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Inverted and Programmable Poynting Effects in
Metamaterials

Aref Ghorbani, David Dykstra, Corentin Coulais, Daniel Bonn, Erik van der Linden,
and Mehdi Habibi*

The Poynting effect generically manifests itself as the extension of the
material in the direction perpendicular to an applied shear deformation
(torsion) and is a material parameter hard to design. Unlike isotropic solids, in
designed structures, peculiar couplings between shear and normal
deformations can be achieved and exploited for practical applications. Here, a
metamaterial is engineered that can be programmed to contract or extend
under torsion and undergo nonlinear twist under compression. First, it is
shown that the system exhibits a novel type of inverted Poynting effect, where
axial compression induces a nonlinear torsion. Then the Poynting modulus of
the structure is programmed from initial negative values to zero and positive
values via a pre-compression applied prior to torsion. The work opens
avenues for programming nonlinear elastic moduli of materials and tuning
the couplings between shear and normal responses by rational design.
Obtaining inverted and programmable Poynting effects in metamaterials
inspires diverse applications from designing machine materials, soft robots,
and actuators to engineering biological tissues, implants, and prosthetic
devices functioning under compression and torsion.

1. Introduction

The Poynting effect is a surprising non-linear elastic effect that
makes, in the original experiment of Poynting,[1] a hanging
piano wire under tension become longer when it is twisted
(Figure 1a, left). The consequence is also that if the distance be-
tween the two ends is fixed, the torsion induces a stress nor-
mal to the shear plane (normal stresses) that tends to separate
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the two ends (Figure 1b, left).[2,3] Devel-
oping normal stresses or axial deforma-
tions under torsion are two equivalent man-
ifestations of the Poynting effect. Poynting
found that the normal stress as a function
of shear strain follows a quadratic relation
with a positive coefficient,[1,4,5] now called
the Poynting modulus. While conventional
materials such as the piano wires of Poynt-
ing show a positive Poynting modulus
(Figure 1a,b, left), complex materials such
as biopolymer systems[6–11] and designed
structures[12] can exhibit a negative Poynt-
ing modulus, causing a shear-induced con-
traction under a fixed load (Figure 1a, right),
or negative normal force at a fixed gap (Fig-
ure 1b, right and Video S1, Supporting In-
formation). Designing metamaterials with
exceptional mechanical properties origi-
nated from their structure rather than their
composition has attracted much research
in different disciplines of science.[13,14]

So far, mechanical metamaterials have
been studied mostly under compression or

tension. The response of metamaterials to direct shear[15] and in
particular, the Poynting effect have remained largely unexplored.
Understanding the complex coupling between shear and normal
responses in metamaterials provides insights for harnessing and
programming their shear and Poynting moduli.

Pulling or pushing on isotropic linear elastic objects causes
expansion or contraction, but torsion is not allowed.[16,17] In a
limited number of recent studies, induced linear torsion by com-
pression have been uncovered in designed chiral structures[18–22]

mainly due to broken spatial symmetry of the system. Hence we
ask whether an object is capable of transforming pure compres-
sion into a nonlinear torsion, which we call the inverted Poynting
effect (Figure 1c and Video S1, Supporting Information). The in-
verted Poynting effect is not a conventional material property and
it has not been observed so far.

In this work, we aim to program the sign and magnitude of the
Poynting modulus in a designed structure. We design a cylindri-
cal metamaterial that exhibits a programmable Poynting modu-
lus and an inverted Poynting effect, where compression induces
a torsion. The cylindrical metamaterial is composed of identical
units (unit-cells) consisting of beams with a suitably designed
cross-section profile. By applying compression, the cylinder in-
duces nonlinear and linear torsions. The sign and magnitude
of the normal and shear responses of the designed structure
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Figure 1. Poynting effect. a) Applying torsion under fixed loads causes dilation in a material with a positive Poynting modulus (left) and contraction in
a material with a negative Poynting modulus (right). b) When the material is confined under a fixed gap, dilation and contraction will be manifested as
positive (left) or negative (right) normal forces, respectively. c) Schematic of a cylindrical shell showing the inverted Poynting effect, where, in contrast
to the Poynting effect’s manifestation in Poynting’s original experiment, an applied compression induces a nonlinear torsion in the cylinder.

are tuned by the interplay between buckling instability and self-
contact interactions of the beams via a pre-compression applied
prior to shear deformation. We present a simple spring model
that reproduces our experimental results and characterizes the
essential design parameters to obtain the inverted Poynting and
to program the Poynting modulus. Our findings outline a strat-
egy towards the rational designing of a programmable nonlinear
elastic response of metamaterials with potential applications in
engineering biomaterials functioning under torsional deforma-
tion and designing robot arms, soft rotational actuators and me-
chanical switches.[23–25] In soft robotics, for instance, coupling be-
tween torsion and compression can be exploited for the design of
twisters, rotational actuators, kinematic controllers, and pick and
place end-effector.[22,26]

2. System and Procedure

We design a hollow cylindrical shell composed of an array
of unit-cells, which provides a network of nonuniform beams
(Figure 2a) capable of side-buckling and self-contacting under
compression.[27] We apply compression and torsion deforma-
tions on the cylindrical metamaterial by clamping the structure
between two custom-made plates of an Anton Paar rheometer
and measure the mechanical responses. The experimental details
are explained in the experimental procedure section.

We first conduct two series of compression experiments with
different boundary conditions: in the first series the bottom side
of the shell is clamped and the top side is free to rotate (“torsion-
free”), while in the second series rotation is not allowed at both
sides (“clamped”). Then we use the clamped boundary condition
and perform two series of torsion experiments under fixed loads
and fixed gaps.

The compression strain is defined as 𝛿 = |h − h0|/h0, where
h0 = 40.1 mm is the initial effective height of the cylindrical shell
and h is its height after the pre-compression, under the compres-
sion force, F, with ±0.2% experimental error. Compression stress
is defined by 𝜎 = F/As, where As is the cross-section area. Tor-
sional angle, ϕ, develops by applying shear force, Fs, and induces
the axial deformation of 𝛿n under a fixed load or the normal force
of Fn under a fixed gap. In isotropic elastic materials, the shear
stress, 𝜎s, is proportional to the shear strain, 𝛾 , 𝜎s = Gs𝛾 , and the

normal stress induced by shear follows a quadratic relation as
a function of shear strain, 𝜎n = Gn𝛾

2.[1,5] Here, we characterize
the normal and shear responses of the structure with a Poynt-
ing modulus, Gn, and a shear modulus, Gs, respectively. Normal
and shear force responses of a cylindrical shell under torsion are
given by Fn = GnJ(ϕ/h)2, and Fs = 𝜏/R = GsJϕ/(Rh), respectively,
where 𝜏 is the torque around the axis of the shell, R = (Rmax +
Rmin)/2 is the mean radius, and J = 𝜋

2
(R4

max − R4
min) is the second

moment of area of the shell.

3. Inverted Poynting Effect and Three Regimes of
Structural Rearrangements

Our designed cylindrical metamaterial is capable of showing
the inverted Poynting effect by inducing torsion under compres-
sion (Figure 2b,c). As shown in Figure 2b in the torsion-free
compression, we observe the rotational buckling with an affine
torsional deformation across the height of the sample. However,
in the clamped compression experiment, the torsional defor-
mation accumulated at the middle of the structure (Figure 2c).
In both compression experiments, three distinct regimes of
configurational changes are observable in the structure: (i)
pre-buckling (Figure 2a), (ii) buckling of the beams (Figure 2b,c,
left), and (iii) self-contact (Figure 2b,c, right). Figure 2d, shows
the compression stress, 𝜎, rescaled by Young’s modulus of the
elastomer, Y = 3.63 MPa, as a function of compression strain,
𝛿, for the torsion-free (dashed curve) and clamped (solid curve)
experiments, respectively. The three regimes have different
effective stiffnesses due to their structural configurations. The
effective stiffness of the system in each regime, Yeff, is deter-
mined by the slope of the curve times Young’s modulus of the
elastomer.

In the pre-buckling regime (𝛿 < 𝛿b, where 𝛿b = 0.012 is the
compression strain for the onset of the buckling regime) the ver-
tical beams are stable and resist buckling (Figure 2a), resulting in
a relatively high stiffness, with Yeff = 0.095Y, in both compression
tests. In the buckling regime (𝛿b ⩽ 𝛿 < 𝛿c, where 𝛿c = 0.13 is the
compression strain for the onset of the self-contact regime), the
stress remains almost constant and the structure softens (Yeff =
0.004Y), due to the buckling instability in the beams (Figure 2b,c,
left). Finally, in the third regime (𝛿 ⩾ 𝛿c), the structure becomes

Adv. Sci. 2021, 2102279 © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH2102279 (2 of 9)



www.advancedsciencenews.com www.advancedscience.com

Figure 2. Experimental setup and compression tests. a) 3D printed structure is clamped between two plates. Unit-cells and nonuniform beams are mag-
nified. b,c) The compressed cylinder at the buckling (left) and self-contact (right) regimes in torsion-free (b) and clamped (c) compression experiments.
Deformed unit-cells are magnified. d) Rescaled nominal normal stress, 𝜎/Y, as a function of compression strain, 𝛿, for torsion-free (dashed curve) and
clamped (solid curve) experiments. e) Torsional angle, ϕ, as a function of compression with square root (blue) and linear (red) fits, in the buckling and
self-contact regimes, respectively. Insets are the predictions of the model and have the same axes and units as the main plots, except for the vertical
axis in the inset of (e), which represents the shear strain in the 2D model, 𝛾 . 𝛾 can be converted to the equivalent torsion in our cylindrical shell via ϕ =
(h0/R)𝛾 . Vertical dashed blue and red lines show the onset of buckling and self-contact regimes, respectively. Three regimes are marked with (i), (ii)
and (iii).

stiff again, with Yeff = 0.06, due to the self-contact between the
beams (Figure 2b,c, right).

In the torsion-free experiments, compression induces shear
deformation, with distinct behaviors at buckling and self-contact
regimes (Figure 2e and Video S2, Supporting Information). The
coupling between the compression and torsion, in the buckling
regime, is nonlinear and the best fit to the experimental torsional
angle as a function of compression gives |𝜙| = 4.9

√
𝛿 − 𝛿b (blue

curve in Figure 2e). The emergence of this square root relation
is due to the buckling of the internal beams.[28] However, in the
self-contact regime, compression and torsion are linearly propor-
tional (red line in Figure 2e). Whereas linear coupling between
compression and torsion has been achieved before for chiral
structures,[18–20] here for the first time nonlinear couplings be-
tween compression and torsion in an originally achiral structure

have been studied. Thus, the cylindrical metamaterial translates
an axial compression to a nonlinear torsion (the inverted Poynt-
ing effect) or linear torsion depending on the amount of com-
pression. In the following, we investigate the Poynting response
of the clamped structure under different loading conditions.

4. Poynting Modulus under Fixed Loads/Fixed
Gaps

To quantify both manifestations of the Poynting effect for our
metamaterial, we apply torsional deformation under fixed loads
(Figure 1a) or fixed gaps (Figure 1b) and follow its normal
responses. The first loading scenario is equivalent to Poynting’s
original experiment.[1] Initially, the clamped structure is loaded
under a force F, resulting in an axial compression strain, 𝛿. Then
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Figure 3. Poynting and shear moduli. a,b) Fixed-load experiments: axial strain, 𝛿 + 𝛿n, (a) and shear force, Fs, (b) as a function of torsional angle, ϕ, while
the structure is loaded under a fixed force (F, color scale). For the sake of clarity, only data for five experiments are shown. c,d) Fixed-gap experiment:
compression plus normal forces, F + Fn, (c) and shear force, Fs, (d) as a function of ϕ at different levels of pre-compression strain (𝛿, color scale).
e,f) Poynting (e) and shear (f) moduli rescaled by Young’s modulus of the bulk, Y, as a function of pre-compression strain, 𝛿, for both loading scenarios
calculated by fitting (solid curves) data points in a-d. Insets are the modeling results in the fixed gap boundary condition and have the same axes and
units as the main plots.

the torsion is applied on the top boundary while F remains con-
stant, causing an axial strain of 𝛿n. The axial strain and applied
shear forces are shown as a function of torsion for a range of
loads in Figure 3a and b, respectively. To quantify the second
manifestation of the Poynting effect (torsion under fixed gap),
we apply torsion on the pre-compressed shell while the height
of the structure is fixed at h. Here, F is the force needed for the
pre-compression and Fn is the torsion-induced normal force;
F + Fn is the total axial force response of the pre-compressed
shell under torsion. Figure 3c,d shows the normal forces and
applied shear forces as a function of torsion under fixed gaps,
respectively (see Video S3, Supporting Information). For both
series, the normal responses behave quadratically (Figure 3a,c)
while the shear responses behave linearly (Figure 3b,d) as a
function of torsion in the limit of small torsional deformation,
ϕ <0.2 rad. Initially, the non-compressed cylinder shows a
contraction/negative normal force under torsion. While not a
common material response, the negative Poynting modulus
has been observed and investigated in biopolymer networks.[6–8]

The origin of the negative Poynting modulus in biopolymers
is rooted in the expulsion of water from their porous networks
under deformation allowing them to shrink.[10] Similarly, in our
metamaterial, the presence of voids allows to circumvent the
volume conservation and to stretch the beams under torsion,
which leads to negative normal responses. By applying a pre-
compression on our metamaterial the curvatures of the normal
response curves in both fixed load and fixed gap experiments
(Figure 3a,c) change their sign and magnitude similarly. This
indicates that the Poynting response of the structure is indepen-
dent of whether the gap or the load was fixed, however, its sign
and magnitude can be tuned by the level of pre-compression.

5. Programmable Poynting and Shear Moduli

To determine how to program the nonlinear moduli of the meta-
material, we quantify shear and Poynting moduli as a function of
pre-compression. For torsion under fixed gap experiments, the
coefficients of the fits to the normal force, Fn, and shear force
data, Fs, in Figure 3c,d, rescaled by J/h2 and J/(Rh), give the Poynt-
ing (Gn) and shear moduli (Gs), respectively. For torsion under
fixed load experiments, we define the coefficient of the quadratic
fits in Figure 3a rescaled by J/(AsYeffh2) as the Poynting modu-
lus. Figure 3e,f show the Poynting and shear moduli rescaled by
Young’s modulus of the elastomer as a function of compressive
strain for both loading scenarios.

The Poynting modulus in the pre-buckling regime is negative.
For the intermediate pre-compressions (buckling regime), the
Poynting modulus becomes zero. However, by approaching the
self-contact regime, it rapidly increases and reaches a maximum
value at 𝛿 ≈ 𝛿c, where the transition from the buckling to the self-
contact regime occurs. The obtained moduli from both loading
scenarios coincide as expected, apart from a deviation occurring
at this transient deformation. By further increasing the strain Gn
decays sharply and approaches zero. Both shear moduli calcu-
lated from the two loading scenarios coincide as well (Figure 3f).
The shear modulus, Gs, first decreases to zero after the transi-
tion from the pre-buckling to the buckling regime. Subsequently,
Gs increases sharply at the onset of the self-contact regime and
keeps increasing at higher pre-compressions but with a lower
rate. The absolute value of Gn/Gs varies from 0 to about 13 for
our metamaterial, whereas for a bulk cylindrical shell with the
same dimensions and made of the same elastomer Gn/Gs ≈ 0.5,
in agreement with the theoretical prediction of Gn/Gs = 5/8, for
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an incompressible isotropic rubber.[5] Misra et al. have found that
when a rectangular pantographic plate is being twisted around its
long axis its normal and torque responses, can be tuned by mod-
ifying the geometry of the ligaments and structural parameters
of the unit cell [12]. In contrast, we program the Poynting effect
and the torque response of our designed structure based on an
interplay between buckling of the ligaments and self-contact be-
tween them (Figure 3a– d). Both systems at small torsional an-
gles show linear and quadratic behavior for the shear and nor-
mal responses, respectively. The pantographic plates for specific
combinations of geometrical parameters can show a transition to
negative normal force under torsion. However, in large torsional
angles, the responses of the two systems are significantly differ-
ent. The response of pantographic plates under compression is
not studied while for the cylindrical meta-structure under com-
pression the inverted Poynting effect is observed.

Thus, by tuning the level of pre-compression we can program
the magnitude and sign of the Poynting modulus and even elim-
inate it, In addition, our structure shows a strong potential for
tuning the shear modulus over a wide range.

6. Oscillatory Poynting Modulus in Large
Deformation

In Figure 3a– d, we observe deviations from the quadratic re-
sponse with a nonmonotonic behavior at large torsions. To under-
stand this behavior at large deformations, we follow the structural
changes and mechanical responses under large torsional defor-
mation at a fixed pre-compression in the self-contact regime (𝛿c).
Figure 4a shows sequential images of the structural changes in
our experiment. In Figure 4b, we observe a periodic oscillation in
both normal (solid line) and shear (dashed line) forces as a func-
tion of torsion amplitude. In the course of torsion, one layer slides
over another layer by snapping its beams from tilted to vertical
and again tilted configurations, causing a local maximum in the
normal force. Since the rearrangement occurs layer by layer, the
number of the peaks of the normal response is set by the number
of layers (l = 4). For large deformation experiments we determine
the Poynting and shear moduli as Gn = (h2/(2J))(∂2Fn/∂ϕ2), and
Gs = (Rh/J)(∂Fs/∂ϕ). Figure 4d shows both rescaled Gn (solid line,
left axis) and Gs (dashed line, right axis) oscillate between positive
and negative values. Negative values of Gs accompanied by nega-
tive slopes in the curves of shear force indicating the occurrence
of the snap instability (see Video S4, Supporting Information).
Thus, snap instability and self-contact under large torsional de-
formation result in oscillatory nonlinear moduli that are not al-
lowed in conventional materials and rare in metamaterials.

7. Theoretical Predictions versus Experimental
Results

We model the experimental system by using a 2D square net-
work of Hookean springs and energy minimization to predict the
configuration and mechanical responses of the system. Details
of this model are explained in the modeling procedure section.
The results predicted by the model successfully reproduce all the
qualitative features of the experiments, as shown in the insets of

Figures 4d, 2e, 3e, 3f, 4c, and 4e, with minor quantitative differ-
ences. For example, the model’s maximum values of Gn and Gs
are higher than observed experimentally (Figure 3e,f). This can
be attributed to neglection of the thickness of the beams’ middle
point in the model, which excludes the bending possibility at
the middle of beams and leads to a higher Gn and Gs. Using
this model, the onset of the self-contact regime can be predicted
analytically by 𝛿c ≈ (1 − cos( 𝜋

2
− 2𝛼)) + 𝛿b ≈ 0.13, in a good

agreement with the experimental observations. Moreover, we an-
alytically predict the square root coupling of compression-torsion
observed in the inverted Poynting experiment as 𝛾 =

√
2(𝛿 − 𝛿b)

(Figure 4e, inset). Since shear deformation represents itself as
a torsion on the cylindrical shell, by converting shear strain to
torsion using ϕ = (h0/R)𝛾 , we predict a coefficient of 5.7 for
the square root relation close to the experimental value of 4.9
(Figure 4e). The simple linear spring model identifies buck-
ling and self-contact as the minimum ingredients to achieve
programmable/inverted Poynting effects and confirms the
structural origin of the nonlinear responses.

In conclusion, we have engineered a cylindrical metamaterial
with programmable Poynting and shear responses. We showed
that our designed structure is capable of exhibiting the inverted
Poynting effect by translating an axial compression to a nonlin-
ear torsion, in contrast to conventional elastic materials. We also
succeeded in programming the Poynting modulus by varying the
level of pre-compression/loading prior to torsion. We switched
the sign of the Poynting modulus and tuned its value over a
wide range, including even eliminating it. Furthermore, we suc-
cessfully modeled and studied the system using an energy mini-
mization method. The model identifies buckling of the ligaments
and self-contact as the essential design elements to achieve pro-
grammable and inverted Poynting in a metamaterial. Our analyt-
ical approach opens avenues for bottom-up programming of the
shear and normal mechanical responses of metamaterials based
on self-contact as a mechanical feedback mechanism. Besides the
fundamental importance of understanding nonlinear shear and
normal moduli, their programmability provides a groundwork to
numerous possible applications in solid mechanics. For instance,
our system is capable of translating a unidirectional motion into
torsion and of switching the mechanical forces. As these are rel-
evant features of machines, we anticipate applications in design-
ing machine materials, robot hands, mechanical force switches,
and rotational actuators with simpler and more efficient mech-
anism compared to the conventional mechanisms. Additionally,
the ability to program the Poynting effect inspires applications
in biomechanics where couplings of torsional and axial defor-
mations are ubiquitous (e.g. tendons, cartilages, and cardiovas-
cular systems)[21,29–31] and may lead to engineer novel biological
tissues, implants, and external prosthetic devices functioning un-
der torsion and compression.[23–25]

8. Experimental Details and Modeling

8.1. Experimental Procedure

The cylindrical beam network is created by extracting an evenly
distributed circular pattern of eight voids, with a fourfold sym-
metry contour, in l number of layers from a cylindrical shell
with an outer radius of Rmax = 12.5 mm, and an inner radius of
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Figure 4. Periodic Poynting moduli in large strain deformation under the pre-compression of 𝛿 = 0.13 in the self-contact regime. a) Sequence of images
showing the internal deformations of the cylindrical structure during one cycle of a large amplitude torsion experiment. b,c) Normal response, F +
Fn, (solid) and shear force, Fs, (dashed) as a function of torsion under large torsional deformations, for experiment (b) and model (c). d,e) Rescaled
Poynting, Gn/Y, (solid) and shear, Gs/Y, (dashed) moduli as a function of torsion for experiment (d) and model(e). (c) and (e) are predictions of the
model only for positive shear deformations (𝛾 ⩾ 0) with a fixed gap boundary. The results of negative shear are mirror images of these curves, with four
peaks in one deformation cycle.

Rmin = 7.5 mm. We use the polar function s(u) = c[(1 − (a + b)) +
acos (4u) + bcos (8u)] to create shape of the pores with a 4-fold
symmetry contour, where, s(u) is the radius at the polar angle u,
x= s(u)cos (u), and y= s(u)sin (u). In this equation, a and b are the
shape tuning parameters, and c sets the pore’s size. Considering
a = b = 0, we can create a circle with a radius of c. Overvelde et al.
showed that a 2D network with the flowing parameters for the
pore shape of the unit-cell, a = −0.21 and b = 0.28 (Figure 5a), ex-
hibits side-buckling under compression.[27] This shape also pro-
vides a nonuniform profile for the cross-section of the beams that
form the structure. We use the same parameters to create our
unit-cells. First, in CAD software (Blender 2.8), we place the pore
contour (Figure 5a) at the outer surface of our cylindrical shell
so that the plane of the pore is parallel to the axes of the shell.

Then, we extrude this pore shape in the radial direction towards
the center of the cylinder and create the void volume (Figure 5b).
Carving a radial array of 8 voids evenly distributed around 2𝜋rad,
in l layers leaves us with a cylindrical network of nonuniform
beams composed of 8 × l unit-cells. We set the pore size param-
eter as c = 4.7 mm, which gives the minimum beam thickness
of 0.8 mm at the shell’s outer surface. We create extra half layers
on top and bottom and, finally, clamp the structure with two O-
rings with the same maximum and minimum radii as the shell
and a height of 3 mm (Figure 5c). These features enable us to
clamp two sides of the cylindrical metamaterial during the mea-
surements. We 3D print the designed cylindrical metamaterial
using a Formlab Form2 3D printer and elastic resin v1, with a
resolution of 0.1 mm. We 3D print a bulk cylindrical shell with
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Figure 5. a) The pore contour. b) CAD model of the void, created by ex-
truding the pore contour in radial direction toward z axis. c) An isometric
view of the CAD model of the cylindrical metamaterial.

the same elastic resin and dimensions as our cylindrical meta-
material, and perform a compression test to determine Young’s
modulus of the bulk as Y = 3.63 MPa.

8.2. Statistical Analysis

We conduct the compression and torsion experiments on our
cylindrical metamaterial via an Anton Paar MCR302 rheome-
ter with accuracies of 1𝜇m (longitudinal displacements), 0.05𝜇
rad (angular displacements), 0.005N (normal forces), and 1 nNm
(torques). Using a custom made plate-plate geometry, we clamp
the upper and bottom sides of the shell (Figure 5a). The de-
formation angle, ϕ, is positive when the torsion is clockwise.In
this article, we present the data from single tests. Repeating the
experiments with the same structures may lead to negligible
changes, smaller than 0.1N in force responses and 0.2% in strain
rates, which can root in the durability of the elastomer. The anal-
ysis on data and visualizations has been performed using Math-
ematica 11.

8.3. Modeling

We model the cylindrical metamaterial as a 2D square network
of Hookean elastic beams with the length of a0 that could either
stretch or contract. The beams can bend at the connecting nods.
Each beam has a pair of arc-shaped elastic arms, which are placed
at the distance r from each end of the beam and symmetrically
spread by ±𝛼 (Figure 6a,b). We study this model system in a 2-
step deformation procedure: first, compression along the vertical
axis, z (Figure 6c), and then shear along the horizontal axis (x).
The connecting arms to the beams are designed to mimic the
beam profile’s nonuniformity, and they can deliver self-contact
under deformation. Self-contacts lead to elastic contractions of
the arms that produce the reaction forces.

The total elastic energy due to deformation of each beam is
composed of stretching energy, Es =

1
2
ka2

0e2, and bending energy,
Eb = kb𝜃

2. To calculate the contribution of self-contact in the elas-
tic energy we assume that the arc-shaped arms have the same
Hookean coefficient as the straight parts of the beam, k, and when

subjected to a self-contact, their curvature remains constant but
their length, s, changes through change of the arc angle, 2𝛼; thus,
𝛿s = 2r𝛿𝛼. Since the deflection of the beam is divided between
to contacting arcs, we can write 𝛿𝛼 = 𝛿𝜃/2, where 𝛿𝜃 = 𝜃 − 𝜃c
is the deflection of the beam after self-contact at 𝜃c =

𝜋

2
− 2𝛼.

Due to such deformation, the energy of each arm changes by
Ec =

1
2
kr2𝛿𝜃2 = 1

2
kc𝛿𝜃

2, which gives the elastic coefficient of the
self-contact as kc = kr2. So the total energy for l layers of the ver-
tical beams is:

E = kb

l∑
i=1

𝜃2
i +

1
2

ka2
0

l∑
i=1

e2
i + kr2

l∑
i=1

𝛿𝜃2
i H

[
𝛿𝜃i

]
(1)

Since bending and self-contact occur symmetrically at both nodes
of each vertical beam, their energy terms do not have the pre-
factor 1/2. Heaviside step function, H, represents the self-contact
interactions; H[x] is 0 for x < 0 and 1 for x ⩾ 0.

By considering a periodic boundary condition in the horizon-
tal direction, we can model a closed structure such as a cylinder.
Since each horizontal beam is joined with two beams at its right
and left sides, alteration of its orientation is not favorable. Under
this condition and since we apply the compression and shear de-
formations uniformly at the top layer, horizontal beams remain
horizontal. Thus we can infer one column structure’s solution to
the whole system and define the total energy of a system with n
unit-cells in each layer is Etot = nE.

We use n = 8, l = 4, 𝛼= 0.54 rad, and r = 4.7 mm, mimick-
ing our experimental structure. The spring constant of the whole
cylinder, K, is given by K = YeffAs/h0. Since the cylinder consists
of l layers with 8 beams in each layer, the spring constant for
each beam can be calculated by k = Kl/8. We estimate the spring
constant from the force response in the compression experiment
before buckling as k = 1331 Nm−1. To estimate the bending stiff-
ness of a beam with a rectangular cross-section, we can use use
kb = M/𝜃 = YI/(rc𝜃) ≈ (2YI/lb), where I is the moment of inertia,
lb is the length of the beam, and rc is its bending curvature. By
assuming that the beam has the same thickness and width as at
the thickness and width of the hinge part, we can obtain the mo-
ment of inertia. This estimation predicts an order of magnitude
of 10−4Nm for the beams’ bending stiffness. We finally calibrate
the bending stiffness at kb = 8.4 × 10−4Nm to obtain the buckling
instability at the same compression strain as in the experiment
(𝛿b = 0.012). We obtain the modeled system’s configuration by
numerically minimizing its energy (Equation (1)) under different
boundary conditions. Numerical minimizations are performed
by Mathematica 11 using the Nelder–Mead method and a work-
ing precision of 15 digit numbers. We use the presented model to
mimic the torsion-free compression, clamped compression, and
fixed gap torsion experiments. In our spring model, we can tune
the onset of buckling and self-contact transitions by changing
the stiffness coefficients and geometrical properties of beams,
such as 𝛼. For instance, increasing the bending stiffness of the
beams, while keeping the stretching stiffness constant, leads to
an increase in the onset of the buckling regime. Additionally, by
increasing 𝛼 the width of the beam profile increases and there-
fore, transition to the self-contact regime occurs at a lower pre-
compression strain. These parameters would provide a high po-
tential for tuning the mechanical responses of the structure.
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Figure 6. a) Schematics of a non-uniform beam with associated parameters in our model. b) Schematic of the network of the beams in 4 layers. c) Under
the pre-compression, beams are tilted by 𝜃i and when 𝜃i ≥

𝜋

2
− 2𝛼 self-contact occurs.

To use our theoretical model in a continuum limit, we need to
introduce a higher-order interaction term due to mechanical in-
teraction between different layers. This second-order terms can
be added to the energy function in the form of (𝜃i − 𝜃i + 1)2. Using
such an energy function at the continuum limit gives rise to sec-
ond gradient terms in the equation of motion, which can describe
the second gradient effects in the system. A similar approach has
been used to describe extensible beams[32] and the pantographic
plates under different modes of deformations, such as longitu-
dinal extensions of the plate, in-plane shearing, and extension
combined with the in-plane rotation of an edge.[32,33]
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