasive species already present in Europe. While the database in-
tended to hold information on the expected ecological and economic
impacts, the researchers were able to compile information on these
impacts for 11 and 13 percent of species, respectively [52]. Clearly,
the number of new introductions in combination with the depth in
analysis required for each individual species results in an overwhelm-
ing absence of information that hampers decision making and leaves
society in the dark on the realized externalities. I believe there are
two approaches to this, which are not necessarily mutually exclusive,
regulators could take. First, more scientists could be employed to con-
duct pest risk assessments. Second, an arsenal of generalized models
could be developed to speed up species-specific analyses. Here, an
approach comparable to chapter 5 could provide a generic map for
potential establishment for a range of species, possibly for different
taxonomic groups, and spread models similar to Hudgins et al. [201]
could provide a generalized dispersal model. Having both ready to
go when faced with an emerging threat could speed up the required
risk assessments, albeit at the expense of precision in results. Having
an arsenal of generalized maps and models would reflect a top-down
approach that enables quick decision making in data scarce situations.
This could be an important avenue for future work.

The control of pests is a notoriously difficult task. The inherent
randomness of hazardous pest epidemics will continue to challenge
risk managers in the future. However, further improvements in the
quality and breadth of georeferenced data will increase our chances of
establishing sound models that support our decision making. Future

6 Delivering Alien Invasive Species Inventories for Europe
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work must therefore continue to push the envelope of what is currently
possible in terms of data collection. This need ranges from improv-
ing existing methodologies that measure or predict environmental
properties, over developing new technologies that obtain additional
variables of interest, to increasing the number of feet on the ground for
surveying. While challenging, I believe all of this is possible through
collective efforts between decision makers, scientists, and citizens.

6.5 Main Conclusions

• Neighbors’ characteristics associate with farmers’ managerial per-
formance. However, how the characteristics associate with farmers’
performance depends on the definition of the neighborhood (chap-
ter 2).

• Farmers do not operate in isolation from their peers because
the outcome of their efforts is partially determined by neighbors’
actions (chapter 2, 3).

• The assessment of pest related losses in investments for perennial
hosts can be achieved by computing losses in foregone annuities
(chapter 3).

• The vast majority of the European olive cultivation is within climat-
ically suitable territory for the establishment of Xylella fastidiosa
subspecies pauca (chapter 3).

• For Italy, across the considered spread rates the potential economic
impact from Xylella fastidiosa subspecies pauca to olive growers
over 50 years ranges from 1.86 to 5.17 billion Euro if the current
control measures were to fail and replanting with a resistant
cultivar would not be feasible (chapter 3).

• Irrespective of the disease spread rate and the ability to replant
with resistant cultivars, projections of potential future economic
impacts from Xylella fastidiosa subspecies pauca to olive growers
in affected countries are sizable and warrant regulatory response
(chapter 3).

• In Europe, introductions of Xylella fastidiosa subspecies pauca into
Spain would likely result in the most drastic economic impact
(chapter 3, 4).
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• Capturing economic heterogeneity by stratification, does not only
refine the overall estimate of pest impact but also signals whether
unequal consequences from pest spread arise to the different strata
(chapter 3, 4).

• Due to the inelastic supply and demand, consumers are the main
beneficiaries of the control of Xylella fastidiosa subspecies pauca
(chapter 4).

• Sensitivity analyses generate actionable insights on areas that
should be prioritized in management, market characteristics that
must be promoted, and data gaps that need to be addressed
(chapter 3, 4, 5).

• Joint analyses of various species may address the overwhelming
absence of information on risk maps for invasive species (chapter
5).

• Hotspot maps can identify areas that are at higher risk of invasive
pest introductions (chapter 5).

• In Europe, the BeNeLux states, Northern Italy, the Northern
Balkans, and the United Kingdom, and areas around container
ports such as Antwerp, London, Rijeka, and Saint Petersburg are
at higher risk for invasive pest introductions (chapter 5).

• In species distribution models, scholars should not exclusively
rely on machine learning performance as a measure of model
correctness (chapter 5).

• Systematic species survey data comprising also true absence are
required to be able to disentangle reporting bias from true effects
and thereby allow for the analysis of the anthropogenic involve-
ment in invasive pest introduction (chapter 5).

6.5.1 Main Policy and Research Implications

• Policy impact analyses, for example on the effects of farm subsidies,
should also investigate possible community effects and not only
direct impacts (chapter 2).

• Analyses of optimal pest control should be expanded beyond
individual farm-level (chapter 2, 3).



242 6 General Discussion

• Incorporating information on host locations into pest risk assess-
ments is crucial, especially if cultivation may be spatially clustered
(chapter 3, 4).

• The inclusion of price responses to supply changes into pest
risk assessments is important for deriving insights on economic
dependencies and diverging incentives among stakeholders for
controlling pest spread (chapter 3, 4).

• Acknowledging environmental heterogeneity in pest risk assess-
ments is important not only for the prediction of the suitability
of establishment, but also for simulations of pest spread and,
consequently, economic impact (chapter 3, 4, 5).

• An arsenal of generalized models may speed up pest risk assess-
ments, albeit at the expense of precision in results (chapter 3, 4,
5).

• Pest management strategies should take spatial heterogeneity into
account by acknowledging geographic information on areas’ pest
risk, as well as topographic, climatic, and economic conditions
(chapter 3, 4, 5).

• Spatial field-level data on host cultivation is needed to improve
pest risk assessments (chapter 3, 4, 5)

• A precise spatial indexation of economic data is critical to improve
modelling work (chapter 2, 3, 4, 5).
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Summary

Analyses of the economic impact of, and possible risk mitigation
strategies against, pests often fail to account for spatial and economic
dependencies among the evaluated decision-making units, and hetero-
geneity in the environment they operate in. Awareness of the mutual
dependence of actors, regions and countries is critical for proper man-
agement of pests. In this thesis, I develop methodological approaches
to account for the spatial nature of pest populations and the mutual
dependence of farmers, countries, and markets to contribute to a more
informed discussion on plant health policies in Europe.

Chapter 2 provides an empirical approach to measure spatial
spillover effects of decision-making units’ characteristics with manage-
rial performance of neighbors. This allows relaxing the assumption
that decision-making units operate in isolation from their peers. The
model is applied to data from the Farm Accountancy Data Network.
The data comprises expenses, revenues, balance sheet positions, and
farm characteristics for 75 Dutch arable crop farms which are ob-
served over six years. The results show that managerial performance
of decision-making units is related to neighbors’ characteristics such
as the degree of farm specialization, received subsidies, insurance
payments, and age. However, how they associate is found to depend on
the definition of the neighborhood. The results imply that analyses of
optimal pest control should be expanded beyond individual farm-level.

Chapter 3 provides an integrated framework that derives insights
from climatic suitability, spread modelling, and economic modelling.

285
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A pest spread model is developed such that environmental hetero-
geneity, point of pest introduction, and host locations are fundamental
components for the realized dispersal over time. The economic model
captures heterogeneity of different cropping systems and countries,
includes temporal effects through losses in investments, and highlights
economic dependence among growers due to price responses following
changes in aggregate supply. The model is applied to the invasive
species Xylella fastidiosa subspecies pauca to compute impacts to olive
growers in Europe, with a focus on Italy, Greece, and Spain. For Italy,
across the considered spread rates the potential economic impact over
50 years ranges from 1.9 billion to 5.2 billion Euros for the economic
worst-case scenario, in which production ceases after orchards die off.
If replanting with resistant varieties is feasible, the impact ranges from
0.6 billion to 1.6 billion Euros. Even under slow spread rates and the
ability to replant with resistant cultivars, economic impact to olive
growers from further spread of Xylella fastidiosa subspecies pauca is
expected to be sizable (0.6 billion Euro) and warrants strong regulatory
response.

Chapter 4 translates results of the spatially explicit pest spread
model to suit the needs of partial equilibrium models. The chapter
shows how global sensitivity analyses can be informative in the context
of partial equilibrium models. The model is applied to the invasive
species Xylella fastidiosa subspecies pauca to compute impacts on
producers and consumers of olive oil in Europe, with a particular focus
on Italy, Greece, and Spain. I find that most of the potential future
impact of Xylella fastidiosa subspecies pauca in the olive oil market
would fall on consumers because of higher prices following reductions
in supply. The analysis highlights that the problem of invasive pests
should be contextualized as a societal challenge as opposed to one that
affects only producers. The chapter stresses the fact that consumers
are beneficiaries of pest control.

Chapter 5 shows that a joint analysis of several hundred pests
can produce hotspot maps with a high accuracy. A machine learning
model is trained on a dataset covering 248 invasive species to map
risk of new pest introduction in Europe as a function of climate, soils,
water, and anthropogenic factors. Due to the considerable time and
labor requirements for species-specific analyses, there is no informa-
tion on area-specific suitability for establishment or introduction for
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many hazardous species. The joint analysis of several species could be
one approach for addressing this knowledge gap. Furthermore, joint
analyses of various pests could help to identify weak-links and thereby
inform collective control. Results show that the BeNeLux states, North-
ern Italy, the Northern Balkans, and the United Kingdom, and areas
around container ports such as Antwerp, London, Rijeka, and Saint
Petersburg are at higher risk for introductions. However, harmonized,
systematic, species survey data comprising also true absences are
required to further validate and improve these maps.

The thesis, as a collection of these articles, contributes to the
literature by providing methodological approaches which (i) capture
spatial dependencies, (ii) account for environmental and economic
heterogeneity at the level of granularity feasible under the available
data, (iii) acknowledge the temporal nature of pest spread and eco-
nomic impact in perennial hosts, (iv) highlight the actionable insights
sensitivity analyses can generate, and (v) propose cost-effective mod-
elling strategies to address the absence of risk maps for many invasive
species.

Main Conclusions

• Neighbors’ characteristics associate with farmers’ managerial per-
formance. However, how the characteristics associate with farmers’
performance depends on the definition of the neighborhood (chap-
ter 2).

• Farmers do not operate in isolation from their peers because
the outcome of their efforts is partially determined by neighbors’
actions (chapter 2, 3).

• The assessment of pest related losses in investments for perennial
hosts can be achieved by computing losses in foregone annuities
(chapter 3).

• The vast majority of the European olive cultivation is within climat-
ically suitable territory for the establishment of Xylella fastidiosa
subspecies pauca (chapter 3).

• For Italy, across the considered spread rates the potential economic
impact from Xylella fastidiosa subspecies pauca to olive growers
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over 50 years ranges from 1.86 to 5.17 billion Euro if the current
control measures were to fail and replanting with a resistant
cultivar would not be feasible (chapter 3).

• Irrespective of the disease spread rate and the ability to replant
with resistant cultivars, projections of potential future economic
impacts from Xylella fastidiosa subspecies pauca to olive growers
in affected countries are sizable and warrant regulatory response
(chapter 3).

• In Europe, introductions of Xylella fastidiosa subspecies pauca into
Spain would likely result in the most drastic economic impact
(chapter 3, 4).

• Capturing economic heterogeneity by stratification, does not only
refine the overall estimate of pest impact but also signals whether
unequal consequences from pest spread arise to the different strata
(chapter 3, 4).

• Due to the inelastic supply and demand, consumers are the main
beneficiaries of the control of Xylella fastidiosa subspecies pauca
(chapter 4).

• Sensitivity analyses generate actionable insights on areas that
should be prioritized in management, market characteristics that
must be promoted, and data gaps that need to be addressed
(chapter 3, 4, 5).

• Joint analyses of various species may address the overwhelming
absence of information on risk maps for invasive species (chapter
5).

• Hotspot maps can identify areas that are at higher risk of invasive
pest introductions (chapter 5).

• In Europe, the BeNeLux states, Northern Italy, the Northern
Balkans, and the United Kingdom, and areas around container
ports such as Antwerp, London, Rijeka, and Saint Petersburg are
at higher risk for invasive pest introductions (chapter 5).

• In species distribution models, scholars should not exclusively
rely on machine learning performance as a measure of model
correctness (chapter 5).

• Systematic species survey data comprising also true absence are
required to be able to disentangle reporting bias from true effects
and thereby allow for the analysis of the anthropogenic involve-
ment in invasive pest introduction (chapter 5).
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Main Policy and Research Implications

• Policy impact analyses, for example on the effects of farm subsidies,
should also investigate possible community effects and not only
direct impacts (chapter 2).

• Analyses of optimal pest control should be expanded beyond
individual farm-level (chapter 2, 3).

• Incorporating information on host locations into pest risk assess-
ments is crucial, especially if cultivation may be spatially clustered
(chapter 3, 4).

• The inclusion of price responses to supply changes into pest
risk assessments is important for deriving insights on economic
dependencies and diverging incentives among stakeholders for
controlling pest spread (chapter 3, 4).

• Acknowledging environmental heterogeneity in pest risk assess-
ments is important not only for the prediction of the suitability
of establishment, but also for simulations of pest spread and,
consequently, economic impact (chapter 3, 4, 5).

• An arsenal of generalized models may speed up pest risk assess-
ments, albeit at the expense of precision in results (chapter 3, 4,
5).

• Pest management strategies should take spatial heterogeneity into
account by acknowledging geographic information on areas’ pest
risk, as well as topographic, climatic, and economic conditions
(chapter 3, 4, 5).

• Spatial field-level data on host cultivation is needed to improve
pest risk assessments (chapter 3, 4, 5)

• A precise spatial indexation of economic data is critical to improve
modelling work (chapter 2, 3, 4, 5).





Glossary

Background data describes environmental data to which pest pres-
ence data are compared to. Background data are obtained by gener-
ating geographic points and extracting environmental data for these
locations.

Balanced panel describes data in which all cross-sectional units are
observed throughout all time periods.

Bootstrapping is a statistical technique that falls under the class of
resampling methods and uses random sampling with replacement to
generate new datasets.

Calibration refers to the practice of adjusting values of model pa-
rameters. Data may be used to support values and result in models
that more closely mimic reality.

Cellular automaton describes a discrete modelling technique in
which pixel to pixel interactions are simulated. A cellular automa-
ton consists of a grid of pixels each having one of a finite number of
states (e.g., pest-free or infected).

Centroid denotes a point at the center of something. In this disserta-
tion, centroid generally refers to a geographic point at the center of
an area.

Citizen science refers to scientific research conducted by laymen. It
is also known as community science, crowd science, crowd-sourced
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science, civic science, or volunteer monitoring. In this dissertation,
citizen science generally refers to the collection of data by citizens.

Consumer surplus describes the economic well-being of consumers
and is obtained by integrating the difference between the price paid
and the willingness to pay along the aggregate demand curve.

Cordon sanitaire denotes a barrier intending to stop the spread of a
pest or an infectious disease.

Cross-validation describes techniques which aim to assess how well
a model generalizes to unseen data. While cross-validation approaches
are very diverse, in general they involve splitting the training data
into several partitions. Subsequently, the model is trained on parts of
the data and performance tested on withheld validation data. Cross-
validation is also used to tune (i.e., optimize) the hyperparameters.

Damage abatement inputs refer to agricultural inputs that do not
increase output, but rather protect against potential shortfall in pro-
duction. In this dissertation, damage abatement inputs generally refer
to pesticides, fungicides, herbicides, and other inputs that aim at
reducing pest impact.

Data Envelopment Analysis is a non-parametric technique that is
based on linear programming. The methodology is rooted in produc-
tion economics and used in efficiency and productivity measurement.
The name comes from the fact that the data are enveloped to derive
the production frontier.

Decision-making unit denotes an analyzed entity which is the owner
of the decision problem. Depending on the context, a decision-making
unit could be a person, a company, or even a country.

Deflation as used in this dissertation describes the process of com-
puting implicit quantities by dividing monetary variables, such as
expenses and revenues, by corresponding price indices. Deflation is
often used in methodologies that rely on having input and output quan-
tities while only monetary variables are available to the researcher.

Discounting describes the process of obtaining present values of
future monetary flows. Due to interest rates, inflation, and opportunity
costs, economic theory suggests that money in the future is worth less
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than money in the present. Discounting translates future expenses and
revenues into present values.

Elastic-net is a regularization technique that combines the L1 (sum
of absolute coefficient magnitudes) and L2 (sum of squared coefficient
magnitudes) coefficient penalties into the loss function. The model is a
generalized linear model based on a logit link, equivalent to a logistic
model.

Equivalent annual costs are the annual cost of owning, operating,
and maintaining an asset over its entire life.

Feature is machine learning terminology for a variable.

Fold is a term used in machine learning to describe subsets of the
data. For example, five randomly split folds correspond to five data
partitions each holding 20 percent of the data.

Fundamental niche describes the full range of environmental condi-
tions that allow for a viable population of a species.

Georeferenced describes data which comprises indices that relate
the measurement values to a geographic location using a coordinate
reference system such as, for example, longitudes and latitudes.

Herfindahl-Hirschman index is a measure of concentration. The
index is computed by summing the squared shares of individual com-
ponents. The index is frequently used for assessing the degree of a
market’s concentration, but also farm specialization.

Heterogeneity describes that the analyzed population is different in
attributes or outcomes. Heterogeneous is the opposite of homogeneous.
Measuring heterogeneity or homogeneity assesses the validity of the
commonly employed assumption that statistical properties are equal
across observations in the dataset.

Hyperparameter denotes parameters that control the learning pro-
cess of a machine learning algorithm but that are not directly inferred
from the training (i.e., fitting) of the model as is the case for coefficients.
In other words, the hyperparameters hold settings that influence the
structure of the model. A standard approach is to tune these hyperpa-
rameters (i.e., optimize) by running the learning algorithm for different
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values and choosing the hyperparameter value that results in the best
performance according to a cross-validation procedure.

Hypothesis is a proposition made as a basis for reasoning without
any assumption of its truth. Hypotheses can be tested using data.

Invasive species describe species that are non-native to an area. The
term is generally associated with species that have adverse effects
either economically or on the invaded ecosystem.

Marginal effect describe how a dependent variable changes following
a marginal change in an independent variable while holding the other
regressors constant.

Model in a scientific context describes an attempt to turn a com-
plex system into a comprehensible analogue. By studying the system,
gathering data, or qualitative information, and imposing boundaries,
modelers attempt to formulate mathematical relationships which cap-
ture the essential elements on a level of granularity suitable to address
a research question.

Model ensemble describes techniques that combine several indi-
vidual machine learning algorithms into one overall prediction. The
ensemble may be achieved through simple averaging, or by using ap-
proaches that take models’ performance into account such as weighted
averaging or meta-models.

Multicollinearity describes variables which can be closely predicted
based on linear combinations of other variables. If multicollinearity is
present, the predictive performance of machine learning algorithms is
unaffected, but the estimation of standard errors is influenced.

Non-parametric describes techniques that do not pose any apriori
assumptions regarding the underlying distribution of variables.

Parameter denotes various things depending on the context and sci-
entific discipline. In this dissertation, a parameter generally describes
a numerical element of a modelling system that is estimated using
data.

Pest entry describes a pest’s movement into an area.
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Pest establishment refers to the perpetuation of the species within
an area after successful entry.

Pest introduction describes the joint event of pest entry and estab-
lishment.

Prevalence describes the proportion of a population that is affected
by a disease. Sampling prevalence denotes the proportion of presences
to (pseudo-) absences in a dataset.

Producer surplus describes the economic well-being of producers
and is obtained by integrating the difference between the price ob-
tained and the marginal costs along the aggregate supply curve.

Productive input denotes inputs that increase the desired output.

Pseudo-absence describes a generated location which is treated as
pest absence data. In this dissertation, pseudo-absences generally refer
to geographic points which are used to generate background data to
which pest presences are compared to.

Public good describes a good for which restricting others’ consump-
tion is not feasible (i.e., non-excludability) and for which its consump-
tion does not affect the availability to others (i.e., non-rival).

Realized niche is based on the fundamental niche of a species. How-
ever, additional biotic factors such as intra-species competition and
dispersal further constrain the fundamental niche into the realized
niche.

Regularization in machine learning describes the approach of im-
proving the generalization of models by limiting their flexibility and
complexity. The implementation of this concept depends on the learn-
ing algorithm. In the elastic-net model, the regularization parameter
determines the extent to which coefficient magnitudes are penalized
and, consequently, shrunk toward zero.

Sensitivity analysis assesses the robustness of model results with
respect to assumptions made by the researcher. Sensitivity analyses
may evaluate results for different model structures, or for different
parameter values.
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Simulation describes very different things depending on the context
and the scientific discipline. In this dissertation, the word simulation
denotes the generation of synthetic data following a defined mathe-
matical process. Simulation is often synonymously used with numerical
simulation which describes the computation of a mathematical model
using random draws out of a distribution of parameter values.

Spatial dependence describes a statistical dependence between mea-
surement values which were collected across a geographic area. Spatial
dependence may be measured by correlating measurements in space
(i.e., spatial autocorrelation).

Spatial lag of X model denotes a model specification in which spa-
tial lags for the independent variables are included. The spatial auto-
regressive and spatial error models refer to specifications where spatial
lags for the dependent variable and error term are included as ex-
planatory variables, respectively.

Spatial spillovers describe spatial effects where a decision-making
unit’s actions do not only influence his own output but also the output
of neighboring units.

Spatial weight matrix is a matrix which is used to weight obser-
vations during the construction of spatially lagged variables. Such
weighting is often based on geographic distances. However, there is
a variety of matrix structures, such as inverse distance or k-nearest
neighbors, which all come with implicit assumptions on the underlying
neighborhood structure.

Tensor denotes a multi-dimensional mathematical object. In this
dissertation, the tensor used is a multi-dimensional matrix in which
elements of a two-dimensional matrix were vectors.

Weakest-link public good combine the properties of public goods
with the additional characteristic that the realized outcome is largely
influenced by the least performing decision-making unit.
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Book Cover

The basis of the book cover was a black and white stock image7. I liked
the image because it vaguely resembles an olive tree while abstractly
visualizing dependencies through molecule-style connections. In QGIS,
I scaled and projected the image onto gridded data for land-use
classification across Europe from the Copernicus database8. I saved
the manually reprojected image and performed the following steps in
R. Feel free to reach out to me in case you want the corresponding
files or the full script.

Code Segment 6.1 Load, read, and prepare.

1 #~ We load some packages and s e t t he working d i r e c t o r y
2 l i b r a r y ( r a s t e r ) ; l i b r a r y ( tmap ) ; l i b r a r y ( s f ) ; se twd ( "YOUR_PATH" )
3
4 #~ We load the manua l ly prepared f i l e s f o r t he t r e e shape and data
5 shape = r a s t e r ( " da ta / t r e e . t i f " )
6 c l a s s e s = r a s t e r ( " da ta / l a n d c l a s s . t i f " )
7
8 #~ Removing the wh i t e background i s s t r a i g h t f o r w a r d
9 shape [ shape >=200] = NA

We end up with a raster image of our desired tree-shape in which
only the black pixels have values. We can visualize this by using
plot(shape). The raster looks as follows (see Figure 6.1).

7
https://www.shutterstock.com/de/image-vector/molecule-tree-87089435

8
https://land.copernicus.eu/global/products/lc
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Fig. 6.1 Tree shape as a raster after removing the background.

Next, we need to change the tree’s pixels to geographic points and
extract the land-use data for each point. Because we manually overlaid
the shape in QGIS, we know that the coordinate reference system and
the general area align with the data. However, note that the manual
reprojection is not very scientific! We simply scaled and moved the
black and white tree-shape to align nicely over Europe. Do not take
any of this too seriously!

Code Segment 6.2 Turn pixels into geographic points.

1 #~ Conver t t he drawing to geog raph i c p o i n t s
2 p t s = r a s t e rT oPo i n t s ( shape , s p a t i a l =T )
3 c r s ( p t s ) = c r s ( c l a s s e s )
4
5 #~ I f we want we can p l o t t he r e s u l t
6 eu = s h a p e f i l e ( " da ta / Europe . shp " )
7 tm_ shape ( eu ) +tm_ borde r s ( ) + tm_ shape ( p t s ) +tm_ do t s ( s i z e =0 . 00 1 )

Figure 6.2 shows the generated geographic points. The tree shape
is made up of around 2.9 million individual points. Given that we have
geographic points now, we can easily extract the land-use data.



Book Cover 303

Fig. 6.2 Generated geographic points across Europe.

Because we had moved the tree’s top branches into the North sea
when manually reprojecting the image, all points get the same land-use
classification and therefore color. This results in a witty reference
to Xylella fastidiosa subspecies pauca symptoms. The disease causes
branches to desiccate. Of course, you can take any shape you like and
follow the same steps. You can also move the shape to wherever you
would like it to land! Endless opportunities.
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Code Segment 6.3 Extract land-use data.

1 #~ Ex t r a c t t he land c l a s s i f i c a t i o n s f o r each " l o c a t i o n "
2 p t s = data . f rame ( cb ind ( pts@coords , l andcove r= e x t r a c t ( c l a s s e s , p t s ) ) )
3
4 #~ Conver t da ta . f rame back to a s p a t i a l o b j e c t
5 p t s $ l andcove r = as . f a c t o r ( p t s $ l andcove r )
6 c o o r d i n a t e s ( p t s ) = ~x+y
7 c r s ( p t s ) = c r s ( c l a s s e s )
8
9 #~ Change the v a r i a b l e ’ s c a t e g o r i e s from numbers to n i c e r names
10 l e v e l s ( p t s $ l andcove r ) = read . c s v ( " da ta / l e v e l s . c s v " , sep= " ; " ,
11 header=T ) $name

We now have categorical data for the land-use in each "location".
This means we can color the categories to our liking and in doing so
create a colorful tree in which the color-pattern is determined by the
land-use across European! To do so, we pick a few nice color-palettes
and randomly shuffle them. I did this many times and picked a nice
result for us in the form of hex-color-codes. Note that the next code
segment takes quite some time. Because it took so long, below we
simply work with the final color-hex-code!

Code Segment 6.4 Generate random color-scheme.

1 #~ Get the number o f c a t e g o r i e s
2 c a t s = l e n g t h ( l e v e l s ( p t s $ l andcove r ) )
3
4 #~ Genera te a l i s t o f f o u r co lo r−p a l e t t e s we t e s t
5 c o l o u r s = l i s t ( a l phabe t = p a l s : : a l phabe t ( c a t s ) ,
6 g l a s b e y = p a l s : : g l a s b e y ( c a t s ) ,
7 k e l l y = p a l s : : k e l l y ( c a t s ) ,
8 polychrome = pa l s : : polychrome ( c a t s ) )
9
10 #~ V i s u a l i z e 50 s h u f f l e s f o r each p a l e t t e and save hex−codes
11 f o r ( n i n c ( " a l phabe t " , " g l a s b e y " , " k e l l y " , " polychrome " ) ) {
12 f o r ( i i n 1 : 5 0 ) {
13 f o l d e r = pa s t e ( " r e s u l t s / c o l o r r u n s / " , n , " / " , sep= " " )
14 c o l s = sample ( c o l o u r s [ [ n ] ] )
15 names ( c o l s ) = l e v e l s ( p t s $ l andcove r )
16
17 p = tm_ shape ( p t s ) + tm_ do t s ( c o l = " l andcove r " , p a l e t t e = co l s , s i z e

=0 . 00 1 ) + tm_ l a y o u t ( l egend . show=F , frame=F , bg . c o l o r = "
t r a n s p a r e n t " )

18
19 tmap_ save ( p , p a s t e ( f o l d e r , i , " _ cove r . png " , sep= " " ) , dp i =3000)
20 w r i t e . t a b l e ( c o l s , p a s t e ( f o l d e r , i , " _ hex . t x t " , sep= " " ) )
21 }
22 }

Lastly, we simply need to generate the final visualization and save
it. Of course, we want to know what land-use category each color
refers to in the final image. Therefore, we save the legend separately
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and print it here for endless exploration of our generated color-pattern
(see Figure 6.3b)! To give you a better orientation for starting your
journey, the half-moon shape at the top of the tree’s trunk is Lake
Geneva in Switzerland.

Code Segment 6.5 Visualize the colored book cover.

1 #~ S e l e c t one o f t he random co l o r schemes
2 c o l o u r s = read . t a b l e ( " r e s u l t s / c o l o r r u n s / a l phabe t / 2_ hex . t x t " ,
3 header=T ) $x
4
5 #~ Change the names and o v e rw r i t e one c o l o r
6 names ( c o l o u r s ) = l e v e l s ( p t s $ l andcove r )
7 c o l o u r s [ [ 7 ] ] = " #A6C8CC"
8
9 #~ Now we j u s t need to g ene r a t e the p l o t
10 p = tm_ shape ( p t s ) + tm_ do t s ( c o l = " l andcove r " , p a l e t t e = co l ou r s , s i z e

=0 . 00 1 ) + tm_ l a y o u t ( l egend . show=F , frame=F , bg . c o l o r = "
t r a n s p a r e n t " )

11
12 #~ . EPS i s g r e a t f o r working i n Photoshop or I l l u s t r a t o r
13 tmap_ save ( p , " r e s u l t s / cove r . eps " , dp i =3000)
14
15 #~ Save the co lo r−l egend
16 pdf ( " l egend . pdf " )
17 p l o t (NULL , xaxt= ’ n ’ , yax t= ’ n ’ , b t y= ’ n ’ , y l ab= ’ ’ , x l ab= ’ ’ , x l im =0 : 1 ,

y l im = 0 : 1 )
18 l egend ( " t o p l e f t " , pch =16 , p t . cex =3 , cex = 1 . 3 , b ty= ’ n ’ ,
19 l egend=names ( c o l o u r s ) , c o l = c o l o u r s )
20 mtext ( " Land Cover C l a s s " , a t =0 .2 , cex =2 )
21 dev . o f f ( )
22
23 #~ Never f o r g e t to c e l e b r a t e your v i c t o r y
24 p r i n t ( "YAY! YIPPEY ! YI I I I IHA ! " )
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Shrubs
Herbaceous vegetation
Cultivated and managed cropland
Urban
Bare
Snow
Permanent water bodies
Herbaceous wetland
Moss and lichen
Closed forest, evergreen needle leaf
Closed forest, deciduous broad leaf
Closed forest, mixed
Closed forest, unknown
Open forest, evergreen needle leaf
Open forest, deciduous broad leaf
Open forest, mixed
Open forest. Unknown
Open sea

Land Cover Class

(b)

Fig. 6.3 Final cover logo and the corresponding legend.
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