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A B S T R A C T   

Calibration transfer (CT) is required when a model developed on one instrument needs to be transferred and used 
on a new instrument. Several methods are available in the chemometrics domain to transfer the multivariate 
calibrations developed using modelling techniques such as partial least-square regression. However, recently 
deep learning (DL) models are gaining popularity to model spectral data. The traditional multivariate CT 
methods are not suitable to transfer a deep learning model which is based on neural networks architectures. 
Hence, this study presents the concept of deep calibration transfer (CT) for transferring a DL model made on one 
instrument onto a new instrument. The deep CT is based on the concept of transfer learning from the DL domain. 
To show it, two different CT cases are presented. The first case is the CT between benchtop FT-NIR (Fourier 
Transform Near Infrared) instruments, and the second case is the CT between handheld NIR (Near Infrared) 
instruments. In both the demonstrated cases, the transfer was performed standard-free i.e., no common standard 
samples were used to estimate any transfer function. The results showed that with deep CT, the DL models made 
on one instrument can be easily adapted and transferred to a new instrument. The main benefit of the deep CT is 
that it is a standard free approach and does not require any standard sample measurements. Such a standard free 
approach to transfer DL models between instruments can support a widespread sharing of chemometric DL 
models between the scientific practitioners.   

1. Introduction 

Chemometrics calibrations are of high-value, as they are the results 
of extensive sensor measurements and wet chemistry destructive refer-
ence analysis [1]. Furthermore, the development of primary models 
requires extensive optimisation tasks such as the search for best pre- 
processing combination, reduction of external influences, optimisation 
of latent variables for partial least-square (PLS) based models and many 
more associated data analysis tasks [2–4]. Hence, the user always ex-
pects that once the calibration is set up, the need for repeated wet 
chemistry and data analysis can be bypassed [5]. To a major extent, the 
expectations of the user are met, however, there are certain situations 
where the user may need to repeat the wet chemistry and data analysis. 
For example, when the user decides to increase its research facilities by 
adding on a new similar instrument or when the user needs to replace an 
old/damaged instrument with a new one [6,7]. In that case, to be able to 
calibrate the new instrument, the user may need to repeat the calibra-
tion procedure previously done for the old instrument [6–8]. 

Nonetheless, this calibration step of the new instrument can be skipped 
if the user already has a trained model that relates the signal from the 
instrument to the property of interest. The user only needs to account for 
the differences between the instruments and then the calibration model 
from the old instrument can be used on the new one [8–12]. In the 
chemometrics domain, the procedure of modelling and remediate in-
strument differences to allow an existing model to be used on a new 
instrument is called calibration transfer (CT) [10,11,13,14]. 

Different instruments have intrinsic differences, due to their diverse 
technical components (e.g., detector type, illumination source, differ-
ence in spectral range, resolution, variable axis registry, etc.) or due to 
the surrounding environment in which the instrument is deployed 
[10,11]. If the instruments for which an existing model needs to be 
transferred to is identical to the old instrument, the CT task can be un-
derstood as easier, i.e., identical instruments will have less differences to 
compensate [10,15]. However, when the model must be transferred to a 
non-identical instrument, e.g., from a laboratory benchtop spectrometer 
to a hand-held consumer spectrometer, then the transfer procedure 
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requires more efforts. In the domain of chemometrics, several ap-
proaches to remove the differences between instruments (a.k.a. CT) are 
available. For example, two of the most widely used CT techniques are 
direct standardization (DS) [16] and piece direct standardization (PDS) 
[17]. Both techniques require stable standard samples to be measured on 
the old and the new instruments, such that the difference between the 
responses from the two instruments can be modelled with a transfer 
function [10]. Once the transfer function is modelled, the data from 
different instruments are transformed by it and the model made on the 
primary instruments can be used on the secondary instruments [16,17]. 
Both methods, DS and PDS, work well in most of the scenarios but have 
as the main limitation that they require some standard samples to be 
measured on both instruments [11]. Hence, this is not desirable in the 
scenario when the old instrument is not available (e.g., damaged) or is 
based in a far location [6,7,11]. In that case, a standard-free chemo-
metric method can be used as it only needs some measurements from the 
new instrument to remove the difference between instruments [6,7,10]. 

Several standard-based [10] and standard free CT methods are 
available in the chemometrics domain [6,7,11]. However, classical CTs 
approaches were developed relying on the linear nature of classical 
multivariate models, hence, are only suitable for linear multivariate 
models, such as PLS (Partial Least Square) regression analysis. Their 
application to non-linear algorithms such as Support Vector Machines 
(with RBF kernels) and deep neural networks is not straight forward. 

Modern deep learning (DL) algorithms have been slowly gaining 
traction in the chemometrics community as a powerful tool to model 
multivariate signals [18–21]. For several tasks/problems, DL models 
have already outperformed classical chemometric algorithms (e.g., PLS, 
PCA, etc) [19–21]. Like the classical chemometrics methods, most DL 
models are also dependent on the instrument characteristics and require 
adaption before being used on a new instrument. Due to the underlying 
complex architecture of DL models, CT methods classically available in 
the chemometrics domain are not suitable. Despite this fact, DL models 
such as convolutional neural networks (CNNs) also have the potential to 
be adapted to a new scenario. This can be done by implementing the 
concept of Transfer Learning (TL) for neural network layers. In the 
broader area of Machine Learning research, TL has a much wider defi-
nition [22–24] that applies to the general transfer of information be-
tween different domains. In this work, the concept of TL used is 
restricted to its applicability within the DL framework, i.e., to what 
needs to be done so that an already trained DL model can be used as the 
starting point for a new model in order to apply it to new data obser-
vations. More specifically the concept of TL is here adapted for solving 
the challenges of CT for DL models applied to NIR spectral data from 
different instruments [25]. 

Transfer learning in the domain of DL is prevalent in computer vision 
research [26–30,35]. In this context, the main aim of TL is to use the 
already acquired knowledge to avoid the expensive task of training large 
DL models from scratch [23]. In computer vision, TL is particularly 
useful for CNNs architectures [27–29]. These algorithms have usually 
two main parts: a convolutional block (usually a combination of con-
volutional (conv.) and pooling layers) that allows feature extraction and 
combination, and a mapping block (of Fully Connected layers, FC) that 
maps the extracted features to the target variable [31]. For certain 
computer vision tasks, there are evidence that the trained convolutional 
block (conv. filters) doesn’t need retraining when used on the new case 
(e.g. new data) and only the model’s weights in the mapping block (FC 
layers) need to be adjusted [23]. The ability to find certain visual pat-
terns in an image despite their location is called translational invariance 
and is a property of deep CNN architectures developed in recent years. 
However, this property is dependent of the CNN architecture and its 
ability to merge low level features (from the initial conv. layers) into 
higher level abstractions (last conv. layers) that lead to the identification 
of individual patterns in an image, whatever their location. For the case 
of multivariate signals, such as spectral data, this has not yet been 
proven to hold true, especially in the case of shallow (just a few layers) 

CNNs. In spectra, most of the times, the relevant spectral information for 
the prediction of a certain property (target variable) is sparsely 
distributed over the whole spectrum and it is not clear that the use of 
windowed type convolutional filters has the same result as in spatial 
data (e.g., image). Moreover, spectra acquired with different in-
struments carry information related not only to the substance being 
analysed but also spectral signatures that are specific of the instrument 
(e.g. local shifts in peaks). Taking this information in consideration, for 
spectral data, retraining the conv. block might provide some extra in-
sights. In recent years, for soil spectral data processing, the use of TL was 
proposed to update DL models covering added information variability in 
the data samples [25,32]. More recently, TL was also applied to the 
problems of new seasonal variability in fruit spectroscopy and changes 
in ingredients in a melamine manufacturing process [33]. However, 
none of these works covered the CT problem. 

The aim of this study is to show that it is possible to apply the DL 
transfer learning methodology to the specific problem of transferring DL 
models developed on data from one instrument to be used on a new 
instrument. In this work we refer to this method as deep Calibration 
Transfer (deep CT). To showcase the applicability of the method, a 1D- 
CNN model was transferred between instruments in two different cali-
bration transfers scenarios: CT between similar benchtop FT-NIR in-
struments, and CT between similar handheld NIR instruments. The 
transfer was performed standard-free i.e., no common standard samples 
were used to estimate any transfer function. In both experiments, the DL 
model was first developed for the primary instrument and later trans-
ferred to the second instrument using deep CT. A comparison between 
the performance of the transferred models is done by investigating the 
effect of applying TL to different layer blocks. The present work iterates 
on [33] and, for the best of our bibliographic search, is the first to 
explore how and which type of TL can be used for CT applications to 
transfer spectral DL models between different instruments. A general 
abstract concept of deep CT is shown in Fig. 1. A key point to note is that 
this study does not provide any comparison with existing CT techniques 
in the chemometrics domain because the traditional CT techniques are 
designed for transferring PLS type models and not deep neural networks. 

2. Materials and method 

2.1. Data sets 

2.1.1. Transfer between bench top instruments – Tablet data set 
To show the single response transfer case between laboratory-based 

benchtop instruments, a publicly available tablet data set was used. This 
tablet data set is a benchmark1 data set for testing and evaluating novel 
calibration model maintenance methods. In this study, the data was 
obtained from the website: https://eigenvector.com/resources/data-se 
ts/. The tablet data consists of 655 pharmaceutical tablet samples 
(155 calibration samples, 460 test samples and 40 validation samples) 
measured on two Multitab spectrometers (Foss-NIRSystems, Silver-
spring, MD) in the transmittance mode from 600 to 1898 nm in 2 nm 
increments. Furthermore, as a reference, the assay value of the active 
ingredient (mg) was used. Based on earlier studies on the same data set, 
the outliers were removed from the calibration and test set as suggested 
in [25]. Due to the high signal noise above 1740 nm, data points above 
this wavelength were discarded in this analysis. The final data set has 
642 spectra (600–1740 nm at 2 nm interval) for each instrument 1 and 2 
and 642 corresponding assay values of the active ingredient. The range 
of the assay value was from 151.6 to 239.1 mg. 

1 Information still available through web.archive.org on http://web.archive. 
org/web/20060312182337/http://www.idrc-chambersburg.org/shootout 
_2002.htm. 
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2.1.2. Transfer between handheld instruments – Olive data set 
For the case of calibration transfer between handheld instruments, a 

NIR data set related to dry matter (DM) prediction in olive fruit was 
used. The data set was the same as presented in [34] and consists of a 
total of 583 spectra and reference DM measurements. The spectral 
measurements were performed with two identical portable spectrome-
ters (Felix F-750, Camas, WA, USA) in the range of 310–1135 nm, with a 
spectral resolution of 8–13 nm. In this study, the analysis was restric-
ted to the spectral range (750–999 nm) because it contains most of the 
information about the chemical overtones for moisture (OH) which is 
inversely related to the DM. The original data had several outliers that 
were removed using a PLS decomposition and an analysis of T2 and Q 
statistics, as described in [33]. After the outlier removal, the total 
spectra and reference dry matter for instrument 1 were 466, and for 
instrument 2 were 468. The DM ranged between 23.06 and 37.19 %. 

2.2. Data augmentation 

In both data sets, the number of samples is relatively small for DL 
purposes. Hence, to increase the data sets size, a data augmentation 
procedure was performed according to [36]. This method consists in 
adding random variations in offset, multiplication and slope of the 
existing spectra (the target value is maintained). It basically simulates 
slightly different spectra acquisition scenarios (e.g., light continuum 
contamination, etc.) so that for the same target variable value, there are 
now multiple (slightly different) copies of the initial spectra. Offset was 
varied ± 0.10 times the standard deviation of the training set, multi-
plication was done with 1 ± 0.10 times the standard deviation of the 
training set, and the slope was adjusted uniformly randomly between 
0.95 and 1.05 as described in [36]. The process was repeated 10 times. 
This data augmentation served two purposes, first it increased the data 
size to become more suitable for DL modelling and second, it introduced 
extra variation in the data such that, models trained on it, can become 
more robust to unseen variations. 

In the case of the tablet data set, the data is already partitioned into 
training, validation, and test sets for both instruments when downloaded 
from the source. Training and validation subsets are augmented sepa-
rately, while the test subsets are maintained untouched. A primary DL 
model is created for the using data from instrument 1 only and then 
transferred and tested on data from instrument 2. For the model 

transferring operation, the training and validation data from the in-
strument 2 were renamed as “fine-tune training” and “fine-tune vali-
dation” sets, respectively for a clear distinction. The fine-tune training 
and fine-tune validation sets were used for deep CT and internal vali-
dation of the transferred model, while the left-out test set from the first 
split was used for external validation of the transferred model. 

In the case of the olive data set, the data from instruments 1 and 2 
were partitioned according to the schematic presented in Fig. 2. Data 
from instrument 1 were randomly partitioned into calibration (80 %) 
and test set (20 %) using the “test_train_split()” function from the sklearn 
(https://scikit-learn.org/stable/) python library. Afterwards, the cali-
bration set was further partitioned into training (70 %) and validation 
sets (30 %). Prior to model training, these sets were augmented using the 
same recipe previously described for the tablet data. The test set from 
the first split was used exclusively for external validation of the primary 
model. Data from instrument 2 were partitioned in the same fashion, i.e., 
fine-tune (80 %) and test set (20 %). Later, the fine-tune set was parti-
tioned into “fine-tune training” (70 %) and “fine-tune validation” sets 
(30 %), followed by the mentioned data augmentation procedure. The 
fine-tune training and fine-tune validation set were used for deep CT and 
internal validation of the transferred model, while the left-out test set 
from the first split was used for external validation of the transferred 
model. 

2.3. 1-D CNN modelling 

To implement the deep learning models, the Python (3.6) language 
and the open-source deep learning framework TensorFlow/Keras (2.5.0- 
dev20201204) were used. Keras is a high-level framework that enables a 
faster and easier implementation of TensorFlow’s capabilities. In this 
study, we wanted to emphasize the method behind the concept of CT for 
DL models and for that we opted to use a CNN architecture derived from 
[18,37] and further explored in [33,38]. Since spectra are represented 
by 1D vectors, the implemented model is a 1-dimensional convolutional 
neural network (1D-CNN) composed by 1 conv. layer followed by 4 FC 
layers (Fig. 3A). Instead of using a feature extraction block composed by 
a series of conv. and pooling layers like is commonly used in many 2D- 
CNNs used for image recognition problems, this architecture uses a 
single conv. layer with 1 filter and a stride of 1. The decision of not 
implementing pooling layers is motivated by the small size of input 

Fig. 1. The concept of deep CT which can be used to transfer deep learning models between instruments.  
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vectors and the shallow depth of the 1D-CNN. Polling layers can lead to 
information loss but are especially useful to perform dimensionality 
reduction of the output of conv. layers with multiple filters to decrease 
the overall number of parameters in the model. The 1 filter conv. layer in 
the model acts as a feature enhancement / pre-processing block. During 
training, input data is passed on to the conv. layer and the model learns 
(through back-propagation) the best shape for the filter that performs 
the feature enhancement. The convolution operation between input data 

and filter is followed by a non-linear activation function using an 
exponential linear unit (ELU). The transformed data then flows through 
the following 3 FC layers with 36, 18 and 12 neurons and ELU activa-
tions functions, respectively. In the end, is a single neuron FC layer with 
a linear activation function to deal with the regression problem. To in-
crease the convergence of the optimization algorithm, we used the 
“He_normal” procedure to initialize the weights in all the layers. For the 
sake of reproducibility, the “He_normal” function, and all python and 

Fig. 2. Data partition scheme for the calibration transfer problem for the olive data set.  

Fig. 3. A summary of the deep CT approach. A) Schematic representation of the CNN architecture used for building the primary model (all trainable layers in blue). 
B) the primary model is fine-tuned based on some data from new instrument, with the conv. layer kept frozen (red) and retraining the FC block (green). C) The 
primary model is fine-tuned based on some data from new instrument, by retraining the conv. layer and FC block (green). In all cases, the last layer is always trained 
from scratch (blue). 
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Tensorflow functions that rely on a random seed number for initializa-
tion were instantiated using seed = 42. In this study, the adaptive 
moment optimizer algorithm (Adam) [39] with an adaptive learning 
rate was used for the model optimisation. The optimisation algorithm 
was initially instantiated with a learning rate heuristic [18], LR = 0.01 
× (batch size)/256, which was iteratively reduced during the training 
process (a.k.a. Reduce LR on Plateau). This procedure decreases the 
convergence time in the initial phase of training and, by reducing pro-
gressively the LR step, enables the Adam algorithm to approach minima. 
The used loss function was the same one defined in [18], i.e., the mean 
squared error (MSE) added to an L2 penalty on the model weights (layer 
regularization). This layer regularization helps to prevent model over-
fitting and is controlled by hyper-parameter β that changes the strength 
of the L2 penalty. Moreover, to further avoid overfitting, an ‘Early 
Stopping’ approach was used. This strategy consists of watching the loss 
function during training and enforcing a policy that stops the training if, 
after a certain number of epochs, the validation loss stabilizes or in-
creases. With this procedure in place, the maximum number of training 
epochs allowed (700 in this study) was never achieved. 

To reach optimal DL models, three different hyperparameters were 
tuned (width of the convolution filter (kernel width), the strength of the 
L2 regularization (β) and the training batch size) using a grid-search 
strategy [33]. A summary of the search space is shown in Table 1. 

2.4. Transfer learning for calibration transfer – Deep CT 

The CNN model used in this study has three main parts, i.e., feature 
enhancement/extraction using a conv. layer, a mapping block with FC 
layers, and the final output layer that holds the prediction for the target 
variable. The TL method widely used in the DL computer vision domain 
consists in adapting the weights of certain layers of a pre-trained NN 
model, by showing the NN a new subset of images of the target domain. 
For example, a NN can be trained to generally identify faces in pictures, 
and, through TL, it can be fine-tuned to find smiley faces in a new subset 
of pictures [40,41]. Depending on the NN architecture and final pur-
pose, TL can be accomplished by re-training certain blocks of the NN 
while keeping other blocks with their pre-trained weights (frozen 
layers). This can be seen as implementing different TL strategies. 

Following what was mentioned in the introduction section, in the 
case of the instrument transfer presented in this study, freezing the conv. 
layers might not have equivalent results as their 2D-CNN computer 
vision aimed counterparts. This is because the instrument differences in 
many cases are local and may require retraining of the weights of the 
conv. layer. Furthermore, the weights in the FC layers should not be 
completely replaced as they have already learned some useful mapping 
relationships between the features extracted by the conv. layers and the 
response variables. Retraining a layer for a few epochs (on a smaller data 
subset) can slightly modify the existing weights in the layers/neurons, or 
in broader terms, it just adapts the already learned knowledge encoded 
in the neuron’s weights to the new data. 

In this work two TL strategies were implemented and compared. For 
both cases the block of FC layers was initialized with the weights of the 
primary model (based on instrument 1) and retrained using the fine-tune 
data from instrument 2, while the last FC layer was allowed to train from 
scratch (i.e., initialized with random weights). In one case the conv. 
layer was kept frozen (Fig. 3B), i.e., the weights of the primary model 
where kept, while, in the other case, the conv. layer could be re-trained 
(like the FC layers), i.e., initialized with the weights from the primary 

model (Fig. 3C). The two separate cases are highlighted in Fig. 3. 
Following the scheme presented in Fig. 1, in both cases, the 1D-CNN 

model optimised and trained for the primary instrument was used as the 
starting point for the deep CT. The fine-tune data set, as explained in the 
‘data augmentation’ section was used for adapting the primary model to 
instrument 2. Finally, the performance of the transferred model was 
tested on the external test set as explained in the ‘data augmentation’ 
section. The performances of the models were judged based on the root 
mean squared error (RMSE). 

3. Results and discussion 

3.1. Spectra from different cases 

The mean spectra of the tablets and olive from instruments 1 and 2 
are shown in Fig. 4A and 4B, respectively. For the tablet data set, the 
differences in the mean responses of the instruments can be found at 
several locations such as ~ 700 nm, ~ 800 nm, ~ 1300 nm and ~ 1650 
nm. Such localised difference can be related to the intrinsic differences 
in the instrument detectors (Fig. 4A). For the olive data set, the differ-
ence is global and can be noticed along the complete spectral range 
(Fig. 4B). Such global differences can arise from a range of factors such 
as differences in light source, instrument detector and measurement 
conditions. The main point to note is that if the model made on data 
from one instrument is used on data of a new instrument, it will perform 
badly due to the existing differences between instruments. Hence, a 
model transfer compensating the instrument difference is needed. 

3.2. Transfer between bench top instruments – Tablet data set 

At first, the primary 1D-CNN model based on instrument 1 was 
developed to predict (active pharmaceutical ingredients) API assay in 
tablets. The optimization grid-search found that models with β = 0.02 
showed the lowest RMSE for both training and validation set. Further-
more, for β = 0.02, a kernel size of 20 and batch size of 64 were chosen as 
reflecting minima on both training (Fig. 5A) and validation set (Fig. 5B). 

The 1D-CNN model based on the optimal parameters (Fig. 5) showed 
a RMSE of 3.513 mg on the test set for the instrument 1 (Fig. 6A). 
However, using the model made on instrument 1 on the test set of in-
strument 2 showed a RMSE of 13.059 mg (Fig. 6B). Such a drastic in-
crease in the RMSE was due to the unmodeled differences between 
instrument 1 and 2. After that, the model based on instrument 1 was 
adapted to be used on instrument 2 using deep CT. The results from the 
transferred model are shown in the 2nd row of Fig. 6. It can be noted that 
both the model transfer approaches (Fig. 3) were able to reduce the 
RMSE from 13.059 mg (on data from instrument 2) to the same level as 
the RMSE of the primary instrument i.e., ~ 3.513 mg. Moreover, the 
performance of model transferred while allowing the tuning of conv. 
layer improved (RMSE = 3.258 mg) when compared to the model 
transferred while keeping the conv. layer frozen (RMSE = 3.608 mg). 

3.3. Transfer between handheld instruments – Olive data set 

Again, like in the previous experiment, the first step was the devel-
opment of a primary 1D-CNN model using on data from instrument 1 to 
predict DM in olive fruit. The grid-search optimization procedure 
identified β = 0.015 as showing the lowest RMSE for both training and 
validation set. For this L2 regularization value, the RMSE minimum in 
the kernel size vs batch size space is found for kernel size = 30 and batch 
size = 64 on both training (Fig. 7A) and validation set (Fig. 7B). 

The 1D-CNN model based on the optimal parameters (Fig. 7) showed 
a RMSE of 0.629 % on the test set for the instrument 1 (Fig. 8A). 
However, using the model made on instrument 1 on the test set of in-
strument 2 showed an increased RMSE of 0.858 % (Fig. 8B). The relative 
increase in RMSE was lower compared to the tablet case. A reason for 
this could be the absence of local differences (i.e., in specific bands) in 

Table 1 
Intervals hyperparameters (HP) optimisation.  

Name Interval / step 

Conv. filter size [5 –30] 
L2 regularization β [0.001, 0.003, 0.008, 0.01, 0.015, 0.02, 0.03] 
Batch size [32, 64, 128, 256, 512]  
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the instruments for the olive case (more on Section 4.4). The model 
based on instrument 1 was then transferred to be used on instrument 2 
using the deep CT. The results from the transferred model are shown in 
the 2nd row of Fig. 7. Both model transfer approaches were able to 
reduce the RMSE from 0.858 % to like the RMSE of the level of instru-
ment 1 i.e., ~0.629 %. The performance of the model transferred while 
allowing the tuning of conv. layer was marginally better (RMSE = 0.658 
%) compared to the model transferred while keeping the conv. layer 
frozen (RMSE = 0.665 %). 

3.4. Difference learned by models 

In this study, two types of deep CT approaches were tested. The first 
approach allowed the conv. layer to be retrained based on the data from 
the new instrument, while the second approach kept conv. layer frozen. 
In the previous section, the retraining of the conv. layer showed better 
model performance (for both olive and tablet data sets) when compared 
to keeping the conv. layer frozen (Table 2). To understand how the 
retraining of conv. layers allowed better model performance, the mean 
activation of the conv. layer in the primary model made on instrument 1 
and the transferred models are shown in Fig. 9 (tablet data) and Fig. 10 
(olive data). For tablet data, it can be noted that the transferred model 
(retraining the conv. layer) was able to adapt to the local differences 

(600–700 nm, 1150–1200 nm and 1300–1400 nm bands) present in the 
instruments (as shown in Fig. 4A). For the olive case (Fig. 10), the 
transferred model (retraining the conv. layers) was able to adapt to the 
global differences (baseline shift effect) present in the instruments (as 
shown in Fig. 4B). Hence, the retraining of the conv. layers in these cases 
seems to be necessary to correctly model the instrument differences. 
Another evidence for supporting these explanations comes from the size 
of the learned kernels for both olive and tablet data. The kernel width for 
olive data is broader than that for the tablet data. Convolution opera-
tions with larger kernels usually translate in more global data trans-
formations such as baseline corrections and overall amplitude shifts. 

3.5. Posterior analysis of the effect of sample size on the performance of 
deep calibration transfer 

So far, it was shown that the deep CT approach was able to regain the 
predictive performance of DL models when transferred from one in-
strument to another. A key step in this technique is that it requires some 
new samples measured on the new instrument. In the cases presented, 
the available fine-tune set consist of 194 samples for the tablet data set 
and 351 samples for the olive data set. In many cases, it can be assumed 
that the user may not have access to many samples and will like to use as 
low samples as possible to reduce the experiment burden to save time 

Fig. 4. The mean spectrum for tablets from two different lab-based instruments (A), and the mean spectrum of olive from different hand-held instruments (B).  

Fig. 5. RMSE hyperparameter space for model train (A) and validation (B) errors for L2 regularise (β = 0.02). The optimal point showing lowest error is highlighted 
as optimal in (B). 
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and costs. Hence, to identify how the sample size of fine-tune set affects 
the performance of deep CT, a posterior analysis on the tablet data set 
was performed and presented in Fig. 11. In this figure, it can be noted 
that initially, with a small samples size of 10 – 40, the model perfor-
mance was poor. However, with increasing samples size the RMSEP was 
decreased. Furthermore, a samples’ size of 76 was able to attain the 
RMSEP = 3.42 mg, lower than the RMSEP = 3.51 mg on the primary 
instrument as reported in Fig. 6A. Hence, the posterior analysis con-
cludes that instead of using the 181 samples available in the fine-tune 
set, the analysis with 76 samples is sufficient to attain the RMSEP like 
the primary instrument. 

A key point to note is that although in this study, for demonstration 
purposes, the primary DL models transferred to the new instruments 

were based on a limited amount of data, the practical scenarios where 
DL models are usually deployed involve large data sets (which the users 
have acquired for a long time or in larger experiments). In the case of 
calibration transfer, it can be assumed that a user may have acquired lots 
of data on a particular instrument for many years and many experiments 
and then he/she developed a global DL model of such valuable data. If 
by chance the old instrument got damaged, then the user cannot repeat 
all the years of experiments on which they acquired such valuable data. 
Hence, in that case, the presented method i.e., deep CT comes into play 
with which a small set of data can allow the user to fine-tune their old 
model and use it on the new instrument. 

To properly train a neural network (NN), two main steps are 
required: the first is to find the NN architecture and its hyperparameters 

Fig. 6. 1D CNN model made on instrument 1 and tested on test data from instrument 1 (A) and instrument 2 (B). Transferred model with frozen conv. layer tested on 
test data from instrument 2 (C) and transferred model with conv. layer tuning tested on test data from instrument 2 (D). 

Fig. 7. A summary of model training (A) and validation (B) errors for L2 regularise (β = 0.015). The optimal point showing lowest error is highlighted as optimal 
in (B). 
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that allow the model to achieve good learning capabilities but after 
that, on a more fundamental level, the “learning process” itself is done 
during model training by finding the weights and biases for each unit/ 
neuron (on every layer of the model) that allows mapping the input 
features into the target variable. It can be understood as the distribution 
or pattern of the learned weights as the final model. When TL is applied 
with the proposed approach in this study, the learning process is done by 
fine-tuning these pre-learned weights by retraining the model on a small 
number of new data samples. Based on the findings of this study, a small 
number of data samples were enough to expand the “information/ 
knowledge” of the NN. A key point to note is that the TL approach 

requiring fine-tuning of the existing DL models should not be confused 
with the retraining of the model from scratch. As retraining from scratch 
means initializing all units’ weights as random numbers and the 
smaller/newly available data set is not usually enough to train all 
weights properly. 

In this study, two cases of CT were demonstrated covering both the 
lab-based instrument and the portable hand-held spectrometers. The 
two demonstrated cases were carefully selected as they cover both the 
global as well as local differences in the instrument responses. However, 
one can also assume that in some special cases, the transfer of model 
may also be required from a lab-based instrument to a portable instru-
ment. In principle, the proposed deep CT approach can also be imple-
mented as it can handle both the global and the local differences. 
However, its performance still must be investigated further in order to 
ensure that deep CT can handle corrections for both types of differences 
simultaneously. Prior to the implementation of the deep CT, pre- 
processing steps such as spectral registration and interpolation may be 
required to match the spectral ranges from a lab-based and a portable 
instrument. 

4. Conclusions 

This study showed that, like chemometrics classic models, DL models 
also have generalisation problems when directly used on a new instru-
ment. Therefore, the DL models also require a model transfer procedure 
to adjust to the new instrument on which they are intended to be 
deployed. To deal with the transfer of DL models between instruments, 

Fig. 8. 1D CNN model made on instrument 1 and tested on test data from instrument 1 (A) and instrument 2 (B). Transferred model without conv. layer tuning tested 
on test data from instrument 2 (C) and transferred model with conv. layer tuning tested on test data from instrument 2 (D). 

Table 2 
A summary of model performance before and after model training.   

Root mean squared error of prediction (RMSEP) 

Primary 
instrument 

Primary model 
applied to new 
instrument 

Deep CT 
without 
conv. layer 
training 

Deep CT 
with conv. 
layer 
training 

Transfer 
between lab 
instruments  

3.513  13.059  3.608  3.258 

Transfer 
between 
portable 
handheld 
instruments  

0.629  0.858  0.665  0.658  
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this study proposes deep CT. The deep CT method is based on the 
concept of DL transfer learning for model fine-tuning where the primary 
DL model was retrained with some new data measured on a new in-
strument. Further, it was showed that the deep CT can deal with both 
local and global differences between the instruments by allowing the 
retrain the conv. layer in the CNN. For both the lab-based and hand-held 
spectrometers, the transferred model was able to regain the predictive 
performance. Deep CT has the potential to allow users of spectroscopy to 
keep reusing their DL models on different instruments. For that, the first 
steps presented here should be confirmed and validated through its 
application to more data sets as they become available. Furthermore, the 
deep CT is a standard-free approach, hence can be used in cases when 
the primary instrument is unavailable. One of the limitations of the 
present study is that, due to the unavailability of a multi-instruments 
large data sets, the experiment was performed on augmented data and 
the full capability of Deep CT was not demonstrated. The impact of the 
data augmentation procedure, for DL models in general, needs to be 
better characterized in the case of spectral data. However, with such a 
satisfactory performance on these small data sets, it is expected that in 
the availability of large data sets and more complex/deeper models, the 
deep CT performance should improve given the known performance 
gains DL models shows with more data. The main disadvantage of the 
approach is that it requires some new measurements on the new in-
strument both the spectra and reference property of interest to perform 
the model transfer. Future investigations should focus on research di-
rections that allow adapting the deep spectra models to a new instru-
ment without the need of new reference property measurements. 

Fig. 9. Mean conv. layer activations for API assay prediction in tablets. Activation of old model (red dashed), activation of transferred model without conv. layer 
tuning (blue dots), and activation of transferred model with conv. layer tuning (green dashed dotted). 

Fig. 10. Mean of conv. layer activations for DM prediction in olives. Activation of old model (red dashed), activation of transferred model without conv. layer tuning 
(blue dots), and activation of transferred model with conv. layer tuning (green dashed dotted). 

Fig. 11. Effect of samples size of fine tune set on the deep CT model. A samples 
size of 76 was sufficient to attain the RMSEP like the primary instrument. 
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