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Use of genomic prediction (GP) in tetraploid is becoming more common. Therefore,

we think it is the right time for a comparison of GP models for tetraploid potato. GP

models were compared that contrasted shrinkage with variable selection, parametric vs.

non-parametric models and different ways of accounting for non-additive genetic effects.

As a complement to GP, association studies were carried out in an attempt to understand

the differences in prediction accuracy. We compared our GP models on a data set

consisting of 147 cultivars, representing worldwide diversity, with over 39 k GBS markers

and measurements on four tuber traits collected in six trials at three locations during 2

years. GP accuracies ranged from 0.32 for tuber count to 0.77 for dry matter content. For

all traits, differences between GP models that utilised shrinkage penalties and those that

performed variable selection were negligible. This was surprising for dry matter, as only

a few additive markers explained over 50% of phenotypic variation. Accuracy for tuber

count increased from 0.35 to 0.41, when dominance was included in the model. This

result is supported by Genome Wide Association Study (GWAS) that found additive and

dominance effects accounted for 37% of phenotypic variation, while significant additive

effects alone accounted for 14%. For tuber weight, the Reproducing Kernel Hilbert Space

(RKHS) model gave a larger improvement in prediction accuracy than explicitly modelling

epistatic effects. This is an indication that capturing the between locus epistatic effects

of tuber weight can be done more effectively using the semi-parametric RKHS model.

Our results show good opportunities for GP in 4x potato.

Keywords: tetraploid potato, genotype by sequencing, genomic prediction, genome wide association study,

non-additive effects

INTRODUCTION

Cultivated potato (Solanum tuberosum L.) is one of the most consumed food crops in the world,
behind only rice and wheat (Birch et al., 2012). Since its discovery over 500 years ago, breeders
have selected and hybridised this crop to adapt to various environmental conditions and satisfy
numerous market desires. With its large genetic diversity, this was easily achieved making potato
one of the most versatile food crops. Most of the environmental and market class adaptations,
as well as genetic gains for simple traits, have been attained via phenotypic selection, which may
take 10–12 years until a new cultivar is introduced (Jansky, 2009; Endelman et al., 2018). However,
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there has been limited progress for more quantitative traits with
lower heritabilities, for example yield Jansky (2009). Genomic
prediction (GP), where phenotypes are regressed on marker
profiles (Bernardo, 1996; Whittaker et al., 2000; Meuwissen et al.,
2001), allows for the early selection or discarding of favourable or
unfavourable hybrids, and therefore significantly speeds up the
breeding cycle (Hickey et al., 2017).

Genomic prediction has seen more application in animal
breeding in comparison to plant breeding and has rarely been
applied to polyploid species until recently. Cultivated potato is an
autotetraploid, and the patterns of inheritance in autotetraploids
are more complicated than diploids and allotetraploids (Gallais,
2003; Garcia et al., 2013; Dufresne et al., 2014), hence the reason
for the smaller number of GP studies among these species.
Despite the obstacles, GP has recently been put to use in a number
of autopolyploid crops including alfalfa (Annicchiarico et al.,
2015), potato (Habyarimana et al., 2017; Sverrisdóttir et al., 2017;
Enciso-Rodriguez et al., 2018; Endelman et al., 2018; Amadeu
et al., 2020), blueberry de BemOliveira et al. (2019), Amadeu et al.
(2020), and tetraploid ryegrass Guo et al. (2018).

Despite the common theme of past studies, in that they
look at GP in autopolyploids, they differ in more ways than
just the species they focus on. This study intends to merge
some of the principles used in previous studies. Genotype by
sequencing (GBS) has been utilised previously in the study of GP
of autopolyploid crops (Annicchiarico et al., 2015; Sverrisdóttir
et al., 2017; Guo et al., 2018), and will be implemented in
this study as the method for investigating DNA variation. One
difficulty encountered in quantitative genetics for polyploids
is the determination of allele dosage. Recent studies have
investigated methods to deal with this problem (Endelman et al.,
2018; Guo et al., 2018; de Bem Oliveira et al., 2019) by looking
directly at allele frequencies and refraining from performing
discrete genotype calling. This study also directly examines allele
frequencies, but uses a probabilistic approach for determining the
most likely dosage based on allele frequency ratios.

Statistical models used for GP face the scenario where
n << p, therefore penalties are introduced for reliable
estimation of marker effects, which require assumptions on the
parametric distribution of these marker effects (Piepho, 2009).
The most common GP model is known as GBLUP (Genomic
best linear unbiased predictor), a mixed model, where the
relationship between cultivars is used as input, and is equivalent
to using a ridge regression penalty with an assumed normal
distribution for marker effects (Piepho, 2009). A relationship
matrix can be derived assuming additive effects and non-
additive effects (dominance and epistasis). We investigate the
impact of explicitly accounting for non-additive effects (Enciso-
Rodriguez et al., 2018; Endelman et al., 2018; Amadeu et al.,
2020) vs. implicitly modelling these non-additive effects using
the semi-parametric Reproducing Kernel-Hilbert Space (RKHS)
model (Gianola and van Kaam, 2008; Habyarimana et al.,
2017). Another relationship matrix has been proposed for
autotetraploids, that assumes separate genotype effects for each
marker (Slater et al., 2016) which also implicitly captures non-
additive effects and is included in this study. Bayesian models
are also included in this study, to compare the impact of

different prior assumptions on the distribution of marker effects
(Pérez and de los Campos, 2014).

For GP, there is no “one-size-fits-all” model that works best,
and instead the performance of models depends primarily on
trait architecture (de los Campos et al., 2013). Unlike many
GP studies, we extend this study to include a Genome Wide
Association Study (GWAS), to describe the architecture of each
trait and explain the differences in the performance of the various
GPmodels. Applying GWAS tomarkers coded for different types
of dominance (Rosyara et al., 2016), we attempt to identify the
source of dominance effects, for those traits that were more
accurately predicted with GP models that included non-additive
effects. GWASwill also reveal the level of association between our
markers and a particular trait, to understand why a GP model
that estimates marker effects performs better than a model that
estimates genotype effects or vice versa.

We aim to demonstrate the feasibility of GP in autotetraploid
potato in this proof-of-concept study. Using four traits and GBS
marker data, various modelling strategies will be compared to
uncover the model or models most suitable for a given trait. To
comprehend the relationship between a trait and its most suitable
model, a GWAS is used to describe the genetic architecture of the
traits, providing some insight as to why somemodelling strategies
might work better for particular traits.

MATERIALS AND METHODS

Plant Materials
A diversity panel of 147 tetraploid potato cultivars, including
recent Dutch breeding material were chosen for this study.
This subset of cultivars are representative of the worldwide
commercial potato germplasm and were selected based on
criteria such as: phenotypic diversity of important traits, country
of origin, market category (chip and French fry processing,
cooking and starch varieties), year of commercial introduction,
and availability of the cultivars. Some of these varieties were
analysed in previous studies that used similar criteria for
selection (D’hoop et al., 2008, 2014). Propagation was done
by two Dutch breeding companies, one of which had also
performed phenotyping and collecting the biological material
needed for genotyping.

Genotypic Information
DNA material (100 ng) was digested with ten units of EcoT22
(Clontech) and incubated at 37◦C for 2 h and then heat killed.
Samples were then ligated with 640 units of T4 ligase (NEB)
and phased adaptors with TGCA overhangs at 22◦C for 1 h and
heat killed. The ligated samples were diluted in the ratio 1:10
with water, and then amplified for 18 cycles to add barcodes.
Barcoded libraries were SPRI purified, quantified, and pooled
in groups of 48 samples. Pooled samples were SPRI purified,
quantified, and diluted to 2 nM for sequencing on the Illumina
HiSeq 2500 using single-end 1×100 reads. Sequence reads were
mapped against the potato reference genome sequence of DM
v4.04, including the chloroplast and mitochondrial sequences
using Burrows-Wheeler Aligner 0.7.12. After the removal of
monomorphic markers, those with more than two alleles and
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TABLE 1 | Two examples of genotype probabilities based on allele counts.

Allele count Genotype probabilities

Reference Alternative AAAA AAAB AABB ABBB BBBB

15 13 0 0.05 0.94 0.01 0

15 0 0.99 0.01 0 0 0

markers from repetitive regions of the genome, 870 thousand bi-
allelic markers were available for further filtering. Markers with
minor allele frequency <0.01 and those with read depths <10 or
>100 were removed. From the remaining markers, the posterior
probability of allele dosage, conditional on both allele counts and
sequencing error, was calculated (see Supplementary Material

for more details). This will be referred to as the genotype
assignment probability. Tetraploid genotypes can belong to
either of the classes AAAA, AAAB, AABB, ABBB, BBBB, where
“A” and “B” are the reference and alternative allele, respectively.
If there is an equal amount of counts for both alleles we
would infer the genotype to be AABB (see example in Table 1).
Similar methodology is applied in the PolyOrigin software
(Zheng et al., 2020).

Genotype assignment probabilities were used as a filter
criterion. For each individual, markers were removed when
the highest genotype assignment probability was below a
threshold. Stricter thresholds created more missing information
and decreased the number of markers, since markers without
information for more than 25% of the individuals were removed.
Allele dosage was then determined as the dosage with maximum
genotype probability. Probability thresholds of 0.85, 0.75, and 0.5
resulted in marker matrices of 19, 26, and 39 thousand markers,
respectively. Using an additive GBLUP model, a preliminary GP
analysis was performed to decide which marker matrix should
be used as there may be a trade-off between the quantity and
quality of markers. In almost all cases, the 39 K marker matrix
gave the most accurate predictions and will henceforth be used
for all analyses (Supplementary Figure 1). The larger number of
markers lends itself to a more complete coverage of the genome
(Figure 1).

Although linkage disequilibrium (LD) was not calculated in
this study, it was calculated for an overlapping panel of tetraploid
potato (Vos et al., 2017). In that study, it was found that LD
falls quickly and suggested 40 K markers were needed for good
coverage of the tetraploid potato genome for GWAS, which is
comparable to the number of markers used here.

For all analyses performed in this study, we begin with
genotype information contained in the marker matrix (X), with
147 rows and 39,000 columns. Each element of X gives the
discrete count of alternative alleles (0, 1, 2, 3, 4) assigned
by genotype probabilities, at a given marker position for a
given cultivar. When these counts are entered in a design
or relationship matrix and a single parameter is estimated to
quantify the dependence of the phenotype on the allele count,
then this implies that marker effects are additive.

For imputing the missing marker information, the mode
was used. This was compared to mean imputation using the

39 K marker set mentioned above and a GBLUP model. The
GP accuracies resulting from marker matrices imputed with the
mode were slightly higher than those imputed from the mean.

Phenotypic Information
Field trials were performed in 2017 and 2018 at three locations:
Spain, Poland, and the Netherlands. Seed tubers were planted
in plots consisting of eight plants. A row-column resolvable
design was implemented with two complete blocks, and varieties
dispersed across the field using latinisation over rows and
columns (Piepho et al., 2015). Checks of one particular variety
were uniformly distributed throughout the trial in order to detect
and correct for spatial trends. Randomisation was performed
using the package DiGGer (Coombes, 2009) executed with
the software R (R Core Team, 2019), where all analyses were
conducted with this study.

Four traits will be discussed in this study: plot tuber weight
(kilograms), plot tuber count (number of tubers), mean tuber
length (millimetres), and dry matter content (percentage).
Adjusted means were calculated by correcting for row and
column trends, as well as block effects using the model:

y = block+ rowinblock+ colinblock+ G+ ǫ, (1)

where y is a vector of phenotypic observations. Equation (1)
allows us to adjust for field trends (from blocks, rows within
blocks, and columns within blocks) and extract the best linear
unbiased estimate (BLUE) of each genotype (G). Complete blocks
were used in each trial therefore a fixed term for the block effect
is suitable in the statistical model. Rows and columns within
blocks were incomplete and therefore treated as random effects
having normal distributions as follows: row ∼ N(0, σ 2

row) and
col ∼ N(0, σ 2

col
) where σ 2

row and σ 2
col
, are row and column

variances, respectively. Other non-genetic factors are captured in
the random term ǫ that is assumed to be normally distributed as
ǫ ∼ N(0, σ 2

ǫ ) where the residual variance is represented by σ 2
ǫ .

For investigating genotype by environment interaction (GxE),
the BLUEs from the six trials (three locations, 2 years) will be
useful, however for this application of GP, we require one vector
of observations for a given trait, as if they came from one single
environment. To consolidate our six phenotypic values, we again
calculated the adjusted means of each genotype, after correcting
for the effect of different trials using Equation (2).

y = trial+ G+ ǫ, (2)

where y are the BLUEs calculated from Equation (1), and ǫ

captures the variation from the interaction between genotype
and trial as well as within trial error variation. Equation (2) is
an across trial model, while Equation (1) was used for within
trial analyses. This could have been combined in one statistical
model, but for future GxE applications, and the ability to carefully
assess each trial for outliers, it was conducted in two steps. A
comparison of BLUEs calculated from the method described here
vs. one single model was done and the results were the same. The
BLUEs from Equation (2) will be used as the response variable
for GP analyses going forward. This study is therefore a two-step
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FIGURE 1 | Marker density of 39 K markers.

analysis since phenotypic adjusted means and GP are done with
separate models. ASREML (Butler, 2009) was used to conduct all
phenotypic analyses.

Heritability
To have an understanding of how much phenotypic variation
can be attributed to between-genotype variation, broad-sense
heritability was calculated. Using the BLUEs from Equation (1)
as the response variable, we apply the following model across our
three locations (L) and 2 years (T):

y = L+ T + LT + G+ GL+ GT + ǫ

Using the random terms of this model, highlighted in bold font,
we can isolate the variability that is caused genetically from the
variability that is caused from genotype by location and genotype
by year interactions (GL,GT). The BLUEs from Equation (1) give
only one value for each genotype per trial (year and location
combined), for this reason our error term (ǫ) in the heritability
equation captures the variation from the three way interaction
of genotype, location, and year. Averaging a genotypic effect
across multiple trials without including marker information, is
closer to an estimation of repeatability than heritability (Falconer
et al., 1996), but for now we shall use traditional nomenclature.
Heritability was calculated from the variance components as:

H2 =
σ 2
g

σ 2
g +

σ 2
gL

l
+

σ 2
gT

t +
σ 2

ǫ

l×t

,

where l and t represent the total numbers of locations and years.
Variation due to genotype by location and genotype by year
interactions are represented by the terms σ 2

gL, σ
2
gT , respectively,

while σ 2
g represents genetic variance. The term σ 2

ǫ is the variance
of the three way interaction of genotype by year by location, and
contains genetic signal alongside within trial variation.

Prediction Models
For GP, many types of statistical models are applicable; those
that perform shrinkage vs. those that perform variable selection
which is dependent on the assumed distribution of marker
effects, and those models that account for non-additive effects in
various ways.

• Additive GBLUP:

y = µ + Zaa+ ǫ, (3)

where y is a vector of phenotypic values, µ is the overall mean,
Za is a design matrix that relates the observations to genomic
values and a is a vector of random additive genetic values with
distribution a ∼ N(0,GAσ 2

a ). The additive genetic variance
is given by σ 2

a , while ǫ is the vector of residual and non-
modelled genetic effects, assumed to be normally distributed
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TABLE 2 | Within marker locus coding for Full Tetraploid model (Slater).

Genotype Locus coding

AAAA 1 0 0 0 0

AAAB 0 1 0 0 0

AABB 0 0 1 0 0

ABBB 0 0 0 1 0

BBBB 0 0 0 0 1

For a genotype “AAAA,” there are five columns with the first column assigned a 1 and the

rest 0’s.

ǫ ∼ N(0, σ 2
ǫ ), with variance denoted by σ 2

ǫ . GA is the additive
genomic relationshipmatrix (from allele dosages) based on the
work of VanRaden (2008) and extended by Ashraf et al. (2016).
The calculation of this additive genomic relationship matrix is
applicable to autotetraploids and was constructed with the R
package AGHmatrix (Amadeu et al., 2016).

• Additive + Dominance GBLUP:

y = µ + Zaa+ Zdd + ǫ, (4)

where y, µ, a, and ǫ are the same as seen in Equation
(3). Za and Zd are design matrices to relate observations to
additive genetic effects and dominance effects. The vector of
dominance effects is indicated by d and follows a normal
distribution: d ∼ N(0,GDσ 2

d
), where σ 2

d
is the dominant

genetic variance. The digenic dominant relationship matrix
GD was built using the AGHmatrix R-package, as derived by
Endelman et al. (2018).

• Epistatic GBLUP:

y = µ + Zaa+ Zdd + Zee+ ǫ (5)

Equation (5) is an extension of Equation (4), with the inclusion
of a term to capture epistatic effects. Ze relates the observations
to the epistatic effects e, which follow the normal distribution,
e ∼ N(0,GEσ

2
e ) with epistatic genetic variance σ 2

e .
This paper considers first order epistasis (additive ×

additive), and to calculate GE, the Hadamard product of GA

(GA#GA) was used (Su et al., 2012; Endelman et al., 2018).
• Full Auto-tetraploid GBLUP:

y = µ + Zf + ǫ, (6)

Proposed in the paper by Slater et al. (2016) is the full
auto-tetraploid model which accounts for additive and non-
additive effects by assuming each genotype has its own effect.
Tetraploids have five possible genotypes (AAAA, AAAB,
AABB, ABBB, BBBB), therefore f , the vector of effects in
Equation (6), has length 5R where R is the number of markers
(see Table 2). These effects f , follow the normal distribution,
f ∼ N(0,GFσ

2
f
) with genetic variance σ 2

f
. The details for

calculation of the relationship matrix GF can be found in the
associated literature (Slater et al., 2016), and was constructed
using the AGHmatrix R-package.

• RKHS: The model for Reproducing Kernel-Hilbert Space
(RKHS) is the same as described in Equation (3), but the
random genetic values have a different distribution: a ∼

N(0,Kσ 2
g ). The genomic relationship matrix GA, is replaced

by the kernel matrix, K = exp−
D
θ , where D is a Euclidean

distance matrix between genotypes, and θ a tuning parameter.
The tuning parameter controls how fast the relationship
between two genotypes decays as the distance between the
corresponding pairs of marker vectors increases (Jiang and
Reif, 2015) and is estimated from the data by maximizing
the log-likelihood (Endelman, 2011). The genetic variance
is no longer the result of allele substitution, as seen in the
additive model (Equation 3) with additive genetic variance,
σ 2
a . The genetic variance captured by RKHS (σ 2

g ), includes
additive and first order epistatic (additive × additive) effects
(Gianola and van Kaam, 2008).

• Bayesian LASSO:

y = µ + Xb+ ǫ (7)

The first five genomic predictions described above estimate
genotypic effects, the Bayesian models however estimate
marker effects. Equation (7) includes terms for phenotype (y),
overall mean (µ), and non genetic (or unmodelled) influences
plus error (ǫ). Where it differs from our previous GPmodels is
in the term Xb, which directly links the marker design matrix
X, to the marker effects b. The marker effects are assumed to
come from a distribution and in the case of Bayesian LASSO,
a double exponential (Laplace) distribution, b ∼ Lap(0, λ),
or alternatively:

b ∼ 5R
j=1

λ

2
e−λ|bj|

The λ parameter is inversely proportional to the variance
of the distribution and is estimated from the data. The
probability density function is multiplied across all markers
(each indicated by subscript j), up to a total of Rmarkers.

• Bayes A: The statistical model is similar to that seen in
Equation (7), however Bayes A assumes that marker effects
come from a scaled-t distribution with v degrees of freedom,
bj ∼ tv(0, σ

2
b
), where σ 2

b
is the variance of marker effects.

• BAYES Cπ : The Bayes Cπ model assumes that marker effects
come from a mixture distribution where a proportion of
markers (π) have zero effect and the remainder (1 − π) have
non-zero effects from a normal distribution, such that:

bj =

{

0 :with probability π

∼ N(0, σ 2
b
) :with probability 1− π

Because markers are separated into either having an effect or
having no effect, this model is performing marker selection.
The proportion of zero effect markers π , is estimated from
the data.

The three Bayesian models are better suited for traits controlled
by few large effect loci, whereas the models mentioned before
are better for predicting traits with many small effect loci
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TABLE 3 | Marker configurations under different effect assumptions.

AAAA AAAB AABB ABBB BBBB

Additive 0 1 2 3 4

Simplex dominant (B>A) 0 4 4 4 4

Duplex dominant (B>A) 0 0 4 4 4

(de los Campos et al., 2013). For all GP models, except RKHS,
parameters were estimated using Bayesian statistics (Gibbs
Sampler) with the package BGLR (Pérez and de los Campos,
2014), with 10,000 iterations and 2,500 iterations used as burn-in.
Maximum likelihood was used to implement the RKHS model,
and choose the most likely value for the tuning parameter.

Assessing Prediction Accuracy
With 147 varieties containing both phenotypic and genotypic
information, cross-validation was performed by sampling a
training set of 105 individuals to train the model, and using the
trained model to predict the remainder of individuals (validation
set) (Wilson et al., n.d.). These 105 individuals were sampled
in order to minimise the genetic distance between the training
and validation sets, using a sampling method based on the
coefficient of determination (Rincent et al., 2012). This training
set construction procedure uses marker information in the
form of a genomic relationship matrix, as well as phenotypic
information to construct the training set. Prediction accuracy
is defined as the Pearson correlation between the BLUEs and
the predicted genotypic values, and was averaged over the
100 repetitions.

Genome Wide Association Study (GWAS)
To suggest an explanation for the differences betweenGPmodels,
a GWAS was performed to investigate the genetic architecture
of the traits analysed. The proposed GP models assume different
biological processes for controlling trait expression: many small
effect loci vs. a few large QTLs as well as additive vs. dominant
effects. For a given trait, the genetic architecture uncovered by
GWAS will help explain why a particular GP model has higher
prediction accuracy than another.

y = µ + Xβ + g + ǫ (8)

In Equation (8), y is the vector of BLUEs, µ is the overall mean.
The polygenic effect is captured by the term g, and is distributed
g ∼ N(0,GAσ 2

g ), where GA is the same genomic relationship
matrix across all chromosomes, used for the GBLUP prediction
in Equation (3). The error term ǫ captures non-genetic residuals
plus error, and is assumed to follow a normal distribution as
seen in prior models. The term β represents the marker effect
and X is the marker matrix containing genetic information that
may be coded differently depending on the assumed type of effect
(see Table 3).

From Table 3, we see the coding of the design matrix, where
the additive effect assumes the size of the effect is proportional
to the number of alternative alleles present. Simplex dominant

(for the alternative allele) indicates that there are two levels
for effects: when there is no alternative allele present and
another for when there is at least one alternative allele. This
simplex dominant configuration of allele effects corresponds with
our GBLUP dominance prediction model (Equation 4). Duplex
dominance means that the second level of effect occurs when
at least two alternative alleles are present. Duplex dominance
was not included in any GP models, however exploring the level
of dominance can reveal genetic architecture information and
therefore, help explain the differences between GP accuracies,
allowing for expansion in future studies. For both simplex and
duplex dominance, the reference allele was also regarded as the
dominant allele, and therefore five different SNP design matrices
(additive, simplex dominance for the reference allele, simplex
dominance for the alternative allele, duplex dominance for the
reference allele and duplex dominance for the alternative allele)
were used in the GWAS of each trait. This analysis was done using
the GWASpoly package (Rosyara et al., 2016).

The impact of population structure on the GWAS analysis
was evaluated by looking at the quantile-quantile plots of the p-
values for marker effects transformed to a log scale (−log10p).
Not correcting for population structure will result in spurious
associations, and this was investigated by a visual assessment for
inflation of p-values.

The threshold for identifying significantly associated markers
was corrected for multiple testing using the method proposed by
Li and Ji (2005). This is calculated as the significance level divided
by the number of effective regions ( α

Neff
), where Neff is estimated

from the eigen values of the marker matrix. This resulted in
222 effective regions from the 39,000 markers. For each marker
effect assumption (additive, simplex dominance etc.), significant
markers were extracted and used as explanatory variables, along
with the first three principal components (extracted from the
relationship matrix constructed on allelic dosage), in a linear
regression model. The R2 statistic of this model is the fraction
of the total sum of squares due to genotypic differences, that can
be explained by markers (Wallace et al., 2016; Inostroza et al.,
2018). For a given trait, we will be able to distinguish which
effect, additive, dominance, or the effect of population structure,
explains more of the phenotypic variance.

RESULTS

Population Structure
Using the marker matrix X (described previously in the
Materials and Methods) an assessment of population structure
was conducted via Principal Components analysis (Figure 2),
analysis of molecular variance (AMOVA) and Wright’s FST
statistic (Table 4). A list of the seven distinct market classes are
as follows, with the number of individuals belonging to each class
given in parentheses: ancient (1), chip processing (39), French fry
processing (42), fresh consumption (1), cooking (56), starch (7),
and the rest (1).

Figure 2 illustrates that there is a lack of separation between
market classes. For FST and AMOVA calculations, the three
small market classes were not included as they did not
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FIGURE 2 | Illustration of the population structure explained by the first three Principal Components (PCA) of the entire genome, with market class membership

indicated by colour.

TABLE 4 | FST statistic between sub-populations.

FST Cooking French fry Chip

French fry 0.0088

Chip 0.0116 0.0098

Starch 0.0323 0.0341 0.0130

Numbers close to zero indicate populations that are more genetically similar.

meet the requirement of minimum population size for these
analyses (Willing et al., 2012; Nazareno et al., 2017). Population
classifications contributed only 6.7% of the total molecular
variation according to the results of AMOVA, further supporting
what we see in Figure 2. The four major market classes showed
very little separation with FST values close to zero (Table 4),
indicating that these sub-populations are genetically similar. The
starch market class is closer to the chip processing group than the
cooking and French fry processing classes as shown in Table 4,
and illustrated in Figure 2.

All population structure analyses were performed using the
R packages StaMPP (Pembleton et al., 2013) and Adegenet
(Jombart and Ahmed, 2011), because of their suitability for
polyploid population genetics (Dufresne et al., 2014).

Phenotypic Analysis
Phenotypes were first adjusted for local trends within each trial
as seen in Equation (1). At this level of analysis, outliers were

detected and removed and the extracted BLUEs were then pooled
across all trials as described in theMaterials andMethods section.
The resulting distributions and correlations between phenotypic
values can be seen in Figure 3.

Broad-sense heritability was calculated for tuber weight, tuber
count, tuber length, and dry matter resulting inH2 values of 0.78,
0.79, 0.91, and 0.96, respectively. These heritability estimates are
quite high and most likely because of the repeated trials at three
locations and 2 years.

Genomic Prediction
The results of GP analyses on the four traits, compared across
eight statisticalmodels can be seen in Figure 4. Accuracies ranged
from 0.32, when tuber count was predicted with a Bayesian
LASSO model, to 0.77 when dry matter content was predicted
with a Bayes-A model. With the highest heritability, it is not
surprising that dry matter has the highest prediction accuracy.
Tuber length was predicted more accurately than tuber count,
and this corresponds with the ordering of their heritability
estimates. The trait with the second highest prediction accuracy
was tuber weight, which was unexpected as it had the lowest
heritability, and was the only trait that did not agree with the
order of heritability estimates.

There is no clear ranking of model performance across all
traits, however Figure 4 allows us to observe some trends. The
three Bayesian models, that differ in their assumed distribution
of marker effects, show little difference between them across all
traits (differences of at least 0.03 will be considered relevant).
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FIGURE 3 | Distribution and correlation between the four analysed traits: Tuber Weight (TW), Tuber Count (TC), Tuber Length (TL), Dry Matter (DM).

FIGURE 4 | GP results of the four analysed traits, with prediction accuracy on the y-axis, and the x-axis indicating the model used: Add (GBLUP with additive

genomic relationship matrix), A+D (GBLUP with additive and dominance relationship matrices), A+D+Ep (GBLUP with additive, dominance, and epistatic relationship

matrices), RKHS (Reproducing Kernel-Hilbert Space model), BayesC (Bayes Cπ model), BayesL (Bayesian LASSO model), FT (Full Tetraploid as proposed by Slater

et al., 2016). Standard errors of estimates are illustrated with the bars around the points.
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Bayesian models were among the better performing models, for
those traits that were also predicted well by an additive GBLUP
model. Extending an additive model to include dominance or
dominance + epistasis did not significantly improve prediction
accuracies for the traits analysed, except for tuber count. For
dry matter content and tuber length, the addition of these
non-additive effects decreased prediction accuracy, but these
decreases were not relevant. With tuber count again being the
exception, the performance of the RKHS model was comparable
to the model that best predicted a given trait. The full tetraploid
model (FT) was generally outperformed by all the other models,
more so for dry matter content and tuber length.

Model ranking can better be assessed on a per trait basis,
as the best performing model depends on the trait analysed.
Figure 4 shows that models that directly estimate marker effects
are the most suitable for predicting dry matter. Tuber length
can be predicted efficiently with either an additive GBLUP or
one of the Bayesian models. Tuber weight prediction appears to
benefit from modelling non-additive effects, but the source of
that effect is not completely clear. There is a small increase in
prediction accuracy as we move from additive, to an additive-
dominant model, to a model that includes additive, dominance
and additive× additive epistatic effects. This trend could suggest
the presence of a non-additive effect not explicitly modelled by
the GBLUP models, such as an effect that is of a higher order
than the additive × additive epistatic interaction. The RKHS
model produced the highest accuracies for this trait, and is unique
among the models tested as all other models are parametric
while the RKHS model is semi-parametric. The RKHS model
captures the same first order epistasis as the parametric model,
however it gives themost noticeable improvement in comparison
to the standard additive GBLUP model (from 0.56 to 0.59). For
predicting tuber count, extending the additive GBLUP model to
include dominance effects improved the accuracy of prediction
by 17%, from 0.35 to 0.41, which we consider as a relevant change.
The explicit modelling of this particular non-additive effect is
clearly beneficial for the prediction of this trait, more so than any
other trait analysed.

An additional result from the Bayes Cπ model is the fraction
of markers selected because of their potential QTL effects. For
dry matter 0.27 markers were selected while the for tuber weight,
half (0.5) of the markers were selected. The proportion of
selected markers for tuber length and count was 0.35 and 0.34,
respectively. This gives an idea of trait architecture which is
investigated further in the next section.

GWAS
Trait architecture is responsible for the particularity between the
accuracy of a GP statistical model and the trait analysed. To
uncover some of the underlying genetic behaviour responsible for
the expression of our four traits, Equation (8) was applied. Two
further models were tested, one that included fixed effects for
market class assignments and another that included fixed effects
for the first three principal component axes. A look at the QQ-
plot showed no significant inflation of p-values when these fixed
effects were excluded (results not shown), and no difference when
they were introduced to the GWASmodel. This can be attributed

to the lack of population structure as reported previously, thus
a model simply with a genomic relationship matrix was enough
to avoid spurious associations between markers and traits. The
threshold for identifying significant markers was−log10p = 3.65,
after the 0.05 threshold was adapted for multiple testing ( 0.05222 ).
The signals detected when coding markers for additive or non-
additive effects (in this case two levels of dominance) can be seen
for dry matter and tuber count in Figure 5. Manhattan plots for
tuber length and tuber weight are not shown as these plots were
not very informative, however analyses on the significantmarkers
for these traits still follow.

Across the five tested GWAS models for dry matter content,
the most significant association with markers is observed when
an additive effect is assumed (Figure 5). When compared to
the plots assuming dominance we see that additivity gives
both the highest scores [−log10(p)] and the most abundant
markers appearing above the threshold. For tuber count we
see significant markers in more abundance when a dominant
coding of the marker matrix is considered. There are multiple
flanking “hits” on chromosomes 1 and 3 when we assume
simplex dominance for the reference allele. Chromosomes 4
(the two significant markers overlap on the plot) and 8 also
show neighbouring markers with significant associations to tuber
count when dominance is assumed to occur in the presence of a
single alternative allele.

Manhattan plots of tuber weight did not show much evidence
of significant QTLs in this analysis (Supplementary Figure 2).
There are a few markers associated when dominant effects
are modelled: these occur when the alternative allele is
simplex or duplex dominant. Similarly, GWAS for tuber length
analysis did not show any clear profile of associated markers
(Supplementary Figure 2). Still we observed more significant
markers when they were coded as duplex dominant for the
alternative allele, however the highest scores were observed for
additive effects and duplex dominance for the reference allele.

Manhattan plots can be ambiguous, therefore further analysis
was done by performing a linear regression to uncover which
marker effect type is more important for trait expression.
Reported in Table 5 is the fit statistic for each regression
(R2), which can be interpreted as the amount of phenotypic
variance that can be explained by the significant markers and/or
population structure.

Of the four traits, the variance of dry matter is best explained
frommarker information, and also has the biggest influence from
principal components alone. This does not agree with previous
population structure analysis (Figure 2), but those previous
analyses were across the entire genome. For this trait, using only
the significant additive markers found on chromosome 3, we can
explain over 50% of phenotypic variation (not shown). For dry
matter, the inclusion of dominance adds no information as seen
in the GP results (Figure 4 and Table 5). Tuber count, as seen
in GP, is controlled by dominance effects. This dominance effect
comes from the alternative allele as opposed to the reference allele
which was not clear from Figure 5, and more than doubles the
explained phenotypic variance (12.50–35.92%) in comparison to
additive effects. Explained phenotypic variation of tuber weight
remains unchanged under simplex dominance assumptions. We
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FIGURE 5 | Manhattan plots for dry matter (DM) and tuber count (TC). Five marker matrices were tested: additive, simplex dominant in favour of the alternative allele

and reference allele (1-dom-alt and 1-dom-ref, respectively), duplex dominant in favour of the alternative allele and reference allele (2-dom-alt and 2-dom-ref,

respectively). The red horizontal line indicates the threshold for significant markers.

TABLE 5 | Percentage of variance explained (R2) from regression of each trait against: first three principal components only, significant additive markers after correcting

for the first three principal components, significant dominance effect markers (under various configurations) after correcting for additive effects and the first three

principal components.

Trait 3 PCs only 3 PCs + Add markers
3 PCs + Add + Dom markers

1-dom-alt 1-dom-ref 2-dom-alt 2-dom-ref

Tuber weight 5.55 12.92 12.26 12.26 30.40 16.88

Tuber count 0.07 12.50 35.92 14.99 23.43 15.78

Tuber length 6.13 42.43 53.24 44.68 57.75 47.73

Dry matter 41.77 67.01 67.96 66.64 68.49 66.24

see strong evidence that the level of dominance occurs at a duplex
level, where the explained phenotypic variation increases from
12.92 to 30.40%, when compared to additive assumptions. A
significant portion of the phenotypic variation of tuber length can
be explained by additive effects (42%) and we do see an increase
when dominance from the alternative allele is modelled (simplex
or duplex), but this increase was not as noticeable as the increase
shown when tuber count and weight are coded for dominant
effects. In general the effect of population structure on explaining
the variation of tuber traits (length, weight, and count) is small.

DISCUSSION

The primary focus of this study was to explore and compare
statistical models for genomic prediction in tetraploid potato.
As a secondary focus, a genome wide association analysis was

conducted to identify trait architecture and thus explain the
reasons for differences in prediction accuracies from trait to trait.
The same marker profile was used for both GP and GWAS.
It is worth noting that Bayes-R and Genome-wide Complex
Trait Analysis (GCTA) can simultaneously perform GP and
GWAS, therefore deserving of further study. However, for this
study, we focused on a tetraploid species and therefore wanted
to ensure that both the GP and GWAS analyses were tailored
for tetraploids.

Translating these findings to a traditional breeding program
expose the limitations of this study. Only 147 cultivars were
analysed in this study, spread over several market classes.
In a traditional breeding program thousands of new hybrids
can be evaluated within one particular market class. Despite
these limitations, the work done here still shows that there is
merit using genomic selection, especially after the first round
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of phenotypic selection where a majority of the material has
been discarded. After this stage genomic selection can then
significantly speed up the breeding cycle.

Heritability
Broad-sense Heritability estimates were quite high. Asmentioned
previously, our heritability estimates can more accurately be
defined as repeatability estimates (Falconer et al., 1996), because
we are averaging across six trials. Our high estimates show that
there is not too much genotype by environment interaction
(GxE) and thus high repeatability. The order of heritability
estimates was unexpectedly not in agreement with the order of
GP accuracies, and this was also found in a similar study (Stich
andVan Inghelandt, 2018). The order of our heritability estimates
is not a ranking of which traits would best be explained bymarker
information, although it does give some indication. Instead it
is a ranking of which traits show the least to most GxE, with
dry matter having the least GxE and tuber weight having the
most. Regardless, one would expect heritability to translate to
marker effects and GP accuracies not be so low in relation to
heritability estimates.

Genomic Prediction Models
For most traits, the differences between GP models were very
small (Habyarimana et al., 2017; Sverrisdóttir et al., 2017;
Amadeu et al., 2020). Amadeu et al. (2020) concluded that there
is little difference in prediction accuracy between modelling
strategies, and use of an additive GBLUP model would be
sufficient for GP in auto-tetraploids. Only two traits in potato
were analysed in that study: yield and specific gravity. Specific
gravity is closely related to dry matter (Simmonds, 1977; Kumar
et al., 2005), and in this study we also found that the additive
GBLUP model is suitable. Tuber length also supports the
conclusion by Amadeu et al. (2020), where a GBLUP additive
model performs whole genome prediction as well as other
models. For the other two traits analysed in this study, tuber
count and yield, we have shown that other model considerations
should be made to maximise prediction accuracy.

Capturing Dominance and Epistatic Effects
For tuber count, the modelling of dominance gave a 17%
increase in prediction accuracy (from 0.35 to 0.41). The
trait architecture revealed in the GWAS section, showed that
significant dominant markers explained the most phenotypic
variation, therefore targetting these non-additive effects resulted
in the highest prediction accuracy. Trying to capture these non-
additive effects with the full tetraploid model did not increase
prediction accuracy.

Yield was one of the traits analysed by Amadeu et al. (2020),
however, the RKHS model was not tested in that study. In this
study, we show that the parametric models that included a term
to capture epistasis did show evidence that there is an epistatic
effect controlling tuber weight (which we consider as yield). The
semi-parametric RKHS model produced the highest prediction
accuracies for this trait. This is in agreement with findings
from other studies that concluded epistasis is better captured
by semi-parametric (and non-parametric) in comparison to

parametric models (Howard et al., 2014; Jacquin et al., 2016;
Momen et al., 2018). Based on GWAS results, there may be
important dominance effects that were not explicitly modelled in
our GP analyses of this trait. The GWAS results showed that, like
tuber count, yield had the highest explained phenotypic variance
when markers were coded as dominant. However, these markers
that explained a significant portion of phenotypic variance
for yield were coded as duplex dominant (instead of simplex).
The dominance relation matrix used in our GP models assume
simplex dominance, and there are no current adaptations to
expand to higher levels of dominance (Amadeu et al., 2020).

The explicit modelling of epistasis for specific gravity in
Endelman et al. (2018) gave a substantial increase in prediction
accuracy, however that study also did not include the RKHS
model. It would have been interesting to see if an RKHS model
would have performed better, based on what we observed for
epistasis in tuber weight and other previous studies as mentioned
before. Interestingly, dry matter was not improved with the
modelling of epistasis in this study, which contradicts the results
of Endelman et al. (2018).

The full tetraploid model (Slater et al., 2016), developed to
implicitly capture non-additive effects in auto-tetraploids, did
not improve accuracies in this study and one other (Amadeu
et al., 2020). In our analyses, this model performed least
favourably for most traits. A possible reason for this is the use of
genotype frequency instead of allele frequency. The marker data
was dominated significantly with nulliplex and simplex dosages
(> 75% of information) and therefore genotype frequencies
for other dosages may be severely under-represented. GBS data
for tetraploid data has been said to bias against the alternate
allele (Endelman, personal communication, November 07, 2019),
which is most likely the cause of the imbalance of dosage classes
for the data in this study. For this reason, it would be worthwhile
to have another look at this model in a study with a more
balanced marker profile.

Mixed Models (GBLUP) vs. Bayesian Models
Marker effect models are expected to perform better than mixed
model GP models (GBLUP) when traits are controlled by a few
high impact loci (de los Campos et al., 2013). Like the previous
GP studies for potato (Habyarimana et al., 2017; Sverrisdóttir
et al., 2017; Amadeu et al., 2020), this study also revealed very
little difference between these two model classes. Despite the
negligible differences, two traits did give some surprising results.

GWAS for dry matter found a few markers that were able
to explain more than 50% of phenotypic variability. Therefore,
for this trait, we would have expected a relevant increase going
from a mixed model to marker effect model. Tuber yield showed
a small but irrelevant increase (< 0.03) when moving from
mixed to marker effect modelling, however GWAS findings
were unable to explain this result. The significant additive
markers for yield explained very little phenotypic variation
(12.92%), therefore it was unexpected that a marker effect
model would have even slightly outperformed a GBLUP model.
Habyarimana et al. (2017) also found that the Bayesian model
gave more accurate predictions for yield than the traditional
GBLUP model.
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CONCLUSIONS

• For GP in auto-tetraploids, there are very little differences
between different types of shrinkage methods, and models that
do both shrinkage and variable selection.

• GWAS can assist in deciding what model strategies should
be considered, especially when considering capturing non-
additive effects. When GWAS reveals significant dominant
effect markers (simplex), this should be modelled specifically
in GP models.

• Tuber weight shows evidence of epistasis, therefore semi-
and non-parametric models should be used to predict
this trait. Further investigation can include extending the
dominance relationship matrix to include duplex dominance
and modelling higher levels of epistasis.

• There is no one-size-fits-all model, especially when capturing
non-additive effects. Understanding the nature of these effects,
example dominance in tuber count vs. epistasis in tuber
weight, is important information when choosing the most
suitable model.
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