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Abstract
Infectious diseases on farms pose both public and animal 
health risks, so understanding how they spread between 
farms is crucial for developing disease control strategies to 
prevent future outbreaks. We develop novel Bayesian non-
parametric methodology to fit spatial stochastic transmis-
sion models in which the infection rate between any two 
farms is a function that depends on the distance between 
them, but without assuming a specified parametric form. 
Making nonparametric inference in this context is chal-
lenging since the likelihood function of the observed data 
is intractable because the underlying transmission process 
is unobserved. We adopt a fully Bayesian approach by as-
signing a transformed Gaussian process prior distribution 
to the infection rate function, and then develop an efficient 
data augmentation Markov Chain Monte Carlo algorithm 
to perform Bayesian inference. We use the posterior predic-
tive distribution to simulate the effect of different disease 
control methods and their economic impact. We analyse a 
large outbreak of avian influenza in the Netherlands and 
infer the between- farm infection rate, as well as the un-
known infection status of farms which were pre- emptively 
culled. We use our results to analyse ring- culling strategies, 
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1 |  INTRODUCTION

Diseases of livestock and farmed poultry, such as avian influenza or foot and mouth disease, pose se-
rious public and animal health risks, as well as having a considerable impact on both the domestic and 
international farming economy. Authorities are keen to control the spread of such diseases as quickly 
as possible to reduce the health risks, but must also consider other stakeholders, such as farmers, and 
the economic consequences of intervention.

In 2003 a serious outbreak of a highly pathogenic avian influenza A/H7N7 virus took place among 
poultry farms in the Netherlands. Over the course of 3 months, more than 30 million birds were culled, 90 
people developed influenza- like symptoms, with six confirmed cases, and one fatality occurred (Koopmans 
et al., 2004). The Dutch authorities implemented a culling strategy to control the disease, whereby animals 
were culled on farms where the pathogen was detected, and pre- emptively culled on farms within a cer-
tain distance from the site of detection. For convenience we shall refer to farms as naturally culled or 
pre- emptively culled in the obvious manner. The culling strategy took place alongside strict biosecurity 
measures and a ban on the transportation of poultry goods (Directorate- General for Health and Consumers, 
2003). In the data set we use there is a total of 5397 Dutch poultry farms, including 241 infected farms and 
1232 pre- emptively culled farms. The approximate locations of the farms are shown in Figure 1.

and conclude that although effective, ring- culling has lim-
ited impact in high- density areas.
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F I G U R E  1  A map of the poultry farms in the Netherlands with their status at the end of the outbreak
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There is a clear spatial element to the spread of the disease; for example, there are two distinctive 
clusters of infected farms, within which there appears to be local transmission. However, analysing 
the disease spread is challenging due to the fact that the times at which infections occurred are not 
observed. For farms which were confirmed to be infected, the date of poultry culling was recorded, 
but the date on which poultry on the farm were first infected was unobserved. The infection status of 
pre- emptively culled farms is considered uncertain, since the absence of clinical suspicion at the time 
of culling would not necessarily rule out the presence of the pathogen.

Various data were collected during the outbreak. The particular data set that we shall focus on 
consists of the spatial coordinates of all poultry farms in the Netherlands, plus the culling dates and 
identities of all farms that were either naturally or pre- emptively culled. There are several previous ap-
proaches to modelling data from this outbreak. In Stegeman et al. (2004), the authors construct a model 
based on a generalized linear model proposed in Becker (1989), where the number of new infections per 
day is assumed to follow a Binomial distribution. However, the infection rate is assumed to be constant 
between all farms, which is a questionable assumption given the clear spatial element to the spread of 
the disease. In Boender et al. (2007), the authors use a type of generalized linear model which allows 
for spatial variation in spread of the disease, and propose several plausible forms for the infection rate 
as a function of distance. It is assumed that pre- emptively culled farms are never infected, and that 
unobserved events such as infections occur at known times, obtained by simple assumptions motivated 
by expert opinion. Models are fitted using maximum likelihood methods and the Akaike information 
criterion is used to choose between them. In Backer et al. (2015), the authors take a different approach 
modelling both within-  and between- farm transmission. They model within- farm transmission using an 
SEIR (Susceptible- Exposed- Infective- Removed) model whose parameters are taken from the literature 
(see, e.g., van der Goot et al., 2005). Transmission between farms is assumed to depend on the number 
of infectious animals and the distance between farms via a monotonically decreasing function in a sim-
ilar fashion to the approach taken by Boender et al. (2007). The outbreak has also been studied from a 
public health and veterinary perspective, analysing the symptoms both humans and poultry display, see, 
for example, Fouchier et al. (2004); Koopmans et al. (2004); Elbers et al. (2004).

Although some previous modelling approaches attempt to capture the spatial variation in the in-
fection rate, they rely on making strict parametric assumptions about the infection rate as a function 
of the distance between farms; such functions are commonly called distance kernels. The choice of a 
particular distance kernel may not accurately represent the underlying process and can lead to incor-
rect predictions which, in consequence, can have a significant impact on formulating policy decisions 
with regards to optimal disease control measures such as culling. Our approach removes the need to 
make such assumptions by modelling the infection rate nonparametrically. We do this by treating the 
infection rate as an unknown function with a transformed Gaussian process (GP) prior distribution. 
This allows us to make more general assumptions about the type of function, for example how smooth 
it is, whether it is continuous, or if it is monotonic, rather than its exact shape. Furthermore, previous 
modelling approaches assume that the times at which farms were infected are known. In this paper 
we relax this assumption, by adopting a data- augmentation approach within a Bayesian framework 
in which we treat infection times as additional parameters. We make inference for the infection rate 
function using a Markov Chain Monte Carlo (MCMC) algorithm, which also allows us to infer the 
unobserved infection times, and to estimate the probability of any pre- emptively culled farm having 
been infected. We anticipate that the proposed framework is suitable for analysing completed major 
outbreaks among populations in which there is a clear spatial component in the infection rate.

The paper is structured as follows. In Section 2 we describe the available data, define our stochastic 
transmission model in detail and derive an augmented likelihood function assuming that the epidemic 
process is fully observed. In Section 3 we present our Bayesian nonparametric approach by specifying 
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a transformed GP prior distribution for the infection rate function and the prior distributions for the 
other model parameters. We also describe an efficient MCMC algorithm to sample from the posterior 
distribution of the parameters given the observed data. In Section 4 we demonstrate the proposed 
models and methods via an application to simulated data and the avian influenza data set. We also 
illustrate how our methods can be used to assess control strategies. We finish in Section 5 with brief 
conclusions and a discussion of our methods.

2 |  METHODOLOGY

2.1 | Data

The data set contains the geographical locations of 5397 poultry farms in the Netherlands at the time 
of the outbreak. The data set lacks reliable information on small non- commercial flocks, as most of 
these are exempt from registration. For that reason, and because an earlier analysis showed that such 
‘backyard flocks’ played only a marginal role in this epidemic (Bavinck et al., 2009), we discarded 
all flocks with fewer than 500 animals from the data set. For each farm, the data specifies its status at 
the end of the outbreak, describing whether or not it had contracted the virus, had been culled due to 
confirmed infection, or had been culled pre- emptively. For farms which were culled we have the date 
on which this occurred. After the removal of farms with fewer than 500 animals, the data set contains 
4466 farms. Of these, 233 farms were confirmed to be infected and consequently culled, while 1232 
farms were pre- emptively culled. Table 1 illustrates the available information for each farm in the 
data set.

2.2 | Stochastic epidemic model

We construct our model based on the standard SIR (Susceptible- Infective- Removed) epidemic model 
in continuous time; see, for example, Bailey (1975); Andersson and Britton (2000). Consider a popu-
lation consisting of N farms. We assume that initially all farms are disease free apart from one which 
contains animals infected via some external source. At any time t, a farm is either susceptible to 
the disease, infected with the disease and infectious, or removed as the animals on the farm have 
been culled. The model dynamics can be separated into two processes: the infection process and 
the removal process. The infection process is governed by a rate function β(d), where d denotes the 
Euclidean distance between two farms.

T A B L E  1  An example of the available information on each farm. Farms 1 and 2 were confirmed to be infected 
and culled in consequence. Farm 3 was culled pre- emptively and farm 4 was not culled. Farm geographical locations 
are provided in terms of x and y coordinates

Farm ID x y Culling date Pre- emptively culled

1 5.25 52.13 5 May ×

2 5.59 54.49 10 April ×

3 4.99 55.00 2 May ✓

4 5.50 51.40 — — 

⋮ ⋮ ⋮ ⋮ ⋮
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We assume an infectious farm infects a given susceptible farm that is d km away according to a 
Poisson process with rate β(d). The processes governing different pairs of farms are assumed to be 
independent. For the removal process, once a farm is infected it is assumed to be infectious for a time 
which follows a Gamma distribution, Γ(λ, γ), which has mean λ/γ and variance �∕�2. The infectious 
periods of different farms are assumed to be independent. Note that the infectious period of a farm 
is the time between infection and culling as a result of infection being detected, rather than the time 
period during which animals would be infectious in the absence of any intervention.

To account for the fact that some farms are pre- emptively culled by the authorities as a disease 
control measure, we introduce pre- emptive culling times. We make no attempt to explicitly model the 
culling strategy, since in practice such strategies may change over time or not always be carried out as 
originally intended. Instead, we assume that pre- emptive cullings are deterministic events. If, under 
the disease control strategy, a farm is pre- emptively culled at time t, then the farm becomes removed at 
time t irrespective of whether it is currently susceptible or infectious. From this time, it can no longer 
infect other farms or be infected. We shall refer to culling events that are not pre- emptive as natural 
cullings. The epidemic continues until there are no more infected farms.

2.3 | Likelihood

Recall that the observed data consist of culling times, which can be pre- emptive or not, and farm loca-
tions. To fit our model to such data in a Bayesian framework requires the likelihood of the observed 
data given the model parameters. However, such a likelihood is intractable in practice since its com-
putation involves integrating over all unknown infection events; see, for example, O’Neill and Roberts 
(1999); Jewell et al. (2009). We therefore proceed by deriving a likelihood based on full observation 
of the epidemic process, and use a data- augmentation MCMC algorithm as described in Section 3.

Let N denote the total number of poultry farms in the Netherlands and n the number of ever- 
infected farms. We denote the infection and culling times for farm j by ij and rj respectively, where 
culling may be pre- emptive or natural. We label the infected farms 1, …, n by their culling date (i.e. 
r1 ≤ r2 ≤ … ≤ rn) and the remaining farms n + 1, …, N arbitrarily. We denote by ω the label of the 
initially infected farm.

We denote by i = {i1, …, i�−1, i�+1, …, iN} the set of all infection times excluding the initial in-
fection time i�. If farm j was not infected, its infection time is set to be ij = ∞. We account for pre- 
emptive culling by defining rj = min(r

p

j
, rc

j
), where rp

j
 and rc

j
 denote, respectively, the pre- emptive and 

natural culling time of farm j. We consider the times rp

j
 to be deterministic, and set rp

j
= ∞ if farm j 

was not pre- emptively culled. For farms which were not culled at all, we set rp

j
= rc

j
= ∞, hence 

rj = ∞. The sets rc = {rc
1
, …, rc

N
} and rp = {r

p

1
, …, r

p

N
} denote the set of natural and pre- emptive 

culling times respectively.
We require the following sets based on the infection status of the farms during the outbreak. Set  

consists of the farms that remained susceptible to the disease throughout the course of the epidemic 
and were not culled, set  is the set of farms that were infected with the virus and naturally culled in 
consequence, set  is the set of farms that were infected but were culled pre- emptively, and finally 
set  consists of the farms that were not infected but still pre- emptively culled. These sets are shown 
in Table 2. Note that if a farm has been pre- emptively culled, we are unable to distinguish whether it 
belongs to set  or  unless its infection status is known.

The likelihood function consists of three parts: a contribution from farms avoiding infection, a con-
tribution from farms being infected and a contribution from farms remaining infectious until culled. 
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For a farm k in either set ,  or , the probability it avoids infection from infectious farm j, until 
either j is removed or k is infected, is 

where β(d) is the infection rate for a pair of farms that are d km apart, and a ∧ b = min{a, b}. The differ-
ence in minimum times is the amount of time during which farm j is able to infect k. If farm k is in set  we 
must take into account its pre- emptive culling time, rk = r

p

k
, and the corresponding probability is given by 

When farm j is infected, the set of farms that are able to infect j is 

so the event that j is infected contributes to the likelihood function through the overall hazard rate of in-
fection given by 

For the removal process, the likelihood contribution is given by 

where p(x|λ, γ) is the probability density function of a Γ(λ, γ) distribution evaluated at x and S(x|λ, γ) is the 
survivor function 

Farms in set , that were infected and culled at the end of their infectious period, contribute to the like-
lihood function through the total time during which they were infectious. For those in set , which were 
infected but culled pre- emptively, we consider their removal time as a censoring time, and compute the 
probability they would have remained infectious past their culling time. Combining the infection and re-
moval processes gives the augmented likelihood function 

� j,k = exp{ − �(dj,k)((rj ∧ ik) − (ij ∧ ik))},

� j,k = exp{ − �(dj,k)((rj ∧ rk) − (ij ∧ rk))}.

j = {k: ik < ij < rk},

�j =
∑

k∈j

�(dk,j).

∏
j∈

p(rj − ij |�, �)
∏
j∈

S(rj − ij |�, �),

S(x |�, �) =

∞

∫
x

p(u |�, �)du.

T A B L E  2  The infectious status of each farm at the end of the outbreak

Set Infected Culled Pre- emptively culled

 × × ×

 ✓ ✓ ×

 ✓ ✓ ✓

 × ✓ ✓
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 where 

Note that the set of culling times determines which farms belong to the set , which is why  does 
not appear explicitly in the left- hand side of Equation (1).

3 |  BAYESIAN NONPARAMETRIC INFERENCE

We wish to make Bayesian inference for the unknown model parameters given the observed data of 
farm locations and culling dates (see Table 1). If a farm was not culled by the end of the outbreak, 
we assume that it remained susceptible throughout the outbreak. Hence, the observed culling dates 
determine which farms belong to set . For a farm that has been pre- emptively culled, its infection 
status is unknown and therefore we cannot determine from the observed data if such a farm belongs to 
set  or . Also, the infection process defined in our model is not observed directly. Hence, the label 
of the initially infected farm ω, its infection time i� and the infection times of the farms belonging to 
sets  or  are unknown.

We adopt a data augmentation framework (see, e.g. Jewell et al., 2009) in which we include the 
farms’ unknown infection event times and statuses as additional model parameters to the ones which 
govern the transmission and removal processes. Combining the augmented data likelihood (1) with 
the joint prior distribution, by using Bayes’ theorem, the target posterior density is given by 

 where we have assumed that β, λ and (�, i�) are independent a priori.

3.1 | Prior distributions

We now discuss in detail the prior distributions for the infection rate function and the other model 
parameters.

(1)

�(i, r
c,,,��, �, � ,�, i�, r

p)

=

� �
j∈∪

N�
k= 1

� j,k

�⎛
⎜⎜⎜⎝

�
j∈∪

j≠�
�j

⎞
⎟⎟⎟⎠

�
j∈

p(rj− ij��, �)
�
j∈

S(rj− ij��, �)

= exp {−Ψ}
�

j∈∪
j≠�

⎛
⎜⎜⎝
�

k∈j

�(dk,j)

⎞⎟⎟⎠
�
j∈

p(rj− ij��, �)
�
j∈

S(rj− ij��, �),

(2)
Ψ=

∑
j∈∪

[ ∑
k∈∪∪

�(dj,k)
(
(rj∧ ik)− (ij∧ ik)

)

+
∑
k∈

�(dj,k)
(
(rj∧rk)− (ij∧rk)

)]
.

�(�, � , �, i�, i, , |, �, r
p, r

c) ∝�(i, r
c, , , |�, �, � , �, i�, r

p)

×�(�)�(�)�(i�|�)�(�),
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3.1.1 | The infection rate function

We wish to infer the infection rate function β nonparametrically and to do so we will use a trans-
formed GP as a prior distribution. We follow Rasmussen and Williams (2006) and define a GP as a 
collection of points, any finite subset of which follow a multivariate Normal distribution. Suppose we 
wish to model a function f, over a space χ, specifically being interested in the values of the function 
f (x1), …, f (xn) evaluated at the points x = {x1, …, xn}. We specify the GP prior distribution on f by 

 where μ is the mean function and Σ the covariance matrix, defined using a covariance function k. We 
build our assumptions about f into the model through the covariance matrix, and to do so we use the 
squared exponential function. This is given by 

 The function k has two hyperparameters, namely α, which controls the overall variance, and l, which 
controls the length scale. The value of l essentially determines how much the function can change as the 
input changes. We implicitly assume that f is smooth and differentiable. Many other choices for the kernel 
function are available (Rasmussen & Williams, 2006), but our choice appears suitable for the application 
at hand.

The input space of the function β is the space of Euclidean distances. We specifically wish to evalu-
ate β at d, the set of pair- wise distances between all farms. As the GP prior distribution gives non- zero 
probability to negative values and we are modelling a rate which is always positive, we introduce a 
dummy function g and use the transformation β =  exp {g}. In other words, we are placing a GP prior 
distribution on  log  β by specifying that 

 where di is the Euclidean distance between the ith pair of farms.
A well- known problem arises with GPs when the size of the covariance matrix is large, since 

this creates computational difficulties with matrix inversion and decomposition; see, for example, 
Hensman et al. (2013); Csato and Opper (2002); Quinonero- Candela and Rasmussen (2005). For the 
avian influenza data set, there are over 9 million unique pair- wise distances from which the covari-
ance matrix is constructed. In the MCMC algorithm we will develop, we will require the covariance 
matrix to be repeatedly decomposed and inverted, which is not feasible in practice with such a large 
matrix. We therefore approximate the GP prior distribution using a projection method first described 
in Quinonero- Candela and Rasmussen (2005). We construct a pseudo set of distances, d, that is much 
smaller than the original set d. While d need not be a subset of d it should provide an adequate rep-
resentation of d. We then place a GP prior distribution on the pseudo set and draw samples from this 
distribution. The joint prior distribution of the pseudo function, f  and the full function f is 

f ∼ (�, Σ),

Σi,j = k(xi, xj; �, l), k(xi, xj; �, l) = �2exp

{
−

(xi − xj)
2

l2

}
.

g ∼ (0, Σ), Σij = k(di, dj; �, l), � = exp{g}

(
f

f

)
∼ 

(
0,

(
Σ

d,d Σd,d

Σ
d,d Σd,d

))
,
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 where the subscripts on the Σ matrices denote the vectors used to construct them. We can then project the 
samples onto the full data set by considering the conditional distribution of f given the pseudo function f .   
We take f to be the mean of this distribution, which is given by 

where Σ
d
 is the covariance matrix of the approximating prior distribution. Some care is needed to con-

struct the pseudo set d, because we must ensure the points are sufficient in number and suitably placed 
across the entire domain to capture the features of β. Simulation studies in Seymour (2020) suggest that 
the error introduced by this approximation is small, even when the number of pseudo distances is as small 
as 10% of the total number of pair- wise distances. This method assumes that the prior distribution over the 
pseudo data set has the same properties as that over the original data set, which is a reasonable assumption 
as they are both sets of Euclidean distances.

The value of the length scale parameter l can have a material impact on the results, and it is not 
obvious how to assign a suitable value. We therefore place a non- informative prior distribution on this 
parameter, specifically l ∼ Exp(0.01), where Exp(a) denotes an exponential distribution with mean 
a−1. Inferring both hyperparameters of the GP (l and α) can be very challenging (Zhang, 2004), and 
therefore we assume the variance parameter α is known a priori. We choose a value such that samples 
from the prior distribution are over a large enough range to capture the scale of the infection rate.

3.1.2 | Other model parameters

Recall that the infectious period distribution is assumed to be a Γ(λ, γ) distribution. We follow Jewell 
et al. (2009) and assume that λ is known and place an uninformative prior distribution on γ, specifi-
cally γ ∼ Exp(0.01).

For the infection times, we place a discrete uniform prior distribution on the label of the initially 
infected farm ω. We set a time axis by assuming the first culling to be at time zero, so that r1 = 0, and 
set the prior distribution on the infection time of ω by 

3.2 | Markov chain Monte Carlo algorithm

The density of the full posterior distribution is given by 

 The likelihood function is the same as in Equation (1) and Ψ is given in Equation (2) with β replaced 
by the inferred value  exp {g}. The term (g;0,Σ) refers to the finite dimension form of the GP, which 
is the probability density function of a multivariate Gaussian distribution evaluated at g(d), with the 

f = Σ
d,dΣ

−1

d
f ,

(i� |�) = − z, z ∼ Exp(0.01).

�(�, � ,�, i�, i,,�, �, r
c, r

p)

∝ exp {−Ψ}

n�

j= 1

j≠�

⎛⎜⎜⎝
�

k∈j

exp{g(dk,j)}

⎞⎟⎟⎠
�
j∈

p(rj− ij��, �)
�
j∈

S(rj− ij��, �)

×(g;0,Σ)exp{−0.01l}exp{−0.01�}exp{0.01i�}.
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corresponding mean vector 0 and covariance matrix Σ. We cannot sample from the posterior distribution 
directly so construct an MCMC algorithm, which is shown in Algorithm 1. There are five main steps to 
the algorithm and these are described in detail below.

3.2.1 | Updating the infection rate

The first step is concerned with sampling the dummy function g, which we do using an underrelaxed 
proposal mechanism described in Neal (1998). This allows us to update the function as a block while 
reducing computational complexity. Given the current function g, we propose a new function g′ by 

where δ  ∈  (0, 1] is a tuning parameter, g(d) is the value of the function g at the current iteration, and 
ν(d) is a sample drawn from the prior distribution (0, Σ) where Σ denotes the covariance matrix of the 
GP. The computational advantage of this is that the prior ratio is the inverse of the proposal ratio so the 
Metropolis– Hastings acceptance probability reduces to the likelihood ratio (see Section 1 of the supple-
mentary material) 

When the projection approximation method is used, we first propose new values for g on the input space 
d using the above proposal, that is, g�(d) =

√
1 − �2g(d) + ��(d), and then project g′ onto g′ which is 

then used in the Metropolis– Hastings ratio above.

3.2.2 | Updating l

To update the GP prior distribution length scale, l, we use a Gaussian random walk Metropolis algo-
rithm by first proposing a new length scale, l′, from N(l, �2

l
) where l is the current value and �2

l
 is a 

tuning parameter, and then accept l′ with probability 

g�(d) =
√

1 − �2g(d) + ��(d), � ∼ (0,Σ),

pacc =
�(i, rc,,, |g�, �, � ,�, i�, rp)

�(i, rc,,, |g, �, � ,�, i�, rp)
∧ 1.

pacc =
(g;0,Σl�)

(g;0,Σl)

�(l�)

�(l)
∧ 1.
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3.2.3 | Updating γ

To update γ, we also use a Gaussian random walk Metropolis algorithm by proposing � ′ from the 
distribution N(� , �2

�
) and accepting this with probability 

3.2.4 | Updating infection times

The final step in the algorithm concerns the unobserved infection times. We use a method proposed 
in O’Neill and Roberts (1999) and then further developed in Jewell et al. (2009). We choose one of 
three actions with equal probability: (i) propose to move an existing infection time; (ii) propose to add 
a new infection time; and (iii) propose to delete a previously added infection time.

1. Updating an infection time of a farm in sets  or  is the simplest of the three procedures. To 
do this, we randomly choose a farm j that is currently infected and propose a new infection time 
by i�

j
= rj − tj, where tj ∼ Γ(�, �) and γ denotes the current value of the parameter in the chain.   

We accept i′
j
 with probability 

where i − ij + i�
j
 is the set i with ij removed and i′

j
 included.

2. When adding an infection time, first define m to be the number of pre- emptively culled farms. We 
suppose that at the current iteration of the algorithm, m̃ of the farms which were pre- emptively culled 
have had infection times added by the algorithm; that is farms belonging in set . We randomly choose 
one of the m − m̃ pre- emptively culled farms with no infection time and propose an infection time for it. 
If m = m̃, we abandon this step. We generate an infection time as above and accept it with probability 

3. Finally, if we choose to delete an infection time for a pre- emptively culled farm, we randomly 
choose a pre- emptively culled farm j which at the current iteration has an infection time added 
and we propose to remove its infection time. Should there be no farms with an unknown infection 
status, which, at the current iteration of the algorithm, have had an infection time added, the step is 
abandoned. We accept this proposal with probability 

pacc =

∏
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S(rj − ij ��, � �)

∏
j∈

p(rj − ij ��, �)
∏

j∈
S(rj − ij ��, �)

�(� �)

�(�)
∧ 1.

pacc =
p(rj − ij |�, �)

p(rj − i�
j
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j
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4 |  RESULTS

We now present the results of our method applied to two data sets. The first is a simulated data set and 
the second is the avian influenza data set described in Section 1. We then use the posterior predictive 
distribution to analyse the impact of various culling strategies for the avian influenza outbreak.

4.1 | Simulation study

We generated the position of 1000 farms uniformly at random on a square with side length 30 km. We 
then simulated 250 outbreaks of avian influenza using the infection rate function 

 The infectious period distribution parameters were λ = 4 and γ = 0.8. This gives a mean infectious period, 
which represents the time from infection to culling, of λ/γ = 5 days, suitable for influenza- like diseases 
among livestock. The simulations also included a deterministic culling strategy such that once a farm 
was culled following a positive test, all farms within a 1 km radius were pre- emptively culled. Note that 
although this strategy is inspired by what happened in the actual outbreak, it is somewhat idealized since, 
as mentioned in Section 2.2, culling strategies may change over time.

We discarded simulated data sets with less than 100 infected farms, since our focus is towards 
analysing sizeable outbreaks, and any nonparametric modelling approach will struggle with a small 
data set. This left 175 data sets. Mimicking the data available in the avian influenza outbreak, for each 
simulated data set we assume that in addition to the coordinates we only observe the culling times 
and whether a farm has been pre- emptively culled or not. The infectious period shape parameter is 
assumed to be λ = 4.

Estimating both the length scale (l) and the variance parameter (α) can be very challenging (Zhang, 
2004) and computationally expensive (Chalupka et al., 2013). It is therefore common to treat either 
parameter, or both of them, fixed and known. Care is indeed needed when specifying a value for the 
variance parameter α. A very small value yields slow convergence times for the Markov chain. On the 
other hand, a very large value will lead to poor MCMC mixing. In practice, α needs to chosen such 
that the prior distribution for β covers a large space, particularly β(0), but not so large that the Markov 
chain mixes poorly. Therefore, we fix the length scale parameter as l = 3 and the variance parameter 
α = 9 due to the computation time required to perform inference for both hyperparameters and in-
fection times for pre- emptively culled farms for each of the simulated data sets. We also repeated the 
analysis for l = 2 and l = 5, and found that the results described below were essentially unchanged (see 
Section 2 of the supplementary material).

We fitted the model described in Section 2 by assuming that the infection rate is a function that de-
pends only on the distance between farms and assigned a GP prior distribution as described in Section 
3.1.1. Due to the number of farms, we used the GP approximation method, constructing the pseudo set 

pacc=
1∕(m− (m̃−1))p(rj− ij|�, �)

1∕m̃

�(i− ij, r
c|g, �, � , i�, rp,,,)
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=
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of distances by taking 256 equally spaced points from zero to the largest distance in the data set. We 
employed the MCMC algorithm described in Section 3.2 to fit the model to each of the 175 data sets.

Figure 2 shows the median rate compared to the true rate and a 95% credible interval constructed 
from all 175 posterior medians. The results demonstrate that we can infer the infection rate function 
well for all pair- wise distances above 0.5 km, but we slightly underestimate the rate between imme-
diate neighbours. This underestimate is caused by there being few farms in each data set that are less 
than 0.5 km apart. We estimate the median infectious period to be 5.07 days, close to the true value of 
5 days, and the 95% credible interval of the 175 estimates contains the true value of 5. This slight over-
estimation is likely to be caused by the combination of slight underestimation of β at low distances, 
and the fact that we only considered data sets with at least 100 infections, in which infectious periods 
may be slightly larger than average.

F I G U R E  2  Top left: The results of the nonparametric method for the infection rate in the simulated data sets. We 
report the median and 95% credible interval of all 175 posterior medians. Top right: The distribution of the posterior 
median estimates for the mean infectious period. Bottom left: The distribution of the relative error in the sum of the 
infection times. Bottom right: The 175 posterior medians
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To assess the results for the infection times across all simulations, we use the relative percentage 
error in the sum of the infection times for each simulated outbreak, which we denote by ĩ, defined 
as follows. Consider a single simulated data set. Let S denote the sum of all infection times of farms 
culled either naturally or pre- emptively in the data set. Let Ŝ denote the median estimate of S obtained 
from the MCMC output. Note that Ŝ implicitly takes account of which pre- emptively culled farms are 
imputed to have been infected. Then we define 

 The median relative percentage error across all data sets is 1.40%, which demonstrates that our method 
for inferring infection times gives accurate results. The results for the parameters are shown in Table 3.

4.2 | Avian influenza

We now analyse the avian influenza data described in Section 2.1. Due to the size of the data set, we 
split the inference into two parts. We first inferred plausible values of the GP prior distribution length 
scale parameter, l, by fitting our transmission model under the assumptions of a constant infectious 
period of 7 days and that pre- emptively culled farms were not infected, as in Boender et al. (2007). We 
obtained a posterior median for l of 2.75 km (95% CI: (2.55, 3.01)). The reason for inferring plausible 
values for l separately is that estimating l requires decomposing and inverting the covariance matrix 
inside the MCMC algorithm which is highly computationally intensive and leads to prohibitively long 
run times. This issue is amplified when the infection times are unknown as well.

We repeated the inference method without assuming that the infection times or the status of the pre- 
emptively culled farms are known. Based on the results of the method with a fixed infectious period, 
we fixed α = 3 and l = 3 km. We employed the GP approximation method for this data set. As we expect 
the infection rate function to vary considerably over short to medium distances, we included more such 
distances in the pseudo data set. The pseudo data set was d = {0, 0.5, 1, …, 19.5, 20, 30, …, 350}. 
We ran the MCMC algorithm for 20,000 iterations, including a burn- in period of 500 iterations. In 
each iteration of the MCMC algorithm, we proposed updating, adding or deleting 200 infection times. 
This took 7 days on the University of Nottingham’s High Performance Computing facility.

The results for the infection rate are shown in Figure 3, where we see a logistic- type function that 
decays to zero. From this, we estimate that the probability of a farm infecting another farm which is 
more than 6 km apart is negligible. From the credible interval, we see that samples from the posterior 
distribution take a variety of shapes, with functions that have a high infection rate over short distance 
decaying quickly, and functions that have a lower rate over short distances taking a logistic function 
form.

ĩ =
S − Ŝ

S
× 100% .

T A B L E  3  Summary statistics for the 175 posterior median values obtained in the simulation study. The 
probability interval is from the 2.5% to 97.5% quantiles

Parameter True value Median 95% Prob. Int.

γ 0.8 0.787 (0.778, 0.802)

λ/γ 5 5.07 (4.99, 5.13)

ĩ 0% 1.40% (−9.18%, 23.0%)
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We compare our results to those in Boender et al. (2007), particularly with a view to comparing 
estimation of the infection rate function. The authors propose five models, shown in Table 4, which 
we fitted to the data assuming a fixed infectious period of 7 days. Model 3 was the best of the pro-
posed models according to the deviance information criterion (Spiegelhalter et al., 2002). We refitted 
model 3 to the data assuming that the infection times are unknown. The results are shown in Figure 3 
and one clear difference between the parametric and nonparametric methods is the associated uncer-
tainty. Although the nonparametric method allows for a greater degree of flexibility, it also induces a 
greater degree of uncertainty. However, we argue that the parametric method may underestimate the 
uncertainty by imposing stricter assumptions. Despite this, both estimates are of similar shape and 
scale, and our results broadly agree with existing work. We see a slight difference in the forms of the 
infection rate function for distances less than 400 m, which is due to there being very few farms that 
are less than 400 m apart.

Since we assume infection times to be unknown, we infer them via our MCMC algorithm. We 
estimate the mean infectious period to be 6.4 days, and Figure 4 shows the distribution of median 
infectious periods by culling status. For farms that were subject to pre- emptive culling, the median 
infectious period is shorter than for those who were identified as infected. This is expected as pre- 
emptive culling of infected farms introduces censoring.

We estimate the probability that each pre- emptively culled farm was actually infected, as shown in 
Figure 4. All of the farms with non- zero probability of infection are located in the two main infection 
clusters. Our results show that the transmission to the southern cluster cannot be explained by a path 

F I G U R E  3  The posterior mean for the nonparametric (solid) and parametric (dashed) infection rate functions 
for the avian influenza data set. The parametric function is kernel 3 in Table 4

T A B L E  4  The proposed parametric pair- wise infection rates for the avian influenza data set in Boender et al. 
(2007)

Rate Kernel

1 �(d) = �0

2 �(d) = �0(1 + d)− 1

3 �(d) = �0(1 + d
2)− 1

4 �(d) = �0(1 + d
�1 )− 1

5 �(d) = �0(1 + (d∕�2)�1 )− 1
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of shorter distance infections that were censored by pre- emptive culling. This is consistent with the 
hypothesis proposed in Bataille et al. (2011) that this long distance transmission event of avian influ-
enza was the result of a single human- mediated transport of the virus.

4.3 | Culling strategies

We now investigate how to improve the disease control measures by analysing how the culling radius 
affects the number of infected farms. Culling infected farms has the effect of reducing the time a farm 
is infectious, and culling susceptible farms means there are fewer farms to be infected. Although this 

F I G U R E  4  Top: Posterior distribution of median infectious periods for farms with confirmed infections and 
those pre- emptively culled. Bottom: Estimates of probabilities that pre- emptively culled farms were infected. Only 
farms which were pre- emptively culled are plotted. Each probability is the proportion of iterations in the MCMC 
algorithm that the pre- emptively culled farm was actually infected

0%
5%
10%
15%
20%
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is an effective measure for controlling the spread of the disease, it can be expensive as farmers are 
compensated for lost livestock and it can cause negative public attitudes.

To simulate the effect of culling, we sample from the posterior predictive distribution of the infec-
tion and culling times. Given the observed culling times, and the posterior distributions of g, γ and ω, 
we wish to generate new infection times i∗ for all farms, and corresponding culling times r∗. We do 
this using the posterior predictive distribution, which is given by 

 To generate samples from this distribution we initiate the outbreak by assuming the initially infected farm 
ω is the farm that was initially culled in the observed outbreak. To consider the effectiveness of culling 
strategies, we assume that once an infected farm reaches the end of its infectious period and enters the 
removed class all farms up to r km away are simultaneously culled and enter the removed class. Culling 
cannot start immediately as it may take time for the authorities to be notified of the disease and put mea-
sures into place, and whereas previous work (Backer et al., 2015) uses a fixed delay after the first detection 
to initiate the culling measures, we allow for stochasticity in the disease take- off and assume culling takes 
place once a certain number of farms have been infected. As resources may not be immediately available 
to the authorities, it may not be possible to cull all farms within r km and we simulate this by fixing a 
maximum number of farms that can be culled per day. We then increase this number over the course of 
the outbreak as the authorities have more available resources. The numbers are given in Table 5 and are 
based on the number of farms we estimate to have been infected in the observed outbreak. Similarly, we 
assume the authorities will not have sufficient resources to cull all farms within the chosen radius at the 
start of the outbreak, and we model this by assuming they initially cull farms within a radius half as large.

To investigate the economic consequences of these strategies, we assume each farmer is compen-
sated for their culled livestock. We use additional data from the outbreak which describes the type 
of poultry on each farm (broiler, duck, turkey and layer) and the number of birds on each farm. The 
value of the compensation depends on the type of bird culled, the number of birds culled, their age in 
weeks, and, for turkeys, their gender. We follow Backer et al. (2015) who use the approximate rates 
shown in Table 6. We acknowledge this method is crude and does not take into account any of the 
wider economic impacts. However, it allows us to simulate the number of farms that are infected, the 
number of farms that are culled, and the compensation paid to farmers. These three values can be used 
to compare the risk to public health, the impact of the poultry industry and the cost to the authorities.

Table 7 shows the results of the culling strategies for radii between 0 km and 5 km. A culling radius 
of 0 km denotes the authorities taking no action. It is clear that taking any course of action leads to a 
reduction of the number of infected farms but also an increase in the amount of compensation given. 
Furthermore, we see that more ambitious strategies show little gain in reducing the median number of 
farms infected in an outbreak. The effect of culling at larger radii results in a larger number of culled 
farms and a higher amount of compensation, but does not result in a considerable reduction in the 

�(i∗ , r
∗ |r) = ∫ ∫ ∫ �(i∗ , r

∗ |g, � ,�, r)�(g, � ,� |r)dgd�d�.

T A B L E  5  The culling strategy as a function of the total number of infected farms

Total number of infected farms (I)
Maximum number of farms  
culled per day

Proportion of culling 
radius implemented

I  ≤ 33 0 0

33 <  I ≤ 54 3 1

2

54 < I 6 1
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number of infected farms. This is because the maximum number of farms culled per day is quickly 
reached, even for small culling radii. In the data set, the average density of farms was approximately 2 
per km2, whereas a culling radius of 2 km covers over 12 km2.

These results are broadly in line with those in Backer et al. (2015), which also suggest that larger 
culling radii do not result in a considerable reduction in the number of infected farms. However, as we 
use a much smaller estimate for the maximum number of farms culled per day, we do not observe a 
large difference between culling radii of 1 km and 2 km.

5 |  CONCLUSIONS

We have presented an analysis of an outbreak of avian influenza in poultry farms in the Netherlands 
using a Bayesian nonparametric approach. Our approach demonstrates that it is possible to model the 
spatially heterogeneous infection rate for infectious diseases nonparametrically, and that GPs provide 
a flexible framework for doing so. This nonparametric methodology allows us to reduce the need for 
strict parametric assumptions, which are often made for mathematical or practical convenience and 
may have little scientific basis. Our methods also allow us to account for missing data, specifically the 
unobserved process of infection, without making unrealistic simplifying assumptions.

Although we have focused on an SIR model, in principle our methods can be extended to SEIR 
models as well, to incorporate a latent period. For our application to avian influenza, transmission 
experiments suggest that for the A/H7N7 virus in chickens, latent period for an infected animal is be-
tween 1 and 2 days (van der Goot et al., 2005). The latent period of an infected farm is often equated 
to the latent period of the first infected chicken, that is, in this case that would suggest a fairly short 
latent period of between 1 and 2 days (e.g. Backer et al., 2015). Furthermore, in Ypma et al. (2011) 

T A B L E  6  Estimates of compensation per bird paid to farmers during the avian influenza outbreak from Backer 
et al. (2015)

Poultry type Compensation (€ per bird)

Broiler 0.98

Duck 2.09

Turkey 10.63

Layer 2.05

T A B L E  7  Posterior predictive medians (95% probability intervals) for the number of infected and culled farms 
and the amount of compensation paid

Radius (km) No. infected farms No. culled farms Compensation paid (€ millions)

0 443 (151, 644) 443 (151, 644) 24.8 (8.62, 35.9)

1 297 (110, 535) 489 (215, 709) 27.2(12.2, 38.9)

2 283 (108, 608) 488 (217, 740) 27.5 (12.2, 41.7)

3 283 (112, 582) 517 (242, 775) 29.0 (13.2, 43.1)

4 274 (105, 564) 512 (228, 793) 28.5 (12.3, 43.9)

5 280 (109, 549) 527 (226, 797) 39.2 (12.4, 41.9)
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the authors assumed a latent period of 1 day and subsequently performed a sensitivity analysis, where 
they compared results across latent periods of lengths 1, 2 and 3 days. Their comparison shows that 
their estimated kernel parameters were essentially insensitive to the assumed latent period duration. 
Although we could have considered fitting an SEIR model with a short latent period, we anticipate 
that this would not have any material impact on our results.

The methods we have described require more time and computational power than the standard 
parametric methods, especially when employed in conjunction with an MCMC approach to sam-
ple from the desired posterior distribution. We have, however, somewhat alleviated these issues by 
using a GP approximation method which appears to work well in our applications. Simulation studies 
in Seymour (2020) suggest that our methods work well even in small populations (e.g. N = 100), 
although there needs to be enough transmission in the population leading to a sizeable outbreak. 
Conversely, in scenarios where fewer data are available, such as small outbreaks or the initial phases 
of an outbreak, then in common with any nonparametric approach there will be greater uncertainty in 
parameter estimates. In such situations it might be appropriate to incorporate strong prior information 
or simply revert to a parametric approach.

For the avian influenza data set, our methodology has allowed us to approach the infection pro-
cess in a more flexible way than previous methods. Our estimates are in line with previous work, and 
combining this method with previously developed MCMC techniques and data augmentation allows 
us to analyse this data set in more detail than has previously been possible, including determining 
whether pre- emptively culled farms had been infected. The uncertainty around our estimates is larger 
than that of previous parametric methods, but since we do not assume specific parametric models then 
our methods are, in some sense, giving a fairer quantification of uncertainty. We are able to use the 
posterior predictive distribution to analyse the effect of different control strategies which can be used 
to inform policy in this area.

In this paper, we have focussed on spatial heterogeneity as the key determinant of the infection 
rate. In reality, it is possible that the number and type of animals on the farms was also important. 
Given appropriate data, it is natural to build a model which contains such data as covariates. One way 
of doing this would be to consider each covariate as a separate dimension of the GP. Another possi-
ble extension is to consider different covariance functions beyond the squared exponential function, 
which could be appropriate in some applications. Also, the proposed framework can be extended to 
analyse the spread of infectious diseases early on in an outbreak. As mentioned above, the lack of data 
in the initial stages of an outbreak may be problematic. Possible ways to mitigate this by include add-
ing further assumptions to the model, such as monotonicity of the infection rate, as well as employing 
more informative prior distributions. It is also be of interest to develop methods for model assessment, 
which is something that we have not considered here. Finally, another avenue for future work is to 
employ the recently developed methods described in Stockdale et al. (in press) in which the observed 
data likelihood is approximated without the need for imputing the unknown infection times. This 
would significantly reduce the computation time needed for our methods, and in conjunction with the 
GP projection method can make the proposed methodology more applicable for very large data sets.
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