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Droughts occur as a result of a lack of water compared with normal conditions. Whilst

this appears trivial, the exact drought definition of drought is not. Especially as different

drought types are present, resulting from the different variables in a hydrological system,

each with unique characteristics. We use a common drought definition, the percentile

score, and apply the same definition across all drought types, to study whether the actual

occurrence of droughts matches the definition. We focus on the data-rich Dutch province

of Gelderland, to study droughts from observations across five major components of the

terrestrial hydrological cycle. When a percentile threshold of 20% is used as drought

definition, corresponding to a mild drought, droughts anywhere in the system occur at

least three times more frequently (73% of the time). On the other hand, the situation

where drought occurs across all components of the terrestrial hydrological cycle is more

than four times less likely than the drought threshold of 20% (namely 5% of the time). This

can be attributed by both (1) the different responses across the hydrological system, and

(2) the spatial variability present within each component of the hydrological system. With

this study, we show the existence of the drought frequently paradox: although droughts

are seen and defined as rare from a scientific perspective, when viewed from a societal

or operational water management perspective in typical hydrological systems subject

to spatial variability and other system complexity, droughts become common, rather

than rare. This paradox is a consequence of an inconsistent use of the percentile score

drought definition between research and operational water management, and better

communication between the two domains is needed in search for a universally accepted

drought definition.

Keywords: drought, drought frequency, drought characterization, hydrological complexity, European 2018 summer

drought

1. INTRODUCTION

Droughts are among the extreme natural events with the most widespread impact, both on
socio-economic sectors as well as on natural ecosystems. Due to the strong coupling between
drought and heat, the impacts of drought are expected to worsen with climate change (Teuling,
2018;Miralles et al., 2019). In spite of the relevance of drought, its exact definition has been, and still
is, subject to debate (Dracup et al., 1980). In a review on the use of drought indices in the U.S., Heim
(2002) provides several possible andwidely used definitions: drought can be defined as a “prolonged
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absence or marked deficiency of precipitation,” a “deficiency of
precipitation that results in water shortage for some activity
or for some group,” or a “period of abnormally dry weather
sufficiently prolonged for the lack of precipitation to cause a
serious hydrological imbalance.” More recently, Van Loon et al.
(2016) argued that drought “is ... simply an exceptional lack
of water compared with normal conditions,” to allow for the
possibility that drought is induced by human activity rather
than rainfall deficiency. Additionally, different drought types
are identified, corresponding to different components of the
hydrological system: meteorological (precipitation, evaporation),
agricultural (soil moisture, vegetation) and hydrological drought
(groundwater, surface water) (van Loon, 2015). A general feature
of these different drought definitions is the notion that drought is
a deviation from normal, and relatively rare.

As these definitions are more descriptive of the cause of
droughts, they do not help with classifying certain events as
droughts. Within drought classifications, two main perspectives
can be distinguished: a more research-oriented perspective which
sees drought as a multivariate phenomenon, and a operational
water management perspective were drought is treated as a
univariate phenomenon. In the research perspective on drought,
drought is usually defined using drought indices. Developments
in the use of drought indices reflect the changing attitude toward
drought definition. Whereas, early drought indices were often
based on absolute values of precipitation characteristics (Heim,
2002), the use of standardized indices has become commonplace
over the past decades (Hayes et al., 2011). It is believed that
standardization facilitates the comparison of drought impact
between climates and seasons. In terms of standardized indices,
drought conditions typically start whenever the standardized
index falls below minus one standard deviation, or −1.5 for
moderate drought. On the other hand, drought is defined as a
rare event in water management practise, as it is often related to
its impacts. Typically, multiple univariate drought indicators are
used to monitor drought conditions. However, these indicators
reflect physical drought impacts in various sectors that cannot
easily be weighted or aggregated. As a result, droughts might
be felt in different sectors at different times, and the effective
drought frequency might be at odds with the definition of
drought as extreme event.

The typical complexity and variability found in hydrological
systems causes different drought types to show diverging
dynamics. A first example of this is the relation between
precipitation deficit and evapotranspiration and vegetation
productivity. Because of the non-linear relation between soil
moisture and evapotranspiration, the latter will respond to
absolute values of soil moisture (i.e., below a critical soil moisture
content, see Denissen et al., 2020) rather than anomalously
low precipitation. This is reflected in the observation that in
the humid Central-Western Europe, total evapotranspiration
during drought summers might show positive anomalies—in
response to increased energy due to reduced cloud cover and
high temperatures—rather than negative anomalies due to low
soil moisture (Teuling et al., 2013). Similar findings of increased
evapotranspiration and vegetation productivity during drought
in (pre-)Alpine regions were reported by Jolly et al. (2005),

Buitink et al. (2018), and Mastrotheodoros et al. (2020). The
complex and climate-dependent relation between soil moisture
and vegetation provides an argument to consider vegetation and
soil moisture separately in analyses of agricultural drought (van
Hateren et al., 2020). Hydrological drought dynamics also differ
from meteorological drought. Because of the large size of most
groundwater systems, meteorological drought is often delayed
and attenuated with timescales involved ranging from several
months to over a year. However, an analysis for Germany and the
Dutch province of Gelderland revealed that the transformation is
subject to considerable spatial variability, and that even a locally
optimized transformation of the precipitation signal is a poor
predictor of groundwater drought (Kumar et al., 2016). Adding
to the complexity of hydrological droughts is the situation in
which a region receives surface water that depends on non-local
weather conditions. This is typical for downstream lowland and
delta regions where most of the global agricultural production
takes place, and where the impact of a drought can be large. These
downstream regions can experience a hydrological drought in the
surface water, even when local precipitation has been normal.
Clearly, hydrological systems complexity poses a challenge to
drought identification and effective regional water management
when drought observations cover a limited number of drought
types, or when spatial variability is not taken into account.

Typically, drought is classified using different drought types,
which represent different components of the hydrological
system: meteorological, agricultural, vegetation, and hydrological
drought (for an overview of the different drought types, see
Wilhite and Glantz, 1985; van Loon, 2015). Spatial complexity
and different drought characteristics ensure that each drought
type has a unique drought occurrence. When we classify the
hydrological system to be in drought conditions when at least
one of these types is classified as a drought, the spatial complexity
might cause droughts to occur a lot more frequently when the
entire system is considered. A visualization of this is presented in
Figure 1, which shows a typical hydrological response across five
different components of a hydrological system. We hypothesize
that a drought frequency paradox exists: even though drought
events are generally considered to be relatively rare, drought
occurrence could become relatively common when viewed across
the hydrological system due to inherent spatial variability and
complexity. The last panel in Figure 1 highlights that the
hydrological system is in drought conditions for the majority of
the time. As commonly used indices are likely to show this signal,
we investigate the existence of a possible drought frequency
paradox. Specifically, we aim to identify the effective frequency at
which drought conditions might occur within any of the possible
drought types. The existence of this paradox has consequences
for the perception of drought frequency by e.g., stakeholders
and public attention. We investigate this paradox for the Dutch
province of Gelderland. This region has not only experienced
recent droughts (including the 2018 European summer drought,
Buitink et al., 2020), but in addition has typical variability in
soil, vegetation, and drainage properties, while being located in
the downstream part of three river basins. While past studies
covering all different drought types were limited by spatial or
temporal coverage, we were able to combine a large number of
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FIGURE 1 | Conceptual illustration of drought propagation. Time series can be

interpreted as percentile values for each particular month. Red areas indicate

periods below the drought threshold (here 20% reflecting mild drought and

worse). Note that propagation increases the fraction of time that any of the

variables is in drought to more than 20% (lower panel).

local precipitation, surface water and groundwater observations
with climate records of vegetation greenness and soil moisture
derived from Earth observation. This resulted in a combined
dataset that allows for the first time to study different drought
types and their spatial variability in a historical perspective, solely
from observations.

2. METHODS AND DATA

2.1. Study Area
In this study, we focus on a single data-rich region in the
Netherlands: the province of Gelderland (see Figure 2). As
mentioned earlier, this region experienced the recent droughts of
2018 and 2019 that affected much ofWestern Europe. The region
is small enough for the meteorological drought conditions to be
fairly homogeneous (so spatial variability in other drought types
is not induced by spatial variability in precipitation), yet large
enough to have considerable variation in soil, vegetation, and
drainage properties. The extensive groundwater system under
the Veluwe Massif, where the depth to the groundwater table
can reach tens of meters (Kumar et al., 2016) is an important
resource for drinking water and irrigation (van Engelenburg
et al., 2018), while its location downstream of three river basins
(the Rhine, Meuse, and Berkel) makes it an important hub for
shipping and surface water management. The three river systems
vary considerably in size: 900 km2 for the Berkel, 34,500 km2

for the Meuse, and 185,000 km2 for the Rhine. The Rhine is
the largest river entering both Gelderland and the Netherlands,

and the country largely depends on water from this river. The
southwestern region of Gelderland is dominated by floodplains
of the large Rhine and Meuse rivers, the northwestern part is
dominated by a sandy moraine, and the northeastern part is
dominated by sandy soils.

2.2. Data
We investigate drought across five major components of
the hydrological cycle: precipitation, soil moisture, vegetation
greenness, groundwater, and surface water. Below, we describe
the data of each component.

Precipitation data were obtained from the Royal Netherlands
Meteorological Institute (KNMI), and seven stations were
selected based on their location in or near the study area (blue
squares in Figure 2). Daily precipitation values were summed to
obtain total monthly precipitation.

Groundwater levels were obtained from the Dutch institute
TNO (www.dinoloket.nl), and selected based on available data
(purple dots in Figure 2). We selected groundwater wells such
that they had sufficient data to cover the period 2000–2019, and
measured data at regular temporal intervals. Data records were
averaged to obtain monthly mean groundwater levels.

Surface water observations were obtained from the
Directorate-General for Public Works and Water Management,
and from the water board Rijn en IJssel (orange triangles in
Figure 2). These observations cover three river systems, varying
in size. The catchment areas of these systems are presented in
the inset in Figure 2: Berkel, Meuse, and Rhine (from smallest to
largest). These were selected to cover the different types of river
systems present in the study area. The most eastern surface water
station is situated in the Berkel river, the most southern station
in the Meuse, and the three remaining stations in branches of
the Rhine river. For stations located in the downstream areas of
the Rhine and Meuse basins, surface water levels were obtained.
For the Berkel, however, no surface water level observations
were available, so discharge observations were used instead.
The surface water records were averaged to obtain monthly
mean values.

Both soil moisture and vegetation greenness were based on
remotely sensed data. Soil moisture data were obtained from the
ESA Climate Change Initiative soil moisture data set (CCI SM
v05.2, Gruber et al., 2017; Dorigo et al., 2017; Gruber et al., 2019).
These data are available on a monthly 0.25 × 0.25◦ resolution
(brown squares in Figure 2). The most southwestern pixel was
omitted due to insufficient data. We selected the Normalized
Difference Vegetation Index (NDVI) to represent vegetation
greenness. Monthly 0.05× 0.05◦ NDVI data were retrieved from
the MODIS/Terra Vegetation indices data set (MOD13C2 v006,
Didan, 2015), as indicated by the shaded pixels in Figure 2. As
mentioned earlier, NDVI had the shortest period of available data
(2000–2019).

2.3. Drought Definition
We investigate the spatio-temporal variability in five different
drought types to cover all major components of the hydrological
cycle: precipitation, soil moisture, vegetation greenness,
groundwater and surface water levels (or discharge, we
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FIGURE 2 | Map of the study region and measurement locations. Inset figure shows the location of the main panel, including the three river basins corresponding to

the water level and discharge stations: the Rhine (light blue), Meuse (medium blue), and Berkel (dark blue). Both soil moisture and NDVI products are gridded

datasets. NDVI pixels are shaded based on their mean value over the entire period, ranging from 0.5 to 0.75.

assume no difference in percentile scores between the two).
To understand the different drought types and their spatial
variability, we have split the analysis in two parts. First, we
investigate the recent severe droughts of 2018 and 2019 to
understand the general behavior of, and interaction between
the five variables. Next, we use the longest available period
of overlapping records to understand how different drought
thresholds affect the resulting frequency of droughts.

The period of overlapping records was limited by the data
product to measure vegetation greenness (more in section 2.2),
which was limited to 2000–2019, yielding 20 years of monthly
data. Many different drought indicators are available (Zargar
et al., 2011), ranging from standardized variable-specific indices
(such as the Standardized Precipitation Index) to non-variable-
specific indices (such as percentiles). In this study, we selected the
percentile score for our drought metric based on two important
factors. Firstly, we want to compare droughts across different
components of the hydrological system. By using the same
index for all variables, we minimize any deviations caused by
different index calculations for different variables. Secondly,
our data period covers 20 years of data, which is considerably
shorter than the period typically used for robust determination
of standardized indices. With our shorter period, we cannot
ensure to correctly define the underlying distributions that
are required for standardized indices. These two arguments
considered, we decided to use the percentile score as our drought
indicator. A similar approach is commonly used in typical
retrospective drought analysis studies (e.g., Gibbs and Maher,

1967; Steinemann, 2003; Steinemann et al., 2015; Kumar et al.,
2016), where a drought threshold is set based on a percentile
score. This threshold (the 20th percentile, for example) is based
on observation time series, and each value can be compared
to be above or below this threshold. In our study, as we are
investigating the link between drought threshold and resulting
frequency, we invert this method: for each data point we
calculate thematching percentile score. This implies that this data
point would classify as a drought when the drought threshold
matches the percentile score. To account for seasonal variability
(especially present in vegetation data), values were grouped by
month, and the percentile score is calculated based on these 20
monthly values. The percentile score is calculated over the time
series of each station/pixel using the following equation:

φ =

C

N
· 100, (1)

where φ is the percentile score, C is the number of values
equal or less than the value of interest, and N is the total
number of values considered. This is in line with the variable
threshold approach used in many hydrological drought analyses
(e.g., van Huijgevoort et al., 2014). It should be noted that the
20 year record length in combination with a variable threshold
approach results in percentile scores only being defined in steps
of 5% (1/20).

With the percentile score for each time step, we need to
define a drought threshold. We defined a location to be in
drought when the percentile score is at or below 20%. This
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FIGURE 3 | Temporal evolution of the drought over 2018-2019 for the

different variables. The gray line shows the monthly mean over the entire

period, where the colored line represents the mean time series for 2018 and

2019. The gray shaded area shows the monthly temporal variability, using the

20-80% quantile range. Precipitation, soil moisture and NDVI (A-C) are shown

as their observed values. Groundwater and surface water levels (D,E) are

normalized using the mean and standard deviations of each station. The two

highlighted areas indicate the periods used in Figure 4.

threshold corresponds to mild drought, and is a typical value
in drought studies (van Loon, 2015; Huijgevoort et al., 2013;
Corzo Perez et al., 2011; Sheffield et al., 2009; Tallaksen et al.,
2009; Fleig et al., 2006; Andreadis et al., 2005; Hisdal et al., 2001).
As each variable has multiple stations or pixels, an additional
threshold is required to determine whether that variable is in
drought conditions. For this threshold, we defined that at least
20% of the stations/pixels should be in drought conditions.
As not all variables had the same number of stations/pixels,
exactly 20% of the stations was not possible for all variables
(e.g., precipitation with seven stations). To account for this, we
calculate the value corresponding to the 20% quantile range. The
value is calculated based on linear interpolation in the case when
this point sits between two stations, as is explained in more detail
by Schoonjans et al. (2011). This should correspond to a value
where 20% of the stations are in drought, when sufficient stations
are available. This way, we account for any outliers within each

variable (i.e., drought conditions in a single groundwater well
would not indicate regional groundwater drought, but several
would), while respecting the spatial variability.

Finally, to test whether there is a change in drought
frequencies between the first and second 10 years of our study
period, we split the dataset into two 10 year periods. This way, we
can compare the relative drought frequencies, both for droughts
within each variable, as for the number of co-occurring droughts.

3. RESULTS

We first illustrate how the recent severe droughts of 2018 and
2019 have impacted the different parts of the hydrological system
in Gelderland. To understand the severity and duration of the
drought impact, we compare the time series with the long
term average of the entire data period (see Figure 3). Only for
visualization purposes, the groundwater and surface water data
are normalized, to be able to ensure meaningful comparisons
between the different stations. For all variables, we see deviations
from the climatology during those 2 years, but the deviations
vary in timing, duration and severity. Precipitation (Figure 3A)
was not only extremely low during July 2018, but was also below
the mean monthly precipitation for the majority of the months
in 2018. Precipitation volumes recovered during 2019, but were
below mean monthly volumes again during spring and summer.

Surface soil moisture values seem to follow the climatology
during most parts of the year, except for July 2018 where they
show a sharp decline (Figure 3B). Soil moisture remained below
the 20% climatology quantile for several months, but did not
show a clear deviation from normal during 2019. Similarly
to the soil moisture, NDVI shows a reduction during the
summer of 2018 (Figure 3C). However, NDVI recovers quickly
to the monthly mean values, and even remained above the
80% climatology quantile during the winter months. During
the summer of 2019 values were again reduced below the 20%
climatology quantile, but the anomaly was not as large as in 2018.
Both groundwater (Figure 3D) and surface water (Figure 3E)
show similar responses: starting from relatively high water levels
in early 2018, dropping to nearly two standard deviations below
the mean at the end of the year. These low values continue into
2019, where the anomalies in surface water levels were not as
severe as the groundwater level anomalies. Interestingly, even
though the surface water level stations are situated in different
river basins, they all show a similar response during this drought.

While Figure 3 provides an important first insight into the
differences in temporal drought evolution, it does not provide
insight into the underlying spatial variability at the regional scale.
The evolution of the spatial drought distributions in 2018 and
2019 are visualized in Figure 4. Here, the months surrounding
the meteorological drought peak are depicted, as this is when
the drought was generally most severe. This figure shows how
the drought propagates through the hydrological cycle, starting
from a slight reduction in precipitation in May 2018. When
precipitation reaches its minimum in July 2018 (Figure 3A), both
the soil moisture and NDVI follow quickly. However, in the
preceding months, both variables did not respond directly to
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the reduced precipitation, indicating the flexibility and buffering
capacity of these variables. Additionally, in response to the
low precipitation during July 2018, a direct anomaly in both
groundwater and surface water levels is present. Both variables
remain on the lower end of the percentile score, while the
soil moisture and NDVI values slightly recover toward the
end of 2018.

Similar to 2018, precipitation values showed low percentile
scores in July 2019, and both soil moisture and NDVI reached
low percentile scores in the same month. Groundwater levels,
on the other hand, were already low at the start of 2019, as
they had not yet recovered from the drought of the previous
year (also visible in Figure 3). Despite higher precipitation
values in September and October 2019, the majority of the
groundwater levels did not recover and remained below the 20%
percentile score. Surface water shows a similar response as the
groundwater, starting already at low percentile scores in May
2019. Only in October 2019, the percentile scores for the large
rivers start to recover, while the Berkel river was still showing low
percentile scores.

The complete time series for all variables and measurement
stations/pixels are presented in the left column of Figure 5. These
panels show both the spatial and temporal variability within
the different stations/pixels of a single variable, but also shows
the interaction between the five variables. Overall, all variables
show relatively low variability between the stations, but show
substantial differences in terms of temporal variability. Most
striking is the temporal variability in precipitation (Figure 5A):
percentile scores can jump from extremely high percentile scores
to extremely low percentile scores, from 1 month to the next.
Soil moisture and NDVI show a more smooth temporal signal.
This is as expected, as these variables have a “memory” and are
therefore unlikely to move from one end of the spectrum to
the other in a single month. It is noteworthy that the relatively
high soil moisture values around 2010 are not matched with
high NDVI values in the same period, but rather the opposite.
Likewise, NDVI shows high values around 2014–2016, while soil
moisture values show a rather dry signal. The drought of 2018 is
clearly visible in both, while the drought of 2019 is only clearly
visible in the NDVI signal. Both groundwater and surface water
percentiles again show similar dynamics. Both start relatively wet
at the early years of our analysis, andmove toward predominantly
low percentile values at the end of the time series. Both variables
stay longest in drought conditions during 2018 and 2019, as is
also visible in Figure 3.

The right column of Figure 5 shows the value where 20%
of the stations have a value equal or lower to this value. A
variable is in drought conditions whenever at least 20% of the
stations of that variable are in drought conditions, resulting in
Figure 6A. Resulting from the spatial variability, all variables
are more frequently in drought conditions than the percentile
score suggests: ranging between 27 and 38% of the time, while
the percentile score suggests 20% of the time. The fact that
the drought frequency is higher than the percentile score,
indirectly indicates that there is variability between measurement
stations/pixels.

Figure 6B shows the percentage of time that x variables
are meeting the drought condition. Despite that the drought
threshold is set to be at a percentile score of 20%, the study area is
considered to be in drought conditions for 73% of the time. This
can be attributed to the different variables considered, which do
not always have overlapping droughts. The percentage of time
in drought is reduced when more variables have overlapping
droughts. In order to match the percentage of time in drought
with the drought threshold, three to four variables need to have
overlapping droughts. When all five variables have overlapping
droughts, the region is only considered to be in drought
conditions for 5% of the time.

The results in Figure 6, where the number of droughts seems
to have increased in recent years, raise the question whether there
has been a change in the frequency of co-occurring droughts
within our study period (see Figure 7). The number of droughts
in both groundwater and surface water increased substantially,
mostly due to the 2018 and 2019 droughts (Figure 6A). The
highlighted green bar in Figure 7 shows that the droughts of
2018 and 2019 can partly be attributed to this increase. The last
10 years also had more frequent co-occurrences of droughts,
with the years 2018 and 2019 again playing a substantial role.
Even without these years, 2010–2019 hadmore frequent droughts
where at least 4 variables were in drought conditions.

When plotting the percentile threshold to define drought
against the percentage of time that the data is below
this threshold, we see that this relation is consistent across
all threshold values (Figure 8). In this figure, we plot the
percentile threshold from 0 to 100% for completeness, but
percentile thresholds above roughly 30% would not be relevant
for drought studies. However, showing the entire range facilitates
the understanding of how the drought threshold and percentage
of time in drought relate. In Figure 8A, we see that groundwater
levels deviate farthest from the 1:1 line, followed by NDVI and
soil moisture values. Both precipitation and surface water show
a similar deviation from the 1:1 line. As mentioned earlier, this
deviation can be attributed to variation between the different
measurement stations/pixels. Plotting the values from Figure 6B

as a function of the percentile threshold to define drought, we get
the results in Figure 8B. At a percentile threshold of just above
30% percent, there is at least one variable in drought conditions
nearly 90% of the time. At the more commonly used 20%
threshold, this number reduces somewhat to 73% of the time.
This confirms our hypothesis that droughts are occurring more
often than the threshold would suggest, when multiple variables
in the hydrological cycle are considered. When a threshold of
20% is used as drought definition, droughts anywhere in the
system occur at least three times more frequently. On the other
hand, the situation where drought occurs across all components
of the terrestrial hydrological cycle is four times less likely than
the drought threshold of 20% (namely 5%).

4. DISCUSSION

In this study, we investigate droughts in five different variables
in the hydrological cycle: precipitation, soil moisture, vegetation,
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FIGURE 4 | Spatio-temporal evolution of the drought during May-October in 2018 and 2019.

groundwater, and surface water. We show how these variables
interact, and how the propagation and spatial variability of each
of these variables influence the (co-)occurrence of drought and
the effective drought frequency in Gelderland, the Netherlands.
Our results show that droughts, when viewed across a complex
hydrological system, are common rather than rare. This is
of course dependent on the exact definition of a drought. In
our study, we used the 20th percentile as drought threshold,
meaning that mild droughts are included as well. This could
potentially entail that events without clear impacts are classified
as droughts, something that was highlighted as a challenge
in drought definition by Stahl et al. (2020). Despite this, our
drought definition still reflects common practices in water

management, and we therefore emphasize that this practice is
susceptible to a drought frequency paradox. Given our results,
two obvious questions can be raised: are the results representative
for other regions, and what are possible solutions for
drought monitoring?

At first glance, the Dutch province of Gelderland is a unique
region in the Netherlands, with geomorphological features
ranging from floodplains to the sandy moraine (the Veluwe
Massif), and substantial regions that are used for agriculture.
Additionally, it is situated in the downstream areas of several
rivers. While this may perhaps be unique for the Netherlands,
the general features that influence drought are less unique.
The majority of agricultural production occurs in downstream
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FIGURE 5 | Spatial and temporal variability in percentile scores across all variables. (A,C,E,G,I) Show the time series of all stations over the entire data period, where

each row in each panel represents an individual measurement point/pixel. (B,D,F,H,J) Show the value that represents the point where 20% of the stations/pixels in

that variable are below this value.

regions of river systems, due to the relatively flat land and
availability to water, and it is in these regions that drought is
highly relevant since agriculture could be impacted by both local
droughts (e.g., soil moisture), but also by drought occurring
upstream of the river basin, through its impact on river discharge.
Furthermore, much of the signal is caused by spatial variability in
the groundwater response to drought. But in the study by Kumar
et al. (2016), also partly in Gelderland, similar variability in
groundwater response was found for many regions in Germany.
And while we did not investigate the dependency of our results
on the size of the study region, we expect that most regions
with variability in soil, vegetation, and depth to the groundwater
table will show similar behavior. At larger scales, possible
spatial variability in meteorological drought conditions might

even become an additional factor that contributes to a higher
frequency of co-occurring droughts.

As for the monitoring of droughts, several attempts have
been made to either extend or improve common indices.
Meteorological drought indicators are most frequently used
(Bachmair et al., 2016), as meteorological drought is typically the
driver of the other drought types, has usually longer available data
records, and is generally easiest to measure. However, our results
show that meteorological droughts do not correctly represent
droughts in the four other considered variables. This is in line
with other studies. For example, Kumar et al. (2016) used SPI
to estimate the Standardized Groundwater Index (SGI). They
found that long SPI accumulation times were required to reach
high correlation with SGI, but failed to correctly predict the
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FIGURE 6 | Temporal evolution of drought conditions over the entire study period. (A) Highlights the months where the variable is considered to be in drought

conditions. Percentages on the y-axis indicate the percentage of time that each variable is in drought conditions. (B) Shows the percentage of time the study area is in

drought conditions, depending on how many variables are below the drought threshold.

FIGURE 7 | Change in drought frequency between 2000–2009 and 2010–2019. (A) Shows the percentage of time each variable is below the drought threshold, and

(B) shows the percentage of time at least x variables are in drought conditions. The horizontal line corresponds with the expected frequency based on the 20%

percentile threshold. The entire green bar represents the 2010–2019 period, and the highlighted green bar represents the contribution of the recent droughts over the

last 2 years.

actual SGI values. Furthermore, Bachmair et al. (2018) conclude
that using meteorological indices to represent agricultural and
forest droughts highly varied with climate. Stagge et al. (2015)
created a model using meteorological drought data as input to
predict different drought types. They show promising results, but
also note that their model needs to be re-calibrated for different
regions. Given the conclusions of these studies, and the results

from our study, we stress the importance of drought monitoring
across all relevant components of the hydrological cycle. Even if
meteorological drought could be used for extrapolation to other
drought types, correct understanding of the link between these
drought types—and hence the monitoring—is a requirement.

A possible solution to this paradox would be the use of
compound drought indices. Two approaches are possible here,
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FIGURE 8 | Relation between drought threshold and percentage of time in a drought. (A) Shows the percentage of time each variable is below the corresponding

threshold. (B) Shows how often the area is in drought conditions for a different number of variables considered. The dotted line in both panels shows the 1:1 line.

Value between brackets shows the percentage of time each variable in drought conditions at the 20% percentile threshold.

although they both have important disadvantages. In the first
approach, a compound index can be calculated similar to
our current approach, i.e., identify a drought whenever there
are serious drought conditions in one or more parts of the
hydrological system. The disadvantage of this approach is
that the effective drought frequency might increase to levels
that are incompatible with current drought definitions that
define drought as a rare event. In the second approach, a
compound drought index can be transformed such that the
effective drought frequency is exactly the pre-defined value.
While this approach might seem intuitive, it likely will require
local calibration and an (arbitrary) weighing between different
parts of the hydrological system and the relative impact of
drought on certain economic sectors. The above suggests that
tailor-made solutions remain necessary for effective drought
monitoring and management at regional scales. Furthermore,
the impact of a drought does not necessarily correspond with
the occurrence of a drought as measured with an index, as
this also depends on the socio-economic value. Therefore, we
stress the importance of monitoring all relevant variables in the
area of interest, involving both satellite remote sensing (West
et al., 2019) and local observations, in close collaboration with
stakeholders to quantify the impacts. Impacts are ultimately the
most relevant aspect of droughts from a societal or operational
water management perspective, which implies that a drought
index should reflect the impacts rather than raise an unwanted
drought frequency paradox.

5. CONCLUSIONS

An overview of five major variables in the hydrological cycle
(precipitation, soil moisture, vegetation greenness, groundwater,
and surface water levels) allows us to study a possible drought
frequency paradox. The analysis focused on the Dutch province
of Gelderland. Using the recent droughts of 2018 and 2019 as case
studies, we show that each variable operates with typical temporal
and spatial variability. Precipitation is rather homogeneous in

space, but highly variable in time. Soil moisture and NDVI both
are more spatially variable, but their temporal signal is smoother
with respect to precipitation. Despite difference in underlying
processes and scale, groundwater and surface water levels show
very similar responses during these droughts. Inter- and intra-
variability of these five variables causes different types of droughts
in different parts of both space and time.

With a percentile score of 20% as the drought threshold
at the pixel/point level, we show that each variable can be
considered to be in drought at the regional scale for 26–38%
of the time depending on the variable, which is more frequent
than the 20% of the time the percentile threshold suggests.
When all relevant variables are considered, at least one variable
is in drought conditions for 73% of the time. Both of these
values can lead to a perception of a drought frequency paradox,
where drought occurs much more frequently than would be
expected based on the used main drought threshold. The
percentage of time matches the drought (frequency) threshold
only when three to four variables are in drought conditions.
We showed that the usage of a common drought definition
(albeit for mild droughts) can lead to a perception of a drought
frequency paradox. This might not be representative for the
actual drought conditions, andwe therefore stress the importance
of close collaboration between scientists, water managers and
stakeholders to ensure correct drought detection within a
hydrological system. This can be achieved through correctly
calibrated compound indices, as multiple univariate indices can
lead to a drought frequency paradox.
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