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Use of genomic prediction (GP) in tetraploid is becoming more common. Therefore,
we think it is the right time for a comparison of GP models for tetraploid potato. GP
models were compared that contrasted shrinkage with variable selection, parametric vs.
non-parametric models and different ways of accounting for non-additive genetic effects.
As a complement to GP, association studies were carried out in an attempt to understand
the differences in prediction accuracy. We compared our GP models on a data set
consisting of 147 cultivars, representing worldwide diversity, with over 39 k GBS markers
and measurements on four tuber traits collected in six trials at three locations during 2
years. GP accuracies ranged from 0.32 for tuber count to 0.77 for dry matter content. For
all traits, differences between GP models that utilised shrinkage penalties and those that
performed variable selection were negligible. This was surprising for dry matter, as only
a few additive markers explained over 50% of phenotypic variation. Accuracy for tuber
count increased from 0.35 to 0.41, when dominance was included in the model. This
result is supported by Genome Wide Association Study (GWAS) that found additive and
dominance effects accounted for 37% of phenotypic variation, while significant additive
effects alone accounted for 14%. For tuber weight, the Reproducing Kernel Hilbert Space
(RKHS) model gave a larger improvement in prediction accuracy than explicitly modelling
epistatic effects. This is an indication that capturing the between locus epistatic effects
of tuber weight can be done more effectively using the semi-parametric RKHS model.
Our results show good opportunities for GP in 4x potato.

Keywords: tetraploid potato, genotype by sequencing, genomic prediction, genome wide association study,
non-additive effects

INTRODUCTION

Cultivated potato (Solanum tuberosum L.) is one of the most consumed food crops in the world,
behind only rice and wheat (Birch et al., 2012). Since its discovery over 500 years ago, breeders
have selected and hybridised this crop to adapt to various environmental conditions and satisfy
numerous market desires. With its large genetic diversity, this was easily achieved making potato
one of the most versatile food crops. Most of the environmental and market class adaptations,
as well as genetic gains for simple traits, have been attained via phenotypic selection, which may
take 10-12 years until a new cultivar is introduced (Jansky, 2009; Endelman et al., 2018). However,
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FIGURE 3 | Distribution and correlation between the four analysed traits: Tuber Weight (TW), Tuber Count (TC), Tuber Length (TL), Dry Matter (DM).

FIGURE 4 | GP results of the four analysed traits, with prediction accuracy on the y-axis, and the x-axis indicating the model used: Add (GBLUP with additive
genomic relationship matrix), A+D (GBLUP with additive and dominance relationship matrices), A+D+Ep (GBLUP with additive, dominance, and epistatic relationship
matrices), RKHS (Reproducing Kernel-Hilbert Space model), BayesC (Bayes C model), BayesL (Bayesian LASSO model), FT (Full Tetraploid as proposed by Slater
et al., 2016). Standard errors of estimates are illustrated with the bars around the points.
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Bayesian models were among the better performing models, for
those traits that were also predicted well by an additive GBLUP
model. Extending an additive model to include dominance or
dominance + epistasis did not significantly improve prediction
accuracies for the traits analysed, except for tuber count. For
dry matter content and tuber length, the addition of these
non-additive effects decreased prediction accuracy, but these
decreases were not relevant. With tuber count again being the
exception, the performance of the RKHS model was comparable
to the model that best predicted a given trait. The full tetraploid
model (FT) was generally outperformed by all the other models,
more so for dry matter content and tuber length.

Model ranking can better be assessed on a per trait basis,
as the best performing model depends on the trait analysed.
Figure 4 shows that models that directly estimate marker effects
are the most suitable for predicting dry matter. Tuber length
can be predicted efficiently with either an additive GBLUP or
one of the Bayesian models. Tuber weight prediction appears to
benefit from modelling non-additive effects, but the source of
that effect is not completely clear. There is a small increase in
prediction accuracy as we move from additive, to an additive-
dominant model, to a model that includes additive, dominance
and additive x additive epistatic effects. This trend could suggest
the presence of a non-additive effect not explicitly modelled by
the GBLUP models, such as an effect that is of a higher order
than the additive x additive epistatic interaction. The RKHS
model produced the highest accuracies for this trait, and is unique
among the models tested as all other models are parametric
while the RKHS model is semi-parametric. The RKHS model
captures the same first order epistasis as the parametric model,
however it gives the most noticeable improvement in comparison
to the standard additive GBLUP model (from 0.56 to 0.59). For
predicting tuber count, extending the additive GBLUP model to
include dominance effects improved the accuracy of prediction
by 17%, from 0.35 to 0.41, which we consider as a relevant change.
The explicit modelling of this particular non-additive effect is
clearly beneficial for the prediction of this trait, more so than any
other trait analysed.

An additional result from the Bayes Cr model is the fraction
of markers selected because of their potential QTL effects. For
dry matter 0.27 markers were selected while the for tuber weight,
half (0.5) of the markers were selected. The proportion of
selected markers for tuber length and count was 0.35 and 0.34,
respectively. This gives an idea of trait architecture which is
investigated further in the next section.

GWAS

Trait architecture is responsible for the particularity between the
accuracy of a GP statistical model and the trait analysed. To
uncover some of the underlying genetic behaviour responsible for
the expression of our four traits, Equation (8) was applied. Two
further models were tested, one that included fixed effects for
market class assignments and another that included fixed effects
for the first three principal component axes. A look at the QQ-
plot showed no significant inflation of p-values when these fixed
effects were excluded (results not shown), and no difference when
they were introduced to the GWAS model. This can be attributed

to the lack of population structure as reported previously, thus
a model simply with a genomic relationship matrix was enough
to avoid spurious associations between markers and traits. The
threshold for identifying significant markers was —logjop = 3.65,
after the 0.05 threshold was adapted for multiple testing (%).
The signals detected when coding markers for additive or non-
additive effects (in this case two levels of dominance) can be seen
for dry matter and tuber count in Figure 5. Manhattan plots for
tuber length and tuber weight are not shown as these plots were
not very informative, however analyses on the significant markers
for these traits still follow.

Across the five tested GWAS models for dry matter content,
the most significant association with markers is observed when
an additive effect is assumed (Figure 5). When compared to
the plots assuming dominance we see that additivity gives
both the highest scores [—logio(p)] and the most abundant
markers appearing above the threshold. For tuber count we
see significant markers in more abundance when a dominant
coding of the marker matrix is considered. There are multiple
flanking “hits” on chromosomes 1 and 3 when we assume
simplex dominance for the reference allele. Chromosomes 4
(the two significant markers overlap on the plot) and 8 also
show neighbouring markers with significant associations to tuber
count when dominance is assumed to occur in the presence of a
single alternative allele.

Manbhattan plots of tuber weight did not show much evidence
of significant QTLs in this analysis (Supplementary Figure 2).
There are a few markers associated when dominant effects
are modelled: these occur when the alternative allele is
simplex or duplex dominant. Similarly, GWAS for tuber length
analysis did not show any clear profile of associated markers
(Supplementary Figure 2). Still we observed more significant
markers when they were coded as duplex dominant for the
alternative allele, however the highest scores were observed for
additive effects and duplex dominance for the reference allele.

Manhattan plots can be ambiguous, therefore further analysis
was done by performing a linear regression to uncover which
marker effect type is more important for trait expression.
Reported in Table5 is the fit statistic for each regression
(R?), which can be interpreted as the amount of phenotypic
variance that can be explained by the significant markers and/or
population structure.

Of the four traits, the variance of dry matter is best explained
from marker information, and also has the biggest influence from
principal components alone. This does not agree with previous
population structure analysis (Figure 2), but those previous
analyses were across the entire genome. For this trait, using only
the significant additive markers found on chromosome 3, we can
explain over 50% of phenotypic variation (not shown). For dry
matter, the inclusion of dominance adds no information as seen
in the GP results (Figure 4 and Table 5). Tuber count, as seen
in GP, is controlled by dominance effects. This dominance effect
comes from the alternative allele as opposed to the reference allele
which was not clear from Figure 5, and more than doubles the
explained phenotypic variance (12.50-35.92%) in comparison to
additive effects. Explained phenotypic variation of tuber weight
remains unchanged under simplex dominance assumptions. We
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FIGURE 5 | Manhattan plots for dry matter (DM) and tuber count (TC). Five marker matrices were tested: additive, simplex dominant in favour of the alternative allele
and reference allele (1-dom-alt and 1-dom-ref, respectively), duplex dominant in favour of the alternative allele and reference allele (2-dom-alt and 2-dom-ref,
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TABLE 5 | Percentage of variance explained (R?) from regression of each trait against: first three principal components only, significant additive markers after correcting
for the first three principal components, significant dominance effect markers (under various configurations) after correcting for additive effects and the first three

principal components.

3 PCs + Add + Dom markers

Trait 3 PCs only 3 PCs + Add markers

1-dom-alt 1-dom-ref 2-dom-alt 2-dom-ref
Tuber weight 5.55 12.92 12.26 12.26 30.40 16.88
Tuber count 0.07 12.50 35.92 14.99 23.43 15.78
Tuber length 6.13 42.43 53.24 44.68 57.75 47.73
Dry matter 41.77 67.01 67.96 66.64 68.49 66.24

see strong evidence that the level of dominance occurs at a duplex
level, where the explained phenotypic variation increases from
12.92 to 30.40%, when compared to additive assumptions. A
significant portion of the phenotypic variation of tuber length can
be explained by additive effects (42%) and we do see an increase
when dominance from the alternative allele is modelled (simplex
or duplex), but this increase was not as noticeable as the increase
shown when tuber count and weight are coded for dominant
effects. In general the effect of population structure on explaining
the variation of tuber traits (length, weight, and count) is small.

DISCUSSION

The primary focus of this study was to explore and compare
statistical models for genomic prediction in tetraploid potato.
As a secondary focus, a genome wide association analysis was

conducted to identify trait architecture and thus explain the
reasons for differences in prediction accuracies from trait to trait.
The same marker profile was used for both GP and GWAS.
It is worth noting that Bayes-R and Genome-wide Complex
Trait Analysis (GCTA) can simultaneously perform GP and
GWAS, therefore deserving of further study. However, for this
study, we focused on a tetraploid species and therefore wanted
to ensure that both the GP and GWAS analyses were tailored
for tetraploids.

Translating these findings to a traditional breeding program
expose the limitations of this study. Only 147 cultivars were
analysed in this study, spread over several market classes.
In a traditional breeding program thousands of new hybrids
can be evaluated within one particular market class. Despite
these limitations, the work done here still shows that there is
merit using genomic selection, especially after the first round
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of phenotypic selection where a majority of the material has
been discarded. After this stage genomic selection can then
significantly speed up the breeding cycle.

Heritability

Broad-sense Heritability estimates were quite high. As mentioned
previously, our heritability estimates can more accurately be
defined as repeatability estimates (Falconer et al., 1996), because
we are averaging across six trials. Our high estimates show that
there is not too much genotype by environment interaction
(GxE) and thus high repeatability. The order of heritability
estimates was unexpectedly not in agreement with the order of
GP accuracies, and this was also found in a similar study (Stich
and Van Inghelandt, 2018). The order of our heritability estimates
is not a ranking of which traits would best be explained by marker
information, although it does give some indication. Instead it
is a ranking of which traits show the least to most GxE, with
dry matter having the least GXE and tuber weight having the
most. Regardless, one would expect heritability to translate to
marker effects and GP accuracies not be so low in relation to
heritability estimates.

Genomic Prediction Models

For most traits, the differences between GP models were very
small (Habyarimana et al, 2017; Sverrisdottir et al., 2017;
Amadeu et al., 2020). Amadeu et al. (2020) concluded that there
is little difference in prediction accuracy between modelling
strategies, and use of an additive GBLUP model would be
sufficient for GP in auto-tetraploids. Only two traits in potato
were analysed in that study: yield and specific gravity. Specific
gravity is closely related to dry matter (Simmonds, 1977; Kumar
et al,, 2005), and in this study we also found that the additive
GBLUP model is suitable. Tuber length also supports the
conclusion by Amadeu et al. (2020), where a GBLUP additive
model performs whole genome prediction as well as other
models. For the other two traits analysed in this study, tuber
count and yield, we have shown that other model considerations
should be made to maximise prediction accuracy.

Capturing Dominance and Epistatic Effects

For tuber count, the modelling of dominance gave a 17%
increase in prediction accuracy (from 0.35 to 0.41). The
trait architecture revealed in the GWAS section, showed that
significant dominant markers explained the most phenotypic
variation, therefore targetting these non-additive effects resulted
in the highest prediction accuracy. Trying to capture these non-
additive effects with the full tetraploid model did not increase
prediction accuracy.

Yield was one of the traits analysed by Amadeu et al. (2020),
however, the RKHS model was not tested in that study. In this
study, we show that the parametric models that included a term
to capture epistasis did show evidence that there is an epistatic
effect controlling tuber weight (which we consider as yield). The
semi-parametric RKHS model produced the highest prediction
accuracies for this trait. This is in agreement with findings
from other studies that concluded epistasis is better captured
by semi-parametric (and non-parametric) in comparison to

parametric models (Howard et al., 2014; Jacquin et al., 2016;
Momen et al., 2018). Based on GWAS results, there may be
important dominance effects that were not explicitly modelled in
our GP analyses of this trait. The GWAS results showed that, like
tuber count, yield had the highest explained phenotypic variance
when markers were coded as dominant. However, these markers
that explained a significant portion of phenotypic variance
for yield were coded as duplex dominant (instead of simplex).
The dominance relation matrix used in our GP models assume
simplex dominance, and there are no current adaptations to
expand to higher levels of dominance (Amadeu et al., 2020).

The explicit modelling of epistasis for specific gravity in
Endelman et al. (2018) gave a substantial increase in prediction
accuracy, however that study also did not include the RKHS
model. It would have been interesting to see if an RKHS model
would have performed better, based on what we observed for
epistasis in tuber weight and other previous studies as mentioned
before. Interestingly, dry matter was not improved with the
modelling of epistasis in this study, which contradicts the results
of Endelman et al. (2018).

The full tetraploid model (Slater et al., 2016), developed to
implicitly capture non-additive effects in auto-tetraploids, did
not improve accuracies in this study and one other (Amadeu
et al, 2020). In our analyses, this model performed least
favourably for most traits. A possible reason for this is the use of
genotype frequency instead of allele frequency. The marker data
was dominated significantly with nulliplex and simplex dosages
(> 75% of information) and therefore genotype frequencies
for other dosages may be severely under-represented. GBS data
for tetraploid data has been said to bias against the alternate
allele (Endelman, personal communication, November 07, 2019),
which is most likely the cause of the imbalance of dosage classes
for the data in this study. For this reason, it would be worthwhile
to have another look at this model in a study with a more
balanced marker profile.

Mixed Models (GBLUP) vs. Bayesian Models
Marker effect models are expected to perform better than mixed
model GP models (GBLUP) when traits are controlled by a few
high impact loci (de los Campos et al., 2013). Like the previous
GP studies for potato (Habyarimana et al., 2017; Sverrisdottir
et al., 2017; Amadeu et al., 2020), this study also revealed very
little difference between these two model classes. Despite the
negligible differences, two traits did give some surprising results.
GWAS for dry matter found a few markers that were able
to explain more than 50% of phenotypic variability. Therefore,
for this trait, we would have expected a relevant increase going
from a mixed model to marker effect model. Tuber yield showed
a small but irrelevant increase (< 0.03) when moving from
mixed to marker effect modelling, however GWAS findings
were unable to explain this result. The significant additive
markers for yield explained very little phenotypic variation
(12.92%), therefore it was unexpected that a marker effect
model would have even slightly outperformed a GBLUP model.
Habyarimana et al. (2017) also found that the Bayesian model
gave more accurate predictions for yield than the traditional
GBLUP model.
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CONCLUSIONS

For GP in auto-tetraploids, there are very little differences
between different types of shrinkage methods, and models that
do both shrinkage and variable selection.

GWAS can assist in deciding what model strategies should
be considered, especially when considering capturing non-
additive effects. When GWAS reveals significant dominant
effect markers (simplex), this should be modelled specifically
in GP models.

Tuber weight shows evidence of epistasis, therefore semi-
and non-parametric models should be used to predict
this trait. Further investigation can include extending the
dominance relationship matrix to include duplex dominance
and modelling higher levels of epistasis.

There is no one-size-fits-all model, especially when capturing
non-additive effects. Understanding the nature of these effects,
example dominance in tuber count vs. epistasis in tuber
weight, is important information when choosing the most
suitable model.
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