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 Propositions 

1. A detailed understanding of mosquito flight dynamics around traps accelerates the
improvement of mosquito trapping solutions.
(this thesis)

2. To avoid being swatted, mosquitoes actively surf the bow wave induced by the
attacker.
(this thesis)

3. To find thriving extra-terrestrial life, the moons of Jupiter are a much more promising
destination than Mars.

4. Austerity in an economic crisis is like treating a patient with bloodletting.

5. Not knowing how scientific knowledge is gained is a worse deficiency than not
knowing that the earth is round.

6. The biggest problem with privately funded research is the doubts it can create which
can lead to major delays in reaching consensus and in passing of protecting policies.

7. Art has a bigger role to play than science in achieving the cultural shift necessary to
resolve the current environmental crisis.

8. Panels of randomly selected citizens are a better reflection of society and can be
better policy-makers than elected politicians.
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Chapter 1

General introduction



Through their lives, flying insects often must interact with vertebrates many times their
own size. Some insectivorous bats or birds such as swifts, swallows and whispering bats
feed almost exclusively on flying insects (Hespenheide, 1975; Kunz, 1982). Many other
non-flying animals, such as chickens or frogs (Card, 2012; Darbro and Harrington, 2007;
Raghavendra et al., 2008), are also capable of predating on flying insects. In addition, nu-
merous flying insects, dipterans such as horse flies or tsetse flies, blood feed on large verteb-
rates (Allan et al., 1987; Clements, 1999). Among those insects, mosquitoes are certainly
the best known, both because of their prevalence (they can be found on most continents)
and because they can be vectors of many deadly human diseases such as malaria, dengue
or Zika. Although some aspects of the interactions between insects and vertebrates have
been well studied already – such as how insects detect and approach their blood hosts (Al-
lan et al., 1987; Cardé, 2015; Clements, 1999) – many aspects of such interactions are still
poorly understood. One important example of these aspects is: “How do flying insects
behave around vertebrates that try to kill or chase them?”. And another is: “How do envir-
onmental conditions and the available cues, such as heat or airflow, influence flying insects’
success in such interactions?”

In this thesis, I aim to contribute to answering these two questions by investigating:
How flying mosquitoes interact with odour-baited traps or a mechanical swatter and
how factors such as the presence of host cues, airflow or light intensity influence these
interactions. I will study this by using a biomechanics approach where engineering tech-
niques, such as high-speed videography and airflow simulations, are used to answer bio-
logically relevant questions about insect movements. This is a multidisciplinary approach
involving biomechanists, medical entomologists and industrial designers. I tackle the pre-
viously mentioned research questions by simulating human presence near flying mosqui-
toes using odour-baited traps and a mechanical swatter in both applied and fundamental
studies. For these studies, I developed several new tools that I used to analyse large data-
sets of three-dimensional mosquito flight tracks as well as their body and wings kinematics.
Thus, a new understanding of mosquito flight behaviour around traps was reached that led
to the development of a mosquito trap with improved capture performances. Finally, my
work on how mosquitoes performed successful escapes when attacked led to the discov-
ery of previously unknown escaping mechanisms as well as the exploration of evolutionary
trade-offs of insect flight in darkness.

Here, I will first introduce how insects evolved the ability to fly and why this had an
important impact on their success. I will also explain how insects generate the aerodynamic
forces necessary to power their flight and what the role of the neuro-sensory system of in-
sects is in stabilizing and controlling flight. In particular, I will describe why studying es-
cape manoeuvres of insects is a good way to learn about flight mechanics and consequently
about flight physiology. Then, I will introduce how mosquitoes interact with vertebrates,
especially for blood feeding. I will describe mosquito host-seeking behaviour and how hosts
can defend themselves against mosquito nuisance. Finally, I will list the aims of this thesis
and describe its content.

10



1
1.1 Evolution, physiology and biomechanics of insect

flight

In the history of life on Earth, powered flight appears to have evolved independently at
least four times among very different animal groups: insects, pterosaurs, birds and bats.
All these flying animals achieved flying using wings, made of cuticles, skin membrane or
feathers, which they flapped using powerful flight muscles (Dudley, 2000; Templin, 2000).
This ability to fly gave these animals several evolutionary advantages over other species
and allowed them to occupy a previously unoccupied aerial ecological niche. By achiev-
ing powered flight, these animals could escape from terrestrial predators and had access to
a new set of aerial preys. They could also hunt down both terrestrial and aquatic anim-
als with a certain advantage. However, perhaps more importantly, flying could be used to
travel long distances very quickly and efficiently (Schmidt-Nielsen, 1972). Thus, flying an-
imals could then disperse fast if living conditions in a region were not favourable anymore,
or conversely, gather for seasonal grazing and migrate over long distances to adapt to local
food availability (Rainey, 1978). These advantages probably contributed greatly to the fact
that powered flyers are today a very successful group of animals, which is supported by the
large number of species that evolved among powered flyers (Kuhl et al., 2021; Solari and
Baker, 2007; Stork, 2018). Of course, from the pterosaurs that were larger than giraffes to
insects with the size of a pinhead, the advantages (and costs) that came with flying varied
greatly.

1.1.1 The specificity of insect flight

Insects were the first class in the animal kingdom that evolved the ability to fly. However,
there is still little known about how they did so. This is mainly because of an existing gap
in our fossil record between what is the first known winged insect (325 million years ago)
and its earliest discovered ancestors (around 400 million years ago) (Alexander, 2018; Dud-
ley and Yanoviak, 2011; Engel and Grimaldi, 2004). There are currently several competing
theories about the origin of insect wings. The tergal origin hypothesis states that wings
expanded from the dorsal body wall (tergum), and the pleural origin hypothesis proposes
that wings originated from pleural (lateral body wall) tissues and the branches (exites) con-
nected to them (Hamilton, 1971; Kukalová-Peck, 1983; Linz and Tomoyasu, 2018). A third
theory, the dual-origin hypothesis, tries to unify these two competing theories by proposing
that both tergal and pleural components may have played a role in the evolution of insect
wings (Crampton, 1916; Linz and Tomoyasu, 2018). Even more is unknown about how
insects might have evolved all other flight-related morphological traits (Alexander, 2018;
Linz and Tomoyasu, 2018). As for vertebrates, it is possible that insects acquired powered
and controlled flight via gliding ("trees down" origin) or via jumping ("ground up" origin)
(Dudley and Yanoviak, 2011). However, also, it might be that insects’ small mass allowed
them to use wind and air gusts to take off passively (Dudley and Yanoviak, 2011). In this
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way, primitive insects might have benefited from such initially passive excursions in the
air to evolve the neuromuscular traits and wing morphology necessary for the control of
powered flight.

Achieving powered flight was certainly a tremendous success for insects. There are
more species among insects than among all other animal classes, and most insects need to
fly at some point in their life cycle. They use flight for many different behaviours such as
feeding, mating, egg laying and migrating (see Fig. 1.1). For this, flying insects have two or
four wings of diverse shapes and sizes (Wootton, 1992). Contrary to the majority of birds
or bats, most flying insects are capable of hovering, and therefore can manoeuvre with ease
in confined spaces. However, achieving flight is very energetically demanding for insects,
as they are constrained by their capacities to move their wings at high speeds (Dickinson,
2006). Generating aerodynamic forces with decreasing size relies more and more on vis-
cous effects and less on inertial effects. As a consequence, a small flyer cannot achieve an
energetically efficient means of flight such as gliding. One possible solution to this prob-
lem is to grow in size, and thus it is not a surprise that the only insects capable of gliding
(e.g. dragonflies and butterflies) are among the largest. Nevertheless, diffusional limits on
oxygen supply for insect tracheal systems likely constrain their maximum body size (Dud-
ley, 2000). And consequently, insects never reached the size of an average bird since the
extinction of giant dragonflies (Meganeura), which could only survive in the oxygen-rich
atmosphere of the Palaeozoic era (Dudley, 2000).

To achieve hovering flight, insects flap their wings back and forth (and not up and
down) at wingbeat frequencies that can be much higher than the ones of all other fliers
(Ha et al., 2013). To move their wings at these high frequencies, many insects such as dipter-
ans (i.e. two winged insects) rely on very fast stretch-activated and indirect flight muscles
(Dickinson, 2006; Pringle, 1978). Additionally, some of these insects use asynchronous
flight muscles which allow them to beat their wings at higher frequencies than their neur-
onal activation impulses. In this way, insects rotate each of their wings around their hinges
in order to follow a “u-shaped” pattern and achieve high angles of attacks of their wings
during almost the entire forward and backward strokes (Fig. 1.2).

Thanks to the regular and fast rotation of their wings, insects are able to the generate
aerodynamic forces necessary to achieve and control flight. Certainly, the most important
aerodynamic mechanisms that have been identified among insects are the leading-edge vor-
tex. Most insects were shown to create such leading-edge vortex attached to each of their
wings and which contributes greatly in the production of aerodynamic lift (Ellington et al.,
1996). Other important aerodynamic mechanisms have also been identified and shown to
contribute to the generation of the lift (Birch and Dickinson, 2003; Wagner, 1986). Among
them, wake capture describes how a flapping wing of insects will encounter higher air-
speeds after reversing its course, thus resulting in higher aerodynamic forces (Sane, 2003).
The rotational lift is the mechanism by which insect generates aerodynamic lift when re-
versing from one stroke to another, and the added-mass effect describe how airflow accel-
eration contribute to the production of forces (Sane, 2003).
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1

Figure 1.1: Diversity of flying insects. Examples of insects using flight for various ecological purposes.
(a) Bee fly (Bombyliidae) pollinating flowers. (b) Monarch butterflies (Danaus plexippus) wintering at
Michoacan, Mexico, after their parents migrated from Canada. (c) Two European bee-eater (Merops
apiaster) that just caught a hawkmoth each. (d) Flying wild bee, probably commuting between flowers to
forage. (e) Female dragonfly (Libellula depressa) laying eggs while flying. (f ) Mating swarm of mayflies
(Rhithrogena) on Tisza river in Serbia. Images from AdobeStock.
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Figure 1.2: How mosquitoes fly. Mosquitoes generate aerodynamic forces required for flight by moving
back and forth their wings at high flapping frequencies. (a,b) Schematics showing the wing kinematics of
a hovering female mosquito (Anopheles coluzzii). (c) micro-CT reconstruction of the dorso-longitudinal
(DLMs) and dorso-ventral (DVMs) flight power muscles used to move the wings back and forth. Figures
adapted from (Muijres et al., 2017; Veen and van Veen, 2020)

1.1.2 Insect flight control system

To achieve powered flight that is both stable and manoeuvrable, insects use a closed loop
neurosensory system. In such system, sensory information will be collected and used to
control wings kinematics, for example to correct a perturbation. These changes in wing
kinematics will alter the aerodynamic forces and torque generated and thus indirectly in-
fluence body motion. This will therefore change the sensory information available and
close the feedback loop. To control their wing kinematics, flying insects rely on around 12
steering muscles, each controlled by a single motor neuron (Dickinson, 2006; Walker et al.,
2014). And, to control wing motions, these muscles adjust the gearing of the wing hinges
by acting as variable-stiffness springs (Dickinson, 2006). Because small changes in the wing
kinematics will have important consequences on the aerodynamic forces generated, it is
crucial for insects to be able to control these kinematics accurately and fast. Consequently
flying insects need to be able to rely on an accurate and fast neurosensory system to inform
their neuromotor system.

1.1.3 To avoid crashing, nothing beats a good neurosensory system

Managing to control flight requires the ability to measure, directly or not, the animals’ own
body motions and to detect perturbations and approaching objects like a looming threat.
To do that, flying insects have an elaborate sensory system. Important receptors for flight
are:

• Visual sensors, namely compound eyes and ocelli (simple photo-receptors), that al-
low insects to receive rich information instantaneously from far away. The perceived
light can inform insects in detail about the characteristics (e.g. size or orientation) of
surroundings objects. Additionally, insects can detect self-motion in reference to the
surrounding environment using the apparent motion of neighbouring objects in their
own visual field (i.e. optic flow) (Taylor and Krapp, 2007).
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1
• Mechanosensory receptors, such as sensible hairs or antennae. These receptors can in-

form an insect about sound, or about local air movement. Insects ears are sensitive to
minute air particle speed or air pressure changes (Göpfert and Hennig, 2016), whereas
more classical airflow sensors are used to measure wind speed or direction (Fuller et al.,
2014; Taylor and Krapp, 2007). One of these airflow sensors is the Johnson’s organ,
that measures motion at the base of antennae. These sensors are crucial for insect flight
because they reveal information about the motion of an insect with respect to the sur-
rounding air mass. Such motion can be different from the motion of an insect with re-
spect to a visual frame of reference. For example, a hovering insect in windy condition
will not see itself moving, but might be able to feel the wind direction and speed using
its airflow sensors. Consequently, these sensors are providing information that is dir-
ectly relevant for aerodynamic forces and torque production. Some mechanosensory
receptors are particularly important for flight because they can measure the linear or
angular acceleration of the insect body (i.e. Coriolis forces). For this, some insects such
as moths use sensors on their antennae or probably also their wings (Eberle et al., 2015;
Hinson and Morgansen, 2015; Pratt et al., 2017; Sane et al., 2007; Taylor and Krapp,
2007), and Dipterans have halteres, club-shaped organs evolved from hindwings. They
play the role of vibratory gyroscopes, that oscillate in antiphase to the forewings (Fraen-
kel and Pringle, 1938; Taylor and Krapp, 2007). In this way, they are used for body
stabilization thanks to a simple feedback loop with the wings via the steering muscles
(Dickinson, 2006).

• Olfactory sensors, such as receptor neurons on the antennae and specialized mouth
parts called the maxillary palps. These sensors can differentiate between many volat-
ile compounds, sometimes at very low concentrations (Sato and Touhara, 2009). Al-
though these sensors are not used for flight control, they can be crucial for navigation
during flight. Insects use their olfactory sensors to detect cues indicating the presence
of a food source (e.g. CO2 or ethanol), prey or potential mates (e.g. pheromones).

• Thermo- and hygroreceptors, which can be used to inform insects about environmental
conditions, as well as to orient themselves along heat or humidity gradients (Stein-
brecht, 1984). Like olfactory sensors, these sensilla are not used for flight control, but
can help a flying insect in identifying vertebrates (increased heat and humidity) and
navigate close to them (van Breugel et al., 2015; Spitzen et al., 2013).

1.1.4 Studying escape manoeuvres to understand flight mechanics

Much of our understanding on insects sensory and control systems has been gained thanks
to experiments with tethered animals (Taylor et al., 2008; Taylor and Krapp, 2007). This is
because such experiments allow the direct measurement of insect neurosensory perform-
ances as well as the forces and torques generated by the tethered insect; and this while con-
trolling precisely the environment and experimental condition. However, there is a fun-
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damental problem with tethered-insect experiments since it breaks the feedback loop that
naturally operates in free flight (Taylor et al., 2008). Although one can aim to simulate free-
flight conditions to fix such broken loop, these simulated conditions will remain abnor-
mal, and often that will result in exaggerated responses of tethered flying insects (Dawson
et al., 2004; Fry et al., 2005). Additionally, to fully understand the adaptive significance of
flight physiology (i.e. sensory and control system), one has to understand flight mechanics
(Taylor and Krapp, 2007). This is because insect sensors seem to be sensitive to the insect’s
modes of motion rather than to kinematic quantities such as airspeed. Consequently, to
understand how insects control their flights, it is necessary to study the flight mechanics of
free-flying insects, and this despite the difficulty of indirect measurements associated with
such experiments.

Biomechanical studies on the free-flight manoeuvres of insects (e.g. the motion of
body and wings) are still relatively scarce, and these studies focused a few insects such as
moths and dragonflies (Greeter and Hedrick, 2016; Li and Dong, 2017; Wang et al., 2008,
2003). Drosophila or fruit flies, which are dipterans like mosquitoes, have received the
most detailed attention (Dickinson and Muijres, 2016; Fry et al., 2003; Muijres et al., 2014).
Therefore, I will mostly discuss manoeuvres of fruit flies, starting with their body saccades,
which are performed to change heading between straight flight segments, as well as their
escape manoeuvres. The so-called “helicopter model” was shown to describe well the dy-
namic of fruit flies when manoeuvring (Muijres et al., 2015; Ros et al., 2011). This model
describes how some flying animals such as pigeons, cicada, moths and fruit flies (Greeter
and Hedrick, 2016; Muijres et al., 2014; Ros et al., 2011; Zeyghami et al., 2016), manoeuvre
in an analogous way as helicopters, namely by rotating their bodies to change the direction
of the aerodynamic force that they generate. For example, to generate thrust, a helicopter
would pitch its nose down (see Fig. 1.3 for the definition of wing angles), and thus direct
its aerodynamic force vector forward (David, 1978). Similarly, it was shown that fruit flies
are performing body saccades by executing a banked turn, through pitching up and rolling
on their side, in a stereotypical way (Muijres et al., 2015). This helicopter model assumes
that the change of orientation of the aerodynamic force vector with respect to the animal
body will remain small. During a manoeuvre, a flying animal needs to generate changes in
its wings kinematics in order to generate the torques required to rotate its body. This will
result in variation of the orientation of the aerodynamic force vector in the animal body
reference frame, and therefore in the violation of the assumption. However, it appears that
in the case of fruit flies, kinematic changes are very subtle and therefore can be mostly ig-
nored when considering if the model apply to them (Cheng et al., 2016; Dickinson and
Muijres, 2016). In addition, some large wing kinematic alterations do not contradict the
helicopter model, for example, insects can change the magnitude (and not the orientation)
of the aerodynamic force that they generate by modulating their wingbeat amplitude and
frequency.

Among all manoeuvres done by flying animals, escape manoeuvres are particularly in-
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Figure 1.3: How would the helicopter model function for mosquitoes? Although mosquitoes were
shown to follow the helicopter model when taking-off (VanVeen et al. 2020), it is still unknown whether
they also do so while manoeuvring. (a) Schematic of mosquito body angles (yaw, pitch and roll, Tait–Bryan
convention), and the forces applied to its body. When hovering, a mosquito generates an upward aerody-
namic force equal to its own weight. If the mosquito follows the helicopter model, then it will reorient its
aerodynamic force vector by rotating its body during a manoeuvre. (b) When pitching up, the mosquito
accelerate backward by redirecting its aerodynamic force vector. (c) When rolling on its side, the mosquito
will make a banked turn.

teresting because they are ecologically and evolutionary relevant behaviours, and this des-
pite being exhibited in relatively rare occasions. When escaping, an animal must exhibit
a high flight-mechanical performance as its survival will depend on its success. Such suc-
cess can result from a short response time, a high locomotor performance and a good escape
strategy (Corcoran and Conner, 2016; Domenici et al., 2011; Muijres et al., 2014). Achieving
these objectives rely on specific characteristics like having rapidly conducting giant neurons
that mediate responses (Bullock, 1984). Therefore, studying escape manoeuvres can teach
us about the performances of both the sensory system and the control system of the an-
imal (Card, 2012). And as a consequence, it can help us understand potentially important
drivers of evolution.

Escape manoeuvres are usually directed away from the threat or towards a safe area
to the side of the attacker (Cheng et al., 2016; Corcoran and Conner, 2016; Muijres et al.,
2014). Most insects probably rely on visual cues to detect the attack, but in the dark aud-
itory cues or air gust are also used (Dangles et al., 2006; Ganihar et al., 1994; Ter Hofstede
and Ratcliffe, 2016; Hoy et al., 1989; Ritzmann, 1984; Tauber and Camhi, 1995; Triblehorn
and Yager, 2006). In particular, the arms race between moths and bat have been the sub-
ject of numerous studies (Corcoran and Conner, 2016; Dawson et al., 2004; Ter Hofstede
and Ratcliffe, 2016; Kawahara and Barber, 2015; Roeder, 1962), and thus, moths have been
shown to use various strategies to detect the attacks and to escape from it, or even to jam
bat echolocation (Barber and Kawahara, 2013; Ter Hofstede and Ratcliffe, 2016; Kawahara
and Barber, 2015). The reaction to (ultra)sounds of other flying insects such as locusts and
praying mantis have also been studied (Roeder, 1962; Yager et al., 1990). And the wind-
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evoked escape behaviour of insects such as crickets, cockroaches or praying mantis have
also received some attention (Dangles et al., 2006; Ganihar et al., 1994; Ritzmann, 1984;
Tauber and Camhi, 1995; Triblehorn et al., 2008; Triblehorn and Yager, 2006). Despite all
these behavioural studies, there is much that is still unknown about the escape strategies of
many insects and the role of non-visual cues on escape performance of small insects is still
poorly understood.

Additionally, there is relatively little research done on the biomechanics of escape man-
oeuvres and even less on free-flying insects. Here again, Drosophila is the insect genus for
which flying escape manoeuvres have been studied the most in detail. It was shown that,
when “attacked” by a looming object, fruit flies performed evasive manoeuvres by execut-
ing visually direct banked turns (Muijres et al., 2014). These manoeuvres consisted of a
body rotation -like saccades but much faster – followed immediately by an active counter-
rotation. The visual motor delay during the escape was found to be low (around 60 ms),
thus indicating the importance of a quick response. Additionally, the delay between the
initial bank and counter-bank was found to be even shorter (around 25 ms), which suggest
that halteres (the most likely source of very fast feedback) might play a role in the stabil-
ization of such manoeuvres (Bender and Dickinson, 2006; Ristroph et al., 2010). More
research is needed to verify if other insects like mosquitoes exhibit similar escape biomech-
anics.

1.2 Mosquito interaction with vertebrates

1.2.1 Why study the most annoying animal in the world?

Amongst flying insects, mosquitoes (Culicidae) are a particularly fascinating family. They
are part of the order Diptera, which contains more species than all vertebrates together. In
this order of insects, most of the research on flight has been done on fruit flies (Drosophila)
(Dickinson and Muijres, 2016; Fuller et al., 2014; Tammero and Dickinson, 2002). But
mosquitoes are an interesting alternative to fruit flies. For example, mosquitoes use a strik-
ingly different wingbeat kinematics than fruit flies do. Fruit flies beat their wings at wing-
beat amplitudes around 140◦, and at frequencies around 220 Hz (Fry et al., 2005), where
mosquito’s wingbeat amplitudes and frequencies are respectively much lower (around 40◦
degrees) and much larger (350–750 Hz) (Bomphrey et al., 2017; Kim et al., 2021). It has
been suggested that if mosquitoes exhibit such peculiar wing beat kinematics, it is because
that enables efficient generation of high-intensity wing tones for acoustic communications
between the males and the females (Seo et al., 2020). Additionally, this way of flying relies
on specific aerodynamic mechanisms such as acceleration based lift generation or trailing-
edge vortices which have not been observed in any other flying animal (Bomphrey et al.,
2017; Veen and van Veen, 2020).

As an insect family, mosquitoes are also interesting from an ecological point of view.
Mosquitoes can be found on all continents except Antarctica. They live in various envir-
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1
onments such as tropical forest, plains or cities, and there are both nocturnal and diurnal
species of mosquitoes. All of this diversity yield interesting comparisons between closely
related species but that might differ on a specific point. For example, day- and night-active
mosquitoes might rely very differently on visual information despite being very similar oth-
erwise. Both larvae and adult mosquitoes are a primary source of nutriments for many
other species such as dragonflies (both larvae and adults), spiders, fish, amphibians, birds
and bats (Card, 2012; Darbro and Harrington, 2007; DuRant and Hopkins, 2008; Hespen-
heide, 1975; Kunz, 1982; Medlock and Snow, 2008; Raghavendra et al., 2008; Roitberg et al.,
2003; Yuval and Bouskila, 1993). As adults, mosquitoes are (important) pollinators (Cle-
ments, 1999), and like many dipterans such as tsetse flies and tabanids, the females of most
mosquito species need a blood meal to get the necessary proteins to start egg development.
Consequently, mosquitoes have to interact with blood hosts. This interaction made them
vectors of many deadly pathogens for their hosts and, thus have an effect on the population
dynamics of vertebrate populations (Lapointe et al., 2012; Pedersen et al., 2007).

Through their biting habit, anthropophilic mosquitoes had an important impact on
the human population and this through the entire course of human history. This is because
they are vectors of various dangerous human diseases such as malaria, yellow fever, dengue
or Zika. Malaria alone still infected around 229 million people in 2019, and killed an estim-
ated 409,000 people of mostly young children (Who, 2020). This mosquito-borne infec-
tious disease is caused by unicellular parasites from the Plasmodium group and is spread
by infected female Anopheles mosquitoes. The Aedes genus is also an important vector of
dangerous human pathogens such as the Zika virus, chikungunya virus, yellow fever virus
and dengue virus. In addition to their high costs of human lives, mosquito-borne diseases
are a great source of discomfort for hundreds of millions of people across the world. And
they have a major economic impact on the most severely affected countries (Gallup and
Sachs, 2001; Sarma et al., 2019).

Except for the yellow fewer and Japanese encephalitis (Frierson, 2010; Hoke et al., 1988),
there is no highly effective and durable vaccine protecting against mosquito-borne dis-
ease (Aggarwal and Garg, 2018). In particular, no malaria vaccine is yet available despite
promising progress during the past decade (Duffy and Patrick Gorres, 2020). Neverthe-
less, mostly due to vector control, there has been considerable progress in the fight against
malaria over the last century. By focusing on reducing mosquito breeding sites, malaria has
been eradicated from North America and Europe in the 1970s, thanks notably to the wide
use of DDT (Enayati and Hemingway, 2010). Globally, the population at risk of getting
malaria has been reduced from 77% in 1900, to around 40% now. During this period there
has been a shift in the population that is most susceptible to die from malaria. Around 90%
of malaria deaths occurred outside sub-Saharan Africa in the beginning of the 20th century,
while now it is estimated that around 95% of malaria deaths occurs in sub-Saharan African
countries (Enayati and Hemingway, 2010; Who, 2020). This shift being partly explained by
existing inequalities of access to antimalarial drugs such as chloroquine and malaria vector
control tools (Enayati and Hemingway, 2010).
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Currently, the most widely used methods of malaria vector control are insecticide-
treated mosquito nets (ITNs) and indoor residual spraying (IRS). By preventing biting
during the night (when malaria mosquitoes are active) and killing mosquitoes that land
on bet nets and walls, these methods have been mostly responsible for the steady decrease
of the number of malaria deaths per population at risk over the last 20 years (Pluess et al.,
2010; Pryce et al., 2018; Who, 2020). In 2020, almost 70% of households had bed nets in
sub-Saharan Africa (Who, 2020). However, this wide use of bed nets resulted in a shift
in malaria mosquitoes biting habits towards hours of the evening before people are safe
inside their bed nets (Braimah et al., 2005; Carnevale and Manguin, 2021; Mbogo et al.,
1996). Also, the insecticides used against mosquitoes can be highly toxic for wild animal
species such as insects and aquatic organisms (Rehman et al., 2014). And, maybe most im-
portantly for the fight against malaria, many mosquito species have been found to build
resistance against those insecticides (Who, 2020). As a consequence, further decrease in
malaria has halted over the last five years. And there is an increasing need for alternative,
insecticide-free and novel vector control strategies such as house modification or traps that
use mosquito host-seeking behaviour against them (Koenraadt et al., 2021).

1.2.2 Even if you hide, mosquitoes will find you

Mosquitoes have been studied more than any other haematophagous insect family, and
their host seeking behaviour has been the subject of a particularly high attention. Thus,
we know that, to detect their blood hosts, mosquitoes rely on a variety of host cues that
they encounter at a range of distances from the source (i.e. the host) (see Fig. 1.4). At long
range (more than 10 metres), mosquitoes are likely to be informed of the presence of a host
by detecting the carbon dioxide (CO2) that it emits (Cardé, 2015). After such detection,
mosquitoes will be more sensible to host odours, that will confirm the host presence if
also detected (Dekker et al., 2005; McMeniman et al., 2014). At this point, a mosquito
still needs to find the source of the CO2 and odour, for this, mosquitoes use a so-called
“cast and surge” behaviour (Dekker and Cardé, 2011; Spitzen et al., 2013). This common
insect flight behaviour consists of two different typical flight patterns: if an insect detects
an odour plume, it will “surge” upwind in the direction of the odour source (van Breugel
and Dickinson, 2014; Cardé and Willis, 2008). Then, when it loses the plume, the insect
will “cast” crosswind to detect again the odour plume. When a mosquito reaches one or
two metres from its host, it will start to inspect visually interesting and contrasting objects
(van Breugel et al., 2015; Hawkes and Gibson, 2016). Finally, when very close to the host, a
mosquito will use short-range cues such as heat and local humidity to select a landing spot
(Cardé, 2015; McMeniman et al., 2014; Olanga et al., 2010).

There is, however, a notable difference in the host seeking behaviour of the various
mosquito species. First, mosquitoes have distinct host preferences, with for instance An-
opheles gambia and Aedes aegypti being highly anthropophilic, whereas species such as
Culex quinquefasciatus and Aedes canadensis are respectively more attracted by birds and
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1
amphibian (Wolff and Riffell, 2018). But already amongst anthropophilic mosquitoes, im-
portant differences of host-seeking behaviours have been observed. For instance, Aedes ae-
gypti being day-active has been shown to rely greatly on visual cues to detect humans, and
also to bite them when active (van Breugel et al., 2015; Cardé et al., 2010; Vinauger et al.,
2019). Whereas An. gambiae is night-active and consequently often bites humans during
their sleep, rely less on vision and only in the presence of host odours (Cardé et al., 2010;
Hawkes and Gibson, 2016).
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Figure 1.4: Infographic on how mosquitoes detect and fly towards a blood host. (1) A flying female
mosquito encounters CO2 and odour plumes. (2) The mosquito will surge upwind and cast crosswind to
find the source. (3) The mosquito will inspect visually interesting objects, and then (4) will use short-range
host cues such as heat and humidity to select a spot to land (5).

Despite all the research done on host-seeking behaviours of mosquitoes, we still have
a relatively poor understanding of some of mosquitoes’ key flight behaviours when ap-
proaching hosts. Indeed, the direct interaction between mosquitoes and their blood hosts
have been little studied. And this, despite the fact that such interaction can be very dan-
gerous for the hosts but, of course, also for mosquitoes because a host can exhibit various
defensive behaviours (Darbro and Harrington, 2007; Edman et al., 1984; Edman and Scott,
1987; Matherne et al., 2018; Reid et al., 2014; Walker and Edman, 1985). Probably to pro-
tect themselves from discomfort, mosquitoes’ blood hosts have developed many defensive
behaviours such as tail swishing, pecking or swatting (Darbro and Harrington, 2007; Ed-
man et al., 1984; Edman and Scott, 1987; Matherne et al., 2018; Reid et al., 2014; Walker
and Edman, 1985). This means that to successfully get a blood meal, mosquitoes must
approach, land, bite and take off quickly and undetected. If a mosquito is detected, it
needs to be able to escape successfully to avoid being swatted. Except take-off behaviour
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(Muijres et al., 2017), all these aspects of mosquito host seeking have not been the subject
of detailed studies. Studying flight dynamics close to hosts could then inform us whether
mosquitoes developed specific strategies to successfully interact with vertebrates and how
they might detect host defensive behaviours. But also, gaining fundamental knowledge on
these aspects of mosquito behaviour is likely to yield promising ideas for the development
or improvement of vector control strategies such as bed nets, house design or traps.

1.2.3 Mimicking humans or how to fool mosquitoes?

To capture mosquitoes, many different mosquito traps have been developed over the years
(Hiscox et al., 2014; Jawara et al., 2009; Kline, 2002; Kröckel et al., 2006). Amongst all
these traps, a majority is aimed at capturing host-seeking female mosquitoes by mimicking
human host cues (Bhalala and Arias, 2009; Kawada et al., 2007; Kline, 2002). Such traps
are called odour-baited traps because they use CO2 and odour blends to attract mosquitoes
in their vicinity. These blends were developed based on the accumulated knowledge from
many studies on mosquitoes attraction to CO2 and chemical compounds such as ammo-
nia and lactic acid (Cardé, 2015; Dekker et al., 2005; van Loon et al., 2015; Verhulst et al.,
2009). Odour-baited traps often use counter-flows generated by a fan to, first, diffuse the
odour and CO2 and imitate the convection currents of a host, thus attracting host seeking
mosquitoes in their vicinity; and second, capture mosquitoes that would have approached
it by sucking them inside the trap (Hiscox et al., 2014; Kröckel et al., 2006). Until recently,
odour-baited traps were exclusively used as tools for monitoring mosquito populations.
However, they are now being considered as insecticide-free vector control tools that could
effectively reduce mosquito populations when combined with bed nets (Hiscox et al., 2014;
Homan et al., 2016).

Doing experiments with humans is notoriously difficult to organize because it requires
to conform to strict regulations on human experimentation and the participation of volun-
teers who can be difficult to find. Also, such experiments are by nature limited in reprodu-
cibility and will constrain the amount of data that can be acquired. As a consequence, it
is often better if we can simulate a human. Odour-baited traps have been designed to sim-
ulate human presence, and therefore they could be used to study mosquitoes flight beha-
viour close to a host. Using these traps, one can test the influence on mosquito behaviours
of adding or removing host cues in reproducible experiments. But also, by facilitating the
acquisition of large datasets, it opens many possibilities in the type of analysis that can be
conducted (e.g. visualization of the average flight behaviour of mosquitoes). Although
odour-baited traps will never be able to perfectly mimic humans, they may become valu-
able tools to study the three-dimensional flight behaviours of mosquitoes, in addition to
the previously used wind tunnels and olfactometers (van Breugel et al., 2015; Dekker et al.,
2005; Hawkes and Gibson, 2016; Spitzen et al., 2013).

To study escape behaviour of insects, we can probably learn more by simulating an
attack than by recreating the conditions of a real one. For example, by systematically testing
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how insects react to a simulated attack, we can unravel their escape strategies by computing
their average dynamics during the escape. Moreover, we can learn how much a flying insect
relies on some cues induced by a real attack by simulating only one or two of these cues.
To simulate an attack, most studies tried to reproduce the visual looming target associated
with it (Cheng et al., 2016; Muijres et al., 2014; Santer et al., 2012). This is usually done
using LED panels, projectors or computer screens surrounding a tethered or freely flying
animal. However, by doing so the other cues induced by an attack, especially the air gust,
have been mostly ignored. To my knowledge, there is only one study that simulated the
airflow conditions of an attack on ground-dwelling insects (i.e. a cricket being attacked by
a simulated spider (Dangles et al., 2006), and none have been done on free-flying insects.

Finally, despite the fact that the escape manoeuvres of mosquitoes are probably import-
ant in mosquito interaction with humans, there is very little known about them. There
have been only a couple of studies on the escape behaviour of mosquitoes during take-
off (Muijres et al., 2017; Veen and van Veen, 2020), and none on their escape manoeuvres
while flying. Therefore, it is still unknown whether mosquitoes exhibit any particular
strategies to escape successfully, for example by using the airflow induced by a swatting
hand; or whether nocturnal- and diurnal mosquitoes rely on different cues to detect an at-
tack. Reaching a better understanding on these questions could help in improving current
vector control strategies.

1.3 Aims and content of this thesis

With this thesis, I attempt to achieve two goals. My first goal is to contribute to the funda-
mental understanding of two distinct but related research topics:

1. The escape dynamics of flying insects and how escape strategies might be influenced
by environmental conditions such as light intensity or by the airflow generated by an
attack.

2. The flight behaviour of host-seeking mosquitoes around odour-baited traps (mimick-
ing humans), and the role of close-range cues in mosquito attractiveness towards or
repulsiveness from these traps.

Secondly, I aim to apply previous and new findings for the development of new or im-
proved vector control strategies against mosquitoes. Also, I aim to develop analysis tools
and methods that, if used in similar studies, could lead to discoveries on insect flight, espe-
cially among dipterans with high ecological or societal importance such as fruit flies, tsetse
flies or midges (Sarwar, 2020).

In chapter 2, I present a study on mosquito host-seeking behaviour near odour-baited
traps (Fig. 1.5). The aim of this study was two-fold. Firstly, to gain a better understanding of
mosquito flight behaviours around odour-baited traps. And secondly, to learn about how
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flight behaviour of host-seeking mosquitoes was influenced by airflow conditions. For this,
we tracked in three-dimensions freely flying female malaria mosquitoes (Anopheles coluzzii)
around a widely used odour-baited trap, the Suna trap. I used more than 2500 three-
dimensional tracks to analyse in detail the flight behaviours of mosquitoes. This was done
by visualizing the average flight behaviour of mosquitoes with two-dimensional heat maps
of key flight metrics such as mosquito flight speeds or performance metrics such as their
probability of capture. Then, by comparing the flight behaviour of mosquitoes around
the trap in the hanging or standing orientation (thus changing the airflow conditions), I
identified two stereotypical flight behaviours that let to strikingly different performances of
the trap in those two orientations. These detailed findings on flight dynamics of mosqui-
toes informed us on the short-range attractiveness of odour-baited traps, and on whether
mosquitoes exhibit escape-like behaviour when close enough to the trap to be captured.

Our findings from chapter 2 led to a collaborative project for the design of a new odour-
baited trap. For this purpose, I brought together biomechanicists and entomologists from
Wageningen University, and industrial designers from Delft University (The Netherlands).
By iteratively testing various trap prototypes, we developed a novel trap, the M-Tego. In
chapter 3, we systematically tested how the M-Tego performed in capturing malaria mos-
quitoes when compared with the Suna trap, and how the capture performance of the M-
Tego varied if the trap generated additional short-range host cues such as humidity and heat
(Fig. 1.5). These tests were conducted in both laboratory and semi-field conditions (Ifakara,
Tanzania) to confirm the validity of our laboratory results but in more natural conditions.
Then, using a similar but larger experimental setup than in chapter 2, we studied in detail
how mosquitoes behaved when flying near the M-Tego with or without additional short-
range cues. By visualizing the flight behaviours of mosquitoes on various two-dimensional
heat maps, I aim to explain how the addition of short-range cues influences mosquito be-
haviour in very close vicinity of the trap and to quantify the impact of such addition on its
overall capture performance.

With chapter 4, I start my focus on escape dynamics by studying the escape perform-
ance of diurnal and nocturnal mosquitoes (Aedes aegypti and Anopheles coluzzii, respect-
ively) under various light conditions (Fig. 1.5). First, the aim of this study is to investigate
how well mosquitoes perform when attacked by a looming threat that generates both visual
cues and airflow. And secondly, to test whether day- and night-active mosquitoes exhibit
different strategies to escape successfully in different light conditions. For this, I tracked
free-flying mosquitoes in three dimensions and in real time. Based on this, I automatic-
ally triggered a mechanical swatter to simulate attacks. Then, I systematically tested how
the flight dynamics of mosquitoes varied when attacked in various light conditions ran-
ging from darkness to overcast daylight. Thus, by using thousands of tracks, I investigate
whether the two species relied on different strategies to avoid collision. Finally, I examined
how differences in the strategies of these diurnal and nocturnal species correlated with light
condition and what this might mean concerning the evolution of these species.

In the last research chapter, chapter 5, I study the role of the airflow induced by an
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Figure 1.5: Graphical summary of the research chapters. In chapter 2, I studied how flying mos-
quitoes behaved around an odour-baited trap either standing or hanging. In chapter 3, I tested whether
adding heat and humidity to an odour-baited trap resulted in improved trapping performance, and how this
impacted mosquito flight behaviour.
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Figure 1.5: Graphical summary of the research chapters. In chapter 4, I investigated how the escape
performance of diurnal (Aedes) and nocturnal (Anopheles) mosquitoes varied with light conditions, as
well as what were their respective escaping strategies. Finally, in chapter 5, I examined how mosquitoes
performed escape manoeuvres and what was the role of the airflow induced by the attacker in their escape
success.
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1
attack in the escape dynamics of the nocturnal mosquito Anopheles coluzzii (Fig. 1.5). The
aim of this chapter is to understand how nocturnal mosquitoes are able to perform success-
ful escapes in conditions where little to no visual information about the attack is available.
Using the same experimental setup as in chapter 4„ I compared the escape performances
of mosquitoes by varying the amount of air movement generated by a solid or a perforated
swatter. Then, I tracked the body and wings kinematics of mosquitoes using high-speed
videography (12500 fps) and a specially developed tracking tool based on a deep-learning
network for pose estimation. This allows me to describe mosquito escape manoeuvres
in detail and, combined with results from validated numerical simulations of the airflow,
to estimate the aerodynamic forces generated during mosquito manoeuvres. Thus, I can
evaluate how much mosquitoes themselves contributed to these manoeuvres, and con-
sequently whether the airflow induced by the attack had any passive effect on mosquito
escape dynamics or whether it triggered an active response.

In the chapter 6, I summarize our findings and integrate them with the existing know-
ledge on insect flight and on insect–vertebrate interactions. I address how our results in-
form us about mosquito interactions with humans and in particular about disruptive cues
for mosquitoes. Then, I examine the strengths and limitations of my approach for studying
the flight dynamics of insects, and how our studies on escape manoeuvres inform us on the
physiology of insect flight. Moreover, I suggest directions for future research on key flight
behaviours of mosquitoes. Finally, I describe how detailed knowledge on flight behaviour
can be used for the development of vector control tools by resuming the development of
the M-Tego trap, and by suggesting ideas for further improvements of such tools.
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Abstract

Host-seeking mosquitoes rely on a range of sensory cues to find and approach blood hosts,
as well as to avoid host detection. By using odour blends and visual cues that attract an-
thropophilic mosquitoes, odour-baited traps has been developed to monitor and control
human pathogen-transmitting vectors. Although long-range attraction of such traps have
already been studied thoroughly, close-range response of mosquitoes to these traps has
been largely ignored. Here, we studied the flight behaviour of female malaria mosqui-
toes (Anopheles coluzzii) in the immediate vicinity of a commercially-available odour-baited
trap, positioned in a hanging and standing orientation. By analysing more than 2500 three-
dimensional flight tracks, we elucidated how mosquitoes reacted to the trap, and how this
led to capture. The measured flight dynamics revealed two distinct stereotypical beha-
viours: 1) mosquitoes that approached a trap tended to simultaneously fly downward to-
wards the ground; 2) mosquitoes that came close to a trap changed their flight direction by
rapidly accelerating upward. The combination of these behaviours led to strikingly differ-
ent flight patterns and capture dynamics, resulting in contrasting short-range attractiveness
and capture mechanism of the oppositely-oriented traps. These new insights may help in
improving odour-baited traps, and consequently their contribution in global vector con-
trol strategies.

2.1 Introduction

Haematophagous insects need blood meals for reproduction. As a result, they have to in-
teract with vertebrate hosts that have various defence strategies and that are sometimes even
their predators. Thus, mosquitoes need to minimize the risk induced by this interaction
with their host by feeding quickly, stealthily and effectively (Lazzari, 2009; Muijres et al.,
2017). Additionally, when approaching a host, mosquitoes must be aware of any cues an-
nouncing host defensive behaviours such as looming objects or air gusts. Surprisingly, the
impact of such disruptive cues on the short-range attraction of anthropophagic mosqui-
toes towards human hosts has been studied very little (Edman and Scott, 1987; Vinauger
et al., 2018). Actually, mosquito flight dynamics in reaction to humans or objects imitating
hosts also received little attention (Cooperband and Cardé, 2006a).

By contrast, the odour-mediated host-seeking behaviour of mosquitoes has been stud-
ied extensively, because it is relevant for mosquito population management (vector con-
trol). Anthropophilic female mosquitoes are attracted to their hosts by a species-specific
cocktail of human odours and CO2 (Dekker and Cardé, 2011; McMeniman et al., 2014;
Takken and Verhulst, 2013). When a host-seeking mosquito encounters these cues, it per-
forms a stereotypical ‘cast and surge’ flight behaviour in order to locate the host (van Breu-
gel et al., 2015; Dekker and Cardé, 2011; Spitzen et al., 2013). Similar flight behaviour is
observed in many species of insects, such as moths, fruit flies and mosquitoes to find poten-
tial mates, food or hosts, respectively (Baker and Haynes, 1987; van Breugel and Dickinson,
2014; Cardé and Willis, 2008).
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Detailed studies on host-seeking behaviour showed that flying Aedes aegypti mosqui-
toes (vectors of e.g. dengue and Zika fever) use a combination of cues to find and approach
hosts (Dekker and Cardé, 2011; Dekker et al., 2005; Gillies and Wilkes, 1972). At long dis-
tances, they only use CO2 and odours to find a potential host via ‘cast and surge’ flights.
At intermediate distances (in the order of metres) they start to inspect visual cues (highly
contrasting objects) near the ground. And at short ranges (less than one metre) they use
heat and moisture cues to find a landing spot on the host (van Breugel et al., 2015; Cardé,
2015; McMeniman et al., 2014; Raji and DeGennaro, 2017). One could suppose that the re-
latively high importance of visual cues in Aedes aegypti arises from their diurnal behaviour,
but recent studies on host-seeking Anopheles mosquitoes show that these nocturnal mos-
quitoes have a similar reaction to visual cues under moonlit or starlit conditions (Hawkes
and Gibson, 2016; Hawkes et al., 2017).

Based on the developed knowledge of host-seeking behaviour in mosquitoes, a range
of different mosquito traps has been developed (Bhalala and Arias, 2009; Jawara et al.,
2009; Kline, 2002). One promising odour-baited trap type is the counter-flow trap that
uses a single fan to generate both an inward airflow for capturing mosquitoes as well as
an outward directed airflow carrying attractive odour away from the trap (Fig. 2.1a). The
odour bait consists of a combination of chemicals mimicking human skin odour. Trap
models usually combine the odour bait with CO2 and/or visual cues in contrasting black
and white, such as the BG-Sentinel trap and the BG-Suna trap (Biogents AG, Regensburg,
Germany) (Farajollahi et al., 2009; Kawada et al., 2007). Although odour-baited traps were
originally developed as research tools (Hiscox et al., 2014), a recent large-scale field study in
Kenya showed that in combination with pre-existing bed nets, odour-baited traps reduced
the number of human malaria cases by 30% (Homan et al., 2016). This study indicated that
the use of such insecticide-free traps could now be considered as an effective supplement
to conventional vector-control systems.

By combining multiple host cues such as odours, CO2 and visual contrast, odour-
baited traps aim to trigger the natural host seeking behaviour of mosquitoes. But surpris-
ingly little attention has been given to the optimization of the capture mechanism of the
trap. This might, at least partly, be due to a lack of detailed knowledge on the flight dy-
namics of mosquitoes in the vicinity of traps. In addition, until now, mosquito traps have
been primarily optimized via an iterative design process, whereby the number of mosqui-
toes caught is compared between different trap designs (Hiscox et al., 2014; Kline et al.,
2012; Schmied et al., 2008). Thus, obtaining detailed knowledge on mosquito flight dy-
namics around traps should open new paths for trap improvement and could be crucial
in identifying the short-range approach and capture mechanisms involved (Ferguson et al.,
2010).

To our knowledge, Cooperband and Carde (2006) are the only ones to have studied
mosquitoes flight behaviours near traps (Cooperband and Cardé, 2006a). They analysed
three-dimensional tracks of Culex quinquefasciatus and Culex tarsalis approaching four
models of CO2-baited traps in a large field wind tunnel, and showed that the traps had very
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different capture efficiency (4% to 26% of upstream released mosquitoes were captured).
In addition, they highlighted that, when approaching the trap, mosquitoes decelerated and
adopted tortuous flights that varied in dynamics between the traps. These differences in
dynamics, especially in the close vicinity of the traps, might help explain the differences in
capture rate among the traps, but the spatial and temporal resolution of their flight tracking
system did not allow for a detailed analysis of these dynamics (Cooperband and Cardé,
2006a).

Here, we will zoom in on these tortuous flight manoeuvres close to the trap to elucid-
ate how the close-range response of the mosquitoes affects their capture dynamics. These
close-range dynamics complement the long-distance approach dynamics as previously stud-
ied by Cooperband and Carde (Cooperband and Cardé, 2006a). We specifically address the
tortuous flight paths close to the trap, and how these flight manoeuvres eventually lead to
capture or escape from the trap.

For this study we used female malaria mosquitoes Anopheles coluzzii, and the odour-
baited BG-Suna trap (Biogents AG, Regensburg, Germany), which was developed and is
used for malaria vector control in Africa (Homan et al., 2016). We tested the trap in two
orientations, the original hanging orientation and an upside-down standing orientation.
The trap in its original hanging orientation has an upward-directed airflow for capturing
mosquitoes (Fig. 2.2a), whereas the upside-down standing trap has a downward directed
airflow for mosquito capture, and thus simulated the widely used and similar BG-Sentinel
trap (Fig. 2.2b) (Farajollahi et al., 2009; Kawada et al., 2007). The use of these two trap
orientations allowed us to investigate whether mosquitoes exhibit distinct behaviours in
response to odour cues and opposite airflow orientations, and how this affects the capture
dynamics.

We filmed a total of 530 mosquitoes flying around the trap using a stereoscopic high-
speed videography system, from which we reconstructed more than 2500 three-dimensional
flight paths. Based on these results, we found that the tortuous flight behaviour of mos-
quitoes near odour-baited traps were the result of two distinct and stereotypic behavioural
responses of the mosquitoes to the trap: 1) when a mosquito flew towards the trap, it would
tend to simultaneously fly downwards towards the floor, possibly in order to seek for hosts
near the ground; 2) when a mosquito came close to the trap, it responded to the strong
air currents induced by the trap or to a lack of short-range host cues, by performing an
upward-directed manoeuvre, leading to high vertical accelerations in the flight path. Sim-
ilar behaviours have been described previously in literature (van Breugel et al., 2015; Dekker
et al., 1998; Hawkes and Gibson, 2016; Thorsteinson et al., 1965; Townes, 1962). Here we
showed that the combination of these two stereotypical behaviours can lead to strikingly
different flight dynamics depending only on trap orientation, which consequently led to
similar differences in capture dynamics and capture efficiencies between the traps. These
new insights into the close-range interaction between mosquito and traps may help in im-
proving future trap designs.
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2.2 Materials and methods

2.2.1 Experimental animals

For this study, we used a colony of Anopheles coluzzii (from the Anopheles gambiae com-
plex (Coetzee et al., 2013)) that originated from Suakoko, Liberia in 1987. Since then, the
colony has been reared at the Laboratory of Entomology (Wageningen University & Re-
search, The Netherlands) at a temperature of 27◦C, a relative humidity of 70%, and with a
clock shifted 12-hour day/night cycle. Adults were kept in BugDorm cages (30x30x30 cm)
in which they were fed on sugar-water with 6% glucose solution and offered daily blood
meals from a blood bank (Sanquin, Nijmegen, The Netherlands) via a membrane feeding
system (Hemotek, Discovery Workshop, UK). Thereafter, they were allowed to lay eggs
on wet filter paper, which were then moved to a plastic tray filled with water. Liquifry
No.1 fish food and TetraMin Baby were provided for larvae feeding. Finally, pupae were
placed in new BugDorm cages to emerge. During our experiments, we used non-blood fed
female malaria mosquitoes, which had most likely mated (5–10 days post-emergence with
males and females housed together). They were collected between 12 and 16 hours before
experiments and were not blood fed in order to increase host-seeking responses.

2.2.2 Experimental setup

Experiments were conducted in a 3.01 x 4.92 x 3.25 m (width x length x height) climate
room at the Laboratory of Entomology (Wageningen University & Research, The Neth-
erlands). The room was maintained at 27◦C and 70% relative humidity and had a continu-
ously running air filter system preventing accumulation of odours or CO2 (see Spitzen et
al. 2013 for more details (Spitzen et al., 2013)). The experimental setup consisted of a ste-
reoscopic high-speed camera system that filmed the vicinity of a BG-Suna trap (Biogents
AG, Regensburg, Germany) positioned in front of two perpendicular walls, with the trap
centre at 35 cm from each wall (Fig. 2.1). A net covered a volume of approximately 8 m3

around the setup in order to prevent mosquitoes from escaping.
The BG-Suna trap is an odour-baited trap with a diameter of 52 cm and height of 39

cm, that was developed for malaria vector control in Africa (Homan et al., 2016). For each
separate experimental trial, the trap was randomly positioned in its original hanging ori-
entation (Fig. 2.2a), or in a standing orientation in which it resembled a BG-Sentinel trap
(Fig. 2.2b) (Farajollahi et al., 2009; Kawada et al., 2007). In its original hanging orienta-
tion, the trap produced an upward-directed airflow for capture, whereas the upside-down
standing trap produced a downward-directed airflow for mosquito capture. The capture
entrance of the hanging and standing trap had a respective height of 81 cm and 54.5 cm
above ground level (Fig. 2.2a and 2b, respectively). These heights were chosen to keep the
camera heights equal to 62 cm in order to avoid repetitive realignment and recalibration
of the camera system. Note that because of this reason, the hanging trap was positioned

43



500-50

0

100

200

x-coordinate [cm]

y-
co

or
di

na
te

 [c
m

]

camera #2

camera #1

a) b)

z

yx

inward flow
outward flow + odour
CO2

Figure 2.1: The Experimental setup. Mosquitoes generate aerodynamic forces required for flight by
moving back and forth their wings at high flapping frequencies. (a) Experimental setup with floor, side-
walls and a hanging Suna trap. A slice removed from the circular pyramid makes the inside of the trap
visible. The fan of the trap (blue) creates a circulating airflow that attracts mosquitoes by pushing air mixed
with the human-odour mimicking MB5 blend away from the trap (green arrows), and captures mosquitoes
by sucking air (blue arrows) into the main entry tube (black). Mosquitoes are then confined inside by a
net and by a trap door that closes when the fan is not working. A pipe (purple) releases CO2 to simulate
human breath. Arrows illustrate how the trap used airflow to attract and capture mosquitoes. (b) Top-down
view of the experimental setup including the two high-speed video cameras, placed perpendicular to one
another at 2 m from the trap centre. The filmed region, near the two background walls, is limited by the
angle of view of each camera (grey dotted lines). The flight tracks recorded during a 15 minutes session
(with a standing trap) are shown in red as an example. The outflow platform of the trap, its entrance and
its CO2 pipe are represented by the dashed circle and the large and small solid circles, respectively.

higher than the 30 cm height that has been found optimal for capturing mosquitoes (His-
cox et al., 2014).

We used the MB5 blend of five attractants (van Loon et al., 2015) inside each trap to
simulate human odour. The CO2 release pipe of the trap was connected to a pressurized gas
canister containing a mixture of 5% CO2 + 95% air and with a flow rate of 200 ml min-1. To
minimize blind spots in the camera views, this CO2 pipe was shortened by 3.25 cm relative
to the original length for the Suna trap. All handling of the materials and mosquitoes was
done wearing nitrile gloves to minimize the risk of skin odour contamination of the traps.
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Figure 2.2: Examples of flight tracks around the two traps.(a,b) Examples of three flight tracks around
the hanging trap (a) and standing trap (b), as viewed by camera #2. Tracks that lead to capture are in
green and tracks from non-captured mosquitoes are in blue. The start and end of each track is represented
by an arrowhead and a dot, respectively. Videos of these flight tracks can be found in the supplementary
videos S1 and S2. The grey dashed line indicates the cylindrical volume for which we plotted the distribu-
tion of various flight parameters in the form of heat maps (Fig. 2.4, 2.6, and 2.8).

Because Anopheles mosquitoes are night active, we performed the experiments in dimmed
light conditions, using a single spotlight (15 W incandescent bulb) directed towards the ceil-
ing, and experiments were carried out during the period of the day which corresponded to
the dark phase of the mosquito rearing; the period when the An. coluzzii were expected to
exhibit the greatest degree of host-seeking behaviour.

Mosquito tracks around the trap were recorded using two synchronized high-speed
cameras (PROMON 501 camera head with NIR sensors and 45 mm lenses), filming at 90
frames per second with a resolution of 1240 x 1080 pixels. Because mosquitoes cannot see
infrared (IR) light (Gibson, 1995), we used two infrared light emitting lamps (Bosch Aegis
SuperLed, 850 nm, 10◦ beam pattern (SLED10-8BD)) as illumination for the camera sys-
tem. The camera system was calibrated at the start of each experimental day, with the use
of a modified Direct Linear Transformation (DLT) algorithm (Hatze, 1988), by compar-
ing known x, y, z coordinates of twenty-five suspended lead beads to their detected pixel
coordinates in each camera. In addition, lens corrections were applied using pictures of a
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chequerboard pattern and using a Matlab script (Bouguet, 2015).
For each trial, ten female mosquitoes were released from a holding container within

the flight arena, after which the experimenter immediately left the room. From outside
the room, the experimenter then started the 15-minute video recording, and thus all ex-
periments were performed without a potentially disturbing human present in the room.
Five minutes after each trial, captured and non-captured mosquitoes were collected and
killed. Out of the 61 successfully performed trials, a total of 53 trials were analysed (32 for
the hanging trap and 21 for the standing trap). Five trials were discarded because male mos-
quitoes were found in the arena or trap and three other trials were discarded due to illu-
mination or calibration errors.

2.2.3 Simultaneous tracking of multiple flying mosquitoes

To compute the three-dimensional tracks (flight segments) from the stereoscopic record-
ings of flying mosquitoes, we first determined the two-dimensional positions of the mos-
quitoes within each image using the image processing toolbox of Matlab (MathWorks).
Then, for each camera recording, the two-dimensional flight tracks were constructed us-
ing a ‘Hungarian linker’ algorithm (Kuhn, 1955). This algorithm reconstructs the tracks by
finding the minimum distance between the detected positions of the mosquitoes in sub-
sequent frames. Missed detections were taken into account by keeping tracks alive for 10
frames before deciding that they had ended. In the rare event that two tracks merged and
then split up, two new tracks were started.

Next, the two-dimensional tracks within each camera view were combined into three-
dimensional tracks using a DLT method (Hatze, 1988). A DLT error was calculated as
the root mean square of the error (RMSE) between the original time-overlapping two-
dimensional tracks and the two-dimensional back projections of the three-dimensional re-
constructed tracks. To find the correct matches between two-dimensional tracks we used
a RMSE threshold that separated RMSE distributions for matching and non-matching
tracks.

Finally, pieces of three-dimensional tracks were stitched together whenever a single
two-dimensional track matched multiple two-dimensional tracks in the other image. A
Hampel filter was added to remove positional outliers on the three-dimensional tracks. In
this way, the complete flight track of a mosquito could be reconstructed. Individuals were,
however, not identified because mosquitoes could enter and exit the filmed volume mul-
tiple times during one experiment. Throughout each resulting three-dimensional flight
track, we calculated the mosquito’s linear and angular flight speeds, and its linear accel-
eration (supplementary materials, Fig. S2.1). The angular flight speed was calculated as
ω = ∆θ

∆t , whereby∆t = tn − tn+1 is the time elapsed between two consecutive video frames
n and n+1, and ∆θ is the turn angle defined as
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∆θ = tan−1

∣∣∣−→vn ×
−−−→vn+1
∣∣∣

−→vn.
−−−→vn+1

(2.1)

where −→vn and −−−→vn+1 are the three-dimensional velocity vectors of the mosquito at video
frames n and n+1.

2.2.4 Analyzing three-dimensional flight tracks

Owing to the high number of reconstructed tracks, a statistical approach was needed to
visualise the flight dynamics of the mosquitoes around the two traps. For this purpose, we
assumed the average flight behaviour of the mosquitoes around the trap to be axially sym-
metric, despite the presence of the trap’s CO2 pipe and the slope of the trap’s entry tube
(visible in Fig. 2.3a).We divided the filmed volume into multiple three-dimensional rings
(Fig. 2.3a), which were centred around the trap’s axis of symmetry. We computed statist-
ical metrics from the mosquito’s position over time in each of the rings. To allow metric
comparisons across the rings, the volume of all rings was the same. We then projected each
three-dimensional ring onto a two-dimensional parametric space with radial distance and
vertical position as the key dimensions (Fig. 2.3b). Similarly, top-down view projections
were reconstructed by dividing the flight volume into three-dimensional vertical rods pro-
jected onto a two-dimensional horizontal plane.

z

r

z

y
x

a) b)

Figure 2.3: Visualization of three-dimensional flight dynamics in two-dimensional heat-maps.(a)
The filmed volume above the trap was divided into 1012 three-dimensional rings of equal volume, centred
around the symmetry axis of the trap. (b) Various flight dynamics metrics were computed based the
measured mosquito track dynamics inside each ring, and projected onto a two-dimensional parametric
space comprising the vertical position (z-axis) and the radial position (r-axis) of each ring.
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Using this method, each flight dynamics metric was visualized as a set of two-dimensional
heat-maps, one on the radial-vertical plane and one on the horizontal plane. In addition to
the translational speed, angular speed and acceleration, we also visualized the distribution
of positional likelihood and capture probability of mosquitoes around the trap. The estim-
ated capture probability was expressed by the percentage of mosquito tracks in each sub-
volume that ended in capture. We defined the positional likelihood as the normalized prob-
ability of a mosquito to fly within a certain sub-volume (e.g. a specific three-dimensional
ring) of the field of view. It was calculated as

Pi =
ni

N
· I (2.2)

where Pi is the likelihood that a mosquito is present in cell i, where the cell i represents a
three-dimensional ring projected onto the previously described two-dimensional paramet-
ric space. ni is the number of video frames that a mosquito was present in cell i throughout
all sets of recordings, N is the total number of frames recorded, and I is the total number
of cells within the recording volume. Thus, a random flight behaviour would result in a
uniform probability throughout the region of interest, with Pi equal to one for all cells.

Furthermore, we visualized the mean flight dynamics as velocity vectors within the axi-
symmetrical radial-vertical plane. Based on the resulting velocity fields, we visualized the
average flight paths of mosquitoes by computing streamlines based on their velocity fields
using the Linear Integral Convolution (LIC) algorithm (Cabral and Leedom, 1993).

For all calculated parameters, we performed sensitivity analyses to test the independ-
ence of our results to cell size, to the total number of analysed tracks and experimental
duration (see supplementary materials, Fig. S2.2–S2.4). Additional data as well as 95%
confidence intervals of the metrics presented on Fig. 2.1–2.1 are shown in the supplement-
ary materials, Fig. S2.5–S2.10. For the statistical tests, we used a One-sample Kolmogorov-
Smirnov test to determine whether data were normally distributed. Because all tested para-
meters were not normally distributed, we used the non-parametric Wilcoxon rank sum test
to compare results between the hanging and standing trap (supplementary materials, Table
S1). We report results as median [first quartile – third quartile]. We used several Mat-
lab colormaps from ColorBrewer (Cynthia, 2013) and from a published guide by Kovesi
(Kovesi, 2015) to assign a unique colormap for each visualized metric (Fig. 2.4–2.8).

2.2.5 Analysing the airflow dynamics around the mosquito trap

The path of a mosquito flying around a trap results from a combination of the mosquito’s
manoeuvre dynamics and the air movements induced by the trap. Thus, to determine
the effect of air movements on mosquito flight dynamics, we measured the vertical speed
component of the airflow using a one-dimensional hotwire anemometer (tetso 405i). This
device had a 1 Hz sample rate, and thus did not allow us to quantify turbulence levels. For
these measurements, we again assumed the axial symmetry of the airflow, and thus ignored
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possible local differences in airflow around the CO2 pipe or due to the asymmetric design
of the Suna tube entrance (see positional likelihood around the CO2 tube in supplement-
ary materials, Fig. S2.11). Horizontal air velocities were not measured, as we expect that
these were much lower than the vertical velocities induced by the vertically oriented fan.

With a custom-built setup, we used the hotwire anemometer to measure the vertical
airspeed at 76 locations within a two-dimensional vertical plane oriented perpendicularly
to the open trapdoor in the trap entry tube and at the opposite side of the CO2 pipe. The
standing trap was set at 59.2 cm above the floor, which was 3.7 cm higher than for the mos-
quito flight experiments. The hanging trap was kept at the same height as for the mosquito
flight experiments (81 cm), because for this orientation, ground effects on the flow dynam-
ics might be particularly important. Each velocity value was taken as an average over 45 s
of measurements (at 1 Hz).

2.3 Results

2.3.1 Activity and capture rates of mosquitoes

We analyzed 8 hr of video recordings around the hanging trap, and 5 hr 15 min around
the standing trap. Despite the longer recording duration for the hanging trap experiments,
only 897 mosquito tracks (pseudo-replicates) were detected around the hanging trap against
1673 tracks around the standing trap (supplementary materials, Table S1). The number of
flight tracks per trial (N tracks/N trial) for the standing trap was 2.7 times that for the hanging
trap (hanging trap: N tracks/N trial= 27.5 [20–33], n=32 trials; standing trap: N tracks/N trial =

75 [61.25–87.25], n=21; p < 0.001). In addition, the duration of each track around the
hanging trap was on average shorter compared to that around the standing trap (median
track duration of 0.66 s and 0.99 s, respectively). Accordingly, the total flight duration
per time recorded ((

∑
T track)/T trial) for mosquitoes flying around the standing trap was 5.1

times that for mosquitoes around the hanging trap (hanging trap: (
∑

T track)/T trial = 1.53
[1.18–1.91]; standing trap:

∑
(T track)/T trial = 7.84 [6.43–9.05]; p < 0.001). All these metrics

show that flight activity around the hanging trap is lower compared to the activity around
the standing trap.

Of all the 2570 recorded flight tracks, only 87 tracks resulted in capture of the mosquito
by the trap, divided into 25 captures by the hanging trap and 62 by the standing trap. Be-
cause of the low number of tracks that led to capture, we were unable to compare the flight
dynamics of the captured and non-captured tracks using our two-dimensional parametric
space. Instead, to determine what causes the differences in number of captures between the
traps, we calculated three different capture ratios: 1) the percentage of released mosquitoes
that were captured (Rmosquitoes=N captures/N released ·100%); 2) the percentage of recorded
tracks that led to capture (Rtracks=N captures/N tracks·100%); and 3) the number of captures
per minute flight duration (capture frequency f captures=N captures/T tracks).

On average, only 8% of the mosquitoes released were captured by the hanging trap,
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whereas 30% of the mosquitoes were captured by the standing trap (supplementary ma-
terials, Table S1). Therefore, the standing trap captured almost four times the percentage
of released mosquitoes captured by the hanging trap. However, because there were many
more flight tracks around the standing trap, the average percentage of flight tracks that led
to capture by the standing trap was only 1.4 times higher than that for the hanging trap
(supplementary materials, Table S1). Because track duration was also longer for the stand-
ing trap, the number of captures per minute flight duration was not significantly different
between the hanging and the standing trap (median of hanging trap: f captures= 0 [0–3]
min-1, standing trap: f captures= 1.18 [0.96–1.98] min-1; p = 0.35). Thus, the hanging trap
captured fewer mosquitoes than the standing trap. This difference can be explained by the
higher activity of mosquitoes flying around the standing trap, which resulted in more and
longer flight tracks around this trap.

2.3.2 Positional likelihood of mosquitoes

Heat-maps of the positional likelihood of mosquitoes flying around the traps allow the
identification of regions with increased activity, which are quite different between the two
trap orientations (Fig. 2.4). Above the standing trap, a cone-shaped region of increased
activity is visible, in which mosquitoes were up to five times more likely to be present com-
pared to the average. By contrast, around the hanging trap no such clearly defined region
of increased activity was found, except for a smaller, cylindrical region directly underneath
the entry tube edge within which mosquitoes are up to four times more likely to be found.

The top-down views (Fig. 2.4b,d) show that flight activity is approximately axially sym-
metric, except for a small reduction in activity near the CO2 pipe (see also supplementary
materials, Fig. S2.11), and for the hanging trap an interesting concentration of mosquitoes
near the bottom corner of the back walls of our experimental setup was present (Fig. 2.1).

2.3.3 Airflow dynamic of the traps

We visualized the airflow dynamics around the standing and hanging trap as the two-dimensional
distribution of vertical speeds (Fig. 2.5). The distribution of airspeed around the traps was
consistent with previous findings (Hiscox et al., 2014), where vertical airflow speeds were

Figure 2.4: The spatial distribution of mosquito activity around the two traps, expressed by the
positional likelihood.The positional likelihood, Pi, was defined as the normalized probability of a mos-
quito to fly within a certain three-dimensional ring of the field of view. Random flight behaviour would
result in a uniform probability throughout the region of interest, with Pi equal to one for all cells. (a,b) The
radial-vertical heat map (a) and the horizontal heat-map (b) of the positional likelihood of all mosquitoes
flying around the hanging trap, as indicated by the colour bar on the top. (c,d) Equivalent data for mos-
quitoes flying around the standing trap. (a,c) The solid black rectangle represents the trap entry tube, and
the dashed rectangle indicates the radial distance at which the CO2 pipe was present. (b,d) The dashed
circle, the large and small solid circles represent the circumference of the trap platform, the entry tube and
the CO2 pipe, respectively.
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Figure 2.5: The vertical airspeeds produced by the trap.(a,b) The vertical airspeed at 76 points around
the hanging trap (a) and the standing trap (b), as colour-coded according to the colour-bar to the right.
See supplementary Fig. S2.5 for more details.

very high at the mouth of the entry tube (up to 3 m.s-1), but these speeds rapidly decreased
when moving away from the trap entrance. As a result, the region in front of the tube
where the airflow is more than 1.5 m.s-1 is only 3 cm high and 10 cm wide. This suggests that
for a mosquito to be inevitably captured by the inward-directed airflow, it needs to pass
very close to the trap entrance. A comparison of the vertical airspeeds around the stand-
ing and hanging trap (Fig. 2.5 and S2.5) shows that trap orientation has a relatively small
effect on airflow dynamics, suggesting that a possible ground effect below the hanging trap
is mostly negligible.

2.3.4 Mosquito flight dynamics

Based on all flight trajectories, we determined the translational flight speeds, angular speeds
and accelerations of mosquitoes around the hanging and standing trap (supplementary ma-
terials, Fig. S2.1). The mosquitoes flying around the standing trap flew faster, had higher
turn rates as expressed by higher angular speeds, and they produced higher body accelera-
tions than those around the hanging trap (p< 0.001, see supplementary materials, Table S2.1).

The two-dimensional distribution of the translational speeds of mosquitoes flying around
the standing and hanging traps were similar (Fig. 2.6a,b,c,d). Mosquitoes had their highest
mean ground speeds (up to 0.5 m s-1) near the trap entrance, whereas in both trap orient-
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Figure 2.6: The average translational flight speed (a-d) and angular flight speed (e-h) of mosqui-
toes flying around the two traps.The top row shows the vertical-radial heat-maps, and the bottom row
shows heat maps in the horizontal plane. (a-d) The average translational flight speed relative to the
ground of mosquitoes flying around the hanging trap (a,b) and standing trap (c,d) are scaled according to
the colour bar above (a,c). Rest of the figure on the next page.
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ations they had their lowest mean speeds at a radial distance of 10 to 20 cm from the entry
tube. At both these regions with increased and reduced translational speeds, the angular
speeds were high (Fig. 2.6e,f,g,h).
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Figure 2.7: Averaged velocity vector fields and streamlines of mosquitoes flying around the
hanging trap (a) and the standing trap (b).Each vector consists of the average velocity in the radial
and vertical directions of all mosquitoes that flew within a cell of 24x24 mm. All velocity vectors that resul-
ted from fewer than 5 detected tracks were discarded. Each velocity vector was scaled according to the
black vector on the top right of panel (a) with magnitude 0.25 m.s-1, and coloured according to the bar on
the right. Standard errors and track number heat maps are shown in supplementary Fig. S2.7.

In contrast with the relatively high similarity in absolute translational and angular flight
speeds around the traps, the velocity fields around the traps were strikingly different (Fig.
7). The pattern of mosquito streamlines near the hanging trap suggests that two regions
can be identified, separated by a diagonal that runs from the top right to the bottom left
of the velocity field. On average, mosquitoes that flew below this diagonal continued to fly
downwards and away from the trap, whereas those flying above this border would initially
fly downward, but when they got close to the trap entrance, they turned towards the trap
entrance and got caught. Example flight tracks of mosquitoes within these two regions are
in Fig. 2a and supplementary materials, movie S1.

Around the standing trap, mosquitoes followed a more complex circulating flight dy-
namic. On average mosquitoes entered the filmed volume by flying down towards the trap
platform, after which they turned towards the black entry tube.When they were above the
tube, mosquitoes either got caught by entering the trap, or they escaped capture by accel-
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erating upwards. After flying upwards for approximately 20 cm, on average they turned
around and started to fly again downwards towards the trap platform, thus completing the
loop. Two typical examples of mosquitoes performing such a circulating flight manoeuvre
can be seen in Fig. 2b and supplementary materials, movie S2.

As for the hanging trap, we also identified the capture and escape regions for the stand-
ing trap based on the distributions of mosquito streamlines. The area for which the stream-
lines end at the trap entrance is much smaller for the standing trap than for the hanging
trap, suggesting that mosquitoes need to approach the standing trap entry tube more closely
before being captured than for the hanging trap.

As expected, accelerations of mosquitoes flying around the trap were highest near the
trap entrance (Fig. 8a,b and supplementary materials, Fig. S6). Around both traps, the
mosquitoes flying close to the tube entrance tended to accelerate upwards, despite the op-
positely oriented airflow for capture of the different traps. This means that the mosquitoes
flying near the entry tube of the standing trap, accelerated in the direction opposite to the
airflow direction, and thus avoided capture. On the other hand, the mosquitoes flying near
the hanging trap also accelerated upwards, but in this case it was in the same direction as
the airflow, and thus these mosquitoes flew straight into the mouth of the trap.

2.3.5 Distribution of the capture probability

The distribution of the capture probability is remarkably different for mosquitoes flying
around the two oppositely oriented traps (Fig. 8c,d). Mosquitoes that approached the
entry tube of the hanging trap within a 10 cm radius have a 75% chance of being caught,
whereas for the standing trap mosquitoes need to enter the single cell directly above the
entry tube for the likelihood of being caught to reach 75%. We reconstructed the three-
dimensional volume within which more than 75% of detected mosquito tracks resulted in
captures by revolving the two-dimensional heat-map around the axis of symmetry. For the
hanging trap, this volume was 17.5 times larger than for the standing trap (supplementary
materials, Table S1).

Figure 2.8: The distribution of average vertical accelerations of mosquitoes flying in the vicinity of
the traps, and the distribution of the capture probability of mosquitoes flying around the traps.The
top row shows data for the hanging trap, and the bottom row shows standing trap data. (a,b) The average
vertical accelerations of mosquitoes expressed by the vertical-radial heat map, as colour-coded according
to the bar above (a). (c,d) Vertical-radial heat maps of the percentage of tracks that led to capture. The
purple region represents the volume within which more than 75% of the tracks led to capture. Standard
errors of the heat maps of (a, b) are shown in supplementary Fig. S8. Top-down views of (a–d) are shown
in the supplementary Fig. S9 and S10.
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2.4 Discussion

We reconstructed three-dimensional flight tracks from stereoscopic high-speed videos of
mosquitoes flying around an odour-baited trap set in two different orientations. The res-
ulting high number of detected tracks was essential to dissect the flight behaviour of mos-
quitoes around the traps as it allowed the computation of the average flight dynamics through-
out the complete region of interest. To study how these dynamics vary in space and as a
function of trap orientation, we visualized these three-dimensional flight dynamics using
two-dimensional heat maps and vector fields. For this, we assumed that the average flight
behaviour of mosquitoes around the trap was axis-symmetric with respect to the axis of
symmetry of the trap, which was confirmed as almost all top-down heat maps showed ex-
clusively axis-symmetric patterns.

The only deviation from this symmetry was an off-centred volume under the hanging
trap within which mosquitoes had a high probability of being present (Fig. 4b,d). Mos-
quitoes might have been attracted to this region because of an accumulation of odours
and CO2 in this corner, or because a shadow was casted here by the hanging trap. But
because top-down views of all other metric presented in this paper did not show a bias
towards this area, we cannot conclusively determine the cause of this accumulation. Ad-
ditionally, we observed a small reduction in activity near the CO2 pipe of both traps (Fig.
4b,d and supplementary materials, Fig. S11a), suggesting that mosquitoes were avoiding
this region, possibly due to increased CO2 concentrations or airflow anomalies near the
shortened CO2 pipe (van Breugel et al., 2015; Lacey et al., 2014; McMeniman et al., 2014;
Spitzen et al., 2008). Note that both the increased activity of mosquitoes at the off-centred
volume under the hanging trap and the reduced activity near the CO2 pipe had a relative
small effect on the flight pattern of mosquitoes in the near vicinity of the trap (Fig. 6 and
Fig. S11b, respectively), suggesting that the assumption of axis-symmetric flight behaviour
around the trap is still valid.

Beside these small anomalies, the heat-maps of positional likelihood of the mosqui-
toes (Fig. 4), and of mean flight speed and mean angular speed (Fig. 6) contribute some
new elements concerning the short-range attractiveness of the studied odour-baited traps.
Indeed, with the exception of the previously described regions, the volumes where mos-
quito activity was the highest, are also where their mean flight speeds and mean angular
speeds were the highest, suggesting that these mosquitoes were performing casting beha-
viour and might thus have been host-seeking. This is consistent with findings of a previous
study whereby host-seeking mosquitoes increased their flight tortuosity in the proximity
of a host (Spitzen et al., 2013). Given that the used odour-baited trap has been shown to be
successful in attracting host-seeking mosquitoes (Hiscox et al., 2014; Homan et al., 2016),
we hypothesise that the majority of mosquitoes flying close to the traps were attracted by
the trap, despite that random encounters with the traps likely also occurred.

The question remains as to what particular sensory cues trigger the search behaviour
within the highly-unsteady airflow conditions around the trap. For example, mosquitoes
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have been found to surge upwind more easily in airflow well mixed with odours and in
turbulent CO2 plumes (Dekker et al., 2001; Geier et al., 1999). To answer this question,
an extensive study of the airflow turbulence levels and three-dimensional distributions of
CO2 and odour would be required (Cooperband and Cardé, 2006b).

2.4.1 Stereotypical mosquito flight dynamics

The flight dynamics of mosquitoes around the two oppositely-oriented traps were strik-
ingly different but also highly stereotypical and repeatable (Fig. 7). Near the hanging trap
setup, mosquitoes flew on average down towards the ground. But if they flew within a
range of approximately 10 centimetres from the trap entry tube during this downward
flight, they would turn and start to fly upwards, and as a consequence likely be caught
by the trap. Mosquitoes flying around the standing trap showed a very different, circu-
lar flight pattern. These mosquitoes would initially also fly downwards when entering the
filmed volume, but in this case towards the trap platform instead of the ground. When
they came close to the entry tube, they would also turn and start to fly upwards, which res-
ulted in most cases in a successful escape from the trap. After this manoeuvre, they would
turn around and again start to fly downwards towards the trap platform, completing the
circular flight pattern. For the standing trap, mosquitoes had to approach the entry tube
much closer in order to be captured than for the hanging trap (Fig. 8c,d).

Because the trap-induced airspeeds were very similar between the traps (Fig. 5, S5), the
large differences in flight dynamics around the two traps must be the result of a difference
in behavioural response towards the two oppositely-oriented traps. Here, we hypothesise
that these flight patterns are the result of two stereotypic behaviours in host-seeking mos-
quitoes: 1) mosquitoes that approached a trap tended to also fly downwards to the ground,
and 2) mosquitoes that came close to the traps changed their flight direction by rapidly
accelerating upwards, possibly reacting to adverse high-velocity airflow cues or to a lack of
short-range host cues. This set of behaviours can explain the complex flight patterns ob-
served around the traps, as well as the differences in flight patterns around the oppositely-
oriented traps.

2.4.2 Upwind- and downward-directed approach flights

Upon entering the observed volume and despite inverse trap airflow, mosquitoes flew on
average downwards, as well as towards the axis of symmetry of the trap, for both traps (Fig.
7). While doing so, they had low angular speeds and low positional likelihood (Fig. 4).
Thus, mosquitoes did not remain long in the flight volume for this approach phase. As a
result of the downward orientation, mosquitoes naturally flew towards the standing trap,
whereas they tended to fly away from the hanging trap.

This flight behaviour is very similar to that described in female mosquitoes seeking a
human host. Female Anopheles mosquitoes preferred to land on human body parts that
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were closest to the ground, which they found by flying downwards and upwind by track-
ing odours and convective air currents produced by that host (Dekker et al., 1998; De Jong
and Knols, 1996) When approaching an odour source, Aedes aegypti mosquitoes flew to-
wards the ground to inspect visually-intriguing objects (van Breugel et al., 2015; Hawkes
and Gibson, 2016). The similarity in flight patterns of our mosquitoes flying near the trap
with those described in the literature, suggest that our mosquitoes performed a similar
host-seeking behaviour. In our case, the upwind and downward flight behaviour might
have been triggered by the detection of increased concentrations of odours, CO2 and air-
flow turbulence, but the importance of visual cues cannot be excluded as possible light
conditions differences have not been investigated.

2.4.3 Fast upward-directed flight manoeuvres

The second phase of mosquito flight dynamics takes place in the near vicinity of the trap
entry tube. It starts at the boundary between the high-speed airflow volume a few centi-
metres from the visually contrasting entry tube and the volume where attracted mosquitoes
are host-seeking. Here, on average, mosquitoes were found to quickly turn by accelerating
and flying upward. For the mosquitoes that flew below the hanging trap, these rapid up-
ward flight manoeuvres often led to capture, whereas the mosquitoes that flew above the
standing trap, accelerated away from the trap and thus mostly escaped successfully.

Similar fast upward-directed flight behaviours have been described previously for other
host-seeking insects (Hawkes and Gibson, 2016; Thorsteinson et al., 1965; Townes, 1962).
Host-seeking Anopheles mosquitoes tended to fly quickly upwards after inspecting black
tiles on the ground (Hawkes and Gibson, 2016), and horse and deer flies tend to fly upwards
after having inspected potentially interesting visual cues (Thorsteinson et al., 1965; Townes,
1962). In fact, the Malaise trap and the Manitoba fly trap have both been designed to trap
such upward flying insects (Thorsteinson et al., 1965; Townes, 1962).

The question remains about what sensory cues trigger these rapid upward flight man-
oeuvres near the trap. This could be the absence of short-range host cues such as heat or
moisture (Cardé, 2015; Hawkes and Gibson, 2016), or the flight manoeuvre could be the res-
ult of positive phototaxis, reaction to visual cues, or to avoid/evade the high-speed airflow
regions. The upward flying mosquitoes in the shadow of the hanging trap flew towards its
black entry tube, whereas mosquitoes flew away from the black entry tube of the standing
trap. Therefore, positive phototaxis as well as reaction to visual cues most likely do not ex-
plain these manoeuvres. Thus, these upward manoeuvres were probably either the result
of the absence of short-range host cues, or they might have been executed to avoid or evade
the high-speed airflow regions induced by the traps.

Should these upward-directed flights be evasive manoeuvres, then mosquitoes did not
use information about the direction of the airflow to steer away from a potential threat,
as all manoeuvres were directed upwards regardless of the direction of the airflow. This
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makes these manoeuvres strikingly different from the evasive manoeuvres described in fly-
ing fruit flies, hawkmoths and hummingbirds, that are directed away from the danger
(Cheng et al., 2016; Muijres et al., 2014), or downwards towards the ground (Corcoran and
Conner, 2016). Horse flies, on the other hand, have also been shown to fly upwards after
inspecting potential hosts (Thorsteinson et al., 1965; Townes, 1962). Because mosquitoes
and horse flies both feed on terrestrial animals, these upward-directed evasive or avoidance
manoeuvres might be particularly successful for such animals.

The stereotypical upward accelerating manoeuvres of our mosquitoes also explain the
large difference in capture dynamics between the oppositely-oriented traps. The air volume
around the trap entrance within which 75% or more of the mosquitoes were caught, V 75%,
was 17.5 times larger for the hanging trap than for the standing trap (Fig. 8c,d). For the
standing trap, this V 75% volume overlays well with the region within which the airspeeds
directed into the entry tube were more than 1.5 m.s-1 (Fig. 5), but for the hanging trap the
V 75% volume extended well outside this high airspeed region. In flow tunnel experiments it
has been demonstrated that mosquitoes are able to fly against airflow with speeds of up to
1.5 m.s-1 (Kennedy, 1940), and thus mosquitoes caught by the standing trap were most likely
sucked downwards into the trap, as they were unable to accelerate upward fast enough
to avoid capture. Because the V 75% volume underneath the hanging trap extended well
beyond the region with high suction airspeeds, many of the mosquitoes captured by the
hanging trap must have actively flown into the entry tube when performing an upward-
directed flight manoeuvre.

2.4.4 Combining the two stereotypical flight behaviours

The flight dynamics observed near the two traps can be interpreted as a combination of
the upwind- and downward-directed approach flights and the fast upward-directed evas-
ive manoeuvres. Although alternative behavioural explanations of the observed flight dy-
namics are possible, the here-described flight behaviours have previously been identified in
host-seeking insects (van Breugel et al., 2015; Dekker et al., 1998; Hawkes and Gibson, 2016;
Thorsteinson et al., 1965; Townes, 1962), and the combination of these two behaviours ex-
plain well the striking differences in flight dynamics around the oppositely-oriented traps
(Fig. 9). The upwind- and downward-directed flight behaviours illustrate why mosqui-
toes tended to fly away from the hanging trap, and towards the horizontal platform of
the standing trap; the fast upward-directed flight manoeuvres caused mosquitoes to fly
towards the capture entrance of the hanging trap and away from the standing trap, and
thus also explains the larger capture region around the hanging trap (Fig. 8). After the
upward flight movement away from the standing trap, these mosquitoes switched back to
the downward-directed flight pattern, explaining the advent of the circular flight path, and
why mosquitoes remained near the standing trap for a longer time.
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Figure 2.9: The average flight tracks and capture percentage of mosquitoes around the two traps,
and an artist impression of airflow induced by the traps.The mean flight tracks (in red) are determined
from the streamlines in Fig. 7, and details about the capture percentage distribution (heat map) are shown
in Fig. 8c,d.

2.4.5 The flight behaviour of mosquitoes explains trap efficiency

Our results suggest that the standing trap has a higher short-range attractiveness, as ex-
pressed by both a higher number of detected flight tracks (N track/N trial) and larger flight
duration per trial (T track/T trial) for mosquitoes flying around the standing trap. In con-
trast, the hanging trap has a better capture mechanism because the air volume around the
trap entrance within which 75% or more of the mosquitoes were caught, V 75%, was more
than 17 times larger for the hanging trap compared to the standing trap. However, both
the percentage of released mosquitoes caught and the percentage of flight tracks that led to
capture (Rmosquitoes and Rtracks, respectively) were higher for the standing trap. Although
Rmosquitoes and Rtracks were not significantly different between the traps, this suggests that
the less efficient capture mechanism of the standing trap was more than compensated by
its superior short-range attractiveness. In this way, the greater number of mosquitoes cap-
tured by the standing trap seems to be not only because it attracts more mosquitoes to
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its vicinity, as was previously suggested (Cooperband and Cardé, 2006a), but also because
mosquitoes remained near the standing trap for a longer period of time.

These results, and especially the differences in capture efficiency, would need to be veri-
fied in field experiments, where the wind and light conditions would likely impact trap
finding by the mosquitoes as well as their use of visual cues. In addition, the fact that our
experiments were performed in an enclosed environment, where the proportion of random
encounters might have been relatively high, may have impacted our results. However, such
random encounters would probably only increase the background noise on the observed
flight dynamics and should not result in distinct flight patterns. Finally, height differences
might have affected how easily mosquitoes were finding the trap, and hence the trapping
efficacy (Hiscox et al., 2014). This subject would deserve to be studied in dedicated experi-
ments.

Besides contributing to the expansion of general knowledge on mosquito flight beha-
viour, our results help to understand the short-range attractiveness and the capture mech-
anism of odour-baited traps. This new insight could be used to develop novel trap designs
with improved trapping efficiency. Thus, in our opinion, such trap design process would
greatly benefit from the use of iterative testing of traps in studies similar to this one. Because
the Suna trap is already part of a successful vector control system (Homan et al., 2016), it
is likely that the resulting trap improvements would make a valuable contribution to the
fight against vector-borne disease.
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List of symbols

symbol units description
N trials [-] number of trials for the standing or hanging trap
T trials [min] recording duration for all trials for the standing or hanging trap
N tracks [-] number of reconstructed flight tracks
T track [s] duration of a flight track
Ltrack [cm] length of a flight track
N captured [-] number of captured mosquitoes
Rmosquitoes [-] percentage of released mosquitoes that were captured
Rtracks [-] percentage of recorded tracks that led to capture
f captures [min-1] capture frequency: the number of captures per minute flight duration
V 75% [cm3] volume within which more than 75% of detected flight tracks resulted in cap-

tures
U [m.s-1] linear speed of a flying mosquito
α [degrees.s-1] angular speed of a flying mosquito
a [m.s-2] acceleration of a flying mosquito

Legends of the supplementary datasets

The datasets can be found here: https://doi.org/10.1098/rsos.180246
Database S2.1: Mosquito tracks around the standing and hanging trap and additional
experimental metadata.The three-dimensional tracks of the flying mosquitoes were com-
puted from our stereoscopic recordings using the tracker described in the materials and
methods. Flight tracks are described as the x, y, z coordinates in centimetres of the mos-
quito at each video frame. Coordinates are in the world reference frame as defined in
Fig. 2.1, with z oriented vertically up, and its origin at the centre of the funnel entrance
(at 54.5 cm above the floor for the standing trap, and 81 cm for the hanging trap).
Database S2.2: Airflow speeds around the standing and hanging trap. The speeds
have been measured with a hotwire anemometer (tetso 405i) at 76 locations within a two-
dimensional vertical plane oriented perpendicularly to the open trapdoor in the trap en-
trance and at the opposite side of the CO2 pipe. In the database, airspeed measurements of
more than 45 s (at 1 Hz) are documented in meters per second with their respective radial
(r) and vertical (z) coordinates in centimetres in the reference frame as defined in Fig. 2.5.
The origin of this reference frame is set to the centre of the funnel entrance (at 59.2 cm
above the floor for the standing trap, and 81 cm for the hanging trap).

Legends of the supplementary videos

The videos can be found here: https://doi.org/10.1098/rsos.180246
Video S2.1: Stereo recordings of flying mosquitoes around the hanging trap and loc-
alisation results of two-dimensional tracking (in red). The videos were recorded at 90
frames-per-second and replay is at 30 frames-per-second, so video playback is slowed down
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Table S2.1: Statistical results of the comparison between the standing and hanging trap. Given
the non-normality of the parameter distributions, p-values have been computed using non-parametric
Wilcoxon rank sum tests. p-values of 0.05 and smaller are in bold.

parameter trap orient-
ation

n mean standard
deviation

median Q1 Q3 p-value

N trials
[-]

standing - 21 - - - - -
hanging - 32 - - - -

T trials
[min]

standing - 315 - - - - -
hanging - 480 - - - -

N tracks
[-]

standing - 1673 - - - - -
hanging - 897 - - - -

T track
[s]

standing 1673 1.51 1.65 0.99 0.44 1.86
<0.001hanging 897 0.89 0.89 0.66 0.36 1.11

Ltrack
[cm]

standing 1673 36.05 36.81 26.19 9.97 47.50
<0.001hanging 897 18.38 18.49 13.53 7.29 23.15

N tracks/N trials
[-]

standing 21 79.67 24.14 75 61.25 87.25
<0.001hanging 32 28.03 10.94 27.5 20 33

T track/T trials
[-]

standing 21 8.00 2.14 7.84 6.43 9.05
<0.001hanging 32 1.66 0.76 1.53 1.18 1.91

N captured
[-]

standing 21 2.95 1.47 3 2 3.25
<0.001hanging 32 0.78 1.13 0 0 1

Rmosquitoes
[-]

standing 21 29.52% 14.65% 30% 20% 32.5%
<0.001hanging 32 7.81% 11.28% 0% 0% 10%

Rtracks
[-]

standing 21 3.89% 2.06% 3.75% 2.39% 4.86%
0.025hanging 32 2.83% 4.13% 0% 0% 4.35%

f captures
[min-1]

standing 21 1.52 0.74 1.18 0.96 1.98 0.35
hanging 32 1.66 2.13 0 0 3

V 75%
[cm3]

standing - 228.08 - - - - -
hanging - 3991.40 - - - -

U
[cm.s-1]

standing 226742 23.94 12.63 22.46 15.37 30.15
<0.001hanging 71519 20.74 9.22 20.47 14.26 26.65

α

[degrees.s-1]
standing 226742 545.06 620.52 367.72 194.76 674.14

<0.001hanging 71519 344.54 416.05 230.65 130.18 408.71
a
[m.s-2]

standing 226742 2.32 1.94 1.78 0.97 3.11
<0.001hanging 71519 1.43 1.29 1.05 0.61 1.78

three times. The tracks shown are the same as the ones presented in Fig. 2.2a.
Video S2.2: Stereo recordings of flying mosquito around the standing trap and loc-
alisation results of two-dimensional tracking (in red). The videos were recorded at 90
frames-per-second and replay is at 30 frames-per-second, so video playback is slowed down
three times. The tracks shown are the same as the ones presented in Fig. 2.2b.
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Figure S2.2: Sensitivity analysis of positional likelihood for mean cross-sectional area of cells.
Radial heat maps of the positional likelihood of mosquitoes around the standing trap with different mean
cross-sectional area of cells. In order to give all three-dimensional cells the same volume, cell width
varies in the radial direction. Above each panel, the corresponding mean cross-sectional area of the cells
is written as the mean width x height. We did not find a dependence of our main results on cell mean
cross-sectional area. Finally, 6x12 mm cells were chosen to have a volume of 114.04 cm3 to obtain
pertinent cell sizes compared to the entrance tube diameter and to allow clearly defined results. Similarly,
cells of top-down views (Fig. 2.4, 2.5, S2.3 and S2.4) were given a constant rectangular volume of 112
cm3 (length x width x height: 20x20x280 mm) similar to the constant volume of the previously describe
rings.
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Figure S2.3: Sensitivity analysis of positional likelihood and velocity field for the number of re-
corded tracks. Radial heat maps of the positional likelihood (a) and mean velocity fields (b) around the
standing trap for 100, 200, 500 and 1000 randomly chosen flight tracks. As expected, the variance of the
results are anti-correlated with the number of analysed tracks. However, we did not find any other depend-
ence on the number of analysed tracks when it is greater than 500. All velocity vectors that resulted from
fewer than 5 detected tracks were discarded, and the cells were then left empty.

77



hanging trap 
1st half

hanging trap
2nd half

z-
co

or
di

na
te

 [c
m

]

radial distance [cm]

0 10 20

radial distance [cm]

0 10 20

z-
co

or
di

na
te

 [c
m

]

radial distance [cm]

0 10 20

radial distance [cm]

0 10 20

-20

-10

0

-30

10

-20

-10

0

10

-30

a1) a2)

b1) b2)

(Caption on the next page.)

78



2s

standing trap
1st half

standing trap
2nd half

radial distance [cm]

0 10 20

radial distance [cm]

0 10 20

radial distance [cm]

0 10 20

radial distance [cm]

0 10 20

0

5

2

1

3

4

po
si

tio
na

l l
ik

el
ih

oo
d

0

10

20
m

os
qu

ito
 m

ea
n 

ve
lo

ci
ty

 
fie

ld
s 

[c
m

/s
]

-10

0

10

20

30

-10

0

10

20

30

a3)

b3) b4)

a4)

Figure S2.4: Comparison between the flight dynamics of the first and second 50% of tracks
throughout the experiments. Positional likelihood (a) and velocity fields (b) of mosquito tracks that
started before (1st half) or after (2nd half) the time threshold separating the total number of recorded
tracks in two. This time threshold has been found equal to 4.46 min for the hanging trap and to 4.13 min
for the standing trap. The results suggest that flight behaviour around the traps does not change over time
within the time duration of our experiments.
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tional flight speeds are show in Fig. 2.6.
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Figure S2.7: Additional data related to mosquito track location and mean velocity fields. (a) Radial
plane heat maps of the number of tracks detected in each cell around the hanging and standing trap. (b)
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velocity vector corresponding to the mean velocity fields in Fig. 2.5. The cells are the same as those used
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Figure S2.9: The mean radial acceleration of mosquitoes around the hanging and standing traps.
(a-d) Radial and top-down views of the mean flight acceleration of mosquitoes along the r-axis.
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Figure S2.9: The mean vertical acceleration of mosquitoes around the hanging and standing traps.
(e-h) Radial and top-down views of the mean flight acceleration of mosquitoes along the z-axis.
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Figure S2.11: Likelihood of mosquito position (a) and averaged velocity vector fields (b) around
the CO2 funnel and around the complete trap (as indicated on the top of each column). For the
results around the CO2 pipe, the region was bound by an angle of +/- 20 degrees.
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Abstract

When seeking a human for a blood meal, mosquitoes use several cues to detect and find
their hosts. From this knowledge, counter-flow odour-baited traps have been developed
that use a combination of CO2, human-mimicking odour, visual cues and circulating air-
flow to attract and capture mosquitoes. Initially developed for monitoring, these traps are
now also being considered as promising vector control tools. The traps are attractive to
host-seeking mosquitoes, but their capture efficiency is low. It has been hypothesized that
the lack of short-range host cues, such as heat and increased local humidity, often prevent
mosquitoes from getting close enough to get caught; this lack might even trigger avoidance
manoeuvres near the capture region. This study investigated how close-range host cues
affect the flight behaviour of Anopheles female malaria mosquitoes around odour-baited
traps, and how this affects trap capture performance. For this, a novel counter-flow odour-
baited trap was developed, the M-Tego. In addition to the usual CO2 and odour-blend,
this trap can provide the short-range host cues, heat and humidity. Systematically adding
or removing these two cues, it was tested how this affected the trap capture percentages and
flight behaviour. First, capture percentages of the M-Tego with and without short-range
host cues to the BG-Suna trap were compared, in both laboratory and semi-field testing.
Then, machine-vision techniques were used to track the three-dimensional flight move-
ments of mosquitoes around the M-Tego. With heat and humidity present, the M-Tego
captured significantly more mosquitoes as capture percentages almost doubled. Compar-
ing the flight behaviour around the M-Tego with variable close-range host cues showed
that when these cues were present, flying mosquitoes were more attracted to the trap and
spent more time there. In addition, the M-Tego was found to have a better capture mech-
anism than the BG-Suna, most likely because it does not elicit previously observed upward
avoiding manoeuvres. Results suggest that adding heat and humidity to an odour-baited
trap lures more mosquitoes close to the trap and retains them there longer, resulting in
higher capture performance. These findings support the development of control tools for
fighting mosquito-borne diseases such as malaria.

3.1 Introduction

Anthropophilic mosquitoes are vectors of dangerous diseases such as dengue fever and mal-
aria, hence their host-seeking behaviour has been studied thoroughly (Gmp/who, 2019).
Mosquitoes rely on the detection of CO2 and volatile odours to find human hosts (Dekker
and Cardé, 2011; McMeniman et al., 2014). Then, like many other insects, mosquitoes per-
form a so-called cast and surge strategy to fly towards the odour source [2,4-6]; they surge
upwind when detecting an odour plume and cast crosswinds if they lose the plume. Fi-
nally, mosquitoes inspect visually contrasting objects and initialize landing in the presence
of short-range host cues, such as heat or increased local humidity (van Breugel et al., 2015;
Cardé, 2015; Hawkes and Gibson, 2016; McMeniman et al., 2014; Olanga et al., 2010; Raji
and DeGennaro, 2017; Spitzen et al., 2013; Vinauger et al., 2019).
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Based on this knowledge on mosquito host-seeking behaviour, odour-baited traps have
been developed (Cooperband and Cardé, 2006b; Hiscox et al., 2014; Jawara et al., 2009).
These traps usually combine CO2, a bait mimicking human skin odours, and visual con-
trasts to attract mosquitoes (Hawkes et al., 2017; Hiscox et al., 2014). Most odour-baited
traps have a single fan to generate a counter flow to dissipate the odour away from the trap,
and capture mosquitoes by sucking them into the trap (Cooperband and Cardé, 2006b;
Cribellier et al., 2018; Hiscox et al., 2014). Odour-baited traps can attract many mosquito
species and have been used successfully for years as research tools for monitoring mosquito
populations (Bhalala and Arias, 2009; Hiscox et al., 2014). Recently, these traps have been
considered as tools for integrated vector management, and used effectively in the field as
such (Homan et al., 2016). In the context of the recent worldwide slowdown of decrease
in malaria cases, which is thought to be partly induced by the increasing mosquito resist-
ance against widely used insecticides (Gmp/who, 2019), such novel insecticide-free vector
control tools are a promising alternative.

Understanding capture mechanisms of traps and flight dynamics around these traps is
essential for further improvement of capture performance of the system. But only a few
studies looked at mosquito flight behaviour in the vicinity of odour-baited traps. First,
Cooperband and Carde analysed three-dimensional flight tracks of two Culex mosquito
species flying towards CO2-baited traps in a semi-field tent (Cooperband and Cardé, 2006a).
They showed that differences in capture percentages between the traps correlated with
changes in the observed flight dynamics of mosquitoes.

More recently, Cribellier et al. reconstructed thousands of three-dimensional flight
tracks of malaria mosquitoes (Anopheles coluzzii) interacting with the BG-Suna trap (Bio-
gents, Germany) in its default hanging position and in an opposite standing orientation
(Cribellier et al., 2018). The standing orientation made the studied BG-Suna analogous
to a BG-Sentinel trap (Biogents, Germany), which has been developed for capturing Aedes
mosquitoes. The standing BG-Suna was found to be more attractive and overall performed
better than the hanging BG-Suna. However, only the standing BG-Suna elicited upward
avoiding manoeuvres from mosquitoes flying above its inlet. Such avoiding behaviour may
be due to the lack of short-range host cues or be mediated by the high-speed suction flow
generated by the traps (Amos et al., 2020; Cribellier et al., 2018). As a result, only a low
percentage of flight trajectories near the trap led to capture in both trap orientations (Cri-
bellier et al., 2018). Despite the fact that the BG-Suna trap seems to have a relatively low
capture efficiency, long-term employment in the field resulted in significant reductions in
mosquito populations and a decrease in malaria incidence (Homan et al., 2016). Follow-up
studies confirmed these findings on mosquito flight dynamics around traps. Batista et al.
found that Anopheles arabiensis follow similar flight patterns below the BG-Malaria trap
(Batista et al., 2019). This trap is adapted from an upside-down BG-Sentinel to trap an-
opheline mosquitoes. Finally, by studying the flight behaviour of Aedes aegypti around the
BG-Sentinel, Amos et al. also observed upward avoidance responses near the trap inlet,
and confirmed that tested traps showed low capture efficiency (Amos et al., 2020).
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Several mosquito traps use short-range host cues such as heat and humidity to in-
crease capture performances (Cooperband and Cardé, 2006a; Kline, 2002). Odour-baited
CDC-type traps (Centers for Disease Control, USA) were found to capture significantly
higher numbers of Aedes, Anopheles and Culex mosquitoes when generating heat using a
50W moist heating pad (Kline and Lemire, 1995). Mosquito Magnet traps run on pro-
pane gas that is catalytically converted to produce CO2, heat, and moisture (Cooperband
and Cardé, 2006a). And heat was found to be a crucial cue to elicit the landings of an-
opheline mosquitoes necessary for the Human Decoy Trap (HDT) (Hawkes et al., 2017;
Howlett, 1910; Spitzen et al., 2013). This adhesive trap uses a combination of CO2 and
odour provided from people or cattle in a nearby tent, with visual cues and heat generated
by a black container filled with warm water (surface temperature of 35± 5◦C) (Abong’O
et al., 2018; Hawkes et al., 2017). Despite their good capture performance, these traps have
a number of practical drawbacks for potential use as vector control tools against Anopheles
mosquitoes. The CDC-type traps with a heating pad require high electric power input for
generating heat. The Mosquito Magnet traps are expensive and distribution to malaria-
endemic countries would be more than challenging. The HDT trap requires live bait as
well as the warming up of a large quantity of water at high temperature (∼ 80◦C) (Abong’O
et al., 2018).

It is still unknown how adding heat and increased local humidity to odour-baited traps
affects mosquito flight behaviour near the trap entrance. This study tested the hypothesis
that without close-range host cues such as heat and humidity, mosquitoes often do not
get close enough to odour-baited traps to get caught, resulting in a low capture efficiency.
This was done by studying the flight behaviour of Anopheles mosquitoes around a new
counter-flow odour-baited trap, the M-Tego. This trap was developed by the authors in
order to be able to generate both heat and humidity in addition to the CO2, odour blend
and visual cues that are usually implemented in odour-baited traps. Additionally, the M-
Tego is easy to transport and maintain and as such, has the potential for a wide use in vector
control programmes (Homan et al., 2016). As a benchmark, the capture percentage of the
M-Tego was compared to the ones of the standing BG-Suna trap in both laboratory and
semi-field conditions. The M-Tego without or with additional cues was found to capture
significantly more mosquitoes than the standing BG-Suna in the laboratory and in semi-
field conditions.

To investigate why such high capture percentages were observed, the flight behaviour
of mosquitoes around the M-Tego was recorded, with or without short-range host cues.
Despite high similarities between flight behaviour around the BG-Suna and the M-Tego,
it was found that, if additional host cues were present, flight activity greatly increased in a
region around the rim of the odour outlet. Finally, contrary to what has been found for
the BG-Suna, avoidance behaviours of mosquitoes were not observed above the M-Tego.
This lack of avoidance manoeuvres may explain why the M-Tego even without additional
host cues had higher capture percentages than the BG-Suna. These results are promising
for integrated vector control programs to improve human health and welfare.

94



3

3.2 Materials and methods

3.2.1 Experimental animals

For all laboratory experiments at Wageningen University, female Anopheles coluzzii mos-
quitoes were used. These came from a laboratory-reared colony that originated from Suakoko,
Liberia in 1987. The colony is housed in the Laboratory of Entomology (Wageningen Uni-
versity & Research, The Netherlands) with a clock shifted 12h light : 12h dark cycle, and
at fixed temperature of 27 ◦C and relative humidity of 70%. Adults were kept in Bug-
Dorm (MegaView Science Co. Ltd., Taiwan) cages (30×30×30 cm) and fed sugar water
solution with 6% glucose. Additionally, they were blood-fed daily with human blood (San-
quin, Nijmegen, The Netherlands) using a membrane feeding system (Hemotek, Discov-
ery Workshop, UK). Female mosquitoes could lay their eggs on wet filter papers that were
then moved to plastic trays filled with water. Emerging larvae were fed with Liquifry No. 1
fish food and TetraMin Baby (Tetra Ltd, UK). Finally, new pupae were placed in new Bug-
Dorm cages to emerge. Males and females were kept together so they could mate. Non-
blood-fed adult females (age = 9.8 ± 1.4 days (mean ± std)) were collected between 12 and
16 hours before experiments.

Semi-field experiments in Tanzania were done using 3 to 8 days old Anopheles gambiae
s.s. female mosquitoes. These mosquitoes were reared under standard insectary conditions
of 27± 5 ◦C (room temperature), 40-100% relative humidity and a 12L:12D cycle. Larvae
were fed ad libitum on TetraMin fish flakes (Tetra Ltd., UK). Adult mosquitoes were kept
in metal cages (30x30x30 cm) and fed ad libitum on a 10% glucose solution. Female mos-
quitoes used for the rearing were blood-fed with cow blood using a membrane feeding
system (Hemotek).

3.2.2 Odour-baited traps

The traps used in these experiments were the BG-Suna (Biogents, Germany) and proto-
types of the new M-Tego trap (PreMal b.v., The Netherlands). The BG-Suna was used in a
standing orientation, thus mimicking the BG-Sentinel, as this position was found to have
a better capture efficiency and attractiveness than the hanging BG-Suna (Cribellier et al.,
2018; Visser et al., 2020). In both traps, an odour source containing MB5 blend was used
to simulate human skin odour (van Loon et al., 2015; Visser et al., 2020), and CO2 to simu-
late human breath. For the laboratory experiments, CO2 was provided using a pressurized
canister, and consisted of a mixture of 5% CO2 with 95% air at a flow rate of 200 ml/min.
For the semi-field tests, CO2 was produced using a mixture of 17.5 g of yeast and 500 g of
molasses in 2 L of water (Mweresa et al., 2014; Smallegange et al., 2010). As in Cribellier et
al. (Cribellier et al., 2018) the CO2 pipe of the BG-Suna was shortened and the top of the
inlet was levelled to minimize blind spots of the cameras.

The M-Tego is a novel trap developed by the authors (see author contributions for de-
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tails) at Wageningen University (The Netherlands) in collaboration with industrial design-
ers from Delft University of Technology (The Netherlands) (see Fig. S3.1). In this study,
prototypes of this novel trap were used, from here on those prototypes will be referred to
as M-Tego traps. The M-Tego trap uses a similar counter-flow principle as the BG-Suna to
attract and capture mosquitoes, and both traps use the same brushless 12V dc fan. With a
diameter of 30 cm and a height of 38.8 cm, the M-Tego is smaller than the BG-Suna trap
that has a diameter of 52 cm and a total height of 39 cm. Its inlet is slightly higher than
that of the BG-Suna (9.5 cm vs 8.3 cm with levelled inlet) but both inlets have the same
diameter of 11 cm. The M-Tego has a foldable black polyester tarpaulin bag (70 g per sq
m, Gamma, The Netherlands), which makes transportation easier, as well as an HDPE
insect net (Howitec, The Netherlands) on the top of the tarpaulin bag, to allow the out-
ward circulation of the odour-saturated air. Additionally, the M-Tego uses an inlet module
with an integrated catching cage that simplifies the removal of caught mosquitoes (see sup-
plementary Fig. S3.1). These design decisions improve user-friendliness and aim to reduce
fabrication costs, which is beneficial for a vector control tool in rural Africa. To generate
heat similar to that produced by a human body (37◦C), the M-Tego uses a 2-m Nichrome
wire (diameter 0.5 mm) wrapped around the top of its inlet. The heater has an electric
power requirement of 9.6 W (12 V and 0.8 A)). Finally, the trap can be filled with 1 L of
warm water at 40◦C to increase local relative humidity and temperature. The wire is not in
contact with the water and thus cannot warm it up. Instead, the water needs to be warmed
up passively during the day or using exterior means.

3.2.3 Experimental setups

Three experiments were performed. First, in dual choice testing in the laboratory, two
traps were placed next to each other in a flight tent. Mosquitoes were released in the tent
where they were free to fly around the two traps. Using this set-up, trap capture percent-
ages were compared to each other. Secondly, semi-field experiments were performed inside
three large screen houses in Tanzania. In each screen house, one of the tested traps was
placed next to a replicate of a rural African house. The numbers of released mosquitoes
that were captured by each trap were then compared. Third, to study the flight behaviour
of mosquitoes around the M-Tego, with or without additional host cues, their flight tra-
jectories were tracked in the laboratory in the vicinity of the trap using machine vision
techniques.

3.2.4 Dual-choice experiments

The goals of the dual-choice tests were, first, to benchmark the capture performance of
the M-Tego by comparing it to the well-established BG-Suna and, secondly, to quantify
the effect of adding short-range host cues on the capture performance of the M-Tego. Five
trap conditions were tested versus the same BG-Suna: the BG-Suna #2 (control), the M-
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Tego without additional cues, the M-Tego with heat, the M-Tego with warm water, and
the M-Tego with heat and warm water.

The dual-choice tests were performed in a netting cage of 2.9×2.5×2.5 m (Howitech,
The Netherlands, see supplementary Fig. S3.2) inside a climate-controlled room (ambient
temperature = 26.1 ± 0.9 ◦C (mean ± std), and relative humidity = 72.9% ± 3.9%). On
each side of the cage, a trap could be placed above the centre of a 1 × 1 m horizontal white
ground plate. These two plates were placed in front of two 1× 2 m vertical white plates and
next to each other, separated by another 1 × 2 m vertical plate. All traps were placed in the
cage such that the top of the trap inlet was at a height of 54.5 cm, in order to be consistent
with our previous study (Cribellier et al., 2018). During the experiments, the room was
illuminated only by a single nightlight (0.4 W), placed above the centre of the cage.

Each trap was equipped with a MB5 odour source (OS1 or OS2) and placed on the left
or right side of the cage. The position of the traps (left or right) and the odour source used
(OS1 or OS2) were chosen following a quasi-randomized planning where all combinations
of conditions were tested at least seven times. See supplementary database S1 for a summary
of all test conditions.

Before each experiment, the traps and the experimental set-up were cleaned using a 15%
ethanol solution. All handling of the materials and mosquitoes was done wearing nitrile
gloves to minimize the risk of skin odour contamination. After setting up the traps, 50 mos-
quitoes were released from a holding container on the opposite side inside the netting cage
by pulling a string outside of the cage. Then, the experimenter left the room. Mosquitoes
could then choose to fly around their preferred trap. After 20 minutes, the experimenter
re-entered the room, closed the traps, killed the remaining mosquitoes in the cage using an
electric mosquito zapper and cleaned the cage with a vacuum cleaner. Each trap capture
bag was then placed in a freezer to kill captured mosquitoes, which were manually counted
later. Relative humidity and temperature inside the room were recorded before and after
each trial using a weather station (TFA Dostmann/Wertheim, Kat. Nr. 30.5015). Four such
dual-choice trials were done during each experimental morning, which coincided with the
dark period of night-active mosquitoes.

3.2.5 Semi-field testing

To verify the results of the dual-choice laboratory tests, the capture percentage of the BG-
Suna and the M-Tego with or without heat and warm water in semi-field experiments were
compared. These experiments were performed at the Ifakara Health Institute (Ifakara, Tan-
zania) during the first week of November 2018. For the experiments, three screen houses
of 10×10 m each were used with a slightly scaled-down house inside (see Fig. S3.3). These
houses were built from local materials such as bricks, corrugated sheet metal, straw or mud.
Three traps were tested each experimental night, a BG-Suna, a M-Tego without additional
host cues and an M-Tego with heat and warm water. The tested traps were placed outside
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the houses, with their inlet pipe at a height of 65 cm. The fact that this height is higher
than the one in the laboratory experiments (65 vs. 54.5 cm) might have resulted in a small
overall difference in capture performances (Hiscox et al., 2014). However, it is unlikely that
it would have affected the comparative results between traps. The M-Tego traps were hung
from the house, whilst the BG-Suna was placed in a metal wire frame on the ground. The
traps were cleaned before use with 70% ethanol and handled with gloves afterwards. Each
trap was powered using a 12 V car battery and contained an MB5 odour source. CO2 was
produced using 5.5 L plastic containers with a yeast and molasses mixture, which was placed
next to each trap, and replaced daily. Inside each house, a set-up with CO2, a MB5 blend
and a fan (same as used in the traps) was placed below a bed net to simulate human presence.
The fan was positioned such that it produced an airflow that directed the odour and CO2
towards the nearest window. Screen houses were cleaned before and after the experiments.
Only natural (moon) light was illuminating the screen house during the night.

Before each trial, each trap was equipped with one of three MB5 odour sources (OS3,
OS4 or OS5), and placed inside one of the three screen houses. The odour source and the
screen house used for each trap were changed following a quasi-randomized planning (see
supplementary database S2). The M-Tego with short-range host cues was then filled with
0.7 L of water from a water bottle that stood in direct sunlight during the day (temperature
= 39.7± 0.5◦C, n= 2). At the start of the experiment, a release pot containing 200 females
An. gambiae s.s. was placed in the corner of each screen house and the mosquitoes were
released manually, at approximately 18:00 hours. The experiment ended around 06:20 the
following morning. Captured mosquitoes were killed by moving the capture bag or pot
out of the trap and placing them in direct sunlight for a day. The desiccated mosquitoes
were manually counted.

The mean run-time of the experiments was 12 hours and 23 minutes (± 22 minutes). At
the start of the experiment, the ambient air temperature was 32.4± 1.4◦C and ambient rel-
ative humidity of the air was 38.1 ± 4.7%. The next morning, the ambient air temperature
was 22.9 ± 0.8◦C and ambient relative humidity was 78.0 ± 6.0%.

3.2.6 Mosquito flight tracking experiments

To study the flight behaviour of mosquitoes around the M-Tego with or without additional
host cues, mosquitoes were tracked around the traps in the same netted cage as used for
the dual-choice tests (ambient temperature= 24.9± 0.7◦C and relative humidity= 73.7±
3%). The experimental procedure was identical to the dual-choice experiments, except for
the following differences. A single M-Tego was placed on the right side of the dual-choice
setup and a single MB5 odour source was used inside the trap (OS1). Four trap conditions
were tested, the M-Tego without additional cues, the M-Tego with heat, the M-Tego with
warm water, and the M-Tego with heat and warm water. Each experimental morning, all
conditions were tested using as quasi-randomized planning (see supplementary database
S1).
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Figure 3.1: Comparing capture performance of the BG-Suna and the M-Tego, with and without
close-range host cues. (a,b) Capture percentage of the BG-Suna and the M-Tego with or without ad-
ditional host cues against a second BG-Suna in dual-choice tests (a) and in separated screen houses in
semi-field tests (b). Dashed line shows expected percentage if no differences existed between the traps.
Letters above box plots indicate results that did not differ significant (GLM, p > 0.05). Total numbers of
captures per condition are indicated in parentheses. (c,d) Formula and results of the minimal GLM used
to model variation of capture percentages in a and b, respectively.

Three infrared-enhanced cameras (Basler acA2040-90umNI) with Kowa 12.5 mm lenses
(LM12HC f1.4) were used for the tracking (Fig. 3.2), which synchronously recorded im-
ages at temporal resolution of 90 frames per second and a spatial resolution of 1,024×1,024
pixels. Cameras were synchronized using pulses from an Arduino Uno board. Because
mosquitoes cannot see infrared light (Gibson, 1995), the tracking set-up was illuminated
using two infrared light-emitting-diode (LED) lamps (Bosch Aegis SuperLed, 850 nm, 10◦
beam pattern – SLED10-8BD). Lens distortions were corrected using pictures of a chequer-
board pattern. Calibration was done daily using a single LED manually waved inside the
filmed volume to find DLT (direct linear transformation) coefficients (Cabral and Lee-
dom, 1993). Alignment was done with a calibration device with four LEDs that were con-
secutively blinking at various known three-dimensional positions. The real-time three-
dimensional tracking software Flydra (version 0.20.19) was used to track the three-dimensional
positions, velocities and accelerations of flying mosquitoes within a three-dimensional space
of approximately 1x1x1 m around the trap (Straw et al., 2011). For each experiment, mos-
quito flight trajectories were recorded for 20 minutes, but the first 3 minutes were used for
tracker initialization. The remaining 17 minutes were used for the analysis.
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Figure 3.2: Experimental setup of the mosquito-tracking experiments, and analysis method for
visualizing the three-dimensional flight dynamics in two-dimensional heat maps. (a) Schematic of
the M-Tego with a removed slice to make the inside visible. The fan inside the inlet generates a circulating
airflow by sucking air inside (blue arrows), mixing it with the odour blend and CO2, and then pushing air
away from the trap (green arrows). Additionally, the trap can be filled with 1 L of warm water and heat can
be generated by a Nichrome heating wire at the top of the inlet. (b) Top-down view of the experimental
setting used for recording mosquito flight behaviour around the M-Tego. The filmed region is delimited
by the angles of view of the 3 cameras (dashed grey lines). Flight tracks recorded during one trial are
visualized in blue. Rest of the caption on the next page.
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(c,d) Method for projecting three-dimensional rings around the trap (c) into two-dimensional surfaces (d).
(c) The filmed volume was divided in three-dimensional rings of equal volume and centred around the trap
axis of symmetry. (d) Each ring is projected into a cell in a two-dimensional parametric space comprising
the vertical position (z-coordinate) and the radial distance to the trap’s axis of symmetry. In this way, heat
maps of various metrics have been computed to visualize flight behaviour.

3.2.7 Analysis of three-dimensional flight tracks

All the flight dynamics analyses were done using Matlab 2018b (MathWorks). Mosquitoes
could enter and exit the filmed three-dimensional space several times per trial, therefore in-
dividuals could not be identified. Filtering of tracked points was based on the covariance
matrices estimated by the extended Kalman filter used for three-dimensional reconstruc-
tion by Flydra. Three-dimensional points with too high estimated standard deviation of
either their position or speed were considered as outliers and deleted. When two or fewer
consecutive video frames had missing values in the three-dimensional tracks, they were lin-
early interpolated. If more than two consecutive frames had missing values, the trajectory
was divided in two separate tracks. Finally, tracks shorter than 10 video frames in length
were deleted. For all frames of each computed three-dimensional track, linear and angular
flight speeds as well as linear accelerations were computed (as in (Cribellier et al., 2018)).

To systematically analyse the flight behaviour of mosquitoes around the M-Tego trap,
the visualization technique developed by (Cribellier et al., 2018) was used: based on the veri-
fied assumption that the three-dimensional flight behaviour is on average axially symmetric
around the trap axis of symmetry, the three-dimensional flight movements can be projected
onto a two-dimensional sub-space (Cribellier et al., 2018). For this, the three-dimensional
space was divided into multiple three-dimensional rings centred around the M-Tego axis
of symmetry (Fig. 3.2a,c). Within each ring, all relevant flight dynamics metrics (such as
mean flight speed) were computed. Results were visualized by projecting the metric value
in each ring onto a two-dimensional parametric space with the radial and vertical positions
as coordinates (Fig. 3.2d). All rings had a constant volume to allow metric comparison. In
addition, all metric results were visualized using two-dimensional heat maps from a top-
down view and from a side view close to the background walls (see supplementary Figs S5,
S7, S9 and S12). For these the three-dimensional space around the trap was divided into
vertical and horizontal columns, respectively.

For each tested condition, the following metrics were computed in all cells (rings or
columns) around the trap: the positional likelihood of mosquitoes in each cell (Figs 3a,d,
4a), the average time spent in a cell, the average flight velocity, flight speed, upward accel-
eration, angular speed, and capture probability.

The capture probability of a mosquito flying in a specific cell is defined as the num-
ber of tracks in that cell that ended by a capture divided by the total number of tracks
detected in the cell. The positional likelihood of mosquitoes in a cell is defined as the nor-
malized probability of a mosquito to fly in a cell (i.e., a horizontal ring projected in the
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two-dimensional parametric space). This metric allows the identification of regions of high
flight activity. The positional likelihood Pi of mosquitoes to fly in cell i, was computed as
Pi =

ni
N × I, where N is the sum of the length of all tracks in the filmed three-dimensional

space (i.e. the total number of frames), ni is the sum of the length of the parts of these
tracks with mosquitoes flying in cell i, and I is the total number of cells within the three-
dimensional space. In this way, if flight behaviour was random and the number of tracks
was high, the positional likelihood heat-maps would be uniform with a value of 1. The av-
erage time spent by mosquitoes in a cell is defined as the total time spent by all mosquitoes
in a cell divided by the number of tracks detected in that cell. Because the positional like-
lihood in a cell is equivalent to the normalized total time spent by all mosquitoes in a cell,
the average time spend is a good metric to weight the measure of positional likelihood. For
details about the other metrics, see (Cribellier et al., 2018).

To test how close-range cues affected the flight dynamics of mosquitoes, the difference
in each metric between treatments were computed by subtracting the results distribution
around the M-Tego without additional cues from the treatments with heat and/or warm
water (Fig. 3.4).

3.2.8 Statistical analysis

For all statistical tests, generalized linear models (GLM) were used. For each test, the min-
imal model was determined by successively removing the least significant predictors from
the model until all remaining predictors were significant (p-value <0.05). We then chose
the GLMs with the lowest AIC (Akaike Information Criterion) values (see supplementary
Table S3.1).

For the dual choice experiments, a GLM with a binomial distribution, logit link func-
tion and estimated dispersion (Verhulst et al., 2015) was used. The response variable of the
GLM was the capture percentage, defined as the ratio between number of captures by one
trap and the number of captures by both traps. The predictors for the full model were: trap
(BG-Suna or M-Tego), with or without heat, with or without warm water, mean humidity,
mean temperature. Location (left or right side) and the odour source used in the trap (OS1
or OS2) were also included as random effects. When determining the minimal model, the
predictors of interest “trap”, “heat” and “warm water” in the model were always kept.

For the semi-field experiment, a GLM with a binomial distribution, logit link func-
tion and estimated dispersion was also used. The response variable of the GLM was the
capture percentage, defined as the ratio between number of captures of one trap and the
total number of captures of all traps across all three screen houses. The full model predict-
ors were trap (BG-Suna or M-Tego), with/without heat and warm water, mean humidity,
mean temperature, day of the experiment, house number (H1, H2 or H3), and the odour
source used in the trap (OS3, OS4 or OS5).

To compare the flight behaviour of the mosquitoes around the M-Tego trap with or
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without host cues, three doughnut-shaped volumes were defined around the top rims of
the trap with various radii of their tube (r=

[
1
2 ,

3
4 , 1
]
×
(
rbag − rinlet

)
, with rbagand rinletbeing,

respectively, the radius of the tarpaulin bag and radius of the inlet of the trap). The posi-
tional likelihood of mosquitoes to be tracked inside these volumes as well as how long on
average they stayed inside for each trial was then computed (Fig. 3.6). Because mosqui-
toes were not tracked during the dual-choice and semi-field experiments, these two metrics
could not be used as covariate in the previously described models. GLMs with a gamma dis-
tribution, negative inverse link function and estimated dispersion were used to model how
these two metrics varied as a function of the presence of heat and warm water. Full model
predictors were with heat (yes or no), with warm water (yes or no), mean humidity, mean
temperature, volume of the doughnut and age in days of the adult female mosquitoes.

3.3 Results

3.3.1 Capture efficiency of the traps

A total of 39 dual-choice trials were performed in the laboratory (Fig. 3.1a) and 907 female
mosquitoes were caught by the traps, for a total of 1,950 released mosquitoes (more details
in the supplementary database S3.1). Here, the capture performance of the M-Tego with
various additional short-range host-cues was compared to that of the BG-Suna (Fig. 3.1).
The M-Tego without additional short-range host-cues captured on average 70.8%± 13.6%
(mean ± std, 7 trials) of the total number of mosquitoes captured by the M-Tego and BG-
Suna combined, which was significantly higher than the capture percentage of the BG-
Suna in control experiments (GLM, p = 0.019). Adding heat to the M-Tego significantly
increased this capture percentage to 81.1% ± 9.7% of all captured mosquitoes (GLM, p
<0.001, 8 trials). The M-Tego with only warm water captured 74.8% ± 12% (7 trials) of
all captured mosquitoes, and the M-Tego with both warm water and heat captured 83.8%
± 7.3% (7 trials), but the effect of adding warm water to the M-Tego (with (9 trials) or
without heat (7 trials)) was not significant (GLM, p = 0.692). On average the M-Tego
without additional cues and with heat captured 2.4 and 4.3 as many mosquitoes than the
competing BG-Suna.

A total of six tests were performed in semi-field conditions (Fig. 3.1b) in which the
capture performance of the BG-Suna, the M-Tego without additional cues and the M-
Tego with warm water and heat were compared. 3,600 female mosquitoes were released,
of which a total of 1,525 were caught (see supplementary database S3.2 for details). The
M-Tego without additional host cues captured on average 33.8% ± 8.3% of all mosquitoes
captured by the three traps, the M-Tego with warm water and heat captured 54.7%± 9.4%
of these mosquitoes, and the BG-Suna captured only captured 11.5%± 2.4% of all captured
mosquitoes (Fig. 3.1b). The capture percentages of all three traps differed significantly from
each other (GLM, p <0.001, Fig. 3.1), showing that on average the M-Tego without and with
additional cues captured 2.9 and 4.7 as many mosquitoes than the BG-Suna, respectively.
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3.3.2 Flight dynamics around the M-Tego

The flight dynamics of mosquitoes around the M-Tego trap were monitored, with or without
additional host cues for a total of 18 hours and 25 minutes (65 trials). During these trials,
3,250 mosquitoes were released, 13,618 flight trajectories were reconstructed, and 1,335 of
these tracks led to capture. The number of tracks per trial that were identified to result
in a capture was highly correlated with the number of mosquitoes caught inside the traps
(1,600 mosquitoes in total, correlation coefficient=0.937). This suggests that the detection
of tracks leading to capture was good.

From all these tracks, various heat maps were computed to visualize the average flight
behaviour of the mosquitoes around the traps (Figs 3-5). Positional likelihood around the
M-Tego without additional cues was similar to the ones observed above the BG-Suna (Cri-
bellier et al., 2018). Near both traps, mosquitoes were likely to be found flying in a cone-
shaped region close to the traps (Fig. 3.3). Their positional likelihood was especially high
close to the rim of the top surface where odour is released. Despite this similarity in pos-
itional likelihood, the average flight dynamics around the BG-Suna and the M-Tego traps
exhibited clear differences. Although mosquitoes had similar flight paths towards the in-
lets of both traps, only mosquitoes flying above the BG-Suna exhibited an upward-directed
avoiding behaviour (Fig. 3.3b,e). This difference is highlighted by the heat maps represent-
ing mean vertical acceleration (Fig. 3.3c,f ). Indeed, mosquitoes close to the M-Tego inlet
were on average only accelerating downward (i.e., when being caught), while above the
BG-Suna mosquitoes were also found to avoid capture by accelerating upwards (Cribellier
et al., 2018). Flight paths in other regions near the M-Tego do not show any clear directional
patterns (Fig. S3.7).

Two distinct behavioural regions can be defined based on the spatial distributions of
the remaining computed flight metrics around the M-Tego (Fig. 3.5b-e). In the first region,
just above and around the trap tarpaulin bag, mosquitoes had on average lower flight speeds
and higher angular speeds (Fig. 3.5b,d) than in the rest of the filmed volume. In the second
region, above the trap inlet, mosquito flew faster and produced on average higher accelera-
tions (Fig. 3.5b, c). In this last region, the capture probability was also the highest (Fig. 3.5e),
meaning that most tracks detected there led to capture.

3.3.3 Effect of heat and warm water on flight behaviour

To compare the flight behaviour of mosquitoes around the M-Tego with or without addi-
tional host cues, heat maps of their positional likelihood (Fig. 3.4a) and time spent close
to the traps (Fig. 5a) were computed. On these heat maps, a higher flight activity was
observed close to the M-Tego when additional host cues were added. By adding heat to
the M-Tego, the positional likelihood around the rim of the trap increased by 79.0% ±
49.5%; when adding warm water, the positional likelihood increased by 98.3% ± 52.3%;
when adding both heat and warm water, the positional likelihood around the trap rim was
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increased by 171.1% ± 79.5% (GLM with p <0.001, Fig. 3.6d, f ). Additionally, mosquitoes
have been found to fly on average 21.2% ± 38.5% longer in this region if the trap gener-
ated heat, 12.6% ± 36.5% longer if warm water was added to the trap, and 37.3% ± 46.0%
longer if both cues were present (GLM, p >0.03, Fig. 3.6e, g). The spatial distribution of
the remaining computed flight metrics did not vary if heat or warm water were added to
the M-Tego (see supplementary Fig. S3.10–S3.12).

3.4 Discussion

The main hypothesis examined in this study was that due to a lack of the close-range host
cues heat and humidity, mosquitoes do not approach counter-flow odour-baited traps
closely enough, thus resulting in low capture efficiency. To systematically test this hy-
pothesis, a novel trap was developed, the M-Tego, to provide these close-range host cues.
First, the capture performance of this M-Tego with or without additional cues to that of
the standing BG-Suna were compared in dual-choice tests and semi-field experiments. The
flight behaviour of female mosquitoes around this M-Tego trap with or without additional
heat and humidity were also compared.

It was found that, when the close-range host cues heat and humidity were present,
more mosquitoes were lured to a region close to the rim of the trap tarpaulin bag. Mos-
quitoes were also observed to stay longer in this region where flight activity was high. This
increase in mosquito attraction and time spent in this region when short-range host cues
were present correlates with the concomitant increase in capture percentages.

These results are consistent with previous findings showing that heat and increased
local humidity are important short-range host cues used by mosquitoes (Hawkes et al.,
2017; Kline and Lemire, 1995; Olanga et al., 2010; Spitzen et al., 2013). Several odour-baited
traps such as the HDT or CDC-type traps were shown to have increased capture rate when
generating heat (Hawkes et al., 2017; Kline and Lemire, 1995). Heat and increased local
humidity have been classified as short-range cues because they cannot be detected from
more than one metre, and work in synergy with host odour and CO2 to trigger landing
behaviour (McMeniman et al., 2014; Spitzen et al., 2013). As such, it is not surprising that
such cues are crucial for adhesive traps like the HDT because they only capture mosquitoes
that land (Hawkes et al., 2017). However, counter-flow traps capture mosquitoes while
they fly, and therefore the function of short-range host cues for these traps was previously
not clear. Then again, the higher flight activity observed near the trap tarpaulin bag would
suggest that landing on the bag occurred more often when these cues were present (Hawkes
et al., 2017).

Similar behavioural changes were observed when adding a heat source and warm water
to the M-Tego. This occurred even though the heat source was placed on the top of the trap
inlet while the warm water was inside the tarpaulin bag. This suggests that the circulating
airflow allowed an approximately homogeneous mixing of the warmed air around the trap.
This is confirmed by measurements (Fig. S3.15) showing similar temperature increases in
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Figure 3.3: Comparison of the flight dynamics of mosquitoes around the BG-Suna and the M-Tego.
(a,d) Heat maps of the positional likelihood of mosquitoes flying around (a) the BG-Suna (from Cribellier
et al. 2018) and (d) the M-Tego without additional host cues. The positional likelihood Pi in a cell i is
defined as the normalized probability of mosquitoes to fly inside a given three-dimensional ring around the
trap (average cell size = 19 x 3 mm). Random flight behaviour would result in a uniform probability equal
to 1 throughout the filmed volume. Rest of the caption on the next page.
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(b,e) Average velocity fields and streamlines of mosquitoes flying around (b) the BG-Suna and (e) the
M-Tego without additional host cues. Each vector consists of the average velocity in the radial and vertical
direction of all mosquitoes that flew in a cell (size = 27.5 x 27.5 mm). All velocity vectors resulting from
fewer than 20 tracks were discarded. Streamlines are shown using line integral convolution (LIC). (c,f )
Heat maps of the average vertical acceleration of mosquitoes flying around (c) the BG-Suna, and (f ) the
M-Tego without additional cues.
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Figure 3.4: Spatial distribution of the positional likelihood of mosquitoes flying around the M-Tego
with and without additional cues. (a) Radial - vertical heat maps of the positional likelihood around the
M-Tego with various combinations of additional host cues. The positional likelihood Pi in a cell i is defined
as the normalized probability of mosquitoes to fly inside a given three-dimensional ring around the trap.
Random flight behaviour would result in a uniform probability equal to 1 throughout the filmed volume.
Average cell size = 19 x 3 mm. (b) Difference between the heat maps of positional likelihood around the
M-Tego with various additional host cues (heat and/or water) and the heat maps of positional likelihood
around the M-Tego without additional host cues.
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Figure 3.5: Heat maps of various flight dynamics metrics of mosquitoes flying around the M-Tego.
(a) Heat maps of the average time spent by mosquitoes around the M-Tego with various combinations of
additional host cues. (b–e) Heat maps of the average flight speed, average acceleration, average angular
speed and capture probability of mosquitoes flying around the M-Tego (without additional cues). Cells with
fewer than 20 tracks have been masked. Average cell size = 19 x 3 mm. See supplementary Fig. S3.10–
S3.12 for additional heat-maps of these metrics.

the full volume above the trap bag.
Results suggest that there is a saturation effect of adding heat and warm water on the

change of flight activity near the trap (Fig. 3.6f ), e.g., the benefit of adding both cues to-
gether is not the sum of their separate benefits. Moreover, despite including both sensory
cues (heat and humidity), the benefit of adding warm water to the M-Tego was not clearly
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Figure 3.6: The positional likelihood and time spent in the donut-shaped region close to the trap
edge, and how these differed for traps with variable additional host cues. (a–c) Method description,
showing (a) a three-dimensional view of the donut shaped volume used to compare flight behaviour around
the trap, (b) a transverse section through three donuts with variable radii, and (c) the method explanation
for the comparison between the different treatments. (d–g) Statistical results for the largest donut-shaped
volume (yellow in b), using 7153 tracks. Results for the two smaller volumes are shown in supplementary
Fig. S3.13. (d) Box plots of the positional likelihood inside the largest donut-shaped volume (yellow in b)
of mosquitoes flying around the various traps with or without additional cues. Each datapoint shows the
result of a single trial. (e) Box plot of the average time spend inside the largest volume (yellow in b) by
mosquitoes flying around the different traps with various additional cues. (d,e) Each datapoint shows the
result of a single trial, and different letters above each box plot indicate significance difference between
treatment (GLM, p < 0.05). (f,g) Formula and results of the generalized linear mixed models (GLM) used
to model the metrics from panel d and e, respectively.

established because this addition of warm water was not found to significantly increase cap-
ture percentages of the M-Tego in laboratory conditions, but resulted in increased flight
activity and time spent near the trap. A higher difference between the local humidity and
ambient humidity might have resulted in significant difference in trapping performances.
Thus, future research could investigate the effects of such differences between local and am-
bient values of temperature and relative humidity on capture performance, as well as how
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mosquito flight dynamic is affected by changes in the position of local heat and humidity
sources.

To generate short-range host cues in the field, it is probably easier to use a heat source
rather than warm water. The latter requires more labour as water needs to manually be
warmed up, and evaporated water needs to be replaced. Also, small water bodies may at-
tract mosquitoes to oviposit, and access to water needs to be carefully restricted. In addi-
tion, warming up water requires most likely more energy than directly using a heat source
on the trap. Passive heating solutions may need to be considered to reduce energy con-
sumption.

In all experiments, the heat source was powered using the same 12V energy source used
for the fan. The Nichrome heating wire used 9.6W, and because the fan only used 3.4W,
adding the heating wire increased the power requirement of the trap by 282%. This power
requirement may need to be lowered if the M-Tego is to be powered using solar panels in
rural areas without a power grid.

Still, the M-Tego presents several advantages as a potential vector control tool against
malaria. Like other counter-flow odour-baited traps, it uses artificial bait, and does not
need to draw odours from living organisms such as humans or cattle. This greatly improves
usability and repeatability, which are important when used as a monitoring tool. The M-
Tego is easy to transport thanks to its small size, it has high modularity and can be folded
like the BG-Sentinel, and its catch pot is easier to remove and empty than commonly used
capture bags. Finally, despite having similar designs, the M-Tego without additional host
cues captures between 2.4 to 2.9 as many Anopheles mosquitoes than the standing BG-Suna.

There was one striking difference in the flight dynamics of mosquitoes around the M-
Tego when compared to the previously studied standing BG-Suna. Mosquitoes were found
to elicit upward manoeuvres resulting in escapes above the inlet of the standing BG-Suna
(Cribellier et al., 2018) and the BG-Sentinel (Amos et al., 2020). Such manoeuvres were
not observed above the M-Tego. This difference might help explain the superior capture
percentages of M-Tego compared to the standing BG-Suna, even when no additional close-
range host cues were present. Despite similarities between the two traps, the design of the
M-Tego distinguished itself by its materials, its smaller size and the use of a transparent net
through which the odour is released, instead of perforated hard plastic (see supplementary
Fig. S3.1). Therefore, the slightly different visual cues and airflow generated by the M-Tego
may explain the lack of avoidance behaviour. The airflow speeds measured around the M-
Tego were similar to the ones measured around the BG-Suna (see supplementary Fig. S3.15
and (Cribellier et al., 2018)). However, it is possible that the fine net of the M-Tego resulted
in a different turbulence level of the airflow, which might have changed how mosquitoes
perceived the air movements (Geier et al., 1999). The exact reason for this capture perform-
ance difference needs to be investigated further.

Except for the differences in flight behaviour near the trap inlet, the mosquito flight dy-
namics around the M-Tego were very similar to what has been observed around the stand-
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ing BG-Suna and BG-Sentinel (Amos et al., 2020; Cribellier et al., 2018). However, be-
cause the cameras covered a larger volume than previous studies, it was possible to study
the flight behaviour around the full trap and close to the back walls (see supplementary
Figs S5, S7, S9 and S12). Similarly to what was observed for the standing BG-Suna and the
BG-Sentinel, the flight activity was the highest close to the M-Tego, where mosquitoes had
lower flight speed and higher angular speed (Amos et al., 2020; Cribellier et al., 2018). Such
flight characteristics suggest that mosquitoes were host-seeking in this region (Spitzen et al.,
2013). Additionally, mosquitoes had high average flight speeds and accelerations in the re-
gion close to the inlet, and where the capture probability was high. Moreover, the size and
shape of this capture region were similar to the ones of the capture region of the standing
BG-Suna (Cribellier et al., 2018). These similarities are not surprising considering that the
two traps generate similar odour cues and airflow speeds (see supplementary Fig. S3.15).

3.4.1 Conclusions

By tracking mosquitoes in the vicinity of the newly developed M-Tego trap, their interac-
tion with this odour-baited trap was described. Even though the role played by warm water
is still ambiguous, adding a heat source to the trap resulted in large and significant increases
in capture performance of the M-Tego in both laboratory and semi-field conditions. The
results of this study suggest that these increases are due to a rise of flight activity close to
the rim of the odour-release surface of the trap. The presence of the close-range host cues
heat and increased humidity caused mosquitoes to approach the trap more often, and it
retained mosquitoes for a longer period close to the trap. The combination of more ap-
proaches and increased retainment most likely explain the up to 129% increase in capture
performance of the M-Tego with close-range host cues, compared to the M-Tego without
such cues.

Additionally, in contrast to what was observed above the standing BG-Suna and BG-
Sentinel (Amos et al., 2020; Cribellier et al., 2018), it was shown that the average mosquito
did not exhibit upward avoiding manoeuvres when flying above the M-Tego. This im-
portant difference could explain the 140% to 190% increase in capture performance of the
M-Tego without additional host cues, relative to the standing BG-Suna.

This study showed that adding close-range host cues to odour-baited traps can greatly
increase their capture performance. This knowledge may help the development or im-
provement of vector control tools and strategies, especially for malaria vectors. In addition,
this study showed that the M-Tego has the potential to be valuable for the monitoring and
control of Anopheles mosquitoes.
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Symbols and abbreviations

GLM generalized linear model
AIC Akaike information criterion
std standard deviation
Pi positional likelihood of mosquitoes in a cell i

N sum of the length of all tracks in the filmed volume (i.e. the total number of
frames)

ni sum of the length of the parts of these tracks with mosquitoes flying in the cell i

I total number of cells within the filmed volume
rbag radius of the trap bag
rinlet radius of the inlet of the trap
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Legends of the supplementary datasets and table

The datasets can be found at: https://doi.org/10.1186/s12936-020-03403-5
Database S2.1: Experimental conditions and results from the dual-choice testing and
the mosquito flight tracking in the laboratory (Wageningen, the Netherlands).

Database S2.2: Experimental conditions and results from the semi-field experiments
(Ifakara, Tanzania).

Database S2.3: Mosquito flight tracks around the M-Tego with or without additional
host cues and experimental metadata. Matlab .mat file with the three-dimensional tracks
of the flying mosquitoes were obtained as described in the materials and methods. Flight
tracks were described as the x, y, z coordinates in meters of the mosquito at each video
frame. Coordinates are in the world reference frame as defined in Fig. 3.1, with z oriented
vertically up, and its origin at the centre of the trap inlet.
Table S2.1: Table with generalized linear models (GLM) results and model selection
criterions used to select the models presented in the manuscript.
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Figure S3.1: Pictures and exploded view of the M-Tego prototype mosquito trap. (a) Picture of the
M-Tego trap used during the experiments (Photo by Sven Menshel). (b) Exploded view of the trap showing
its various parts.
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Figure S3.2: Experimental setup used for the dual-choice experiments. (a) Top-down view of the
room used for the laboratory experiments at Wageningen University (Wageningen, The Netherlands). Two
traps (standing BG-Suna or M-Tego) were placed on the left and right of the dual-choice setup (alternated
between replicates). The traps were separated by a vertical white wall. A MB5 blend was placed inside
each of the traps and both were connected to the CO2 canister. Several humidifiers and one heater were
regulating the relative humidity and temperature in the room. (b) BG-Suna placed in the left side of the
setup. (c) M-Tego placed in the right side of the setup.
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Figure S3.3: Experimental setup of the semi-field experiments. (a) Top-down view of the setup inside
one screen house at Mosquito City in Ifakara (Tanzania). A standing BG-Suna or M-Tego was placed
outside the house. Inside the bed net in the house, we placed a fan with an MB5 blend and a molasses-
based CO2 source to mimic human presence. (b) Top-down view of all three screen houses used in the
semi-field experiments.
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Figure S3.4: Spatial distribution of the positional likelihood of mosquito flying around the M-Tego
with or without additional cues (half the volume, as indicated in the top right of a). (a) Radial -
vertical heat maps of positional likelihood around the M-Tego with or without additional host cues. As
indicated in the top right of a, all heat maps have been computed on only half the volume to avoid overlap-
ping with blind spots behind the trap. (b) Difference between the heat maps of positional likelihood around
the M-Tego with additional host cues (heat and/or water) and the heat maps of positional likelihood around
the M-Tego without additional host cues. Average cell size = 19 x 3 mm.
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Figure S3.5: Positional likelihood of mosquito flying within various volumes around the M-Tego
with or without additional cues (volumes around the trap are indicated on the right). (a) Vertical
heat maps of positional likelihood close to the walls behind the various conditions, as indicated on the top
right. (b,c,d) Top-down view of the positional likelihood above the trap inlet (b), at the inlet height (c) and
around the trap base (d). Average cell size = 19 x 19 mm.
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Figure S3.6: Average velocity fields and streamlines of mosquitoes flying around the M-Tego with
or without additional host cues (cues as indicated by the symbols). (a) Vectors show the average
velocity fields in the radial and vertical direction each cell of average size 27.5 x 27.5 mm. Velocity vectors
resulting from fewer than 20 tracks were discarded. Streamlines were computed using LIC (Line Integral
Convolution).
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Figure S3.7: Average velocity fields and streamlines of mosquitoes flying within various volumes
around the M-Tego with or without additional cues (volumes around the trap are indicated on the
right in dark green). (a) Vertical view of the average velocity fields close to the walls. Each vector consists
of the average velocity in that cell of average size 27.5 x 27.5 mm. All velocity vectors resulting from less
than 20 tracks were discarded. Streamlines were computed using LIC (Line Integral Convolution). (b,c,d)
Top-down velocity fields above the trap inlet (b), at the inlet height (c) and around the trap base (d). Cell
size is 55 x 55 mm.

126



3s

a)

b)

-40

-30

-20

-10

0

10

20

30

40

50

he
ig

ht
 [c

m
]

0.4

0.2

0.4

di
ffe

re
nc

e 
of

 m
ea

n 
tim

e 
sp

en
t i

n 
ce

ll 
[s

]
-0.2

0

with heat with water

w
at

er
 a

nd
 h

ea
t

-40

-30

-20

-10

0

10

20

30

40

50

he
ig

ht
 [c

m
]

with heat with heat and waterwith water

around

0.4

0

0.3

m
ea

n 
tim

e 
sp

en
t i

n 
ce

ll 
[s

]

0.1

0.2

no additional cues

0 10 20 30
radial distance [cm]

40 0 10 20 30
radial distance [cm]

40 0 10 20 30
radial distance [cm]

40 0 10 20 30
radial distance [cm]

40

0 10 20 30
radial distance [cm]

40 0 10 20 30
radial distance [cm]

40 0 10 20 30
radial distance [cm]

40

Figure S3.8: Spatial distribution of time spent by mosquitoes around the M-Tego with or without
additional cues. (a) Radial - vertical heat maps of the average time spend by mosquitoes around the
M-Tego with or without additional host cues. (b) Difference between the heat maps of time spend around
the M-Tego with additional host cues (heat and/or water) and the heat maps of time spend around the trap
without additional host cues. Average cell size = 19 x 3 mm.

127



a) with heat with heat and waterwith water

above

inlet

base

near walls

0.4

0

0.3

m
ea

n 
tim

e 
sp

en
t i

n 
ce

ll 
[s

]

0.1

0.2

no additional cues

b)

-50

0

50

y-
co

or
di

na
te

 [c
m

]

c)

-50

0

50

y-
co

or
di

na
te

 [c
m

]

d)

-50 0
x-coordinate [cm]

50

-50

0

50

y-
co

or
di

na
te

 [c
m

]

0 10 20 30
distance from 

walls [cm]

40

-40

-30

-20

-10

0

10

20

30

40

50

he
ig

ht
 [c

m
]

-50 0
x-coordinate [cm]

50

0 10 20 30
distance from 

walls [cm]

40

-50 0
x-coordinate [cm]

50

0 10 20 30
distance from 

walls [cm]

40

-50 0
x-coordinate [cm]

50

0 10 20 30
distance from 

walls [cm]

40

Figure S3.9: Spatial distribution of time spent by mosquitoes within various volumes around the
M-Tego with or without additional cues (volumes around the trap are indicated on the right in dark
green). (a) Vertical heat maps of the average time spend by mosquitoes close to the walls behind the
traps. (b,c,d) Top-down view of the average time spend by mosquitoes above the trap inlet (b), at the inlet
height (c), and around the trap base (d). Average cell size = 19 x 19 mm.
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Figure S3.10: Spatial distribution of flight speed and vertical acceleration of mosquitoes flying
around the M-Tego with or without additional cues. (a) Radial - vertical heat maps of the average flight
speed around the M-Tego with or without additional cues. (b) Radial - vertical heat maps of the average
acceleration of mosquitoes flying around the M-Tego with or without additional cues. Average cell size =
19 x 3 mm.
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Figure S3.11: Spatial distribution of angular flight speed and capture probability of mosquitoes
flying around the M-Tego with or without additional cues. (a) Radial - vertical heat maps of the
average angular speed of mosquitoes. (b) Radial - vertical heat maps of mosquitoes capture probability
around the M-Tego with or without additional cues. Average cell size = 19 x 3 mm.
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Figure S3.12: Spatial distribution of various flight dynamics metrics of mosquitoes flying within
various volumes around the M-Tego without additional cues (volumes around the trap are indic-
ated on the right in dark green). (a) Vertical heat maps of average flight speed, average acceleration,
average angular speed and capture probability near the wall. (b,c,d) Top-down view of these metrics
above the trap inlet (b), at the inlet height (c) and around the trap base (d). Average cell size = 19 x 19
mm.
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Figure S3.13: Positional likelihood and time spent by mosquitoes in the donut-shaped region close
to the trap edge. (a,c,e) Box plots of the percentage of points detected inside three volumes of various
sizes over the total number of detected points for each trial and in function of if the trap was with or without
additional cues. (b,d,f ) Box plots of the average time spend by mosquitoes inside the three donuts of
various sizes for each trial and in function of if the trap was with or without additional cues. The number
of tracks used for computing both metrics were 7153 (a,b), 9011 (c,d) and 10565 (e,f ).
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Figure S3.14: Histograms of several flight metrics around the M-Tego. Histograms of mosquito flight
speed, acceleration and angular speed for all recorded frames (a) or averaged per tracks (b).
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Figure S3.15: Airflow and temperature measurements around the M-Tego. (a) airspeeds generated
by the M-Tego at various position around the trap. These airspeeds have been computed from the vertical
and radial airspeeds measured with a hotwire anemometer (tetso 405i). These are similar to the ones
measured around the BG-Suna (Cribellier et al., 2018). (b) Temperature generated by the nichrome wire
on the top of the M-Tego inlet (with fan turned on). These temperatures have been measured at various
positions around the trap. Standard deviations are shown using circles of various sizes (the legend is
showing corresponding factors).
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Abstract

Flying insects have developed the ability to rapidly evade approaching objects such as pred-
ators and swatting hands. This is particularly relevant for blood-feeding insects like mos-
quitoes that routinely need to avoid defensive actions of their blood-hosts. To minimize
the chance of being swatted, a mosquito can use two different strategies: exhibit an unpre-
dictable flight path or maximize its escape manoeuvrability. Here, we studied how flight
unpredictability and escape manoeuvrability affects the escape performance of day-active
and night-active mosquitoes (Aedes aegypti and Anopheles coluzzii, respectively). We used
a multi-camera high-speed videography system to track how freely flying mosquitoes re-
spond to a rapidly approaching mechanical swatter, in four light intensities ranging from
dark to overcast daylight conditions. Results show that both species exhibit enhanced es-
cape performance in their respective natural light condition (daylight for Aedes and dark
for Anopheles). To achieve this, they also use strikingly different behaviours. The escape
performance of Anopheles at night is explained for 90% by its unpredictable erratic flight
behaviour, whereas the increased escape performance of Aedes in overcast daylight com-
pared to sunrise is due to its enhanced escape manoeuvrability. This shows that both day
and night active mosquitoes adapt their flight behaviour to light intensity such that their
escape performance is maximum in their natural blood-feeding conditions, and when these
defensive actions by their blood-hosts occur most. Because Aedes and Anopheles mosqui-
toes are major vectors of several deadly human diseases, this knowledge can be used to op-
timize vector control methods for these specific species.

4.1 Introduction

To complete their life cycle, hematophagous female mosquitoes need to forage, mate, find,
approach and feed from a blood host for egg development, and lay their eggs. Because mos-
quitoes are vectors of many deadly human diseases, their blood-host seeking behaviour has
been studied thoroughly (van Breugel et al., 2015; Cardé, 2015; Dekker et al., 2005; Mc-
Meniman et al., 2014). In contrast, the direct interaction of a mosquito with a defensive
blood-host or an attacking predator has been studied relatively little.

To get a blood meal, female mosquitoes need to interact with blood hosts such as hu-
mans, cattle or birds. Because mosquitoes are both a nuisance to hosts and vectors of many
deadly diseases such as malaria and yellow fewer, these hosts can exhibit defensive beha-
viours such as swatting, pecking, or tail swishing to kill, push away or discourage them
(Darbro and Harrington, 2007; Edman et al., 1984; Edman and Scott, 1987; Matherne et al.,
2018; Reid et al., 2014; Walker and Edman, 1985). Additionally, flying mosquitoes can be
attacked by predators such as dragonflies, birds or bats (Medlock and Snow, 2008; Roit-
berg et al., 2003; Yuval and Bouskila, 1993). Many of these animals have advanced attacking
strategies like minimizing changes in the visual angle to their target either to follow or in-
tercept their prey (Pal, 2015). Dragonflies approach their prey from below (Mischiati et al.,
2015; Olberg et al., 2007), and camouflage into immobile distant objects during the attack
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(Mizutani et al., 2003). Bats use a comparable motion-camouflage strategy (Ghose et al.,
2006). However, it is not known if mosquitoes exhibit counter-strategies against such at-
tacks.

To successfully escape from looming threats produced by defensive blood-hosts or
predators, a flying mosquito might rely on two types of behaviours, so-called ‘protean’
movements or evasive manoeuvres. In this context, protean behaviours can be defined
as an unpredictable or erratic flight behaviour that prevents the predator or host from
predicting in detail the position or (re)actions of the flying mosquito (Humphries and
Driver, 1970; Moore et al., 2017). While protean behaviours are probably the most wide-
spread anti-predator strategy, their effect on escape performance has been studied very little
(Humphries and Driver, 1970; Richardson et al., 2018). If exhibited continuously or in risky
situations (e.g. while host seeking), such behaviour could be seen as an insurance against
attacks that might be difficult to detect or avoid by the mosquito.

Secondly, to avoid a threat, mosquitoes might exhibit evasive manoeuvres such as the
ones observed in insects and birds when attacked by visual looming targets (Cheng et al.,
2016; Muijres et al., 2014; Santer et al., 2012). Such manoeuvres are usually directed away
from the danger (Muijres et al., 2014), or in the case of some moths, towards safety zones
at the flank of the attacking bats (Corcoran and Conner, 2016). Similar to horse flies, fe-
male mosquitoes make fast upward manoeuvres after encountering specific host cues or
airflow conditions (Cribellier et al., 2018; Hawkes and Gibson, 2016; Thorsteinson et al.,
1965; Townes, 1962), suggesting that these manoeuvres might be examples of such evasive
manoeuvres.

To detect a threat, a mosquito might rely on its complex sensory system. It is well
known that mosquitoes are able to detect CO2, body odours, visual cues and heat gener-
ated by a nearby blood host (van Breugel et al., 2015; Cardé, 2015; McMeniman et al., 2014).
Amongst these sensory cues, the presence of CO2 or body odour could trigger a protean
flight behaviour, but only looming visual cues could be used to detect an incoming attack.
Recent studies suggest that mosquito hearing, for long thought to only be used during
mating behaviour (Cator et al., 2009; Dou et al., 2021), might also inform them about
their hosts or predators before an attack (Fournier et al., 2013; Menda et al., 2019). And
it is possible that mosquitoes use their mechanoreceptors (antennas and sensible hairs) to
detect and react to the air movements generated by an attacker (Fuller et al., 2014). Such
an airflow-mediated response has already been described in ground-dwelling insects such
as praying mantis and crickets (Chapman and Webb, 1999; Dupuy et al., 2012; Triblehorn
and Yager, 2006), and could be an alternative to vision mediated response in low light in-
tensities. This would be particularly relevant for night-active mosquitoes.

Additionally, it is possible that, to escape, mosquitoes simply go with the (air)flow, i.e.
passively use the air gust produced by the attack. Such hypothesis seems to be the intuitive
assumption on which was based the design of flies swatter made of perforated materials.
However such passive usage of the air gust produced by an attack remain to be described
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in the scientific literature.
Knowledge is also lacking concerning how environmental conditions affect threat de-

tections and escape performances of mosquitoes and of other insects. Because using vision
is potentially the fastest way to detect a threat, light condition is probably the most import-
ant factor that can influence the success rate of escapes (Combes et al., 2012). Therefore,
we expect that diurnal mosquitoes will rely principally on vision to detect a threat in bright
light conditions. But nocturnal mosquitoes flying in pitch darkness cannot rely on vision
to detect a threat, and thus, to escape they may rely principally on passive use or detection
of the air gust produced by a looming object. Alternatively, these night-active mosqui-
toes might rely more on distinct protean behaviour to increase their escape performance.
Therefore, comparing escape performances of day-active and night-active mosquitoes in
various light conditions should inform us on how this activity difference has influenced
each of their escape strategies.

In this paper, we studied the escape dynamics of female mosquitoes being attacked
by a looming object. For that, we used a real-time videography-based mosquito tracking
system to track the 3D movements of mosquitoes flying freely in a flight arena (Fig. 4.1).
Based on the position and velocity of the flying mosquito we automatically triggered a 10
cm diameter mechanical swatter to simulate the attack of a human hand, generating both
visual and air movement cues. By varying the light intensity inside the flight-arena from
dark night-time conditions to overcast daylight conditions, we studied the effect of light
conditions on the escape performance of the mosquito. Finally, we performed this study
with both night-active malaria mosquitoes (Anopheles coluzzii) and day-active Aedes ae-
gypti. This allowed us to test how escape performance differed between species that are
specialized in blood-feeding in dark night conditions and daylight conditions, respectively.

Our results show that the night active Anopheles mosquitoes maximized their escape
performance in dark conditions, whereas the day-active Aedes mosquito showed enhanced
escape performance in overcast daylight compared to sunrise. These are the conditions in
which both species are naturally blood-feeding, and thus can expect defensive attacks from
blood-hosts. This suggests that both diurnal and nocturnal mosquitoes have optimized
their escape flight behaviour for the conditions in which they are most at risk. Our detailed
analysis of the flight kinematics shows that this is achieved using distinct mechanisms. An-
opheles flying in the dark relies primarily on their protean erratic flight behaviour to avoid
the swatter, whereas Aedes flying in overcast daylight depict a relative increase in escape

Figure 4.1: Experimental setup and conditions. (a-c) Schematics showing the experimental setup
where free flying mosquito behaviours were recorded in real time using 5 infra-red enhanced cameras.
The swatter (orange) was triggered to attack a mosquito if this one was predicted to fly in the middle of
the flight-arena. (d) Kinematics of the swatter. (e) Examples of two tracks (one escape and one collision),
as well as details on how the swatter was triggered. The predicted position was based on mosquito initial
position and velocity. (f ) Position over time of all tracked mosquitoes and the swatter. (g) Experimental
conditions. During mosquito active phase, the light condition was changed according to a semi-random
planning (see supplementary Fig. S4.1).
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manoeuvrability compared to sunrise conditions.
The here-studied mosquito species together are the two most dangerous insect spe-

cies, because they are vectors of a range of human diseases including malaria, yellow fever,
Zika and dengue. Therefore, our results can be useful for optimizing or developing species
specific trapping systems.

4.2 Results

We recorded the flight behaviour of mosquitoes during 54 experimental trials of 160 minutes
in length each (144 hours in total). These trials consisted of 18 controls during which the
mechanical swatter was turned off, and 36 trials with the mechanical swatter turned on.
Half of these trials were performed on Anopheles mosquitoes in the dark, twilight and sun-
rise light conditions, and the other half were performed on Aedes in the twilight, sunrise
and overcast conditions. See supplementary Fig. S4.1 for details.

For all trials combined, the mechanical swatter was triggered 13,730 times, whereby
3,666 triggers occurred in the control experiments and 10,064 triggers occurred in the ex-
periments with an activated swatter. For the control experiments, triggering did not ac-
tivate the swatter, but we did simulate virtual swatter movements and the resulting virtual
collisions between mosquito and swatter. These virtual hits occurred in 543 of the cases,
whereas real collisions between mosquito and swatter was observed 780 times. This shows
that without the swatter activated 15% of the mosquitoes that approached the swatter were
hit virtually, and with the swatter activated, 8% of the approaching mosquitoes were hit
(Fig. 4.2a).

Thus, with the swatter turned off 85% of the mosquitoes were not virtually hit, which
suggests that protean flight behaviour might be important for mosquitoes to avoid a loom-
ing object. Turning on the swatter reduced the hit percentage by a factor two, suggesting
that also swatter-induced mosquito movements are important.

Using a combined statistical and mechanistic modelling of the mosquito flight dynam-
ics, we investigated how the studied mosquito species adjust their flight dynamics to op-
timize their escape performance. We did this in four steps.

1. First, we determined how the chance of being hit by the mechanical swatter differed
between species, light conditions and swatter activation (on/off).

2. Second, we studied how protean flight behaviour affected the escape performance.

3. Third, we determined how the swatter-induced escape manoeuvre dynamics affected
escape performance.

4. Finally, we quantified the relative contributions of protean flight behaviour and escape
manoeuvre dynamics to the overall escape performance.
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For each step of the analysis, we used Bayesian Generalized Linear Models (B-GLM) to
determine how the results varied between species, light conditions and with swatter activ-
ation.

4.2.1 Modelling the probability of being hit by the mechanical swatter

Using a Bayesian Generalized Linear Model (B-GLM), we first tested how the probabil-
ity of being hit by the swatter varied between species, light conditions and swatter activa-
tion (Fig. 4.2d-i). Here, we modelled light as a binary variable, either the light condition
during which each species naturally host-seeks (dark for Anopheles and overcast daylight
for Aedes), or the other light conditions combined. From here-on we will refer to these
as the reference light conditions and the altered light conditions, respectively. The min-
imal model obtained after doing a forward selection procedure contained four predictors,
swatter activation (on/off), species, and reference light versus altered light (modelled as the
interactions between Anopheles or Aedes with the light condition). An effect was found to
be significant (i.e. null-hypothesis rejected) if the 89% Highest Density Interval (HDI) of
the standardized effect size (SES) was found completely outside of the Region Of Practical
Equivalence (ROPE = [-0.1, 0.1]) (Fig. 4.2g-i).

The model confirms that mosquitoes had a significantly lower chance of being hit
when the swatter was triggered than of being virtually hit when the swatter was turned
off (SES mode = -0.63, HDI = [-0.72 –0.52]; Fig. 4.2d,g). Additionally, Aedes mosqui-
toes had a collision probability of 7.0 % which was found significantly lower than the 13.6
% chance of being hit of Anopheles mosquitoes (SES mode = -0.75, HDI = [-0.85 -0.62];
Fig. 4.2e,h). This effect had a high effect size comparable to the effect size of turning the
swatter on or off. Finally, Anopheles mosquitoes were significantly less likely to be hit by
the swatter if they were flying in their reference dark conditions (SES mode = 0.42, HDI
= [0.30 0.54]; Fig. 4.2f,i). A comparable trend in reference versus altered light was ob-
served for Aedes mosquitoes, but this was not significant (Fig. 4.2i). We tested why this
was the case by comparing estimated means of hit probabilities between light conditions
(Fig. 4.2j,k). This shows that with the swatter activated, Aedes mosquitoes had signific-
antly lower hit percentages in overcast daylight and twilight, compared to the intermediate
sunrise condition (Fig. 4.2k); sunrise and overcast did not differ significantly between each
other. (Fig. 4.2f ). For Anopheles the hit percentages are consistently lower in the reference
dark condition (Fig. 4.2j,k).

4.2.2 The unpredictable flight behaviour of mosquitoes explains the
low probability of being hit by the swatter

In our experiments we programmed the swatter to be activated when a mosquito was on
a collision course with the moving swatter, based on the position and velocity of the mos-
quito (Fig. 4.3a-c). Still, among all trials with the swatter activated, the probability of a
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Figure 4.2: Mosquito collision probability. (a–c) Collisions percentage (number of collisions over the
number of triggers) during the tested conditions. With swatter off, virtual collisions were counted. Because
Anopheles and Aedes are flying very little in respectively overcast daylight and dark, no experiments were
done with these conditions. (d–h) Results of the Bayesian-GLM used to model how mosquito collision
probability varied with the experimental conditions. Each panel is a slice plot showing the effect of one of
the predictors. The distributions are estimates of the mean of the collision probability for a given condition.
Each panel show the effect of one of the predictors for the entire dataset. Red crosses indicate data points
used in the B-GLM. (f ) Anopheles mosquitoes were hit less often than usual while flying in the dark. (g–i)
Distributions of the means of the standardized slopes �1, �2 and �3. Here, all slopes differ significantly
from zero. More on null-hypothesis testing is provided in the supplementary Fig. S4.2. (j,k) Bayesian
estimation of the means of mosquitoes collision probability in the various experimental conditions. Histo-
grams of the associated standardized effect sizes can be found in supplementary Fig. S4.3.

mosquito being hit by the swatter was on average 7%. And even with the swatter turned
off, the virtual hit percentage remained on average below 14%.

Here, we tested whether these low amounts of (virtual) hits were the result of an unpre-
dictable flight behaviour of mosquitoes. For this, we first quantified how and how much
the flying mosquitoes deviated over time from their predicted flight path (Fig. 4.3). The
temporal dynamics of the distance between mosquito and disk (Fig. 4.3d) shows that the
average mosquito was flying at a minimal distance of more than 6 cm from the swatter,
and that this was even the case when the swatter was turned off. This explains why most
mosquitoes are not being hit (when the distance reduces to zero).

To explain why most mosquitoes did not get closer to the swatter, we calculated the
distance to the predicted position throughout all analysed flights (Fig. 4.3c). For the cases
when the swatter was not activated, the distance to the predicted position increases ap-
proximately linearly with time, directly after the moment of triggering (Fig. 4.3e). At the
moment when the virtual (non-activated) swatter would reach its most forward position
(time t=0 s), this distance of the average mosquito to its predicted position was 8 cm.

With the swatter turned on, the distance to the predicted position initially increases
with time similar to the control case, but closely before the swatter reaches the mosquito
this distance rapidly increases (Fig. 4.3e). As a result, at t=0 s the distance of the average
mosquito being attacked by the swatter was 11 cm, 36% larger than for the control. This
rapid increase in distance to the predicted position for the active swatter case can be ex-
plained by the simultaneous sharp rise in escape velocity of these mosquitoes (Fig. 4.3f ).

These results thus show that the active swatter causes a rapid increase in distance to
the initial prediction position of the mosquito, but this explained only 36% of this total
distance. The additional 64% of this deviation was also present when the swatter was not
activated, showing that the unpredictability of the flight path is a major component in
explaining the low hit percentages observed in our study.
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Fast and curvy flight paths prior to swatter activation reduce the chance of
being hit

To determine what flight kinematics characteristics are responsible for this protean flight
behaviour, we characterized each flight prior to swatter activation using the mean linear
and angular flight speed at the moment of triggering (U initial and θinitial, respectively; Fig. 4.4a).
We then used a B-GLM to determine how these free flight characteristics affect the prob-
ability of being hit by both the activated and virtual swatter (Fig. 4.4). The minimal model
showed that both flight speed and angular speed were significantly negatively correlated
with the probability of being hit by the real and virtual swatter. For both the linear and
angular speed, the chance of being hit rapidly reduces with increasing magnitude, and the
effect is larger when the swatter is turned off (Fig. 4.4b,c).

To study how variations in the initial flight speed affected the flight unpredictability,
we tested how the temporal dynamics of distance from the predicted flight path varied
with linear and angular flight speed (Fig. 4.4g and 4.4h, respectively). This shows that
faster flying mosquitoes deviated more from their predicted flight paths (Fig. 4.4g), but
this distance did not vary with angular speed (Fig. 4.4h). It is thus still unknown what is
the mechanisms responsible for the effect of angular speed on the chance of being hit.

Anopheles and Aedes mosquitoes use different mechanisms to maximize
their protean flight behaviour

The distribution of linear and angular speeds (Fig. 4.4d) suggests that there is a trade-off
between high linear speeds and high angular speeds, and thus mosquitoes could adjust their
flight dynamics to maximize of the two. We tested whether this is the case using B-GLMs
with which we modelled how the initial linear and angular flight speeds varied between
species, with light conditions and with time during the experimental trial (Fig. 4.5). Because
we were here interested in the protean flight behaviour, we performed this analysis on the
control flights only, when the swatter was turned off.

Comparing the flight characteristics between the species shows that, relative to Aedes
mosquitoes, Anopheles mosquitoes fly with a 20% higher angular speed and a 13% lower
linear flight speed (Fig. 4.5c,f ). This suggests that the two species of mosquitoes achieve a
high protean flight behaviour using two distinct mechanisms: the night-active Anopheles
mosquitoes fly slowly with curved flight paths, and the day-active Aedes mosquitoes fly sig-
nificantly faster but with a straighter flight path. The temporal dynamics of the distance
to the predicted position for the two species shows that the faster flying Aedes mosqui-
toes deviate more from the predicted position than the slower flying Anopheles mosquitoes
(Fig. 4.5i). At the moment when the virtual swatter would reach maximum extension (t=0
s) this distance is on average 50% larger for Aedes mosquitoes than for Anopheles (12 cm
and 8 cm, respectively).

Because the mosquitoes could vary their protean flight behaviour throughout the day,
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Figure 4.3: Most of the time, mosquitoes are missed by the swatter. (a) Examples of mosquito
tracks completely missing the sphere of interest despite having been predicted to fly inside (blue crosses).
(b) Schematic showing how the minimum distance to the disk and the escape velocity are defined as
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the mean and std of all track recorded either while the swatter was turned off or on.

and in response to previous interactions with the swatter, we also tested how linear and
angular flight speed varied with time during the experimental trial (Fig. 4.5d). Although
we did see trends with time for both linear and angular flight speeds, none of these trends
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(g,h) Distribution of the mean initial speed and angular speed were respectively into 3 or 2 groups of the
same size (one third or one half of the complete dataset). These groups were then given labels (e.g. slow,
medium and fast) and the mean and std of each group were plotted over time. Here we see that initially
fast-flying mosquitoes are found to deviate faster from their predicted course.

were significant (Fig. 4.5g).
Finally, we tested how linear and angular flight speed varied with light conditions for

the two species (Fig. 4.5e,h). This shows that Anopheles mosquitoes fly faster in their ref-
erence light condition (dark) than in the altered conditions. For Aedes mosquitoes we ob-
served a similar trend of higher flight speeds in the reference light condition (overcast day-
light), but the difference was not significant. The angular speed did not differ significantly
between the reference and altered light conditions.

The temporal dynamics of the distance to the predicted position for Anopheles mos-
quitoes is larger in the dark (reference light) than in the altered light condition (Fig. 4.5f ).
At the moment when the virtual swatter would reach maximum extension (t=0 s), this
distance is on average 40% larger in the dark than for the other conditions combined (7 cm
and 4 cm, respectively). This shows that the increased flight speed in the dark increases the
protean unpredictability of the flying Anopheles mosquitoes.

4.2.3 Both mosquito species exhibit fast swatter-induced evasive man-
oeuvres more often in brighter light conditions

Following our analysis on the protean flight behaviour, we studied how flying mosquitoes
responded to the looming swatter, using all analysed mosquito flights with activated swat-
ter (Fig. 4.6). For this, we used a Hidden Markov Model (HMM) trained on the temporal
dynamic of escape velocities (Fig. 4.3b) throughout these flight manoeuvres to categorize
each flight track into one of three types: flight tracks that ended in a swatter hit, flight
tracks that include a slow escape manoeuvre, and flight tracks with a fast escape. Based on
this characterization, we estimated the probability that the swatter triggered a fast escape
Pescape, and how this varied between species, active and inactive swatter, and with varying
light conditions (Fig. 4.6). The probability that a virtual swatter triggered a fast escape was
lower than 1%, showing that the Hidden Markov Model produced practically no false pos-
itive fast escapes (Fig. 4.6a). In contrast, probability that a real swatter triggered a fast escape
was 20%. Because many flights do not get close to the swatter (Fig. 4.3d), these percentages
are not surprising.

Applying a B-GLM to these data shows that Anopheles mosquitoes have a 43% higher
chance of exhibiting fast escape than Aedes (Fig. 4.6e,h). Also, fast escape probability is
positively correlated with the logarithm of light condition luminance, whereby Pescape in-
creases with light intensity from 14% in the dark to 25% in overcast daylight (Fig. 4.6f,i).
Finally, fast escape probability did not differ significantly between the reference and altered
light conditions, for both species (Fig. 4.6g,j).
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Figure 4.5: Initial speed varies with experimental conditions. (a,b) Mean initial speed and angular
speed of mosquitoes during the tested conditions (swatter off). (c–e) Results from the B-GLMs used to
model how the mean initial flight speed and angular speed are correlated with experimental conditions
(swatter off). Each panel is a slice plot to show the effect of one of the predictors. The distributions are
estimates of the mean of the collision probability for a given condition. (f–h) Distributions of the means
of the standardized slopes �1, �2 and �3. (i) Distance to predicted position of Anopheles and Aedes
mosquitoes when the swatter was turned off. Anopheles mosquitoes were deviating less from their initial
course than Aedes mosquitoes.

4.2.4 The escape strategies of day and night active mosquitoes varies
differently with light conditions

Mosquitoes thus rely both on protean flight behaviour and escape manoeuvrability to
avoid a rapidly looming object (Fig. 4.5 and 4.6, respectively). In this analysis section, we
tested how the relative contribution of both behaviours affect escape performance, and
how this differs between species and light conditions (Fig. 4.7).

For this, we quantified escape performance of the flying mosquito using its distance
from the predicted location at time t=0 s, when the swatter reached its maximum extension
(Fig. 4.3c,e). For the control trials without the swatter activated, this deviation distance is
the result of only the protean flight behaviour, and for the trials with an active swatter the
distance is the result of both the protean flight behaviour and the escape manoeuvre. As
a result, the deviation distances tend to be higher when the swatter is turned on, for all
conditions (Fig. 4.7a-c).

By applying a B-GLM to these data, we found that the distance from the predicted
position was on average 45% higher when the swatter was turned on (Fig. 4.7d,g), and it was
63% higher for Aedes than for Anopheles (Fig. 4.7e,h). Additionally, Anopheles mosquitoes
deviated more from their predicted path when they flew in the dark than in the other light
conditions (Fig. 4.7f,i). A similar trend was found for Aedes mosquitoes, but the effect size
was too low to be found significant (Fig. 4.7f,i).

These results are very much in line with the results of the B-GLM used to model the
probability of being hit by the swatter (Fig. 4.2), suggesting that the deviation from pre-
dicted position is a good metric to describe mosquitoes escape performance. We therefore
used this parameter to study what were the relative contributions of protean flight beha-
viour and escape manoeuvrability on the overall escape performance (Fig. 4.7j-l).

To quantify this, we defined the relative contribution of the protean behaviour on the
escape performance as Rprotean = doff/don, where doff and don are the distances of the mos-
quito at t=0 s from its predicted location for the case with the swatter turned off and on,
respectively. We quantified Rprotean for all tested conditions based on the corresponding
doff and don modelled using our B-GLM (Fig. 4.7j-l, see materials and methods for de-
tails). Note that deviation distance doff is the result of only the protean flight behaviour,
and distance don is the result of both the protean flight behaviour and the escape man-
oeuvre. Thus, a high Rprotean suggests high contribution of protean behaviour to escape
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Figure 4.6: Mosquito fast escape probability changes with species and light conditions. (a,b)
Distance to predicted position and escape velocities of Anopheles and Aedes mosquitoes with the swatter
triggered. Anopheles mosquitoes were deviating less from their initial course, but exhibited higher escape
velocities than Aedes mosquitoes. (c,d) Percentage of tracks that were at some point in the fast escape
state during the tested conditions over the total number of tracks that were not hit by the swatter. (e-
g) Results of the Bayesian-GLM used to model how mosquito fast escape probability varied with the
experimental conditions when the swatter was triggered. Each panel is a slice plot to show the effect of
one of the predictors. The distributions are estimates of the mean of the collision probability for a given
condition. (h-j) Distributions of the means of the standardized slopes �1, �2 and �3. Here, �1 and �2 are
found to be significantly different from zero.

performance, and a low Rprotean suggests high contribution of escape manoeuvrability to
escape performance.

The average Anopheles mosquito was found to have a significantly higher mean Rprotean
in the dark (90%) than in twilight (75%) or in sunrise (79%). This suggests that Anopheles
mosquitoes achieved enhanced escape performance in the dark due to their increased pro-
tean flight behaviour. Aedes mosquitoes have the lowest Rprotean in the overcast daylight
condition (78%) and the highest Rprotean in sunrise (89%). This suggests that Aedes mos-
quitoes achieved the enhanced escape performance in overcast daylight condition com-
pared to sunrise due to increased their escape manoeuvrability in overcast, which reduces
Rprotean.

4.3 Discussion

Here, we studied the escape performance of flying mosquitoes by testing how freely flying
mosquitoes avoid being hit by an automated mechanical swatter. The mechanical swat-
ter simulated a looming threat similar in size to a human hand and generated both visual
cues and air movements. To quantify the escape performance of the flying mosquitoes,
we used real-time videography tracking to reconstruct the three-dimensional flight paths
of the mosquitoes before, during and after the attack. Based on the resulting escape dy-
namics, we tested how the attacked mosquitoes rely on their flight path unpredictability
and escape manoeuvrability to maximize escape performance. Finally, we studied how this
differed between day active and night active mosquitoes, and how escape dynamics varied
with light intensities ranging from dark to overcast daylight.

4.3.1 Simulating a realistic attack

Of all 10,064 swatter attacks only 8% lead to a collision between mosquito and swatter,
highlighting the surprisingly high escaping performance of the flying mosquitoes. In our
experiments, we triggered the mechanical swatter based on the prediction that a mosquito
would fly in a sphere of interests when and where the swatter would finish its swatting
motion (Fig. 4.1e). Therefore, at the triggering time, the swatter was on an intercepting
course with the mosquito. This is quite similar to how humans and dragonflies have been
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Figure 4.7: Mosquito deviation from their predicted paths varies with experimental conditions. (a-
c) Mean final distance to predicted flight path of mosquitoes during the tested conditions (all tracks without
collisions). (d-f ) Results from the B-GLMs used to model how the mean final distance to predicted path
varied with experimental conditions (all tracks without collisions). Each panel is a slice plot to show the
effect of one of the predictors. The distributions are estimates of the mean of the collision probability for
a given condition. (g-i) Distributions of the means of the standardized slopes �1, �2 and �3. (j) Bayesian
estimation of the means of d(off/on) the ratio of the distance to predicted position when the swatter was
turned off over when it was on (all tracks without collisions). We expect d(off/on) = 100% if turning on the
swatter doesn’t have any effect on how much mosquitoes deviated from their predicted flight path. (k,l)
Standardized effect size of the comparisons of the estimated means of panel (j). Anopheles mosquitoes
flying the dark had a significantly higher ratio d(off/on) than when flying in twilight or sunrise. For Aedes,
only the difference between overcast an sunrise was found to be significant.

found to attack moving targets (Mischiati et al., 2015; Mrotek and Soechting, 2007; Nakata
et al., 2020; Soechting and Flanders, 2008; Wiederman et al., 2017), although they both use
more complex prediction model than used here. Indeed, our constant-speed motion model
is based solely on the instantaneous position and velocity of the mosquito and the move-
ment latency of the swatter, whereas humans and dragonflies are continuously updating
their predictions (Brenner and Smeets, 2018; Zhao and Warren, 2015). However, updating
a prediction is not always possible (e.g. when the target is occluded), and will always be lim-
ited by neuromuscular delays (Mrotek and Soechting, 2007). Due to the mechanical single
degree-of-freedom of our swatter, such complex prediction update was not possible. This
might have resulted in lower attack success rates as for a real attack, but the standardized
swatting dynamics allowed us to more precisely assess the effect of treatment on escape per-
formance. Also, the use of our mechanical swatter instead of simpler visual looming targets
allowed for the generation of more realistic range of cues than in previous studies (Card,
2012; Muijres et al., 2014).

4.3.2 Mosquitoes have a high escape performance due to their erratic
flight behaviour

A surprising result of this study is the finding that, during control experiments where the
swatter was off, only 13% of mosquitoes would have been hit by the virtual swatter, despite
all of these mosquitoes being initially on a collision course (Fig. 4.2d). This hit percent-
age can be explained by the combination of the relatively high movement latency of the
swatter (367.5 ms), and the unpredictable nature of the flight trajectories of the mosqui-
toes. Indeed, our analysis of the control experiments showed that after triggering the vir-
tual swatter mosquitoes deviated quickly from their predicted paths, which often resulted
in avoiding the danger without performing an evasive manoeuvre (Fig. 4.3e). In this way,
such flight behaviour would work as a kind of protean insurance against attacks that could
be difficult to detect or be avoided (Humphries and Driver, 1970). Because the predators
and hosts of mosquitoes have been found to wait for optimal conditions before eliciting
an attack (Lin and Leonardo, 2017; Mrotek and Soechting, 2007), such erratic flight beha-
viour should also reduce the chance of attack initialisation.
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Additionally, the chance of being hit by the swatter was found to be lower for mosqui-
toes that flew faster and with a higher angular speeds prior to the attack (Fig. 4.4b and 4.4c,
respectively). This, coupled with the mosquito flight dynamics (Fig. 4.4g,h), indicates that
flight unpredictability is modulated by the mosquitoes using their linear and angular flight
speeds. By definition, these two variables cannot be considered as protean sensu stricto, as
they do not describe behaviour randomness; instead, linear and angular flight speed most
likely function as an amplification factor that increases the effect of an underlying unpre-
dictability in the flight behaviour (Fig. 4.4g,h). These results are in line with previous find-
ings showing that human targeting accuracy is best predicted by an interaction between
the speed and turn angle of the target (Richardson et al., 2018). Thus, by flying faster or
with sharper angles, mosquitoes decrease the chance of being hit or caught by an attacker.

Finally, despite recent examples of learning and habituation among mosquitoes (Baglan
et al., 2017; Vinauger et al., 2018), our results were inconclusive about the effect of time after
the start of the experiments on mosquito escape behaviour (as shown in Fig. 4.5d and by
the fact that time related predictors were otherwise left out of our models). Nevertheless,
these aspects of mosquito escapes are important to understand, especially if we want to
improve current vector control strategies (Batista et al., 2019; Cribellier et al., 2018), and
therefore they would need to be tackled by future studies.

4.3.3 Rapid escape manoeuvres are induced by both airflow and visual
cues produced by the looming object

To study the swatter-induced escape manoeuvre dynamics, we used a Hidden Markov
Model (HMM) to identify flight tracks that included rapid escape manoeuvres (Fig. 4.6,
and supplementary Fig. S4.8). For the control experiments in which the swatter was not ac-
tivated, fast escapes occurred in less than 1% of the recorded flight tracks (Fig. 4.6c), which
shows that the identified fast escapes were indeed describing real escape manoeuvres in-
duced by the swatter movement.

With the swatter turned on, we observed a fast escape in 19% of the recorded tracks
(Fig. 4.6c). Thus, not all mosquitoes attacked by the swatter performed a rapid evasive
manoeuvre, which can be explained by the highly protean nature of mosquito flight beha-
viour. In the control experiments, 85% of the flying mosquitoes are not hit by the virtual
swatter (Fig. 4.1a), and thus, in the experiments with the swatter activated, a similar per-
centage would not need to perform an evasive manoeuvre to avoid a hit.

Comparing the hit percentage between the control and active swatter experiments (Fig. 4.1a)
shows that the evasive manoeuvres reduced the chance of being hit by approximately a
factor two (from 15% to 7% between the experiments with a virtual and real swatter, re-
spectively). Thus, the fast escapes observed in 19% of the recorded flight tracks were very
effective in increasing the overall escape performance of the ∼15% mosquitoes at risk of
being hit.
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Based on the temporal dynamics of the escape velocity of mosquitoes attacked by the
swatter (Fig. 4.3f and 6b) we see that the fast escapes mostly happened just before the mo-
ment when the swatter entered the sphere of interest, where the mosquito was predicted to
flight. Thus, the swatter-induced escape manoeuvre when the swatter was close to the mos-
quito. At these close distances, the swatter-induced airflow is expected to be high, and thus
the question remains of whether these swatter-induced rapid escapes are active responses by
the mosquito or whether the mosquito is simply pushed away by this airflow. Our B-GLM
analysis of the escape manoeuvres shows that the fast escape probability is strongly affected
by light intensity (Fig. 4.6f,i). Mosquitoes flying in overcast daylight intensity performed
significantly more escape manoeuvres than in the dark, with an average escape probability
of 25% in overcast and 15% in the dark. Thus, visual detection of the swatter is an import-
ant factor in triggering an escape manoeuvre, showing that rapid escapes are at least for a
large part performed actively in bright light conditions. Because rapid escapes still occur in
15% of flights in full darkness, the airflow induced by the swatter are also partly responsible
for the rapid manoeuvre dynamics of the attacked mosquitoes. More research is needed to
determine whether the swatter-induced airflow triggered an active manoeuvre, or whether
these are fully- passive airflow-induced movements.

4.3.4 Day-active Aedes mosquitoes exhibit higher escape perform-
ance than night-active Anopheles

Our general analysis showed that both tested mosquito species, the night-active Anopheles
coluzzii and day-active Aedes aegypti, rely on protean flight behaviour and escape manoeu-
vrability to avoid being swatted. But they do this in strikingly different ways. The chance
of being hit by the swatter was twice as high for Anopheles mosquitoes than for Aedes, irre-
spectively of the light conditions or whether the swatter was turned on or off (Fig. 4.2d).
This was explained by the higher flight path unpredictability of Aedes, quantified by their
higher deviation from their predicted flight path (Fig. 4.5i). Aedes mosquitoes achieve this
higher unpredictability by flying faster than Anopheles prior to the attack (Fig. 4.5c). In-
terestingly, Anopheles mosquitoes fly slower but with higher angular speeds than Aedes,
suggesting that they increase their protean flight behaviour using a different mechanism
(Fig. 4.5c). In contrast with the higher protean performance of Aedes mosquitoes, An-
opheles mosquitoes being attacked by the swatter performed a higher number of rapid es-
cape manoeuvres than Aedes mosquitoes (Fig. 4.6e). Anopheles mosquitoes are night-active
and thus need to navigate complex environments with limited or sometimes a complete
lack of visual feedback. To be able to do this, they might be forced to fly consistently at
relatively low flight speeds, and as a result their protean performance is reduced compared
to the faster flying Aedes mosquitoes. Our results suggest that Anopheles mosquitoes partly
compensate for their reduced protean performance by flying with higher angular speeds
and by responding more strongly to the looming object.
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4.3.5 In the dark, night-active Anopheles mosquitoes have the highest
escape performance

A very striking result of our study is that Anopheles mosquitoes were least likely to be hit
when flying in the dark condition (0.0201 cd/m2), despite the greatly reduced visual cues
compared to the other tested light conditions (Fig. 4.2f ). This suggests that these night-
active mosquitoes adjust their flight behaviour in such a way that they maximize their es-
cape performance in the light condition in which they are most at risk of being attacked.

Comparing the escape performance of Anopheles in the control experiments and swat-
ter activated experiments (Fig. 4.2j and 4.2k, respectively), shows that (virtual) collision
probability is particularly low in the control experiments, with the swatter turned off. This
suggests that Anopheles primarily increases its escape performance in the dark by increasing
its protean flight behaviour. This is confirmed by the striking increase in flight speed of
Anopheles in the dark compared to the other light conditions (Fig. 4.5b,e). This contrast
with the increases with light intensity of mosquitoes chance of exhibiting fast escapes, re-
gardless of species (Fig. 4.6f ). Thus, Anopheles displayed enhanced escape performance in
darkness, most likely due to their strong increase in protean flight behaviour achieved by
flying at higher baseline speeds. As a result, in the dark, the escape performance of An-
opheles mosquitoes, expressed by the deviation from the predicted flight path, is explained
for 90% by their protean behaviour (Fig. 4.7j).

4.3.6 Day-active Aedes mosquitoes show enhanced escape perform-
ance in overcast daylight

In contrast with Anopheles, the day-active Aedes mosquitoes exhibit the lowest collision
probabilities in the brightest tested light conditions (Fig. 4.2c). Although the collision
probability in overcast daylight was not significantly different from the other light con-
ditions combined (Fig. 4.2f,i), it was significantly lower than in sunrise conditions with
the swatter turned on (Fig. 4.2k). This suggests that the day-active Aedes mosquitoes also
adjust their flight behaviour in function of the light condition in which they are at risk of
being attacked, in order to maximize their escape performance.

The escape performance of Aedes in the control experiments with the swatter turned
off did not change with light intensity (Fig. 4.2j, respectively), showing that Aedes mos-
quitoes did not modulate escape performance with light by varying their protean flight
behaviour. This was confirmed by the equally non-significant change in linear and angular
flight speed of Aedes with varying light conditions (Fig. 4.5). This suggests that Aedes mos-
quitoes flying in overcast daylight exhibit enhanced escape performance compared to sun-
rise due to the increase in escape manoeuvrability, which we showed to increase with light
intensity (Fig. 4.6f ). Surprising, Aedes also exhibits increased escape performance in the
lowest tested twilight condition compared to sunrise. With our analysis on both the pro-
tean flight behaviour and escape manoeuvrability, we could not explain this effect. Finally,
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we determined how the deviation of Aedes mosquitoes from their predicted flight path is
affected relatively by protean behaviour and escape manoeuvrability, in different light con-
ditions (Fig. 4.7j). Our results confirmed that Aedes mosquitoes exhibit enhanced escape
performance in overcast daylight, most likely due to their increase in escape manoeuvrabil-
ity (lower relative protean flight behaviour contribution).

4.3.7 Day-active and night-active mosquitoes escape differently in vary-
ing light conditions

Comparing the escape dynamics of night-active Anopheles and day-active Aedes mosqui-
toes shows that these two species respond very differently to changes in light condition.
Aedes does not change its baseline flight speed with varying light brightness, and thus its
protean flight behaviour remains similar among all tested light conditions. In contrast,
night-active Anopheles fly at significantly higher flight speeds in the dark, compared to the
other tested light conditions, enhancing their protean flight behaviour in the darkness. Be-
cause escape manoeuvrability partly depends on visual detection of the looming object,
escape performance increases with light intensity. As a result, Aedes mosquitoes have the
highest escape performance in the brightest light condition (overcast). And this despite the
fact that the eyes of Anopheles mosquitoes seem to be better adapted to low light conditions
(Land et al., 1999).

Comparing the relative contribution of protean behaviour and escape manoeuvrabil-
ity to escape performance between Anopheles and Aedes highlights these differences in be-
haviour very well (Fig. 4.7j-l). Anopheles mosquitoes show a striking increase in how much
they rely on protean behaviour in the dark compared to the other conditions, whereas 90%
of the escape performance is explained by baseline erratic flight behaviour. In contrast, in
twilight and sunrise Aedes mosquitoes rely on a higher contribution of protean behaviour
than Anopheles, but when transitioning from sunrise to overcast daylight the contribution
of escape manoeuvrability rapidly increases (reduced protean contribution), resulting in a
concomitant enhanced escape performance.

These combined results thus suggest that both day and night active mosquitoes have
optimized their flight behaviour such that their escape performance is maximized in the
light condition in which they naturally seek blood-hosts, and are thus most at risk of being
swatted by such defensive host.

4.3.8 Conclusion

Flying mosquitoes attacked by a looming object possess a good escape performance, due to
both their highly unpredictable flight paths and their highly successful escape manoeuvres.
Flight path unpredictability is modulated by both the linear and angular speed of the fly-
ing mosquito; escape manoeuvres are triggered by both visual cues and the airflow induced
by the attacker. The night-active Anopheles mosquitoes exhibited maximum escape per-
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formance in the dark, whereas day-active Aedes showed enhanced escape performance in
maximum light intensity. Thus, for both species escape performance is highest in the light
conditions in which they naturally exhibit host-searching behaviour. Finally, Aedes had
better escape performance than Anopheles due to their greater unpredictability, which we
interpret as a protean insurance against the increased risks of being active during the day.
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4.4 Material and Methods

4.4.1 Experimental animals

In our experiments, we used female Anopheles coluzzii and Aedes aegypti mosquitoes. An-
opheles coluzzii mosquitoes came from a colony that originated from Suakoko, Liberia in
1987. The colony of Aedes aegypti mosquitoes (Rockefeller strain) was obtained via Bayer
AG Monheim, Germany in 2015. Both colonies are housed in the Laboratory of Ento-
mology (Wageningen University & Research, The Netherlands) with a shifted clock 12h
light:12h dark cycle. Mosquitoes were reared at fixed temperature of 27 ◦C and relative
humidity of 70%. Adults were kept in BugDorm cages (30 × 30 × 30 cm, MegaView Sci-
ence Co. Ltd., Taiwan). They had constant access to 6% glucose sugar water solution
and were blood-fed daily with human blood (Sanquin, Nijmegen, The Netherlands) using
a membrane feeding system (Hemotek, Discovery Workshop, UK). In the cages, female
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mosquitoes had access to wet filter papers for egg-laying. Upon collection, eggs were dried
for 3 days after which they were moved to plastic larval trays filled with 27◦C water contain-
ing a few drops of Liquifry No. 1 fish food (Interpet, UK). Emerging larvae were fed with
TetraMin Baby (Tetra Ltd, UK). The handling of pupae differed slightly between the two
species. Anopheles pupae were placed directly in new BugDorm cages to emerge, whereas
Aedes pupae stayed in their larvae trays covered with nylon netting material. Twice a week,
emerged Aedes adults were vacuumed to new BugDorm cages. Males and females were kept
together so they could mate. Non-blood-fed adult females (age = 7.6 ± 2.3 days (mean ±
std)) were used in our experiments.

4.4.2 The flight arena

In this study, we filmed free flying mosquitoes in a custom-made octagonal flight arena
(50x50x48cm (height x width x length)) with transparent Plexiglas walls (see Fig. 4.1a). A
visible light panel (20x48cm) with 176 LEDs (OSLON SSL 80◦, CS8PM1.PM) was posi-
tioned above the flight arena. Multiple polyester neutral density filters of 0.8 ND (LEE
filters, Panavision Inc.) were used to stop down the light intensity of four LEDs to mimic
twilight condition. Additionally, 4 infrared light panels (3x 20x48cm+ 1x 50x50cm) with a
total of 600 LEDs (OSLON Black Series (850 nm) 150◦, SFH 4716A) were set around the
flight-arena. The spectrums of the light conditions used in our experiments were measured
and can be found in the supplementary Fig. S4.5. Because mosquitoes cannot see infrared
light (Gibson, 1995), the infrared light panels were used for backlighting flying mosqui-
toes. Mosquitoes could then be tracked in real time using Flydra (version 0.20.30)(Stowers
et al., 2017; Straw et al., 2011) and the live footage from 5 enhanced infrared cameras (Basler
acA2040-90umNIR). To each camera were attached one 12.5 mm lens (Kowa LM12HC
F1.4). A pixel-binning of 3 was used resulting in a recording resolution of 680x680px and a
framerate of 90 fps. Lens distortions were corrected using a backlighted print of a chequer-
board pattern (OpenCV, 2014).

To simulate an attacking threat, we build a swatter made of a 1 cm diameter black alu-
minium shaft and a transparent plexiglass disk with a diameter of 10 cm and a thickness of
1 cm, thus similar in size to a human hand size. In addition, an either clear or black mesh
(Ornata plus 95135, howitec.nl) was covering the disk. These meshes were used to allow
the variation of the generated visual cues independently to changes of the amount of air
movement generated by either solid or perforated transparent Plexiglas disks. The results
presented in this paper are excluding data using the hollow disk in order to focus on the
effect of light conditions on mosquito flight behaviours.

The swatter (disk + shaft) was moved by a 50 cm long-toothed belt axes (drylin ZLW-
1660-G0BW0-D0A3B-0A0A-500) powered by an AC servo motor (Schneider Electric Lexium
BCH2 LD0433CA5C). The servo motor was controlled by a programmable motion servo
driver (Schneider Electric Lexium LXM28A) programmed using the software SoMove 2
(Schneider Electric). The swatter kinematic (Fig. 4.1d), was designed to have a peak velocity
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of around 1 m/s. This kinematic was based on preliminary experiments of human swatting
hanging ping-pong balls and quantified data on mosquito flight speed that generally does
not exceed 1 m/s (Cooperband and Cardé, 2006; Cribellier et al., 2018; Dekker and Cardé,
2011; Spitzen et al., 2013). The airflow velocity generated by the attack was quite similar to
the one generated by an attacking bat (Triblehorn and Yager, 2006).

The temperature and relative humidity inside the experimental room were controlled
by a previously described climate system (Spitzen et al., 2013). To facilitate air circulation
and cleaning inside the flight arena, there was circular holes in the front (diameter of 17.4
cm) and back (diameter of 43.7 cm) plexiglass panels. These holes were closed using easily
removable HDPE insect screenings (Howitec, The Netherlands). On the floor of the flight
arena, we placed visual markers, randomly shaded grey squares printed on a plasticized pa-
per sheet. Finally, a sensor recording local temperature and relative humidity (AM2302,
ASAIR) was also placed inside the flight arena. Microcontroller boards (Arduino UNO)
and custom-made scripts were used to communicate with the sensor, to trigger the swatter
movement and to change the light condition from a nearby Linux computer. The setup
was automated with the Robotic Operation System (ROS version Kinetic Kame).

4.4.3 Experimental procedure

In the late afternoon before each experimental day, the flight-arena was cleaned using a 15%
ethanol solution and paper towels. Calibration was done by tracking a manually waved
single LED inside the flight-arena. Then the new calibration was aligned to the flight arena
coordinate system using a calibration device made of 8 LEDs positioned at various known
three-dimensional locations. The flight arena was then closed. 50 female mosquitoes were
transferred from a rearing cage to a release cage, which was then plugged to the side of the
flight-arena. All handling of the mosquitoes and of the materials was done wearing nitrile
gloves to avoid skin odour contamination. A dedicated Python 2.7 script was started to
automatically run consecutive experiments with the different light conditions the succeed-
ing day. By removing a metal mesh door, the mosquitoes could enter the flight arena and
the experimenter left the room at 6 p.m. ± 1.2 hours. The first experimental trial started
11.2 ± 3 hours later the following morning,

Upon the start of the Python script controlling the experimental conditions, the light
condition was set to follow the mosquito’s normal light cycle in the rearing. Then the first
experimental light condition was set, either at 2:30 a.m. for Anopheles mosquitoes (during
their night phase) or at 8 a.m. for Aedes mosquitoes (during their day phase), in order to
give mosquitoes two hours buffer time to adjust to their active phase. Three different light
conditions were tested consecutively every day, each during an experimental window of 160
minutes. The order of these light conditions was changed following a quasi-randomized
planning (see supplementary Fig. S4.1). The three light conditions tested for Anopheles
mosquitoes were dark (visible light turned off), twilight and sunrise, whereas the ones for
Aedes mosquitoes were twilight, sunrise and overcast, resulting in an overlap of two light
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conditions between the two species (Fig. 4.1g and supplementary Fig. S4.1). Neither An-
opheles or Aedes were recorded flying in respectively overcast or dark because of their ob-
served low flight activity in those light conditions.

Real-time estimations of mosquito positions and velocities were used to compute their
predicted positions 367.5 ms in the future. Such latency corresponds to the time the swatter
takes to be around halfway towards its most forward position. If the predicted position was
found to be inside a sphere of interest, defined as a 10 cm diameter sphere in the centre of
the flight arena, the swatter was triggered (Fig. 4.1e). After one second, the swatter was
moved back to its initial position and a delay of 10 seconds was respected before any new
trigger of the swatter. During post-processing, mosquito initial positions and mean initial
velocities (i.e. at trigger time) were used to filter out tracks that were not predicted to be
inside the sphere of interest when the swatter would reach its most forward position. Thus,
for the rest of the analysis, we only kept the tracks that were predicted to be entirely in the
sphere of interest during the second half of the swatter movement (-157.5 to 0 ms).

When all the experiments of the day were finished, the experimenter came back into the
room. A vacuum cleaner was plugged to the flight arena in place of the handling cage, and
was used to capture all mosquitoes while avoiding potential escapes. The captured mosqui-
toes were left inside the vacuum cleaner to desiccate. Finally, the disk and mesh attached to
the swatter rod were changed according to the previously mentioned plan (supplementary
Fig. S4.1) for the next experimental day.

4.4.4 Analysis of three-dimensional flight tracks

Pre-processing was done using Python 2.7. For each trigger, collisions were manually iden-
tified by looking at the two-dimensional tracking results of the side cameras. A mosquito
track with a collision was labelled as such when the tracked points of the swatter were
intercepting the track. By projecting the swatter’s three-dimensional shape into the two-
dimensional view of each camera, the two-dimensional points of the swatter were filtered
out for each trigger. The three-dimensional tracks of all mosquitoes were then reconstruc-
ted again, thus optimizing tracking performance near the swatter.

The rest of the analysis was done using Matlab R2019b. A first filtering of outlying
three-dimensional points was done using the covariance matrices estimated by the exten-
ded Kalman filter used by the Flydra tracker. Then, less than four points long segments
of mosquito tracks were filtered out, and segments that were separated by more than 15
missing points were divided in two different tracks. Remaining missing values were in-
terpolated using the modified Akima piecewise cubic Hermite method (makima, Matlab).
Then, in order to analyse only complete manoeuvres, we filtered out all the tracks that were
not starting at least 60 frames before the most forward position of the swatter was reached
(t=0 s on Fig. 4.2–4.7). Similarly, except for collisions, we filtered out tracks that ended less
than 30 frames after the time when the swatter reached its most forward position. Finally,
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three-dimensional tracks were smoothed using a Savitzky-Golay filter with a moving win-
dow of five frames. Mosquito velocities and accelerations over time were computed using
a second order derivate central finite difference scheme. Initial and final values were estim-
ated respectively using forward and backward finite difference schemes. The angular flight
speed was computed as in (Cribellier et al., 2018). Then, the distance between the nearest
point on the swatter disk was estimated using the synchronized position of the swatter over
time (Fig. 4.3b). The escape speed was defined and computed by projecting mosquito speed
over time on the moving line between the nearest point on the swatter and mosquito three-
dimensional position (see Fig. 4.4a). The initial mean and standard deviation (std) of flight
speed or angular speed were computed over the 11 frames around the frame at which the
swatter was triggered. Finally, to see how much mosquitoes deviated from their initial tra-
jectory, for each point in time we computed the Euclidian distance between their current
position and the predicted position based on their initial position and initial mean velocity
(Fig. 4.3c). And the mean final Euclidian distance to predicted position of each mosquito
was computed over the 11 frames around the frame at which the swatter reached its most
forward position.

To be able to compare the chance of being hit by the swatter with or without potential
mosquito responses (i.e. with the swatter on or off), collisions with a virtual swatter were
predicted. These virtual collisions were estimated by computing if and when mosquito
flight tracks would have crossed the path of the swatter (here virtual), assuming it had been
triggered according to the triggering rules defined earlier.

4.4.5 Statistical analysis

Various Bayesian generalized linear models (B-GLM) were used in this study to model mos-
quito flight behaviour and escape performances. We used Bayesian statistics mainly because
of its conceptual clarity, whereas in Frequentist statistics there are common misconcep-
tions about important concepts like p-values and confidence intervals (e.g. interpreted as
credibility intervals). Additionally, the Bayesian approach provides richer results by giving
the probability distributions of the estimated parameters as well as an intuitive way of test-
ing the null-hypothesis (see next paragraph). Finally, in Bayesian statistics there is no need
for multiple testing correction (Dienes, 2011; Kruschke, 2010).

In Bayesian statistics, before estimating the posterior distribution of a parameter mean
(e.g. the slope of a statistical model), our prior knowledge of this distribution needs to
be defined (Kruschke, 2013). For this study, we had no prior knowledge of the standard-
ized estimated mean parameters, therefore we used diffuse priors with a wide normal dis-
tribution (mean = 0 and std = 100). Then, the posterior distribution of the parameter
is estimated by updating the prior distribution with new data (e.g. experimental results).
This is computationally costly, and was done using JAGS which use Markov chain Monte
Carlo (MCMC) (Plummer, 2003). Finally, null-hypothesis testing was done using the
“HDI+ROPE decision rule” (Kruschke and Liddell, 2018), where the null-hypothesis is
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rejected if the 89% Highest Density Interval (HDI) of the standardized parameter is out-
side the Region of Practical Equivalence (ROPE= [-0.1, 0.1]). The 89% HDI being defined
as the interval in which all the points have a higher probability density than points outside.
The ROPE is defined as the range around zero (i.e. the null-hypothesis) where, if estim-
ated there, a parameter would be found to have “practically no effect”. Thus, to reject the
null-hypothesis, the HDI of an estimated parameter must fall outside the ROPE (see sup-
plementary Fig. S4.2).

We estimated means of mosquitoes probability of being hit (Fig. 4.2) for each combina-
tion of light condition and species using MATJAGS, a Matlab interface for JAGS (Steyvers
and Kalish, 2014), and the Matlab Toolbox for Bayesian Estimation (MBE) (Winter, 2016),
a Matlab implementation of Kruschke’s R code (Kruschke, 2013). To model the probab-
ility of being hit we used a Bernoulli distribution and a logistic link function. Then we
compared the estimated mean distribution by computing standardized effect sizes. Here
we defined the effect size between two groups as the difference of their means divided by
the norm of their standard deviations.

For this study, we wrote a B-GLM package based on the two Matlab toolboxes previ-
ously mentioned MATJAGS (Steyvers and Kalish, 2014), and MBE (Winter, 2016). JAGS
modelling codes were based on examples from (Zuur et al., 2013). Binary response vari-
ables (like the probability of being hit P(hit)) were modelled using Bernoulli distributions
and a logistic link function. Flight metrics, like initial mean speed or mean angular speed,
were modelled using gamma distributions and a log link function. To allow the use of the
“HDI+ROPE decision rule”, we standardized continuous predictors and response vari-
able, by subtracting their mean and dividing them by two standard deviations (instead of
one for typical z-scores) (Gelman, 2008). All the other variables were binaries (e.g. was
hit = yes/no), and they were only centred (i.e. to have zero mean). In this way, the es-
timated standardized slopes (i.e. effect sizes) are comparable across all models (Gelman,
2008; Schielzeth, 2010). B-GLMs were selected by applying a forward selection procedure,
where compared models are increasingly complex. Additionally, models including inter-
actions between predictors were also compared. The best models were selected using the
AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion). When
comparing models of same complexity, we chose the model with the lowest AIC and BIC.
When comparing models of different complexity, we selected a more complex model only
if it had at the maximum an AIC and a BIC values 10 points inferior to less complex models
(Zuur et al., 2013). Finally, we checked that good mixing of chains and low autocorrelation
coefficients could be observed.

When determining the minimal B-GLM to model how the probability of being hit
P(hit) varied in function of the experimental conditions (Fig. 4.2), we used the following
predictors: swatter off or on (0 or 1), species (Anopheles or Aedes), logarithm of light con-
dition luminance (cd/m2), reference (dark for Anopheles or overcast for Aedes) or altered
light (twilight and sunrise), mesh color (black or clear), time after start of first trial, humid-
ity and temperature. In addition, to test for learning effect, we also used the interaction
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between the two following predictors: swatter on/off and the time after start of first trial.
Finally, in order to check for potential behavioural difference of the two species, and if the
predictor species was already in the model, we compared models with interactions between
Anopheles or Aedes with the other remaining predictors (e.g. Anopheles.∗time to test if An-
opheles mosquitoes’ behaviour was changing over time). The final set of predictors included
in the minimal model were swatter off or on, species and the interaction Anopheles∗light
condition (altered or reference). To improve clarity and because it didn’t change the results,
we added the interaction Aedes∗light condition to the model shown in Fig. 4.2.

To model how P(hit) varied in function of mosquito initial flight state, a minimum
B-GLM was determined by using the mean or std of the initial speed or angular speed
as predictors (Fig. 4.4b,c,e,f ). Then we modelled how the predictors left in the minimal
model (initial mean of the speed and angular speed) changed with the experimental condi-
tions while the swatter was off and using the same predictors as the ones used for initially
modelling P(hit).

To compare mosquito flight behaviour during the manoeuvres, a Hidden Markov model
(HMM) was used to classified mosquito behaviour over time (Matlab toolbox by Kevin
Murphy (Murphy, 1998)). This HMM allowed us to determine in which of three states
each mosquito was at each point in time, just by observing its escape velocity over time
(see Fig. S4.8a). The probability of being in the states depending only on the previous
state. The model was trained on all mosquito tracks recorded with the swatter triggered
(i.e. without controls). The initial parameters of the model were found by fitting a mixture
of three Gaussians to the distributions of all escape velocities of the tracks (fitgmdist, Mat-
lab). Then a Baum–Welch algorithm, with fixed means and standard deviations, was used
to find the unknown parameters of the HMM (see supplementary Fig. S4.8). We labelled
the first two states as “cruising” states towards or away from the swatter, and the last one
as the “escaping” state (with high escape velocities away from the swatter, supplementary
Fig. S4.8a-d). The Viterbi algorithm was used to compute the most-likely corresponding
sequence of states (see example on Fig. S4.8a). Almost all mosquitoes were found to ini-
tially be in one of the two cruising states. When the swatter started to move towards the
centre of the flight arena, the proportion of mosquitoes in the cruising state away from
the swatter grew. Then, around the time when the swatter was halfway towards its most
forward position (t = 0), mosquitoes started to get into the fast escape state. The max-
imum proportion of mosquitoes to be in this state over time was 17.1% and this maximum
was reached just before the swatter arrived at its most forward position (supplementary
Fig. S4.8f ). In the rest of the analysis, all the tracks that were predicted at least once to be
in this fast escape state were labelled as fast escapes. In this way, each track was put in one
of three groups, the collisions, the slow escapes and the fast escapes.

Additionally, the probability of being a fast escape P(esc) was modelized with a B-GLM
(Fig. 4.6). The minimum model was determined using the same initial predictors as the
ones used for modelling P(hit). We observed high autocorrelation and bad mixing of chains
with the predictor swatter on or off, most likely because the number of fast escapes was
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really low during the controls. Thus it was decided to model P(esc) separately for the tracks
recorded while the swatter was triggered (Fig. 4.6e-j).

In order to confirm and summarize this study findings, we modelized the mean dis-
tance to the predicted position when the swatter (virtual or not) reached its most forward
position using a B-GLM (Fig. 4.7d-i). In order to get the minimal model, we used the same
initial predictors as the ones previously described for the B-GLMs of P(hit) and P(esc). The
predictors included in the minimal model were the same as for the first B-GLM.

Finally, in order to quantify the role of escape manoeuvres (active or passive) in the
overall observed unpredictability of mosquito flight path, we defined d(off/on) as being the
ratio of the distance to predicted position when the swatter was turned off over when it
was on. We expect d(off/on) to be equal to 1 if mosquitoes (e.g. the distance to predicted
position doesn’t change if the swatter if off or on). We estimated means of d(off/on) for
each combination of light condition and species using Bayesian estimation (Fig. 4.7j-k)
(Kruschke, 2013). To model d(off/on) we used a log-normal distribution and estimated the
means each combination from a sample of 10000 randomly chosen values of d(off/on) out
of all the computed d(off/on) values. Then we compared the estimated mean distribution
by computing standardized effect sizes.
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Figure S4.1: Experimental conditions. (a-b) Experimental planning for Anopheles and Aedes mosqui-
toes. The experimental days that haven’t been used in this study have been coloured in grey.
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Figure S4.2: Null hypothesis testing with Bayesian estimation. Examples of two distributions of
the estimated mean of a standardized parameter � in black. The null hypothesis is rejected (left) if the
Highest Density Interval (HDI) is outside the Region Of Practical Equivalence (ROPE). The null-hypothesis
is accepted (right) if the full HDI is inside the ROPE.
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Figure S4.3: Collisions probabilities the various experimental conditions. (a,d) Bayesian estimation
of the means of mosquitoes collision probability for each combination between species and light condi-
tions. (b,c,e,f ) Standardized effect size of the comparisons of the estimated means of panels (a,b).
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plotted over time.
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Abstract

When attacked, flying nocturnal insects cannot rely on vision to detect a threat. To evade
from predators, insects such as moths, praying mantis or cockroaches rely on other senses
such as hearing or airflow-sensing. Some flying insects, such as mosquitoes, also must es-
cape from the defensive behaviour of their blood hosts. Nocturnal malaria mosquitoes are
capable of escaping from swatting in the dark, but how they achieve this is still unknown.
Here, we show that flying mosquitoes escape from being swatted by using the airflow in-
duced by the attack both passively and actively. By tracking free-flying mosquitoes in real
time, we were able to simulate attacks using an automatic mechanical swatter. In both
dark and low-light conditions, we showed that the faster the air movements induced by
the attack, the less malaria mosquitoes were hit by the swatter. Then, using airflow sim-
ulations and measurements of wingbeat kinematics, we estimated the aerodynamic forces
involved during the escape manoeuvres. We found that, although seemingly going with
the airflow, mosquitoes actively surfed the bow wave induced by the swatter. We estimated
that the mosquitoes’ active contribution explained about two-thirds of their escape accel-
eration when the swatter was almost invisible. This indicates that the passive effect of the
airflow still significantly contributed to the escaping success of mosquitoes. We anticipate
that similar escape strategies must be common in small lightweight insects.

5.1 Introduction

If you have ever been woken up by the buzz of a mosquito, you can probably testify that
a flying mosquito is difficult to swat. If a mosquito is found flying near yourself, it’s most
likely because hematophagous female mosquitoes must interact with their hosts to get the
blood meals necessary for egg development (Clements, 1999). This interaction is the reason
why anthropophilic mosquitoes can be vectors of many deadly diseases such as malaria,
making them the most dangerous animal in the world (Who, 2020). In order to protect
themselves, humans developed many vector control tools such as bed nets or traps (Benelli
et al., 2016; Hiscox et al., 2014). But before that, and as a natural response to biting nuis-
ance, blood hosts of mosquitoes had already adopted defensive behaviours – such as hand
swatting or tail swishing (Darbro and Harrington, 2007; Edman et al., 1984; Edman and
Scott, 1987; Matherne et al., 2018; Reid et al., 2014; Walker and Edman, 1985) – to discourage
or kill host seeking mosquitoes. Despite the large amount of work done on host seeking
behaviours (van Breugel et al., 2015; Cardé, 2015; Dekker et al., 2005; McMeniman et al.,
2014), how mosquitoes respond to these defensive strategies has been the subject of only
one study (chapter 4).

Recently, we have shown that, when swatted, nocturnal and diurnal mosquitoes ex-
hibited good escape performances (chapter 4). They do so by relying on a combination of
so-called protean insurance behaviours (mosquitoes exhibiting unpredictable flight paths)
and escape manoeuvres (chapter 4). Also, the relative proportion of these two strategies
explaining the escape performance was found to be dependent on light intensity and spe-
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cies, most likely in order to adapt to available sensory information. In particular, nocturnal
malaria mosquitoes have been found to fly faster in the dark in order to decrease their pre-
dictability. Additionally, we found that, with increasing light intensity, mosquitoes exhib-
ited fast escape manoeuvres more often. This suggests that they use visual cues to detect
the threat and trigger their escapes. However, the flight dynamics of these escape man-
oeuvres of mosquitoes have not been studied in detail. And it remains unexplained why
mosquitoes often successfully escaped when there was only little or no visual information
available.

Escape manoeuvres of mosquitoes have been little studied, but more is known about
the escape of flying animals such as hummingbirds, moths or fruit flies. While escaping,
these flying animals are usually directing their manoeuvre away from the danger (Cheng
et al., 2016; Muijres et al., 2014), or towards safety zones at the flank of the attacker (Corcoran
and Conner, 2016). These animals achieve flight by flapping their wings back and forth in
order to generate upward lift while relying on unsteady aerodynamic effects (Sane, 2003).
Fruit flies, dipterans such as mosquitoes, have been shown to follow the so-called ‘heli-
copter model’ when manoeuvring to escape (Muijres et al., 2014). According to this model,
while manoeuvring an animal will rotate its whole body in order to redirect the generated
aerodynamic force vector in the direction of the intended motion (Dickinson and Muijres,
2016; Ros et al., 2011). Thus, when evading looming targets, fruit flies execute banked turns
by pitching their nose-up and rolling on the side opposite to the threat location (Muijres
et al., 2014). They do so by modulating kinematic parameters such as wingbeat frequency
and amplitude. Among those parameters, wingbeat amplitude is probably the most im-
portant as it is key in modulating total flight force, and in regulating body roll. Mosquitoes
have wingbeat frequencies and amplitudes (between 350 and 750 Hz and around 40◦ (Bom-
phrey et al., 2017; Kim et al., 2021)) that are respectively much higher and much lower than
that of fruit flies (∼220 Hz and ∼140◦ (Muijres et al., 2017)). Therefore, one could expect
mosquitoes to rely on different wing kinematic parameters to control their manoeuvres.
Nevertheless, measurements of mosquito kinematics while taking off suggest that they use
very similar ways of controlling lift production as fruit flies, notably by modulating their
wingbeat amplitude (Muijres et al., 2017).

All previously mentioned escape manoeuvres are fully active manoeuvres, where the
animal detects the threat and then triggers the escape. Most of the time, the incoming
threat is detected using vision and therefore these manoeuvres have usually been studied
by simulating visual looming threats (Muijres et al., 2014; Santer et al., 2012). However, in
the dark, insects need to rely on alternative senses such as hearing or mechanoreception.
Hearing has been the subject of many studies because of its important role for detecting
the attacks of bats. Crickets, praying mantis, and moths were all shown to be capable of
hearing the ultrasounds generated by an attacking bat (Ter Hofstede and Ratcliffe, 2016;
Hoy et al., 1989; Tauber and Camhi, 1995; Triblehorn et al., 2008). Concerning mosquitoes,
hearing was long thought to only be used for mating (Cator et al., 2009), but it has been
recently suggested to have the potential to also inform mosquitoes about a host or predator
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before being attacked (Fournier et al., 2013; Menda et al., 2019).
Another sensory cue that has the potential to inform insects of an incoming threat

is the air gust produced by the attack. Ground dwelling crickets and cockroaches as well
as flying praying mantis and tethered cockroaches were all found to be able to detect an
attack in such a way (Dangles et al., 2006; Ganihar et al., 1994; Ritzmann, 1984; Triblehorn
et al., 2008; Triblehorn and Yager, 2006). However, no example is known amongst small
insects such as dipterans. Nevertheless, it is probable that these small insects rely on the air
movement generated during an attack to successfully escape from it. This is supported by
the wide usage of fly swatters, whose perforated design is based on the intuitive assumption
that insects such as flies or mosquitoes can use the airflow induced by an attack to escape
successfully. Praying mantis, crickets and cockroaches have been shown to use sensible
hairs or cerci in order to trigger their responses (Chapman and Webb, 1999; Dupuy et al.,
2012; Ganihar et al., 1994; Triblehorn and Yager, 2006). Small insects could rely on their
mechanoreceptors (i.e. Johnston’s organs and sensible hairs) to detect the air gust generated
by the attack in order to trigger a response (Fuller et al., 2014). Theoretically, these insects
could be completely passively pushed away by the airflow. In that case, and because small
insects have very low inertia, the air movement would generate a high enough aerodynamic
drag force on the insect’s body to move it away from danger.

In this study, we investigated if and how a nocturnal mosquito, when swatted, use
wind gusts induced by the attack to escape successfully. We did so with two sets of ex-
periments: first, by recording the escape dynamics and kinematics of free flying malaria
mosquitoes (Anopheles coluzzii) while being attacked by a mechanical swatter roughly the
size of a human hand (Fig. 5.1). First, we compared the escape performances of mosqui-
toes when attacked, in the dark or in low-light conditions. The attacks were simulated by a
swatter that generated low visual cues and could induce various amounts of air movements.
To do so, we modified the swatter to either generate no sensory cues (i.e. swatter off), low
air movement and low visual cues (perforated transparent disk with a clear mesh) or high
air movement and low visual cues (solid transparent disk with a clear mesh) (Fig. 5.1f ).

Figure 5.1: Experimental setup and conditions. (a) Schematic of the experimental setup used to
record the free-flying behaviour of mosquitoes while being attacked by a mechanical swatter (orange).
Mosquitoes illuminated with infrared light were tracked in real time using five Basler cameras. Three
Photron cameras were used to film the escape manoeuvres of mosquitoes. The configuration shown here
is for the experiment #2 (see supplementary Fig. S5.2 for the configuration of experiment #1). (b) Side
view of the experimental setup. (c) The swatter was triggered to attack if a mosquito was predicted to fly in
the middle of the flight-arena. Two mosquito tracks are shown as examples of an escape and a collision.
(d) Kinematics of the swatter. (e) Airflow velocity field resulting from our CFD simulation for t = -5 ms
before the swatter (full disk) reached its most forward position. (f ) Experimental conditions for experiment
#1. Every experimental night, one out of the three swatter configurations was chosen: the full disk with a
clear mesh generated high air movement but low visual cues, the hollow disk with a clear mesh generated
less air movement but similar visual cues or the swatter was turned off (no air movement and no visual
cues). Then the experiment was run automatically, and the light condition was changed according to
a preestablished planning (see supplementary Fig. S5.1). Three light conditions were compared (dark,
twilight, and sunrise). (g) Experimental conditions for experiment#2. Only the twilight light condition was
used and two swatter types (transparent and black) were compared.
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Secondly, using high-speed videography and deep learning, we recorded escape manoeuvres
of mosquitoes in detail and estimated their kinematic parameters in order to answer how
mosquitoes were achieving their successful escapes. For this, we compared the escapes of
mosquitoes while attacked by one of two solid disks (transparent or black) producing al-
most none to high visual information about the attack. Finally, using a Computational
Fluid Dynamics (CFD) simulation of the airflow induced by the swatter movement, we
estimated to what extent escape manoeuvres of mosquitoes were explained by passive or
active effects.

5.2 Results

5.2.1 How does airflow impact mosquito escape performance?

Our first experiment aimed at answering whether mosquitoes relied on air gusts to escape
successfully from a looming threat. For that, we tracked the escape manoeuvres of mos-
quitoes while being attacked by one of the two different types of swatters. One with a solid
disk or one with a perforated disk (see supplementary materials and methods). Based on
the recorded tracks, we estimated the escape performance of mosquitoes. We also tracked
mosquitoes flight paths during control trials with the swatter turned off. In that case, dur-
ing our analysis we simulated a virtual swatter to estimate the performances of mosquitoes
if no cues from an attack were available.

We recorded 5005 three-dimensional tracks of mosquitoes. Among those tracks, 196
ended up in collisions by the solid disk (out of 1539 tracks), and 415 by the perforated disk
(out of 1605 tracks). In addition to those real collisions, we computed that 447 tracks would
have been hit by the virtual swatter when the real swatter was not activated (1861 tracks).

Using Bayesian statistics, we estimated the mean collision probabilities of mosquitoes
in the various experimental conditions (Fig. 5.2a). First, we noticed that mosquito collision
probabilities varied with light conditions with remarkably lower probabilities of being hit
when flying in the dark. Previously (chapter 4), we demonstrated that this lowered collision
probability results from the higher unpredictability of Anopheles mosquitoes when flying
in dark than in brighter light conditions. Secondly, we found that for all light conditions,
the estimated means of the collisions probabilities of mosquitoes differed between each
swatter type (off, perforated or solid), indicating that the more air movement generated by
an attack, the smaller is the chance that the mosquito is being hit (Fig. 5.2a,b).

To complete our analysis of this first experiment, we compared their escape velocit-
ies and accelerations over time (i.e. away from the swatter) (Fig. 5.2d,e). We found that,
when flying away from the swatter that induced the fastest airflow, mosquitoes exhibited
both higher escape velocities and accelerations than when escaping from the swatters that
induced less or no air movements (perforated or virtual swatter). This suggests that mos-
quitoes rely on the airflow induced by the attack to successfully escape, but how they used
this airflow is still unclear at this point.

194



5escape velocity

min. distance to disk

acc

velocity
acceleration

escape
acceleration

d)

0

50

100

es
ca

pe
ve

lo
ci

ty
 [c

m
/s

]

e)

-5

5

10

es
ca

pe
ac

ce
le

ra
tio

n 
[m

/s
2 ]

0

-50

-10

c)

mean
std

time [s]
-0.6 -0.2 0 0.2-0.4

start movement swatter most forward position

a)
co

llis
io

n 
pr

ob
ai

lit
y

(o
ve

r t
rig

ge
rs

)

peak airflow velocity in front of swatter [cm/s]
0 6020 40

0

30

% vs

20

10

perforated disk

solid disk

swatter off

dark

twilight

sunrise

virtual collisions

mode
HDI

*the null-hypothesis is rejected if the 89% 
Highest Density Intervale (HDI:      ) is outside 
the Region Of Pratical Equivalence (ROPE:        )

nu
ll-

hy
po

th
es

is
 re

je
ct

ed
fo

r a
ll 

co
m

pa
ris

on
s*

vsb)

st
an

da
rd

iz
ed

 e
ffe

ct
 s

iz
e 

w
he

n 
co

m
pa

rin
g 

th
e 

es
tim

at
ed

 m
ea

ns

vs

0

2

1.5

0.5

1

Figure 5.2: Mosquito collision probability and escape dynamics. (a) Distributions of the estimated
(using Bayesian estimations) means of mosquito collision probability in the various experimental condi-
tions. The mean collision probability of mosquitoes was higher when the swatter was turned off (virtual
collisions) than when the mosquitoes were attacked by the hollow disk or full disk. For all light conditions,
mosquito collision probabilities decreased with the increasing peak airflow velocities generated by the
different swatter (virtual or not). (b) Standardized effect sizes were computed to compare the estimated
means of panel (a). Here, all standardized effect sizes differ significantly from zero. Detailed explanation
about null-hypothesis testing is provided in supplementary Fig. S5.3. (c) Schematic showing how the in-
stantaneous escape velocity and acceleration of a mosquito is defined as a function of its relative position
with the swatter. (d,e) Mosquitoes escape velocities and accelerations over time (excluding tracks that
resulted in collisions). Mosquitoes are accelerating more and are flying faster when escaping from the
solid swatter than from the perforated swatter.

5.2.2 How do mosquitoes escape from a looming threat?

Our second experiment aimed at answering how mosquitoes use the airflow induced by an
attack to successfully escape. For this goal, we added high-speed cameras (12500 fps) to our
setup to be able to record escape manoeuvres of mosquitoes in detail (Fig. 5.1a). This al-
lowed us to track the kinematics of their body and of both of their wings. Additionally, we
simulated the airflow generated by the swatter movement using CFD simulations (Fig. 5.1e,
and see supplementary Fig. S5.10–S4.12). This allowed us to investigate the role that the air-

195



flow played in mosquito escapes. Finally, in this second experiment, we untangled the effect
of air gusts from the effect of visual cues on escape performances by comparing two swat-
ters: one with a nearly invisible transparent disk and one with a black disk that was strongly
contrasting with the background (see supplementary Fig. S5.4).

We recorded 775 swatter attacks, of which 14% resulted in a collision (with the swatter)
and were left out of the following analysis. After filtering of the badly tracked manoeuvres,
there were respectively 237 and 257 of manoeuvres left for the transparent and black disk,
respectively.

5.2.3 Describing escape manoeuvres of mosquitoes

To understand how mosquitoes manoeuvre when escaping, it can be useful to first look
at selected examples. In Fig. 5.3, we present photo montages of two typical examples of
such manoeuvres, one when a mosquito escaped from the transparent disk and one when
another escaped from the black disk. In both of those examples, mosquitoes entered the
filmed volume from aside, then rapidly accelerated and rolled away from the swatter. All
the mosquitoes that escaped successfully were heading away from the attack at the end of
the swatter movement. However, not all manoeuvres looked similar. Therefore, we di-
vided all tracks into three groups depending on initial heading when entering the filmed
volume. These groups showed the mosquitoes attacked from the front, from the side or
from the back (Fig. 5.4). Mosquitoes attacked from the back exhibited the smallest escape
(ground) velocities and accelerations, whereas mosquitoes attacked from the front exhib-
ited the highest escape velocities and accelerations (Fig. 5.4c,e). On average, mosquitoes of
all groups had a nearly constant body yaw during the manoeuvres and similarly rolled to-
wards the side opposite of the attack (Fig. 5.4h,j). However, they exhibited very different
body pitch dynamics (Fig. 5.4i). Mosquitoes attacked from their side exhibited on average
very little changes in body pitch, whereas mosquitoes attacked from the front or back re-
spectively pitched up or down, towards the same direction as the airflow (i.e. away from the
attack). These results suggest that the helicopter model apply to manoeuvring mosquitoes,
because by rotating their body in this way, mosquitoes are redirecting their aerodynamic
force vector and consequently accelerate in the direction away from the attack.

Figure 5.3: Recording of mosquito escape kinematics. Examples of two typical mosquito escape
manoeuvres while being attacked by either a transparent (a-d) or black disk (g-j). (a-d) Photo montages.
(a,b) Instantaneous velocity and acceleration vectors are respectively shown in blue and red. The orange
arrows indicate the swatter direction.(c,d) Each individual mosquito position is circled by a disk which
colour indicates time (see corresponding coloured stripes in panels (g-j)). The swatter positions are also
indicated using the same colour scheme. (e) Airflow velocity field showing a section through the flow field
around the position of the mosquito. The airflow induced by the swatter was simulated using CFD (see
supplementary Fig. S5.12). (f ) Schematics explaining how the airflow velocity felt by mosquitoes (e.g. in
mosquitoes reference frame) is defined. (g-j) Time dynamic of the two mosquito’s escape velocity and
acceleration as well as the airflow velocity generated by the swatter at mosquito positions and the airflow
velocity in mosquitoes reference frame (i.e. airflow velocity felt).
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(b-f ) Dynamics of various metrics as a function of mosquito initial heading while escaping. (g) Schematic
showing how the body yaw, pitch and roll are defined (Tait-Bryan convention). As an example, if a mosquito
is pitching up, the force generated by its wings will be redirected backward. Mosquito body tilt angle 

is defined as the angle between the vertical axis and vector normal to the body of the mosquito (i.e.
this vector is directed upward when the mosquito is hovering). When hovering, 
 is equal to zero. (h-
j) Dynamics of mosquitoes’ body tilt angles in function of their initial heading. Around half of mosquito
manoeuvres have been mirrored in order for their roll to be positive when they rolled away from the
swatter (i.e. as if mosquitoes are all flying from the same side). These results confirm that mosquitoes
use the so-called ’helicopter model’ when escaping, as they re-orient the vector of the aerodynamic force
generated by their wing away from the danger. For example, mosquitoes pitched up when facing the
swatter and pitched down when being attack in the back. They also exhibit higher escape velocities and
accelerations when initially facing the swatter than when initially flying away from it.

To investigate whether mosquitoes use the airflow induced by the attack to escape from
it passively, it is interesting to compare the dynamics of mosquitoes to the velocities of the
surrounding airflow. Here, we can see that the escape velocity of mosquitoes correlates
well with the velocity of the airflow surrounding them during much of the manoeuvres
(Fig. 5.5c), as if mosquitoes were going with the flow. However, the escape acceleration
of the mosquitoes did not correlate very well with the relative airflow velocity squared in
mosquito’s reference frame (Fig. 5.5f ). This is interesting because, if mosquitoes are only
passively being pushed away by the airflow, then we would expect the airflow aerodynamic
force applied to the mosquito body to be proportional to the square of the relative airflow
velocity in the mosquito’s reference frame. Therefore, a low correlation between these two
metrics (the escape acceleration and the relative airflow velocity) is a first clue suggesting
that the escape manoeuvres of mosquitoes are not fully passive.

5.2.4 Quantifying the effects of visual cues

In our first experiment, only the role of air movements induced by the swatter was investig-
ated. Therefore, for our second experiment, we studied how the visual cues of the swatter
impacted the escape performances of mosquitoes. We compared two types of swatters, a
transparent and a black one. We found that, at first sight, mosquitoes exhibited similar
escape dynamics when attacked by those two swatters in twilight (Fig. 5.5a,b,d,e). In both
cases, they exhibited high escape velocities that correlated well with the background airflow
velocities (Fig. 5.3g,h and Fig. 5.5a-c). However, we can notice differences concerning when
and how much mosquitoes accelerated away from the swatter (Fig. 5.5d). To quantify these
differences, we used a Hidden Markov Model (HMM) trained on the temporal dynamics
of the escape acceleration throughout all flight manoeuvres (Fig. 5.5d). This model allowed
us to estimate in which of two states (cruising or escaping) a mosquito was during each in-
stant of its manoeuvre (Fig. 5.5g). As such, we could divide flight tracks into 224 cruising
tracks (that never were in the escaping state) and 270 escaping tracks (Fig. 5.5i,j). We also
used these results to define several escape performance metrics such as the time at which
escaping started (i.e. the first frame at which mosquito entered the escaping state). Finally,
using Bayesian statistics, we estimated the distributions of the means of these performance
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Figure 5.5: Escape performances when attacked by a transparent or black disk. (a-b, d-e) Time dy-
namic of all mosquitoes’ escape velocity and acceleration as well as the airflow velocity generated by the
swatter at mosquito positions and the airflow velocity in mosquitoes reference frame (i.e. airflow velocity
felt). Only the tracks of mosquitoes that did not collide with the swatter are shown. The mean dynamic
of these four metrics are plotted in purple or blue for mosquitoes respectively escaping from the black or
transparent disk. (c,f ) Histograms of the correlation coefficients of all tracks (one value per track): showing
the correlation between the escape velocity and the airflow velocity (c), and between the escape accel-
eration and the relative airflow velocity squared. (g) Example of the escape acceleration of a mosquito.
Using a Hidden Markov Model (HMM) trained on all tracks (see supplementary Fig. S5.7), we identified
when the mosquito was in one of two states, labelled cruising or escaping states. (h) Proportion of all
tracks that did not collide with the swatter and that were in the escaping state for the black or transparent
disk. (i,j) Tracks are separated in two groups: (i) the cruising tracks that were never in the escaping state,
and (j) the escaping tracks that were at least once in the escaping state. (k-n) Bayesian estimated means
of various escape performance metrics of mosquitoes escaping from either the black or transparent disk:
(k) Time at which mosquitoes entered for the first time in the escape state. (l) time at which mosquito
reached their maximum escape acceleration. (m) maximum escape acceleration. (n) maximum airflow
velocity from mosquito reference frame. (o-r) Standardized effect size of the comparisons between the
estimated means of panels (k-n). Here the null-hypothesis is rejected for all comparisons except the last,
where no conclusion could be made about if the maximum airflow velocity from mosquito reference frame
differed between the two disk types.

metrics as well as the standardized effect sizes of the comparison between the two swatters
(Fig 5k-r). We found that mosquitoes that escaped from the black disk were starting their
escape manoeuvres significantly earlier and with lower acceleration peaks than when es-
caping from the transparent disk. The peak relative airflow velocities at the location and
in the reference frame of the mosquito showed a similar trend, but the difference between
the two swatters was not found to be significant.

5.2.5 What drives mosquito escapes? Active versus passive effects

To discover whether mosquitoes relied more on passive or active effects to successfully es-
cape from the swatter, we quantitatively estimated the aerodynamic forces involved during
the manoeuvres. Using Newton’s second law of motion, we can write

∑ −→
F = m · −→a =

m · −→g +
−→
F aero, where the body motion (i.e. mosquito mass m times its acceleration −→a )

is equal to the sum of the forces applied to the mosquito body: the weight m · −→g and the
aerodynamic forces −→F aero =

−→
F mosquito +

−→
F air f low. With −→F mosquito the aerodynamic force

generated by the mosquito with its wings and−→F air f low the aerodynamic force of the relative
airflow in the mosquito reference frame (i.e. the drag) on mosquito body (Fig. 5.6a). Both
−→
F mosquito and−→F air f low were initially unknown, although we know that−→F air f low will point
in the same direction as the relative airflow velocity in the mosquito’s reference frame. Ad-
ditionally, if the helicopter model apply to escaping mosquitoes,−→F mosquito will be oriented
upward to counteract the weight when mosquitoes hover and tilted away from the vertical
direction to move the mosquito in the horizontal plane. Finally, we know that −→F air f low is
proportional to the square of the relative airflow, and that −→F mosquito is proportional to the
product of the wingbeat amplitude and wingbeat frequency.
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Our results show that escaping mosquitoes are accelerating away from the swatter, and
therefore the aerodynamic forces applied to its body (−→F mosquito +

−→
F air f low) are increasing

during these manoeuvres (Fig. 5.6c). Such a force increase is correlated with a similar in-
crease in the body tilt angle which quantifies the contribution of a mosquito body pitch
and roll to its body rotation (Fig. 5.6d). Assuming that −→F mosquito is kept normal to the
mosquito body during the manoeuvres (helicopter model), the mosquito body tilt angle
also quantifies how much−→F mosquito deviate from pointing upward. Additionally, both the
increase of the total aerodynamic force and body tilt angle correlate with increases of the
wingbeat amplitudes and frequencies during the manoeuvres (Fig. 5.6e,f ). These wing-
beat kinematic parameters are unlikely to have been changed by the airflow induced by the
attack. Therefore, these results suggest that, during the escapes, mosquitoes are actively
increasing the aerodynamic force on their body.

As a last step, we tried to answer to what extent the escape manoeuvres of mosquitoes
were passive or active, which amounts to quantitatively estimating how much −→F air f low or
−→
F mosquito contributed to the total aerodynamic forces −→F aero responsible for their escapes.
We did that by estimating those two forces during the escape (i.e. while in the escaping
state) using least square solving of the second law of motion (see materials and methods).
In this way, we could compare these estimated forces−→F air f low and−→F mosquito to−→F aero (here
equal to m · −→a − m · −→g ) and quantify their relative contributions (i.e. proportion) for
each swatter type. Thus, the relative contribution of −→F mosquito to −→F aero along the escape
direction was estimated to be 64% (mode of estimated mean) for the transparent disk and
81.3% for the black disk (Fig. 5.7a,e). Additionally, we estimated that the relative contri-
bution of−→F air f low to−→F aero along the escape direction was 41.3% for the transparent swat-
ter and 18.8% for the black swatter (Fig. 5.7b,f ). In both cases, these force contributions
differed significantly between the two swatters (Fig. 5.7i,j). As expected, the sum of these
contributions was close to 100% for both swatters and no significant difference was found
between them (Fig. 5.7c,g,k). As a final validation of our method, we found that vertical
aerodynamic forces were fully explained by the contribution of −→F mosquito (Fig. 5.7d) and
no significant difference was observed between the swatters in that case (Fig. 5.7h,i).

5.3 Discussion

Here, we studied the escape dynamics of flying nocturnal Anopheles mosquitoes by first
evaluating their escape performance while attacked by an automatic mechanical swatter in
the dark or in twilight. By systematically changing the type of swatter used, we evaluated by
how much the escape performance positively correlated with the speed of the airflow pro-
duced by the attacker. Secondly, we had a more detailed look at the manoeuvres by record-
ing body and wingbeat kinematics of mosquitoes while using high-speed videography. Us-
ing a deep learning network and least square fitting, we achieved three-dimensional track-
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Figure 5.6: Mosquitos actively contribute to their escape manoeuvres. (a) Schematics describing
the body tilt angle 
 of mosquitoes, the stroke angle as well as the forces acting on its body (free body
diagram). (b) Typical example of a mosquito body tilt angle and the stroke angle over time during an
escape. (c-f ) The increase in observed escape force is correlated with changes in mosquitoes’ body tilt
angles as well as with increases of their wingbeat amplitudes and frequencies.

ing of the body and wings of mosquitoes. Coupled with CFD simulations of the airflow
induced by the swatter, this allowed us to estimate all aerodynamic forces involved during
the escape and their relative contribution to mosquito dynamics.

5.3.1 The more airflow is generated during an attack, the better the
mosquito escape

We studied how the air gust produced by an attack influenced the escape performances of
mosquitoes by comparing their collision probability while attacked by a solid or perforated
swatter. Because they were covered with a clear mesh, the two swatters looked very similar
to each other but induced different amounts of air flow while moving. Indeed, the peak
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Figure 5.7: Proportion of forces produced during the escapes. All results presented here have been
computed when mosquitoes were in the escaping state (see Fig. 5.5j). (a-d)

�!

F aero (= m �
�!
a �m �

�!
g ) as

a function of estimated
�!

F mosquito or
�!

F air f low for the transparent and black disks. Linear fits have been

done using Bayesian estimations of the means of the proportion between
�!

F aero and the corresponding
forces in ordinate. (e-h) Distribution of the estimated means of the force proportions (e.g. slopes in panels
(a-c)). (i-l) Effect size of the comparisons between the force proportions for the transparent and black
disks.

�!

F mosquito was found to contribute significantly more to the total
�!

F aerowith the black disk than with
the transparent disk.

airspeeds measured in front of them were 26 cm/s for the perforated disk and 56 cm/s for
the solid disk. The results from our Bayesian estimations showed that collision probab-
ilities were inversely correlating with the amount of air movement induce by the attack.
When attacked by the solid disk, mosquitoes had a probability of getting hit significantly
lower than when attacked by the perforated disk (Fig. 5.2a). This confirms the intuitive
assumption that small flying insects, such as mosquitoes or flies, can use airflow (passively
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or actively) to escape successfully from a threat such as a fly swatter. Similar correlations
between the velocity of the induced airflow and the degree of reaction have been previously
described in cockroaches and crickets (Dangles et al., 2006; Westin et al., 1977). Although,
for crickets it was also shown that the probability of escape decreased again at high attack
speed (Dangles et al., 2006).

We also compared the escape performance of mosquitoes (the inverse of the probab-
ility of being hit) when attacked by the two different swatters to when mosquitoes were
not attacked (i.e. collisions with a virtual disk) (Fig. 5.2a). In these control experiments,
the swatter was turned off and therefore did not induce any sensory cues. Systematically,
mosquitoes were significantly hit more often by the virtual swatter than by the two others.
This indicates that the perforated disk was still generating enough visual, auditory and/or
airflow cues to either be detected by the mosquitoes or passively contribute to their escape
movements.

Finally, we found that escape velocities during the manoeuvres correlated well with the
airflow velocities at the position of mosquitoes (Fig. 5.5c). To our knowledge, this is the first
time that flying insects have been shown to go with the flow during an escape. However
comparable wind-oriented flight dynamics have been described for the long distance travel-
ling of mosquitoes and other dipteran species (Gao et al., 2020; Huestis et al., 2019; Leitch
et al., 2020).

5.3.2 Mosquitoes follow the helicopter model while manoeuvring

In our second experiment, it was demonstrated that mosquitoes systematically pitched and
rolled their body away from the swatter during their manoeuvres (Fig. 5.4i,j). At the same
time, they did not exhibit large changes of their wing kinematics except stroke amplitude
and frequency (Fig. 5.6e,f and S5.14). This indicates that during fast escape manoeuvres,
similarly to fruit flies, moths, cicadas and pigeons (Greeter and Hedrick, 2016; Muijres et al.,
2014; Ros et al., 2011; Zeyghami et al., 2016), “helicopter model” applied to mosquitoes
when they reorient the vector of the aerodynamic forces generated by their wings away
from the attack. This is in line with a previous finding showing that taking off mosquitoes
control their body pitch with their legs and only change wing kinematics to modulate force
magnitude (Veen and van Veen, 2020). However, when comparing the escape manoeuvres
of fruit flies to the ones of mosquitoes, several key differences can be found. If both dipter-
ans are exhibiting similar rolling away from the threat, the dynamics of their body yaw and
pitch differ (Fig. 5.4h-j). While fruit flies were described partly realigning their yaw angles
with their headings and mostly pitch up when manoeuvring (Karasek et al., 2018; Muijres
et al., 2014), we found mosquitoes to hardly vary their yaw and to pitch up or down, but
always away from the threat. This suggests that mosquitoes might only correct their yaw
later, when the danger has already been avoided. It also indicates that the airflow induced by
the attack might passively contribute to mosquito body rotations. A passive contribution
of the airflow is also suggested by the fact that mosquitoes that were attacked from their
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back exhibited pitch down manoeuvres. In this way, they must have redirected their aero-
dynamic force vectors away from the danger. These pitch down manoeuvres have never
been described before.

5.3.3 Escape manoeuvres are mostly active

All previously discussed results could be explained by passive effects of the airflow on mos-
quito bodies. In that case, mosquito accelerations away from the swatter would be only due
to the swatter induced airflow force (i.e. aerodynamic drag). And the observed body rota-
tions of mosquitoes would be the results of aerodynamic torque induced solely by the air-
flow. The airflow force is proportional to the square of the relative airflow velocity, and thus
if mosquito escapes were fully passive, we would expect high correlation between the es-
cape accelerations of mosquitoes and their relative airflow velocities. However, we did not
observe such correlation (Fig. 5f ). Additionally, mosquitoes were found to increase both
their wingbeat frequencies and wingbeat amplitudes while escaping (Fig. 5.6e,f ). This im-
plies that mosquitoes actively increased the forces and torques produced with their wings
and thus, this suggests that they controlled, at least partly, their escape accelerations.

Using body and wings kinematics, we estimated the aerodynamic forces involved in
escape manoeuvres of mosquitoes (Fig. 5.7). For that, we used our findings that mosqui-
toes follow the helicopter model and we made the simplifying assumption that the force
induced by the airflow could be written as −→F air f low = Kair f low ·

−→v 2
air f low f elt, where the

coefficient Kair f low would be the same for all directions for an instant in time. This is equi-
valent to assume that the mosquito body can be approximated by a sphere, and thus that
the drag force magnitude on this body will be independent of the wind orientation. Al-
though such assumption may have resulted in estimation errors, we expect these errors to
have been maximized along the axis (x and z) where the relative airflow velocities were the
smallest. Therefore such errors should not have impacted our conclusions. For both the
transparent and the black swatter, we found that the force generated by mosquitoes were
contributing more to the escapes than the force induced by the air movements. This indic-
ates that, despite seemingly going with the flow, nocturnal mosquitoes mostly contributed
actively to their escape; as if mosquitoes actively steered into the bow wave induced by the
attack, and continued to travel with the bow wave as if surfing it.

In addition, our results show that the passive contribution of the airflow is still far from
negligible because representing between 18.8% and 41.3% of the forces driving mosquitoes
escapes for the black and transparent swatters, respectively. Although passive effects of the
air moved during an attack are unlikely to play a role in big or ground-dwelling insects, it
is not surprising that the flow does affect small flying insects such as mosquitoes. Indeed,
their mass is very low (∼ 1.2 mg (Muijres et al., 2017)), and therefore their inertia is also low.
If such passive effects are observed among insects such as mosquitoes, we expect that they
might play an even more important role in the escape of smaller insects such as fruit flies,
aphids or midges. Many of these small insects are hunted by far larger predators such as bats
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or birds. The case of fruit flies is particularly interesting because they already have been the
subject of detailed studies on their escape performances (Muijres et al., 2014). Therefore
studying how fruit flies escape performance changes when attacked by a threat to generate
air movement would certainly yield interesting comparisons. Finally, because passive use
of airflow might have been a driver of the evolution of powered controlled flight in insects
(Dudley and Yanoviak, 2011), studying how mosquitoes control their partly passive man-
oeuvres might even help us understand how the control system of flying insects evolved.

5.3.4 How do nocturnal mosquitoes detect an attack?

To investigate the role of visual cues in the escapes of nocturnal mosquitoes, we compared
their escape performances while being attacked by a transparent or a black swatter. We
found that mosquitoes started their escapes and reached their acceleration peaks earlier
when attacked by the black swatter than by the transparent one (Fig. 5.5k-r). This suggests
that, despite the low light conditions, mosquitoes were able to detect the swatter earlier
when it procured contrasting visual cues of the attack. This is in line with anatomical
measurements showing that Anopheles eyes are well adapted to their diurnal lifestyle (Land
et al., 1999). This is in agreement with our previous study which shows that visual inform-
ation plays an important role in the escape performance of both nocturnal and diurnal
mosquitoes (chapter 4). In this study, we can estimate the proportion of the total escape
forces associated with visual cues to be around 20% (active contribution for the black disk
minus for the transparent disk). Another result in line with our previous study is the fact
that mosquitoes were found to reach higher acceleration peaks when flying away from the
transparent swatter. We previously observed that mosquitoes were escaping fast more of-
ten in low light conditions than in bright light conditions (chapter 4). These results could
be explained by the fact that if mosquitoes start their escapes later, they have to accelerate
more and fly faster away from the danger in order to be successful. In that context, airflow
induced passive effects will be larger (around 20% more for the transparent disk) and then
could partly counterbalance the delay in detecting the threat by the mosquitoes.

If Anopheles mosquitoes were only using visual information to detect a threat, then
they should not be able to detect an attack in the dark or with almost no visual cues of the
attack. However, we observed that in dark, twilight and sunrise light condition, mosqui-
toes exhibited higher escape performances when attacked by a swatter inducing air move-
ments. Additionally, mosquitoes generally exhibited successful escapes when attacked by a
transparent swatter. All of this suggest that mosquitoes are actually capable of detecting an
attack without using vision. We propose that mosquitoes use information contained in the
airflow induced by the attack to detect it. Yet, we did not identify the mechanism allowing
mosquitoes to do that and not much is known about their mechanosensory capacities. It
has been recently proposed that mosquitoes would use aerodynamic imaging using their
Johnston’s organ to detect close and invisible obstacles (Nakata et al., 2020). This mech-
anism describes how mosquitoes would detect the ground or a wall by perceiving their
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self-induced airflow patterns as they approach them. This collision-avoidance mechanism
would have a detection range limited to one or two mosquito body lengths. Many of the
escaping mosquitoes never go that close to the swatter, therefore such mechanism is un-
likely to inform a mosquito early enough to trigger an escape while attacked. However, it
is possible that in such a case, instead of detecting their self-induced airflow, mosquitoes
would simply detect the airflow induced by the attacker. Alternatively, mosquitoes might
not detect the airflow directly, but could be informed of the attack by measuring body ro-
tation passively induced by the airflow. Mosquitoes can detect such rotation with short
temporal delays using their halteres (i.e. inertial sensors) (Taylor and Krapp, 2007). But
more research is needed to test these hypotheses.

5.3.5 Conclusion

In various light conditions, nocturnal malaria mosquitoes exhibited the highest escape per-
formances when the attack induced high air movements. When executing their escape
manoeuvres, mosquitoes followed the helicopter model by pitching and rolling their body
away from the threat, thus redirecting their aerodynamic force vector away from the at-
tack. They were also seemingly going with the airflow, as their escape velocity correlated
well with the velocity of the airflow surrounding them. Nevertheless, mosquitoes mostly
actively contributed to their escape by redirecting and increasing the aerodynamic force
that they produced as they surfed the bow wave induced by the swatter. Mosquitoes re-
lied partially on visual cues to improve their escape performances, but they still exhibited
a majority of successful escapes when almost no visual information about the attack was
available. Our results suggest that these nocturnal mosquitoes used the swatter-induced
airflow to detect the attack. This highlighted the overlooked role that airflow can play in
the escape success of flying insects.
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5.4 Material and Methods

5.4.1 Experimental animals

For our experiments, we used non-blood-fed adult Anopheles coluzzii females (age = 7.4 ±
1.2 days post emergence (mean ± std)). These mosquitoes came from a colony that origin-
ated from Suakoko, Liberia in 1987. This colony was reared in a climate chamber inside the
Laboratory of Entomology (Wageningen University & Research, The Netherlands) where
the temperature and relative humidity were respectively kept at 27◦C and at 70%. The
light cycle inside the room consisted of a shifted clock with 12h light and 12h dark periods.
Adult mosquitoes were reared in BugDorm cages (30 × 30 × 30 cm, MegaView Science
Co. Ltd., Taiwan), where they had constant access to 6% glucose sugar water solution.
Mosquitoes were divided in two groups, either to be used for experiments or to be used
for rearing. Rearing mosquitoes were blood-fed daily with human blood (Sanquin, Nijme-
gen, The Netherlands) using a membrane feeding system (Hemotek, Discovery Workshop,
UK). These mosquitoes had access to wet filter papers upon which females could lay their
eggs. After being collected, these eggs were dried for at least three days and then moved
intoplastic larval trays filled with 27◦C water containing a few drops of Liquifry No. 1 fish
food (Interpet, UK). After emerging, the larvae were fed with TetraMin Baby (Tetra Ltd,
UK). To emerge, pupae were moved into new BugDorm cages. Both males and females
were kept together.

5.4.2 The flight arena

To understand how mosquitoes escape from being swatted, we filmed them while freely
flying in an octagonal flight arena (50x50x48cm (height x width x length)) with transpar-
ent Plexiglas walls (Fig. 5.1a) (chapter 4). In the front and back of the flight arena, there
were two circular holes closed by HFPE insect screening (Howitec, The Netherlands) to
allow air circulation and facilitate cleaning (chapter 4). The temperature and relative hu-
midity inside the arena was controlled by the climate control system of the room (Spitzen
et al. 2013). To provide visual cues for mosquitoes, visual markers (randomly shaded grey
squares printed on paper) were placed on the floor of the flight arena. Also inside, a sensor
(AM2302, ASAIR) was recording relative humidity and temperature.

A visible light LED panel was positioned above the arena to change the light condi-
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tion from dark (turned off) to twilight or sunrise (Fig. 5.1a,f ). To mimic twilight con-
dition, multiple polyester neutral density filters of 0.8 ND (LEE filters, Panavision Inc.)
were placed in front of the LEDs in order to reduce light intensity. Additionally, the flight
arena was surrounded by multiple infrared LED panels. Because mosquitoes cannot see
infrared light (Gibson 1995), we could track them in the dark using five infrared enhanced
cameras (Basler acA2040-90umNIR) with 12.5 mm lenses (Kowa LM12HC F1.4) and the
real-time tracker Flydra (version 0.20.30)(Stowers et al. 2017; Straw et al. 2011). These cam-
eras filmed mosquitoes at 90 frames per second and at a resolution of 680x680px (with
a pixel-binning of 3). Lens distortions were corrected by filming a backlighted print of a
chequerboard pattern.

We simulated attacks using a mechanical swatter made of a 1 cm diameter black alu-
minium shaft and a black or transparent plexiglass disk. This disk had a size similar to a hu-
man hand with a diameter of 10 cm and a thickness of 1 cm. The swatter was moved along a
50 cm long-toothed belt axes (drylin ZLW-1660-G0BW0-D0A3B-0A0A-500) powered by
an AC servo motor (Schneider Electric Lexium BCH2 LD0433CA5C), itself controlled by
a programmable motion servo driver (Schneider Electric Lexium LXM28A). The swatter
kinematics, similar to a human swatting or a bat attack (Triblehorn and Yager, 2006), was
the same as in our previous study (Fig. 5.1d)(chapter 4). The swatter was triggered based
on real-time prediction of mosquito position 367.5 ms in the future (i.e. when the swatter
would be around halfway to its final position, t = -157.5 ms in Fig. 5.1–4.7). These pre-
dictions were linear estimations based on mosquito’s current three-dimensional position
and velocity. Thus, the swatter was triggered if a mosquito was predicted to be in a 10 cm
diameter spherical triggering region at the centre of the flight arena (Fig. 5.1c). After being
triggered, and having waited one second, the swatter was moved slowly back to its initial
position. After a delay of ten secondes, another trigger was allowed. Finally, during post-
processing, we filtered out all the triggers for which the mosquitoes were not predicted to
be inside the sphere of interest when the swatter would reach its most forward position (t
= 0 s).

Two different experiments are presented in this study, the first was carried out to
investigate the effect of air gusts on the escape performance of mosquitoes (supplementary
Fig. S1a and S2). For this, we used two types of transparent disks, a solid and a perfor-
ated disk, which generated different amounts of air movement (supplementary Fig. S5.1b
and Fig. 5.2). In order to control the effect of visual cues, a clear mesh (Ornata plus 95135,
howitec.nl) covered both sides.

The main goal of the second experiment was to zoom in on mosquito escapes in order
to record in detail their body and wing kinematics during those manoeuvres. For this, three
high-speed cameras (FASTCAM SA5, Photron) were added to the setup. These cameras
were pointed towards the centre of the flight arena and recorded images at 12500 frames
per second and at a resolution of 1024 × 1024 pixels. They filmed a 12x12x12 cm volume
around the final position of the swatter, where mosquitoes were initially predicted to fly
towards. Several small modifications of the setup were made to allow the addition of the
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high-speed cameras. These consisted of the removal of a part of the visible light panel above
the arena, the addition of an infrared light panel below the arena, and the decentring a hole
in the plexiglass side panel to plug in a mosquito release cage. Finally, to reduce the chance
of having individual mosquito out of the focus of the high-speed cameras, the triggering
parameters were slightly modified. These involved reducing the size of the triggering re-
gion to a 5 cm diameter sphere and in lowering the latency used to compute the predicted
positions to 315 ms (t = -0.210 s on Fig. 5.1–4.7).

5.4.3 Experimental procedure

The day before each experimental night, a disk was attached to the swatter rod according
to a quasi-randomized planning (see supplementary Fig. S5.1 and Fig. S5.1a). The experi-
menter cleaned the flight arena with paper towels and a 15% ethanol solution. Skin odour
contamination was avoided by handling all materials and mosquitoes while wearing nitrile
gloves. Then, a calibration of the Basler cameras was done by tracking the position of a
manually waved single LED in the arena. The calibration was aligned using an alignment
device with eight LEDs at known three-dimensional coordinates. Calibration snapshots
were taken with the Photron cameras of a calibration device with 23 3.5 mm beads at vari-
ous known three-dimensional positions. These snapshots were later used to compute DLT
coefficients for each camera. After closing the flight arena, a release cage with 50 female
mosquitoes was plugged to its side and mosquitoes were released to fly freely inside. The ex-
perimental procedure was then automatically controlled by a Python 2.7 script. This script
allowed for the automatic changes of the light condition inside the flight arena, the tracking
of mosquitoes and the triggering of the swatter.For the first experiment, trials started the
following morning at 2:30 a.m., two hours after the start of mosquitoes normal dark phase.
Three different light conditions were tested consecutively per night, each for 160 minutes.
The order of these light conditions was changed following the previously mentioned quasi-
randomized planning (Fig. S5.1a). For the second experiment, only the twilight condition
was tested, and the experiment lasted through the entire dark phase of mosquitoes (0:30
a.m. to 0:30 p.m.) (Fig. S5.1b). In the afternoon, mosquitoes were removed from the arena
using a vacuum cleaner, and left inside its bag to desiccate.

5.4.4 Analysis of three-dimensional flight tracks

We did the pre-processing of the first experiment dataset using Python 2.7. First, collisions
were identified by looking at the two-dimensional tracking results of the Basler cameras
positioned at the side of the flight arena. Then, the two-dimensional points corresponding
to the swatter were filtered, and three-dimensional tracks were reconstructed again. To be
able to compare the chance of being hit by the swatter with or without a disk, collisions with
a virtual swatter were determined. These virtual collisions were estimated by computing if
and when mosquito flight tracks would have crossed the path of a virtual disk.Then the
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data was analysed using Matlab R2019b (as in chapter 4). Outliers of computed three-
dimensional points were filtered out using the covariance matrices estimated by the Flydra
tracker extended Kalman filter. Segments that were shorter than 4 points (at 90 fps) long
were filtered out and segments that were separated by more than 15 points were divided into
separated tracks. Then, missing values were interpolated (makima, Matlab) and smoothed
using a Savitzky-Golay filter with a moving window of five frames. Finally, for the rest of
the analysis, we only kept the tracks that started at least 60 frames before and 30 frames after
the time at which the swatter reached its most forward position (t = 0s on all the figures).

The second dataset (using the high-speed cameras as shown in Fig. 5.1) was also analysed
using Matlab R2019b. Only the tracks that did not end up in a collision (if mosquitoes
touched the disk with any body part) were kept for further analysis. Three-dimensional
track segments that were shorter than 50 frames (at 12500 fps) were filtered out. Similarly,
segments that were separated by more than 20 frames from the main track were also filtered
out. Instantaneous wingbeat amplitudes and frequencies were estimated using a Hilbert
transform on the wings’ stroke angles. Then body and wings parameters were smoothed
using a Savitzky-Golay filter with a moving window of 251 frames. After that, framerate
was lowered to 500 fps (linear resampling) for the rest of the analysis.

For both datasets, flight velocities and accelerations over time were computed using
central finite difference schemes (with an accuracy of 6). Initial and final values were estim-
ated respectively using forward and backward finite difference schemes. Then, the escape
velocity and escape acceleration were defined and computed by projecting mosquito velo-
city or acceleration over time on the moving line between the nearest point on the swatter
and mosquito three-dimensional position (see Fig. 5.2c).

5.4.5 Estimating body and wing motion

To investigate mosquitoes’ reaction to the swatter attack, it was necessary to accurately es-
timate their position as well as their body and wing angles throughout the manoeuvres.
Tracking the body parts of mosquitoes from our dataset was challenging. Indeed, due to
the relatively large three-dimensional volume filmed and to experimental lighting limita-
tions, body resolution was low and contrast was restricted. This meant that classical auto-
matic tracking methods would most likely yield poor results. Manually tracking body parts
was also not an option because our dataset comprised of several hundreds of thousands of
images. Thus tracking needed to be automated with an accuracy close to human tracking.
To accomplish this goal, we developed a new flying insect tracker written in Python 3.6 and
based on the deep neural network package DeepLabCut (Mathis et al., 2018). This open-
source package uses transfer learning to do markerless pose estimation using relatively low
numbers of labelled images.

The tracking process is described in detail in the supplementary Fig. S5.8. It starts
with preparing low-resolution videos to be used by DeepLabCut. First, mosquitoes are
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tracked in two-dimension on each of the three different camera views using the opencv2
blob detection algorithm. Then, in order to filter out noise, three-dimensional tracks are
reconstructed using previously computed DLT coefficients and the tracks are re-projected
in each camera two-dimensional views. From these two-dimensional coordinates, the ori-
ginal images are cropped around mosquitoes’ positions over time. These cropped images
are stitched together and converted into a single .avi video per manoeuvre. Such video
presents several advantages when compared to the original recordings in order to be used
by DeepLabCut, namely of having a greatly reduced resolution, thus increasing the track-
ing speed. And it gathered all camera views together, thus allowing the network to learn
positional correlation between the views. Using the DeepLabCut GUI, we trained a deep
neural network based on the pre-trained network resnet50 and 230 manually labelled im-
ages of escaping mosquitoes. For each camera views, we labelled 40 points over the mos-
quito body and wings, thus resulting in a total of 120 points per image (Supplementary
Fig. S5.9). The deep neural network was then used to automatically estimate positions of
these points on all recorded images.

Next, from the two-dimensional results of DeepLabCut we estimated body parameters
(i.e. position, lengths and angles of body parts and wings) over time using a custom-made
Python 3.6 package. The first steps were to remove outliers with likelihood (provided by
DeepLabCut) lower than 0.85 and to reconstruct three-dimensional coordinates of each
body part. Then, initial estimation of body parameters were obtained using simple cal-
culus. Because initial estimation of body and wings angles were found to be noisy, up-
dated estimation of these parameters were then obtained by minimizing the sum of squares
(scipy.optimize.leastsq) of the root-mean-square deviation between the coordinate of the
skeletons joints and the three-dimensional points. Estimated body or wing parameters were
filtered out if the root-mean-square deviation was superior to 0.1 mm and if the number of
points per wing or body used to do the 3d fitting was lower than 4. Finally, body paramet-
ers (but not the wing parameters) were smoothed over time with a low pass Butterworth
filter using a cut-off frequency of 100 Hz.

5.4.6 Classifying tracks as cruising or escaping

To classify flight tracks as either “cruising” (i.e. missing the swatter by chance) or “escaping”,
we used a Hidden Markov model (HMM) (Matlab toolbox by Kevin Murphy (Murphy,
1998)). In such a model, the studied system is assumed to be a Markov process with hid-
den states (here cruising or escaping), where the current probability of the system to be
in a particular state is only dependent on the previous state. Our HMM was trained on
all escape accelerations over time of all tracks that didn’t end up in a collision. We estim-
ated the initial parameter of the model by fitting a mixture of two Gaussians (fitgmdist,
Matlab) to the distribution of all instantaneous escape accelerations (see supplementary
Fig. S5.7c). Then the remaining unknown parameters of the HMM were estimated using
a Baum–Welch algorithm, with fixed means and standard deviations (see supplementary
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Fig. S5.7a,b). The state with the highest mean acceleration was labelled as the “escaping”
state while the second was labelled as the “cruising” state. We used the Viterbi algorithm
to compute the most-likely corresponding sequence of states for each track (see examples
on Fig. 5.5g). Then we computed the overall proportion of tracks that were in either of the
two states for each point in time (Fig. 5.5h). Finally, we labelled all the tracks as escaping
if they were found to be at least once in the “escaping” state. The remaining tracks were
labelled as cruising (Fig. 5.5i,j) .

5.4.7 Simulating the airflow conditions

To investigate the role of the airflow generated by the swatter, we simulated this airflow
using Computational Fluid Dynamics (CFD) simulation. The simulation of the swatter
was performed with the aid of the dynamic mesh PIMPLE solver available in OpenFOAM
(version 19.12 (Weller et al., 1998)), namely overPimpleDyMFoam. The simulations were
configured to run with a second order accurate backwards time scheme. The domain con-
sisted of a cylinder (radius = 250 mm and length = 580 mm) with a disk moving in it. An
overset (chimera) mesh was employed to enable the movement of the disk, with prede-
termined kinematics, inside the cylindrical computational domain . This approach com-
bined two distinct unstructured cartesian grids constructed with the aid of CFMesh. A
grid was constructed around the disk, and another filled the cylinder domain acting as
background grid. Both were predominantly composed of hexahedral cells of 2 mm and
4 mm respectively. No-slip and inletOutlet velocity boundary conditions were imposed at
the disk and outer boundaries respectively. Additionally, the simulation used a U-RANS
model to account for turbulence effect, more specifically has accomplished that with the
aid of a Spalart-Allmaras turbulence model.

The CFD results were validated by comparing them with experiment measurements
obtained with a hotwire anemometer (tetso 405i) (see supplementary Fig. S5.10). Two sets
of parametric studies were conducted varying the cell sizes and the Courant–Friedrichs–Lewy
(CFL) number (Fig. S5.10 and Fig. S5.11). The cell sizes of the meshes were selected after
comparing multiple mesh sizes to be at the maximum 4 mm for the background mesh and
2 mm for the overset mesh 2 mm. Similarly, various Courant–Friedrichs–Lewy (CFL)
number were compared and we selected a final CFL number of 0.4. Because of the chaotic
nature of airflow turbulence generated during the movement of the swatter, we could not
predict the exact conditions that each individual mosquito experienced. Thus all of the
CFD results presented in this study have been averaged around the axis of the swatter move-
ment (i.e. the three-dimensional axis of symmetry of the swatter) into two-dimensional
planes for each millisecond (see supplementary Fig. S5.12). Airflow velocities at each in-
stantaneous mosquito three-dimensional positions have been interpolated from these two-
dimensional planes using modified Akima piecewise cubic Hermite interpolation (makima,
Matlab).
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5.4.8 Estimating aerodynamic forces

To disentangle mosquito active contribution to their escape from the passive effect of them
being pushed away by the air movement, we estimated the contribution of involved aero-
dynamic forces (see free body diagram Fig. 5.6a). Using Newton’s second law of motion we
can write

∑ −→
F = m · −→a =

−→
F aero +m · −→g , with m being mosquito mass and−→a its body ac-

celeration vector. Additionally we can define−→F aero =
−→
F mosquito+

−→
F air f low with−→F mosquito

being the aerodynamic force generated by the mosquito with its wings. And −→F air f low the
force of the moving airflow on mosquito’s body (e.g. due to mosquitoes motion in refer-
ence to the surrounding air mass). By assuming a quasi-steady hypothesis, both of these
forces can be written in the form −→F = 1

2 · ρ · S ·
−→v 2 ·C with ρ the air density, S the cross-

sectional area of mosquito body, −→v the air velocity andC an unknown coefficient. In the

case of−→F mosquito,−→v 2 can be replaced by v2
wb ·
−→
l with the average wingbeat velocity vwb and

the unit total aerodynamic force vector
−→
l . This vector is normal to mosquito body and

directed upward when the mosquito is hovering. Because the velocity of mosquito body
in the surrounding air mass is negligible when compared to the velocity of the wings in
reference to its body, we can define the average wingbeat velocity as vwb = fwb.Awb.

span
2 .

With mosquito mean wingbeat frequency fwb and mean stroke amplitude Awb. We can
simplify the two aerodynamic forces to:

−→
F mosquito = Kmosquito · v2

wb ·
−→
l (5.1)

−→
F air f low = Kair f low ·

−→v 2
air f low f elt (5.2)

and rewrite the second law of Newton too:

m · −→a − m · −→g == Kmosquito · v2
wb ·
−→
l + Kair f low ·

−→v 2
air f low f elt (5.3)

By normalizing this equation by mosquito weight (m.g), we get:

−→a − −→g
g
=

Kmosquito

m · g
· v2

wb ·
−→
l +

Kair f low

m · g
·
−→v 2

air f low f elt (5.4)

with the two unknown coefficients Kmosquito
m·g and Kair f low

m·g . Then we estimated these two coef-
ficients for each point in time (i.e. frame) by solving the equation 5.4 using a linear least
square solver (lsqlin, Matlab) and constraining the coefficients to be positive. Then, we
filtered out estimations with normed residuals superior to 5% of the normalized weight

−→g
g

(=1). Finally, we computed −→F mosquito and −→F air f low using the estimated coefficients, and
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compared these forces during escapes (i.e. while being in the “escaping” state) to
−→a−−→g

g
(Fig. 5.7 and supplementary Fig. S5.13).

5.4.9 Statistical analysis

In this study, instead of usual frequentist statistics, we used Bayesian statistics because we
think it is conceptually clearer and because it offers richer results by providing estimations
of the full-probability distribution of the parameters of interest. We estimated means of
mosquitoes’ probability of being hit (Fig. 5.2a) for each combination of light condition and
swatter type using MATJAGS, a Matlab interface for JAGS (Steyvers and Kalish, 2014), and
the Matlab Toolbox for Bayesian Estimation (MBE) (Winter, 2016), a Matlab implementa-
tion of Kruschke’s R code (Kruschke, 2013). To model the probability of being hit we used
a Bernoulli distribution and a logistic link function. Additionally, to compare the escape
performance of mosquitoes when attacked by the black or the transparent disk, we estim-
ated means of various performance metrics (Fig. 5.5k-n) and means of the proportion of
forces applied to the body of mosquitoes (Fig. 5.7e-h) using Bayesian estimation (Kruschke,
2013). We used a normal distribution to model the performance metrics and student t dis-
tributions to model the force proportions. Then, we defined standardized effect sizes of the
comparison between the two disk types (black and transparent) as the difference of their
estimated means divided by the norm of their estimated standard deviations.

Finally, we tested for the null hypothesis using the “HDI+ROPE decision rule” (Kruschke
and Liddell, 2018). For this, we first define the 89% HDI (Highest Density Interval) as the
89% interval in which all the points have a higher probability density than points outside.
And the ROPE (Region of Practical Equivalence) is defined as the range around zero (i.e.
the null hypothesis) where a parameter would be found to have “practically no effect”.
Therefore, the “HDI+ROPE decision rule” says that the null hypothesis is rejected if the
89% HDI of the standardized parameter (e.g. slopes) completely fall outside the ROPE
=[-0.1, 0.1].
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Figure S5.1: Experimental conditions. (a) Experimental planning and conditions for the experiment
#1 (results presented in Fig. 5.2, setup Fig. S5.2). (b) Experimental planning and conditions for the
experiment#2 (results presented in Fig. 5.3–5.7).
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Figure S5.2: Experimental setup to record mosquito flight kinematics. (a-b) The experimental setup
used for the first experiment. In the second experiment, the light panels were modified and the hole to
plug a release cage was moved towards the swatter side (see Fig. 5.1).
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Figure S5.3: Null hypothesis testing with Bayesian estimation. Examples of two distributions of
the estimated mean of a standardized parameter � in black. The null hypothesis is rejected (left) if the
Highest Density Interval (HDI) is outside the Region Of Practical Equivalence (ROPE). The null-hypothesis
is accepted (right) if the full HDI is inside the ROPE.
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Figure S5.4: Disk with black and clear meshes. (a,b,e,f ) Pictures of the solid and perforated disks with
a clear mesh that were used in the experiment #2. (c,d,g,h) Picture of the transparent and black disks
that were used in the experiment presented in the Fig. 5.3–5.7.

224



5s

a)

10-9

10-8

10-6

10-4

10-3

10-2

sp
ec

tra
l r

ad
ia

nc
e 

[W
/(s

r*
sq

m
*n

m
)]

wavelenght [nm]
400 600 700 900500 800

10-7

10-5

twilight (0.327 cd/m2)

infra-red (0.0201 cd/m2)

c)

10-8

10-7

10-5

10-3

10-2

10-1

10-0

sp
ec

tra
l r

ad
ia

nc
e 

[W
/(s

r*
sq

m
*n

m
)]

wavelenght [nm]
400 600 700 900500 800

10-6

10-4

infra-red (0.743 cd/m2)

twilight (0.275 cd/m2)

wavelenght [nm]

0

0.25

0.5

0.75

1

w
ei

gh
t

400 600 800 900

b)

500 700

spectral
lumininous 
efficiency 
function

Figure S5.5: Spectrum of the various light conditions. (a) Spectral radiance in log scale of the twilight
condition and of the infrared light measured in the middle of flight arena (as presented in Fig. S5.2) with
a spectrometer (specbos 1211, JETI) and using a diffuse reflector (USRS-99-010-EPV, Labsphere). The
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be measured at the same time. (b) Spectral luminous function of humans (Sharpe et al., 2005) used
to compute the luminance of each light condition. (c) Spectral radiance of the light conditions in the
experimental setup presented in the supplementary Fig. 5.1.
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Figure S5.6: Initial and final flight angles. (a,c) Rose plots of mosquito flight angle in the horizontal
plan at trigger time ((a) - initial) and when the swatter reach its most forward position ((c) - final). The large
majority of tracks are showed to be initially coming from one side because the tracks that had negative
initial heading (see Fig. 5.4) were mirrored. (b,d) Rose plots of the initial and final mosquito flight angle
with horizontal plan. The swatter is coming from the right (0� angle). Radial scale showing the number of
tracks in each bar.
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Figure S5.7: Hidden Markov Model parameters. (a) Transition matrix. Each number is the probability
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to be on each one of the two states. (c) ) Distribution of all escape accelerations of the mosquitoes with
the Gaussian distribution of the two states used in the HMM.
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Figure S5.8: Mosquito tracking process. (a) An example of a frame recorded by the side camera
while a mosquito was attacked by the mechanical swatter. (b) Blobs are detected for all frames of the
recording using background subtraction. (c) The 2d coordinates resulting from the blob detection on all
three camera views are used to reconstruct the 3d tracks of the mosquito. (d) The 3d coordinates are
then re-projected into each camera view, and the images are cropped around the mosquito positions
using a 200 x 200 pixels window. (e) The cropped images of the three views are stitched together and
converted into a single .avi video. (f ) The video is analysed using a deep learning network trained with
230 manually labelled images (Mathis et al., 2018). (g) For each frame, a 3d skeleton of a mosquito with
variable parameters (e.g. body lengths, span, body and wings angles) is fitted to the reconstructed 3d
coordinated of mosquitoes various body parts.
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Figure S5.9: DeepLabCut: Body part labels and skeleton. (a) Example of a video frame used in
DeepLabCut for the pose estimation of body parts. (b) 42 body parts are labelled on each view (x3). (c)
A skeleton linking the various body parts is defined in DeepLabCut to improve tracking accuracy.
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Chapter 6

General discussion



In this thesis, I aimed to contribute to our understanding of how flying insects behave
in the vicinity of vertebrates, and in particular how haematophagous mosquitoes interact
with their blood hosts. I did this by investigating two behaviours that are crucial for re-
production and the spreading of diseases: how mosquitoes host seek, detect, and react to
short-range cues indicating human presence and how mosquitoes escape from a looming
threat.

In chapter 2, I visualized the flight behaviours of mosquitoes in the close vicinity of an
odour-baited trap. I compared the average flight dynamics of flying mosquitoes around a
trap in a hanging or standing orientation to represent two widely used traps. I elucidated
how mosquitoes reacted to these traps and how that affected their approach or capture. We
found that mosquitoes approached the traps by flying downward and exhibited upward
acceleration when close to the capture zone of each trap.

Based on these results and on literature, we developed a new trap that implements ad-
ditional short-range cues, the M-Tego. As described in chapter 3, we tested this trap in the
laboratory and in semi-field conditions as well as with- or without these short-range cues.
By systematically comparing the M-Tego capture performances and visualizing mosquito
flight behaviours around it, I could show why mosquitoes were much more likely to be
captured by this new trap when it produced heat and humidity in addition to the odour
bait.

Although we did observe evasive manoeuvres above the trap inlet in chapter 2, escape
manoeuvres of flying mosquitoes had never been the subject of a dedicated study. There-
fore, in the second part of this thesis, I investigated these escape manoeuvres. In chapter 3, I
investigated whether diurnal and nocturnal mosquitoes had different escape strategies and
whether those changed with the light conditions they flew in. We found that both day-
and night-active mosquitoes were performing best at their respective natural light condi-
tion (i.e. when active). Interestingly, they did so by using opposite strategies: with night-
active Anopheles mosquitoes relied most on their hard-to-predict flight path in the dark;
whereas day-active Aedes mosquitoes relied more on their escape performances in overcast
light conditions.

Finally, in chapter 5„ I studied in detail the flight kinematics of night-active mosquitoes
while they performed escape manoeuvres. I estimated the aerodynamic force generated by
mosquitoes as well as those induced by a mechanical swatter. By comparing these, I could
show that mosquitoes are mostly contributing actively to their escapes, but also that the
passive effect of the swatter-induced airflow cannot be neglected.

In this general discussion, I first place these results into a broader context of mos-
quito interactions with vertebrates. Because the research chapters of this thesis focused on
anthropophilic mosquitoes, I will mostly discuss mosquitoes’ interactions with humans.
First, I summarize some of our findings on mosquito flight behaviour and I address how
these findings inform us about the attractive and disruptive cues that flying mosquitoes
use to navigate and to control their flight. Additionally, I discuss how the knowledge we
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gained on the escape manoeuvres of mosquitoes inform us about insect flight. I address the
technical aspect of our work by discussing the strengths and limits of the methods I used,
as well as the chosen general approach for the analysis of our data. Then, I highlight what
are, in my opinion, the next research questions to tackle on these topics. I address how
other flight behaviours of mosquitoes could benefit from studies like the one presented in
this thesis. I propose new directions concerning analysis methods that could be used for
future research on insect flight. Finally, I discuss the difficulties and advantages of laborat-
ory experiments and how well these results can translate to the field. Also, I propose a few
ideas on how our findings could be used for the improvement of vector control tools.

6.1 The interaction of mosquitoes with vertebrates

Most female mosquitoes need a blood meal to be able to develop their eggs, and con-
sequently must seek a vertebrate host. For this, mosquitoes need to detect CO2 and volatiles
that signal the presence of a nearby host upwind (Cardé, 2015; Cardé et al., 2010). Then, a
flying mosquito will rely on its cast and surge behaviour, as well as on visual cues to find
the source of the odour plume (van Breugel et al., 2015; Vinauger et al., 2019). Up until this
point, the host-seeking flight behaviour of mosquitoes has been studied extensively, most
often in wind-tunnel experiments (van Breugel et al., 2015; Cooperband and Cardé, 2006b;
Hawkes and Gibson, 2016; Kennedy, 1940; Spitzen et al., 2013). Then, the mosquito will
use additional cues, so-called short-range cues such as heat and humidity, to decide whether
and where it will land (Beeuwkes et al., 2008; Hawkes and Gibson, 2016; Howlett, 1910).
The importance of these cues is also well established but the flight dynamics of mosquitoes
and the role of airflow – another important cue used by mosquitoes – in close vicinity of
their hosts is still relatively poorly understood.

6.1.1 Odour-baited counter-flow traps as human mimics

In this thesis, I studied the flight behaviour of mosquitoes around odour-baited counter-
flow traps that imitate humans. These traps generate most of the cues that attract mosqui-
toes to humans, namely CO2 (Dekker et al., 2005; Gillies, 1980; McMeniman et al., 2014),
odours (Cardé, 2015; Dekker et al., 2005; van Loon et al., 2015; Verhulst et al., 2009), visual
cues (van Breugel et al., 2015; Hawkes and Gibson, 2016; Vinauger et al., 2019), heat and
humidity (Beeuwkes et al., 2008; Hawkes and Gibson, 2016; Howlett, 1910). Each one of
these human cues has been shown to play an important role in mosquito host seeking beha-
viour. Mosquitoes use all of these cues at various distances from the source, and integrate
them together when host seeking (van Breugel et al., 2015; Cardé, 2015; McMeniman et al.,
2014). In that way, odour-baited traps can trick mosquitoes into believing that they are
flying towards blood host, and this up until the point they get captured.

Nevertheless, traps are still not as attractive as humans (Batista et al., 2018; Kenea et al.,
2017; Tambwe et al., 2021; Tangena et al., 2015). Probably, multiple factors contribute to
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this difference. First, the odour blends used in traps are usually a mix of no more than six
compounds (Kröckel et al., 2006; van Loon et al., 2015), whereas more than 10 microbial
volatile attractants have been identified (Verhulst et al., 2009). In addition, the fact that
odour attractiveness can vary significantly between individuals (Qiu et al., 2006), indic-
ates that much still has to be discovered about what makes an odour attractive to mosqui-
toes. One other aspect in which traps clearly differ from humans is in the visual cues they
produce. Because both diurnal and nocturnal mosquitoes have been shown to use visual
cues during host seeking (van Breugel et al., 2015; Hawkes and Gibson, 2016), it is also pos-
sible that mosquitoes find human visual cues more attractive than the ones of traps. All
of this is in line with the fact that some mosquito preferences for odour-baited traps vary
between species (Englbrecht et al., 2015; Gama et al., 2013; Lühken et al., 2014), with for
example, some traps seemingly being more efficient against nocturnal mosquitoes (Batista
et al., 2017; Gama et al., 2013).

Despite the difference between odour-baited traps and humans, these traps can be ideal
tools to study mosquito short-range host seeking behaviour. As discussed in the general in-
troduction, these traps can be used in highly reproducible experiments and provide a means
of controlling experimental condition (by adding or removing host cues). These things are
very difficult to achieve with human volunteers. One consequence of this is that record-
ing large dataset of flight tracks is made possible using odour-baited trap in videography
experiments. This was found to be particularly important in this thesis.

6.1.2 Simulating host defensive behaviour

Mosquito hosts such as birds (Darbro and Harrington, 2007; Edman et al., 1984), frogs
(de Silva et al., 2020), humans (Reid et al., 2014; Walker and Edman, 1985) and other mam-
mals (Edman and Scott, 1987; Matherne et al., 2018), exhibit various defensive behaviours
to protect themselves against the biting. These defensive behaviours are very successful
in reducing the persistence of mosquitoes trying to feed on a host (Walker and Edman,
1985). Additionally, these behaviours can vary significantly between species, individuals
and with factors such as mosquitoes density (Darbro and Harrington, 2007; Edman and
Scott, 1987). Some hosts use foot stomps, body shakes, tail swinging or even grooming
to get rid of harassing mosquitoes (Darbro and Harrington, 2007; Matherne et al., 2018;
Waage and Nondo, 1982). Others such as birds and frogs can also directly predate on these
mosquitoes (Darbro and Harrington, 2007; Raghavendra et al., 2008). To my knowledge,
there is no study that described in detail how human swat mosquitoes. Therefore, it is
complicated to compare the kinematics of our mechanical swatter to such attack.

Before doing the experiments of chapter 4, we ran a preliminary experiment involving
human volunteers that slapped a hanging ping-pong ball. Results from this experiment
showed that the attacks speed range from around one to more than five metres per second.
These attack speeds are in line with the speeds at which mammals are swinging their tail
to defend themselves and of attacks from dragonflies (Lin and Leonardo, 2017; Matherne
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et al., 2018). Our swatter maximum speed was around one metre per second, and there-
fore it simulated relatively slow attacks. Consequently, it is possible that, when attacked
by faster threats, mosquitoes would exhibit different escape performances from the one we
observed in this thesis. Intuitively, we could guess that mosquitoes would be hit more of-
ten in that case. However, it is possible that the passive contribution of the airflow would
counterbalance the higher risk associated with such faster attacks. In addition, because the
attacks induced by the swatter were unidirectional, they probably also differed significantly
from more natural attacks. Nevertheless, our mechanical swatter was a suitable mimic be-
cause it induced what are probably the most important cues of an attack: airflow and visual
cues.

6.1.3 What we learned about mosquito flight behaviour

Before us, the flight behaviour of mosquitoes around odour-baited traps had been studied
only once by Cooperband and Carde (Cooperband and Cardé, 2006a). They showed that
Culex mosquitoes that approached the trap exhibited low flight speeds and higher flight
tortuosity, which have been associated with host-seeking behaviours (Hawkes and Gibson,
2016; Spitzen et al., 2013). In addition, they could demonstrate that odour-baited traps usu-
ally have relatively low capture efficiency (i.e. ratio between captures over approaches). In
chapters 2 and 3, I confirmed these findings for Anopheles mosquitoes flying around the
Suna or the M-Tego. Recent studies also showed similar finding for Aedes and Anopheles
mosquitoes respectively flying around the BG-Sentinel and BG-Malaria (Amos et al., 2020;
Batista et al., 2019). From this, one can ask the question: if traps are attractive and trigger the
host-seeking of mosquitoes, why do they have low capture efficiency? A beginning of the
answer was already given by Cooperband and Carde as they observed that mosquitoes were
flying for a longer time around the trap with the lowest capture efficiency (Cooperband and
Cardé, 2006a). They also speculated that the low capture efficiency might be the result of
a lack of some host cues, or due to poor capture mechanisms of the traps. In chapters
2 and 3, we show that these hypotheses are most likely correct. By visualizing mosquito
flight behaviour around traps in detail, I demonstrated that despite having good attract-
iveness, odour-baited traps were not always good at capturing mosquitoes. This seemed
to be either caused by a lack of short-range host cues (as shown in chapter 3) or because
the capture mechanism of the trap triggered upward escape manoeuvres (as suggested in
chapter 2). Anopheles mosquitoes approached the traps by flying downward and were es-
pecially attracted to a region above and around the inlet and outlet of the traps. They also
exhibited higher attractivity towards and longer flight in this region when short-range cues
were present. Then, above the standing Suna trap, mosquitoes were observed to be able to
escape capture by exhibiting upward acceleration. The observed fast upward manoeuvres
are also in line with the manoeuvres exhibited by horse and deer flies after they encounter
host cues (Thorsteinson et al., 1965; Townes, 1962). Furthermore, this is in line with our res-
ults showing that mosquitoes had the tendency of flying upward after escaping from the
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swatter (see supplementary material of chapter 4). As we already discussed in chapter 2,
these upward-direct manoeuvres could be a way for mosquitoes to find refuges away from
terrestrial hosts such as humans.

In this thesis, I present the first studies on the escape manoeuvres of flying mosqui-
toes. In chapters 4 and 5, we found that mosquitoes escaped from being swatted by accel-
erating quickly away from the attacker. This is in line with the escape strategies of fruit
flies (Muijres et al., 2014). Mosquitoes were also found to escape slightly upward, but oth-
erwise they did not exhibit any particular escape dynamics contrary to some insects such
as moths that have been shown to exhibit stereotypical escape responses such as diving
(Rodríguez and Greenfield, 2004; Spangler and Hayden, 1984) or manoeuvres directed to-
wards safety zones at the flank of the attacker (Corcoran and Conner, 2016). Additionally,
mosquitoes exhibited a relatively high randomness in their directions of escape. This is
also consistent with existing literature on the escape behaviour of other flying animals, be-
cause many were shown to adopt middle ground strategies between random trajectories
(to maximize unpredictability (Moore et al., 2017) and escapes that are directed straight
away from the threat (Domenici et al., 2011, 2008). Our findings on the escape strategies
of mosquitoes are novel in another aspect. In chapter 4, we describe how the diurnal Ae-
des and nocturnal Anopheles mosquitoes rely on different strategies to successfully escape
from a threat at their respective natural light condition. In the dark, Anopheles mosqui-
toes were shown to rely mostly on the natural unpredictability of the flight paths to escape
successfully, whereas Aedes mosquitoes relied more on escape manoeuvrability in overcast
daylight. Finally, we found that these strategies changed in function of the light condition,
with for example, Anopheles mosquitoes relying less on their natural unpredictability and
more on their escape manoeuvrability in brighter light conditions (chapter 4). These res-
ults suggest that these two mosquito species exhibit strategies that are optimized for their
activity time, whereby Aedes relies on its detection and manoeuvre performance in the day,
and Anopheles mosquitoes enhance their unpredictability in the night because it may be
more difficult to detect a threat in the dark.

6.1.4 How attractive host-cues influence the behaviour of mosquitoes

Here, I will discuss how our findings inform us about the host-seeking behaviour of mos-
quitoes when flying in the presence of attractive host cues. First, by visualizing mosquito
flight behaviour in a three-dimensional space (chapters 2 and 3), we confirm that mosqui-
toes showed a high attractiveness to synthetic blend based on human odours. In our stud-
ies, Anopheles mosquitoes were consistently attracted to the region near the traps where
the odour concentration is expected to be highest and exhibited higher attractivity towards
the traps that generated heat and/or humidity, which is also in line with previous findings
(Hawkes et al., 2017; Howlett, 1910; Spitzen et al., 2013). Furthermore, our results suggest
that despite the significant role played by CO2 to trigger host seeking behaviour, mosqui-
toes were not particularly interested in the region where CO2 concentrations are expected
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to be the highest (e.g. near the CO2 release point). Actually, it even seemed like mosquitoes
were avoiding these regions in our experiments (as in (Spitzen et al., 2008)), maybe because
such places are analogous to the human face, and therefore intrinsically more dangerous
(e.g. higher chance of detection).

The role of CO2, odours, heat and humidity on the behaviour of mosquitoes have
been well studied (van Breugel et al., 2015; Cardé, 2015; McMeniman et al., 2014; Spitzen
et al., 2013). However, the role of air movements on the flight behaviour of mosquitoes
is less well known. Mosquitoes, like many other insects, can find the source of an odour
plume by flying upwind and exhibiting cast- and surge behaviour (Cardé and Willis, 2008;
Dekker and Cardé, 2011; Kennedy, 1940). This behaviour has been studied primarily in
wind-tunnel experiments, where the airflow is mostly unidirectional and horizontal (van
Breugel and Dickinson, 2014; van Breugel et al., 2015; Spitzen et al., 2013). These stable
conditions can be quite different from natural conditions close to a host, where the airflow
will be deviated by the host, and be redirected upward thanks to heat convection from the
host’s body. When this close to a host, a mosquito may not need the airflow anymore to
find the source of the odour. However, it might still use the air movement to select a biting
place, or even to detect defensive behaviour from the host (Cardé et al., 2010; McMeniman
et al., 2014; Spitzen et al., 2013).

To some extent, counter-flow traps reproduce the local airflow conditions near a host
(Hiscox et al., 2014), by generating an outward upward flow (in the case of upward direc-
ted traps), they simulate the heat convection currents generated by hosts (supplementary
Fig. S2.7 and (Li et al., 2018)). Having said this, it is not surprising that we observed that
mosquitoes approached the traps by flying downward (chapters 2 and 3), as they may have
done to go “upwind” of thermal currents (Daykin, 1967). Nevertheless, we still know very
little about this behaviour and about the typical airflow conditions near the hosts (Dekker
et al., 1998). In particular, it is still unclear whether and how mosquitoes use thermal cur-
rents or gradients to select a landing spot. In our experiments, we did not observe any clear
differences in average flight paths with or without adding heat despite the higher catching
efficacy when heat was added. It is probable that the placement of the heat source com-
bined with the complexity of the airflow generated by the M-Tego trap prevented us from
detecting any such effect (chapter 3).

6.1.5 How airflow and visual cues inform mosquitoes about a threat

Counter-flow traps use rapid airflow to capture mosquitoes, and thus they generate poten-
tially disruptive cues that seem to elicit avoidance behaviours (see chapter 2, (Amos et al.,
2020; Batista et al., 2019)). The high airflow velocity regions near the Suna trap inlet, pos-
sibly combined with a lack of short-range cues, probably induced upward acceleration of
flying Anopheles mosquitoes after approaching the traps downward. Such manoeuvres are
similar to the way horse- and deer flies fly upward after inspecting visually interesting ob-
jects (Thorsteinson et al., 1965; Townes, 1962), and could be a specific behaviour of host
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seeking insects that want to reduce the risk of interacting with vertebrates. Interestingly,
female mosquitoes that escaped successfully from the mechanical swatter (supplementary
Fig. S4.6), were also observed to flight slightly upward despite the absence of host cues.
For this reason, and because mosquitoes have been shown to be able to aversively learn spe-
cific host odours (Vinauger et al., 2018), it would be particularly interesting to test whether
mosquitoes exhibit higher escape performances (e.g. smaller delays and stronger accelera-
tions) when attacked after having detected host cues (e.g. CO2 and odours). Knowing the
importance of protean behaviour in mosquitoes escaping success (chapter 4), I would be
curious to see whether mosquitoes decrease their flight-path predictability in the presence
of host cues.

From investigating how mosquitoes escaped from being swatted, it became clear that
visual information plays an important role in this behaviour for both diurnal and nocturnal
mosquitoes. First, both Aedes and Anopheles were found to exhibit higher escape accelera-
tions when attacked in brighter light conditions (chapter 4). And secondly, the nocturnal
Anopheles mosquitoes reacted faster when attacked by the black swatter instead of the trans-
parent one (chapter 5). This indicates that mosquitoes rely strongly on visual information
about the attack to trigger their reaction and modulate its strength even in low-light condi-
tions. This is not entirely surprising when we consider that both species have been shown
to use visual cues when host seeking (van Breugel et al., 2015; Hawkes and Gibson, 2016),
and that insects can integrate visual and airflow information before exhibiting such flight
behaviour (Fuller et al., 2014). Nevertheless, we found that in the dark, mosquitoes were
able to successfully escape from a threat. This suggests that visual information is not always
necessary in the mosquito decision-making process. In that case, it seems that only airflow
cues were used to trigger an escape manoeuvre. This is particularly relevant for species such
as Anopheles coluzzii that prefer feeding on sleeping humans.

6.1.6 Mosquito-vertebrate interaction – Some additional perspectives

Our findings seem to indicate that when mosquitoes interact with vertebrates, airflow can
significantly affect the behaviour they will exhibit (i.e. attraction or avoidance). There is
still much we do not know about how mosquitoes perceive airflow and how they react to
them. Specifically, we lack information about whether and how mosquito behaviours are
triggered by specific airflow characteristics such as flow directionality or speed. Therefore,
fundamental studies are needed that look at these aspects; for example, to characterize the
performances of mosquitoes at detecting upward or downward directed airflow, and how
they react to these. Additionally, the effect of airflow turbulence (both the level and eddy
sizes) on mosquito flight behaviour would also benefit from more research. Despite that
this aspect of mosquito flight has probably a large impact on the behaviours of mosqui-
toes (Combes and Dudley, 2009; Jatta et al., 2021), our understanding about it is still very
limited.

Improving our understanding of what are the specific airflow characteristics that mos-
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Figure 6.1: Infographic on the role of attractive and disruptive cues. Using our findings, we can
update the infographic about host seeking of mosquitoes (see general introduction).(1) A flying female
mosquito encounter CO2 and odour plumes. (2) The mosquito will surge upwind and cast crosswinds to
find the source. (3) The mosquito will inspect visually interesting objects. (4) If the mosquito is detected,
it may be attacked. In that case, it will rely on the airflow and visual cues to detect the attack. To escape,
the mosquito will actively surf the airflow, and then fly away (5), and probably upwards.

quitoes used to discriminate between attractive and disruptive cues would be particularly
useful for the development of vector control tools. Coupled with simulations of airflow
and host cues, this information could allow us to simulate the flight behaviours of mosqui-
toes (e.g. using agent-based modelling (de Almeida et al., 2010; Maneerat and Daudé, 2016;
Shcherbacheva et al., 2018)) in the vicinity of odour-baited traps. For this, our datasets,
could prove particularly useful, as it would procure a very rich means of validating such
simulations. In this way, we could test whether simulating the behaviours of mosquitoes
using simple behavioural rules about mosquito attractiveness and avoidance towards cues
would result in similar flight paths and activity as the ones we observed around the traps.
If this was confirmed, it might even be possible to test and optimize trap designs numeric-
ally, to maximize attractiveness and use it to steer mosquitoes towards capture zones with
minimum disruptive cues. Finally, trap prototypes could be built and tested in laboratory
or field experiments.

6.2 Studying the capture and escape responses of mos-
quitoes

In this section, I will describe and discuss the research approach used in this thesis for the
study of insect flight behaviour. This approach starts with the identification of insect spe-
cies of which the ecology is particularly interesting. In the general introduction, I explained
why haematophagous insects are a good example of an ecologically interesting group of
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animals because they have to interact while flying near vertebrate hosts. To be successful
in this interaction, flying insects need to detect their hosts, navigate towards them, land on
them, get their blood meal and take off quickly and stealthily (Allan et al., 1987; Cardé et al.,
2010; Jones and Pilitt, 1973; Lazzari, 2009; Muijres et al., 2017). This requires the capacity to
detect host cues, and to integrate this information with other sensory inputs such as vision.
But also, in this interaction it is possible that these blood-seeking insects will have to escape
from attacks from their hosts. When exhibiting other flight behaviours such as foraging
or migrating, insects will try to maximize energy efficiency. In contrast, when exhibiting
escapes, flying insects will need to maximize their chance of success because the situation is
a matter of life and death for them. Therefore, we can expect that the performances exhib-
ited by insects during their escapes can inform us about the near-maximum performance
of their sensory-motor flight control systems. This explains why such insect-vertebrate in-
teractions are particularly interesting for understanding insect flight.

In this section, I will describe how I studied escape dynamics of flying mosquitoes and
how escape strategies might be influenced by environmental conditions such as light in-
tensity or by the airflow generated by an attack. For this goal, a new experimental setup had
to be built. This setup had to allow the automatic triggering of an attack (by our mech-
anical swatter), and the automatic control of light intensity. Then, to describe the escape
dynamics of mosquitoes, thousands of tracks had to be analysed using various data visual-
ization techniques. To learn about the role of airflow and visual cues in mosquito escapes,
relevant performance metrics needed to be identified and compared between experimental
conditions. Finally, to learn if mosquitoes relied on the airflow to successfully escape, the
aerodynamic forces involved in their manoeuvres had to be estimated.

6.2.1 The right setup to answer our questions

The second and main step of this thesis approach consist of the study of the previously se-
lected flight behaviour, here the interaction of flying mosquitoes with vertebrates. In this
step, the chosen behaviour will be quantitatively described in detail. This has to be done by
recording the insect behaviour in controlled conditions and in an environment as natural
as possible. For instance, this means controlling the climate condition (e.g. temperature
and humidity). Often, these two goals are conflicting and therefore compromises have to
be made. For example, the size of our flight arena could not be as large as an average bed-
room because it would have resulted in a low number of events that could trigger an attack
of the swatter (chapters 4 and 5). Dedicated experimental setups often have to be built
to achieve these goals. Such setups usually incorporate many high-speed video cameras
and apparatus, such as our swatter, that will lead the animal to exhibit the studied beha-
viour (Muijres et al., 2014; Voesenek et al., 2016). For this thesis, I build a new octagonal
flight arena (chapter 4), where female mosquitoes could fly freely while being tracked in
real time using five cameras. This was made possible by the low-latency tracking software
(flydra) that we used to compute in real time the three-dimensional positions and velocit-
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ies of mosquitoes (Straw et al., 2011). Such information was crucial to allow the automatic
triggering of the mechanical swatter and could be used in many different experiments that
would aim at simulating dynamic stimulus regimes. Such tracking software could also be
used in combination with a virtual reality display system, which opens many possibilities
for further research (Stowers et al., 2017). In our case, this system allowed experiments to
be run automatically and necessitate less than an hour of human work per day. As a con-
sequence, thousands of triggering events could be recorded in our experiments, whereas it
remains relatively rare that more than a hundred of events are recorded in similar studies
(Dawson et al., 2004; Muijres et al., 2014; Voesenek et al., 2016).

6.2.2 Analysing thousands of flight tracks

After running experiments, one can visualize the flight dynamics of the insects when ex-
hibiting the behaviour of interest. That was done in this thesis by computing the average
flight position, speed and acceleration of mosquitoes over time. The large amount of recor-
ded flight tracks was key for describing in detail the average flight behaviour of mosquitoes.
For example, visualizing their average flight dynamics using two-dimensional heat-maps or
vector fields (chapters 2 and 3), requires to reach a minimum density of tracks in all regions
of interest. Achieving this can be particularly challenging because mosquitoes do not have
a uniform positional likelihood. When visualizing the average flight behaviour of mosqui-
toes, I partially ignored the fact that individual mosquitoes will only rarely follow closely
their average flight paths. This kind of behavioural stochasticity is to be expected in animal
experiments, but it should be addressed; for example, by visualizing the mean standard de-
viations of the metrics of interests (as in chapter 2, Supplementary Material). In chapter 4,
we showed that such behavioural stochasticity or unpredictability was explaining the great
majority of the escapes of mosquitoes. In addition to dynamic quantities such as flight
speed, I used several other metrics to describe the average flight behaviour of mosquitoes
such as the positional likelihood, capture probability and mean time spent in a region.
When united with three-dimensional information about available cues (e.g. heat and air-
flow), all of these quantities could lead to a deeper understanding about how mosquitoes
behave near vertebrates and why.

To a certain extent, recording thousands of mosquito flight tracks also allowed to use
advanced statistical modelling. In chapters 4 and 5, I used Hidden Markov models to es-
timate in which of several states, such as cruising or escaping, mosquitoes were in at each
instant in time. These models are particularly powerful for analysing dynamic processes as
they can inform us about unobservable states only via the observation of one or more state
variables. Except from the number of states, all the model parameters can be learned from
the available set of sequences using maximum-likelihood estimation (e.g. Baum-Welch al-
gorithm). Hidden Markov models could also be used to estimate whether and when mos-
quitoes are host-seeking only by looking at their linear and angular flight speeds. Thus, it
could be an additional tool to understand when (and therefore why) mosquitoes are attrac-
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ted or repulsed by the sensory information induced by traps. In chapters 4 and 5, Bayesian
statistics were used instead of the more common frequentist statistics. I detailed this choice
in the materials and methods of chapter 4, but here I would like to emphasize two import-
ant aspects of the way I used Bayesian statistics. First, because Bayesian statistics is about
estimating the distribution of the variable of interest (Efron, 2013), using Bayesian statistics
permitted the creation of information-rich figures. This is important as it allows readers to
easily visualize and therefore apprehend results (Tufte, 1988). Secondly, Bayesian statistics
offer at least one intuitive way of testing hypotheses with good confidence. When analys-
ing large datasets, it becomes more and more likely to find significant results with low effect
size. As a consequence, we also have to estimate such effect size before making any conclu-
sion about the importance of any statistical result. In Bayesian statistics we can simply use
the “HDI+ROPE decision rule” to both test significance and check whether the paramet-
ers have a high enough effect size to be taken into consideration (Kruschke and Liddell,
2018). By using standardized effect sizes, this decision rule also allows clear comparisons
between the effect of the various estimated parameters.

6.2.3 From body motion to forces

In biomechanics studies, inverse dynamics is very often used (Bode-Oke et al., 2018; Fry
et al., 2005; Liu and Sun, 2008; Muijres et al., 2017, 2014; Voesenek et al., 2019; Zeyghami
et al., 2016), to derives the forces and torques applied to a body from measured body kin-
ematics. For flying insects, this technique most often comes down first to measure body
positions to compute the acceleration −→a of the insect, and therefore to estimate its iner-
tia (= mass · −→a ). And second, to estimate the aerodynamic force generated by the wings
of the insect (= −→F wings). The simplest case is when no other sources of external force are
present (e.g. the insect is hovering in still air), and thus when the inertia equals the gravity
plus the aerodynamic force generated by the insect (−→F wings = m · −→a −m · −→g ). In that case,
the wing force can be simply estimated from the computed inertia and the know gravity
force −→g . However, in many cases there is at least one additional force that has to be taken
into account. In the case of mosquitoes taking-off, it is the force produced by their legs
(−→F wings +

−→
F legs = m · −→a − m · −→g ) (Muijres et al., 2017). And in the case of mosquito

escape responses to our mechanical swatter, this additional force is the aerodynamic force
induced by the airflow on the body of mosquitoes (−→F wings +

−→
F air f low = m · −→a − m · −→g

in chapter 5). In those cases, the unknown forces can usually be estimated using airflow
simulations (Bode-Oke et al., 2018; Liu and Sun, 2008; Veen and van Veen, 2020) or using
models (Muijres et al., 2017; Zeyghami et al., 2016).

Estimating aerodynamic forces using simulations or models most often require to meas-
ure the kinematics of the body and wings of the flying insect (Fry et al., 2005; Liu and Sun,
2008; Muijres et al., 2017). For that, one can use manual tracking, but insects flap their
wings at high wingbeat frequencies and therefore tracking the position of their wings can
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become very cumbersome. An alternative is to use automatic tracking software such as the
one developed by Fontaine et al. which was used to track escaping fruit flies and mosqui-
toes taking off (Fontaine et al., 2009; Muijres et al., 2017, 2014). However, to give good
tracking accuracy such software most often relies on a homogeneous background and on
high-resolution images (Fontaine et al., 2009; Ristroph et al., 2009). These prerequisites
were particularly difficult to meet when recording the escapes of mosquitoes (chapter 5).
This is because we had to film a relatively large volume (approximately 12x12x12 cm) in order
to capture entire escape manoeuvres, and because recording at 12500 fps meant that it was
challenging to illuminate the manoeuvres with enough infrared light for the image qual-
ity to be high. As such, I decided to develop my own mosquito posture tracker based on
Deeplabcut, a markerless pose estimation software using deep neural networks and capable
of reaching human tracking accuracy (Mathis et al., 2018). This software was the first to
allow the training of a deep neural network for specific animal tracking tasks (e.g. tracking
the body part of a flying mosquito) and using a relatively low number of labelled images.
This is made possible by the fact that Deeplabcut is using transfer learning, where a net-
work previously trained with many thousands of labelled images can be retrained with a
much smaller set of newly labelled images. Additionally, such deep neural networks can
deal very well with low-resolution images and complex backgrounds (Mathis et al., 2018).
In this way, I needed only 230 manually labelled images to train a network capable of auto-
matically tracking the two-dimensional positions of the body and wings of mosquitoes in
almost 800 manoeuvres each comprising of around 5000 images. The final step consisted
in fitting a three-dimensional model of a flying mosquito to the two-dimensional coordin-
ates from Deeplabcut. This step was performed by my tracker and allowed the estimation
of the body and wing angles during the manoeuvres. Such tracking system could be used
in many diverse situations such as in field experiments where other trackers are limited.
And also when multiple animals are filmed together, or even potentially to estimate body
kinematics in real time (Mathis et al., 2018).

After estimating the body and wing kinematics of mosquitoes, we can compute the
aerodynamic forces involved in the manoeuvres. For that, one can use CFD simulations
where the airflow around the flying insect is entirely simulated. If previously validated, such
simulations are a very powerful means of studying flight manoeuvres. They provide de-
tailed information about the flow, and consequently, they can be used to compute precisely
the aerodynamic forces and torques applied to the insect body. However, in chapter 5, I
deem such simulations to be too expensive and time consuming to be used on the almost
100,000 wingbeats recorded, which is more than 2 orders of magnitude the number of
wingbeats simulated in recent studies on mosquitoes (Bomphrey et al., 2017; Veen and van
Veen, 2020). One solution to that problem would have been to manually select a subset
of typical manoeuvres to be simulated. However this might have introduced a selection
bias in our analysis. Another solution would have been to use Fourier series to paramet-
erize each wingbeat and then to generate one or a few average manoeuvres (Muijres et al.,
2014). This solution would also have the advantage to greatly reduce the number of man-
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oeuvres to simulate, but here at the cost of losing the diversity of the manoeuvres exhibited
by mosquitoes. Another possible way to compute the aerodynamic force generated by the
mosquitoes would have been to use a quasi-steady model. This kind of model is based on
the partially false assumption that the flow around the wings is not affected by its history.
Such model has been used both for reaching a better understanding of the aerodynamic
mechanisms involved in force production by flapping wings and for prediction purposes
(Muijres et al., 2017; Sane, 2003; Veen and van Veen, 2020). However, their predicting
capacities have often been criticized, especially when they are used outside of the paramet-
ric space in which they have been conceived (Ellington, 1984; Veen and van Veen, 2020).
These models are often based on the wing kinematics of hovering insects, and therefore
it is likely that these models will yield deficient results when applied to the kinematics of
quickly manoeuvring insects.

In chapter 5, I estimated the two aerodynamic forces involved in mosquito escapes us-
ing a novel approach. This approach assumes that we can predict the direction of these
aerodynamic forces from the body orientation of the mosquitoes and from a computa-
tional fluid dynamic (CFD) simulation of the airflow (see chapter 5 for a detailed discussion
about the assumption). This was made possible by the finding that the helicopter model
can be applied to escaping mosquitoes, meaning that they mostly keep their aerodynamic
force vector fixed in their body reference frame. Thus, Anopheles mosquitoes were both
pitching and rolling their body away from the swatter during the attacks while keeping
their wing kinematics relatively constant through the manoeuvres. In this way, the direc-
tions of the two aerodynamic force vectors (−→F wings +

−→
F air f low) were known, and there-

fore we could estimate the magnitude of these forces using a least-square optimization al-
gorithm. This led to the discovery that these nocturnal mosquitoes were using the airflow
passively and actively to successfully escape. Finally, this also permitted to quantify how
much these mosquitoes were relying on visual cues during these escape manoeuvres.

6.2.4 Quantifying flight performance to understand perception

The final step of this thesis approach for the study of the flight of mosquitoes consisted
of the quantification of their performances, and then of the comparison of these perform-
ances between distinct experimental conditions. in chapters 2 and 3, I did this by comparing
the performances of traps in a hanging or standing orientation, as well as with or without
host cues. Performance of the traps were then quantified using metrics such as the capture
rate or the time spend and positional likelihood of mosquitoes. in chapters 4 and 5, I com-
pared the escape performances of mosquitoes when attacked in various light conditions or
by different types of swatter to vary the induced cues. For this, I compared mosquitoes’
collision probabilities, unpredictability or initial dynamics. By making such comparisons
of the performances of mosquitoes in free flight and with varying sensory cues, we could
learn about how mosquitoes rely on those cues for flight control and navigation. For in-
stance, the differences that we observed in the escape strategies of diurnal and nocturnal
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mosquitoes may teach us about the performance of the neuro-sensory system and muscu-
lar system of these animals (Card, 2012; Dakin et al., 2018). Our results indicate that diurnal
Aedes mosquitoes are better at detecting and reacting to visual cues than Anopheles mosqui-
toes. But also, that Anopheles mosquitoes must rely on a protean strategy that is probably
energetically costlier than the strategy of Aedes mosquitoes. One important way of quan-
tifying the performances of the neuro-sensory system of escaping animals is to compute
their neural and biomechanical delays (Liu and Cheng, 2017; Muijres et al., 2014). Sadly,
this was not possible in chapters 4 and 5, because we did not know exactly when the sensory
information was detected, and when active manoeuvres were started. Therefore, further
research would need to be done, maybe using tethered animals, to complete our free-flight
measurements. Finally, much could still be learned by doing similar studies on other in-
sect species, and specifically on dipterans to compare the performance of closely related
species. As for hummingbirds (Dakin et al., 2018), such comparison would probably yield
interesting insight in the evolution of specific morphological traits and their link to ecology
of these species.

6.2.5 Flight dynamics of mosquitoes – additional perspectives

Here I will discuss the perspectives that I am the most excited about for the research on
the flight dynamics of mosquitoes. Recently, several studies addressed the flight behaviour
of mosquitoes around traps (chapters 2 and 3, (Amos et al., 2020; Batista et al., 2019)). I
hope this trend will continue in the following years, as I believe such studies can acceler-
ate the development of such tools (more about that in section 3.). I also hope that similar
studies will become more common for deepening our understanding of mosquito flight be-
haviours around other vector tools such as bed nets or “improved” houses. These subjects
have been already investigated in the past (Jones et al., 2021; Parker et al., 2015; Spitzen et al.,
2016; Sutcliffe and Colborn, 2015; Sutcliffe and Yin, 2014). However, the three-dimensional
aspect of their flight behaviour has often been ignored. And important metrics such as po-
sitional likelihood and time spent were rarely computed and visualized over the studied
space. In addition, some of the already identified behaviours should be further studied.
For instance, mosquitoes were observed to “dip” or “bounce” when flying near to bed nets
or other surfaces in the presence of host cues (Hawkes and Gibson, 2016; Parker et al., 2015).
This behaviour might be used to probe cues such as heat and humidity when mosquitoes
are close to surfaces and then to “taste” the surface using their legs before landing (Bougat-
sia, 2021; Dennis et al., 2019). Consequently I would be particularly interested in learning
more about this particular behaviour, and to see whether some characteristics of these cues
trigger the landing or the flying away of mosquitoes (Fig. 6.2a).

There is still much we don’t know about the escape behaviour of mosquitoes and there
are many ways it could be investigated further. For example, one possible approach would
be to map the behaviours of mosquitoes when manoeuvring using t-distributed stochastic
neighbour embedding (t-SNE) (Berman et al., 2014; van Der Maaten and Hinton, 2008).
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Such method models high-dimensionality problems by a two- or three-dimensional map
and then use clustering to identify stereotypical behaviours. For that, one needs a large
data dataset with high dimensionality such as ours describing in detail the kinematics of
manoeuvring mosquitoes (in chapter 5). Our understanding of mosquito escapes would
also greatly benefit from more research on the passive effects of the airflow on the body
rotation of mosquitoes during escapes. To study this, one would need to correlate the
wing kinematics of mosquitoes and the airflow induced by the attacker to the rotations
of their body (Muijres et al., 2014). This could be done using CFD simulations to com-
pute aerodynamic torques involved in the manoeuvres. In addition, tethered experiments
with mosquitoes could be done to further investigate the role of disruptive cues on the es-
cape of mosquitoes and how mosquitoes use their neuromuscular system to control their
manoeuvres (Mamiya and Dickinson, 2015; Robie et al., 2017; Tammero and Dickinson,
2002). Ultimately, one could use control theory and system identification techniques to
model mosquito dynamic systems (Dickinson and Muijres, 2016; Rohrseitz and Fry, 2011;
Taylor et al., 2008). This could allow one to learn about how mosquitoes control their
manoeuvres, and would probably yield interesting comparison with other insects species
such as fruit flies.

Finally, the research approach of this thesis could be applied to the study of many
mosquito flight behaviours throughout their life cycle that are still poorly understood such
as landing (Fig. 6.2a (Smith et al., 2020)). Such approach would fit particularly the study
of behaviours when mosquitoes have to exhibit high performances such as when they get
hit by a threat or (Fig. 6.2b) when they mate in-flight (Fig. 6.2c).

a) c)

b)

1 2 3 4

1 2 3 4

Figure 6.2: Examples of interesting flight behaviour that remains to be studied. (a) Images showing
the landing of a host-seeking mosquito. (b) Images showing a collision between a flying mosquito and our
mechanical swatter, the mosquito seems to mitigate the collision using her legs (Smith et al., 2020). (c)
A female (top) and a male mosquito (bottom with hairy antennae) mating while flying. Unpublished data
that was collected using the same or a very similar experiment setup as in chapters 4 and 5.
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6.3 From fundamental research towards application

6.3.1 Developing an improved mosquito trap

Odour-baited traps are highly attractive to host-seeking mosquitoes. However, they have
a relatively low capture efficiency (chapter 2 and (Cooperband and Cardé, 2006a)). From
this observation, I decided to investigate how these traps, in particular counter-flow traps,
could be improved. Thanks to our findings in chapter 2, I identified three important as-
pects which govern overall efficacy of traps:

1. The attraction efficacy of the trap, expressed by the ratio between the number of mos-
quitoes that approach the trap over the number of mosquitoes in the population (e.g.
released).

2. The residence time of mosquitoes around the trap, as longer residence time can lead to
a larger chance of being captured.

3. The capture efficiency defined as the proportion of approaching mosquitoes that get
caught.

To improve an odour-baited trap, the redesign should aim to optimize all these aspects.
How well a trap will perform at each one of these aspects is somewhat dependent on ex-
perimental conditions, namely the size of the volume-of-interest around the trap and the
accuracy of the videography system used. This is because it is usually impossible to keep
track of individuals – they can be counted multiple times. Thus, to quantitatively com-
pare these aspects, it is best to use very similar experimental setups. In addition, identifying
which of these aspects might explain the overall efficacy can be difficult without estimating
all of them. This is because traps that have similar overall trapping efficacy may perform
very differently at each one of these aspects. As an example, in chapter 2 I found that the
standing trap was exhibiting higher attractiveness but lower capture efficiency than the
hanging trap. Therefore, improving the design of odour-baited trap requires testing novel
trap designs in lab conditions:

• Systematically, to make sure that we can compare trap capture performances.

• Iteratively, by testing one single design idea at a time, to identify what works and what
does not.

In chapter 2, the standing Suna trap captured more Anopheles coluzzii mosquitoes when
standing than when hanging (i.e. it’s default orientation), and therefore we choose to use
the standing trap as our baseline for the design of an improved trap. Also in chapter 2,
mosquitoes were found to exhibit looping behaviour above the trap, which resulted in
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them staying longer there. Because of this, we decided to focus on improving the two
other aspects which govern overall efficacy of traps: the capture mechanism and the at-
tractiveness of the trap. To improve the capture efficiency of the trap, we thought of modi-
fying its design (e.g. shape and size) either by constraining the escape routes of mosquitoes
(chapter 2 and (Bracken and Thorsteinson, 1965)), or by altering the airflow generated by
the trap and reduce disruptive cues. And, to increase trap attractiveness and convince mos-
quitoes to fly closer to the trap inlet, we thought of adding short-range cues (heat and hu-
midity) (Hawkes et al., 2017; Kline and Lemire, 1995; McMeniman et al., 2014; Spitzen et al.,
2013). All other characteristics of the trap (e.g. the fan and odour blend) were conserved
at this point. Prototypes were then built and tested against the standing Suna trap in dual
choice experiments (Fig. 6.3b,c). Results from these experiments were not very conclusive
concerning the various shape modifications that we tested. However, the addition of short-
range cues was quickly identified as being promising. From this, a new trap prototype was
designed, the first M-Tego (Fig. 6.3d). In addition to the fact that the M-Tego prototype
was able to generate heat and humidity, it was foldable and smaller than the Suna trap. It
also had an inlet module with an improved catch bag (supplementary Fig. S3.1, (Fairbairn,
2018)). All these design characteristics have little to no impact on capture efficacy of the
trap, but can significantly improve the ease-of-use of the trap in the field.

Then, we tested how this new trap, the M-Tego prototype, was performing against the
Suna trap (chapter 3). We found that the capture performance of the trap increased sig-
nificantly when it generated heat or humidity. But also, the M-Tego prototype without
additional cues was found to capture more than twice as many mosquitoes than the stand-
ing Suna trap. The data suggests that this is because mosquitoes are not exhibiting upward
escape manoeuvres above the M-Tego, probably because of altered airflow conditions. This
finding highlights the importance of studying the flight behaviours of mosquitoes around
traps to improve their design. In the past, new odour-baited traps have been mostly de-
veloped using an iterative process where new traps are tested (e.g. in dual-choice experi-
ments) against older traps (Gama et al., 2013; Hiscox et al., 2014; Verhulst et al., 2015). How-
ever, without recording the flight of mosquitoes around the trap, it would have been dif-
ficult to make a hypothesis concerning why the M-Tego captured much more mosquitoes
than the Suna trap even without additional host cues. Consequently, trap development
can be significantly accelerated by such detailed behavioural study. And therefore, it is en-
couraging that more and more studies looking at mosquito flight behaviours around traps
are being published (Amos et al., 2020; Batista et al., 2019).
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Figure 6.3: The development of the M-Tego. After discovering that counter-flow traps had low capture
efficiency, the M-Tego trap was developed. (a) Many design ideas were put on paper. (b) Nine prototypes
were built in order to test the most promising ideas. (c) The prototypes were tested against the standing
Suna trap in dual-choice experiments. (d) A new trap, the M-Tego, was designed and a first prototype
was built. This is the prototype that was tested in chapter 3 (Fairbairn, 2018). (e) A second version of the
M-Tego was designed to make it easier to use and cheaper to build (van de Geer, 2019). (f ) The final
M-Tego was designed. It is now produced and distributed around the world by PreMal.
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Now that odour-baited traps can be considered as vector control tools (Homan et al.,
2016), one important aspect of trap development is to make the trap design appropriate
for this goal. Most of the available odour-baited traps have been developed to be used by
researchers or experts for monitoring populations of mosquitoes (Bhalala and Arias, 2009;
Gama et al., 2013; Kröckel et al., 2006; Verhulst et al., 2015). However, if odour-baited traps
are to be used for vector control, many aspects of their design need to be revised. For in-
stance, odour-baited traps are often bulky (difficult to transport), not user-friendly and
expensive (Fairbairn, 2018; van de Geer, 2019). For a trap to be context appropriate for vec-
tor control, it would need to be easy to set up and to maintain, cheap, durable and probably
visually appealing (Fairbairn, 2018; van de Geer, 2019). One important step to achieve that
is to test the trap in field conditions (van de Geer, 2019). These kinds of tests are useful both
for validating results from the lab, and because it provides information about whether the
trap is context appropriate. For example, after testing the M-Tego prototype in Ifakara
Health Institutes (Tanzania), it was clear to us that the use of CO2 in the field was a major
constraint. This is because CO2 cans are expensive, bulky and need to be refilled regularly.
This constrains explains why there have been many studies that aimed at finding altern-
ative ways of getting CO2 or even a good CO2 mimic (Kessy et al., 2020; Mboera et al.,
2000; Mburu et al., 2017; Mweresa et al., 2014; Saitoh et al., 2004; Turner et al., 2011). In
Tanzania, we could also identify several other aspects of the trap design that needed to be
improved such as the type of material the trap was made of, or the design of the capture pot
(Fig. 6.3e, (van de Geer, 2019)). These findings lead to the further design and development
of the M-Tego mosquito trap (Fig. 6.3f ). PreMal BV, a start-up and spin-off from Wa-
geningen University, was co-founded by Henry Fairbairn with whom I initially developed
the trap. The M-Tego is now available in several regions around the world, specifically in
regions most affected by vector-borne diseases.

6.3.2 Some perspectives for the development of vector control tools

Odour-baited traps are pesticide-free tools that have great potential for vector control (Ho-
man et al., 2016). However, there are still several important steps to take before these traps
are used widely for this purpose. To maximize the trapping efficiency for reducing the
incidence of mosquito-borne disease, odour-baited traps have to be integrated into the
already existing prevention strategies (e.g. next to bed nets) control (Homan et al., 2016).
One crucial step to make this possible at the scale of countries would be that the World
Health Organisation (WHO) approved traps as being safe and effective. One key condi-
tion for such a recommendation would be to successfully show the efficiency of these traps
in a second large epidemiological trial (Who, 2019). Another step towards the wide use of
traps for disease prevention is to achieve production of cheap effective traps. This can be
done partly through economies of scale and the redesign of trap parts. Cheap traps are ne-
cessary because countries that are the most vulnerable to mosquito-borne disease such as
malaria are often amongst the poorest countries in the world. As such, governments and
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households of these countries cannot afford to pay any of the traps currently on the market
(van de Geer, 2019; Onwujekwe et al., 2001). I also expect that NGOs would not heavily
invest in traps if their prices did not decrease significantly. Finally, counter-flow odour-
baited traps need electricity to operate. However many households in rural sub-Saharan
Africa are still lacking access to electricity (Blimpo and Cosgrove-Davies, 2019). Neverthe-
less, solar panels are becoming increasingly widespread (Gogla, 2020), and therefore this
might not be a major problem in the future. In addition, distribution and maintenance
of traps could even be done by the large companies that currently distribute and maintain
solar panels in Africa as these two tasks requires similar competences (van de Geer, 2019).

Our findings highlight the importance of airflow as disruptive cues for mosquitoes
(chapters 2, 4 and 5). Consequently, I think that the next step for improving counter-flow
traps would be to optimize how mosquitoes are captured by the trap. For this goal, I would
recommend simulating the airflow around the M-Tego and the Suna trap to compare it to
the already known mosquito flight dynamics. Then, to rapidly test ideas, modification of
the trap could be simulated in order to generate particular airflow conditions. The most
interesting concept would then be built and tested in similar experiments as in chapters 2
and 3. For instance, I would be particularly interested in investigating whether it is possible
to purposely trigger mosquito escape manoeuvres to make them fly towards another cap-
ture region (e.g. above the trap). I would also like to see whether the placement of the heat
source can be optimized to attract mosquitoes closer to the capture region of the traps. Fi-
nally, I am very interested in testing whether changing the turbulence level and eddy sizes
of the airflow generated by the trap would lead to changes in mosquito flight behaviour,
and whether this could be used to improve overall capture efficacy. Other vector control
tools could also benefit from our findings. For example, the fact that mosquitoes seem
to escape by flying up, similarly to horse flies, might lead to the development of bed-net
traps somewhat like the human-baited double net (Gao et al., 2018; Tangena et al., 2015).
Such improved bed nets would use the human it protects to attract mosquitoes, and use
its shape and structure to direct mosquitoes inside trapping zones in a similar way as fish
traps or horse fly traps (Thorsteinson et al., 1964).

To this day, the most effective approach against mosquito-borne diseases such as mal-
aria is to control the vector (Who, 2020). Currently, insecticide-treated bed nets and resid-
ual spraying are the most used vector control strategies globally. However, mosquitoes are
becoming increasingly resistant to insecticides, and damage to the wildlife can no longer
be ignored (Rehman et al., 2014; Who, 2020). Therefore, there is an increased need for
new or improved vector control tools such as odour-baited traps. In this thesis, I show that
studying in detail the flight behaviour of mosquitoes when interacting with host cues can
lead to the improvement of such tools. I also highlight a research approach that could be
used for further similar research on insect flight behaviours. When comparing new vector
control tools to other non-vector-related solutions such as vaccines, one may think they
have less potential for eradicating mosquito-borne pathogens. However, this ignores the
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fact that most progress in the fight against these pathogens has been made using vector
control, and that defeating these pathogens will require complementary strategies (Who,
2020). Additionally, the comparatively low amount of investment currently devoted to
vector-control means that any small increase of investment for the understanding and de-
velopment of vector-control tools has a high probability to significantly impact the fight
against mosquito-borne diseases.
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Summary
Hematophagous female mosquitoes have to get a blood meal to obtain the proteins neces-
sary for egg production. To get this blood meal, mosquitoes need to detect a vertebrate
host such as a bird or a mammal, fly towards this host and land on it. When interacting
with their hosts, flying mosquitoes have to be quick and stealthy to avoid being detected.
If they are detected, mosquitoes can be attacked by their host and then they may end up
being swatted. However, if they are not detected, they will be able to get their blood meal
and successfully continue their life cycle. Many dangerous pathogens such as the malaria
parasite and the dengue virus take advantage of this mosquito–vertebrate interaction to
spread themselves. This is what made arguably the most annoying animal in the world,
certainly the most dangerous animal in the world. Malaria alone kills more than 400,000
people – mostly young children – every year, and killed many more in the past.

In this thesis, I aim to better understand how mosquitoes interact with their hosts and,
in doing so, to learn more about the sensory cues that they use to control their flight (as
discussed in the chapter 1).. For that, first we simulated human presence using counter-
flow odour-baited traps. These traps aim to mimic humans using host cues such as CO2,
odours and visual cues to attract host-seeking mosquitoes. In addition to these host cues,
these traps generate a circulating airflow using a fan to spread the CO2 and odours away
from itself and to capture mosquitoes that get too close. Second, we simulated attacks
using a mechanical swatter to study the escape manoeuvres of mosquitoes as well as to
learn whether mosquitoes are using airflow and visual cues to detect the attacks.

In chapter 2, we studied how mosquitoes behave around counter-flow odour-baited
traps. We recorded thousands of three-dimensional flight tracks of female malaria mosqui-
toes (Anopheles coluzzii) around a well-known trap, the BG-Suna, in opposite orientations
to represent two widely used traps. We visualized the average behaviour of mosquitoes
and flight dynamics around the traps on two-dimensional heat maps. This allowed us to
identify that mosquitoes were following stereotypical behaviours: when approaching the
traps, by flying downward, and when close to the inlet of the traps, by accelerating upward.
These behaviours led to very different capture dynamics of mosquitoes, and consequently
to contrasting short-range attractiveness and capture mechanisms of the two traps. For ex-
ample, the standing BG-Suna was more attractive than the hanging BG-Suna, while being
also the only trap that triggered escape-like responses of mosquitoes.

Based on our findings from chapter 2, integrated with the literature, we developed a
new counter-flow odour-baited trap: the M-Tego. One specificity of this trap is that it
can generate two additional host cues that have been found to attract mosquitoes at short
range, namely heat and humidity. As described in chapter 3, we tested this new trap against
the BG-Suna in laboratory and semi-field conditions. In both conditions, the M-Tego
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without additional short-range cues was found to capture more than twice as many An.
coluzzii than the standing BG-Suna. And when the M-Tego generated heat and humidity,
it captured around 4.5 times as many mosquitoes as the BG-Suna. To understand why the
M-Tego exhibited such improved capture rates, we recorded the flight tracks of mosquitoes
around this new trap with or without additional short-range cues. Using similar analysis
tools as in chapter 2, we showed that mosquitoes are more attracted to the M-Tego and
spent more time close to it when the trap generates heat and/or humidity. Additionally,
we did not observe escape-like responses of mosquitoes near the M-Tego, which explains
why the M-Tego captures more mosquitoes than the standing BG-Suna even when they
produce the same host cues.

In chapter 4, we focused on the escape manoeuvres of flying mosquitoes. To study
those, we built a new experimental setup where mosquitoes were tracked in three dimen-
sions and in real time. Based on the real-time position of a mosquito, a mechanical swatter
was then automatically triggered to simulate an attack towards it. This allowed us to study
the escape performance of day-active and night-active mosquitoes (Aedes aegypti and An.
coluzzii, respectively). For that, we recorded the flight behaviour of these two species when
attacked by the swatter in four light intensities ranging from dark to overcast daylight con-
ditions. Using Bayesian generalized linear models (B-GLM), we discovered that these mos-
quitoes exhibited enhanced escape performances in their respective natural light conditions
(overcast for Aedes and dark for Anopheles). Furthermore, the high escape performance
of Anopheles in the dark was mostly explained by its increased flight unpredictability in
this light condition, whereas the higher escape performance of Aedes in overcast daylight
compared with sunrise was due to its fast visually induced escapes.

In chapter 5, we zoomed in on the escape manoeuvres of An. coluzzii mosquitoes with
the aim to understand whether they rely on the airflow induced by the attacker to escape
successfully. First, we compared the escape performance of mosquitoes when attacked by
either a solid or a perforated swatter, in both dark and low-light conditions. We showed
that the faster the air movements induced by the attack, the fewer mosquitoes that were
hit by the swatter. This demonstrates that airflow plays an important role in the escapes
of these mosquitoes. However, at this point, it was still unknown whether mosquitoes are
using the airflow passively or actively. Then, using high-speed video cameras (12500 fps)
and a newly developed neural-network-based tracker, we recorded the kinematics of the
body and wings of flying mosquitoes when escaping. By combining this with results from a
CFD simulation of the airflow induced by the attack, we estimated the aerodynamic forces
involved during mosquito manoeuvres. We discovered that, although seemingly moving
passively with the airflow, these mosquitoes were actively surfing the bow wave induced by
the swatter. Moreover, we found that, despite that mosquitoes contributed actively to most
of their escape acceleration, the passive effect of the airflow also significantly contributed
to their success.

Finally, in the general discussion, I put the findings of this thesis in a wider scientific
context. I summarize what we learned about attractive and disruptive cues and how mos-
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quitoes react to these cues. I highlight that visual cues and airflow are important disruptive
cues for mosquitoes, notably because mosquitoes were found to escape fast more often the
brighter the light condition, and because they actively use airflow to enhance their escape
performance. However, our knowledge on how airflow characteristics influence mosquito
flight behaviours is still limited, and consequently there is a need for further research on
this topic. Then, I describe my approach for the study of mosquito capture and escape
response. Two important aspects of this approach are: (1) the visualization of mosquitoes’
flight behaviour using various data visualization techniques and (2) the quantification of
flight performances using advanced statistics. Then, I discuss how this approach could also
be used to better understand other flight behaviours of mosquitoes, such as landing. To
conclude, I highlight three important aspects that govern trap efficacy: the attractiveness
of the trap, the residence time of mosquitoes near a trap and the capture efficiency of the
trap. I explain how we developed the M-Tego trap while trying to optimize these aspects by
systematically testing prototypes and making design iterations. Based on this experience,
I provide suggestions about how our findings could be used for the further development
of tools to control mosquitoes, and therefore to reduce the spread of mosquito-borne dis-
eases.
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Résumé
Les moustiques femelles hématophages doivent se nourrir de sang pour obtenir les pro-
téines nécessaires à la production d’œufs. Pour obtenir ce sang, les moustiques doivent
détecter un hôte comme un oiseau ou un mammifère, voler vers cet hôte et se poser des-
sus. Lorsqu’ils interagissent avec leurs hôtes, les moustiques volants doivent être rapides
et furtifs pour éviter d’être détectés. S’ils sont détectés, les moustiques peuvent être atta-
qués par leur hôte et être écrasés. S’ils ne sont pas détectés, ils pourront obtenir leur re-
pas de sang et poursuivre avec succès leur cycle de vie. De nombreux pathogènes dange-
reux tels que le parasite du paludisme et le virus de la dengue profitent de cette interaction
moustique-vertébré pour se propager. Cela fait de ce qui est peut-être l’animal le plus aga-
çant du monde, aussi l’animal le plus dangereux du monde. Le paludisme à lui seul tue
chaque année plus de 400 000 personnes – pour la plupart de jeunes enfants.

Dans cette thèse, je vise à mieux comprendre comment les moustiques interagissent
avec leurs hôtes et, ce faisant, à en apprendre davantage sur les signaux sensoriels qu’ils uti-
lisent pour contrôler leur vol (comme discuté dans le chapitre 1). Pour cela, nous avons
d’abord simulé la présence humaine à l’aide de pièges odorants à flux d’air circulant. Ces
pièges visent à imiter les humains en utilisant des signaux indiquant la présence d’un hôte
tels que le CO2, des odeurs et des signaux visuels pour attirer les moustiques à la recherche
d’hôtes. En plus de ces signaux, ces pièges génèrent un flux d’air circulant à l’aide d’un venti-
lateur pour disperser le CO2 et les odeurs, et pour capturer les moustiques qui s’approchent
trop près. Ensuite, nous avons simulé des attaques à l’aide d’une tapette mécanique pour
étudier les manœuvres de fuite des moustiques ainsi que pour savoir si les moustiques uti-
lisent le flux d’air et des repères visuels pour détecter les attaques.

Dans le chapitre 2, nous avons étudié le comportement des moustiques autour de
pièges odorants à flux d’air circulant. Nous avons enregistré des milliers de trajectoires de
vol de moustiques femelles vecteur du paludisme (Anopheles coluzzii) autour d’un piège
bien connu, le BG-Suna, et dans des orientations opposées pour représenter deux pièges
largement utilisés (suspendu ou debout). Nous avons visualisé le comportement moyen
des moustiques et leur dynamique de vol autour des pièges sur des cartes thermiques bidi-
mensionnelles. Cela nous a permis d’identifier que les moustiques suivaient des compor-
tements stéréotypés : ils approchent ces pièges en volant vers le bas, et accélèrent vers le
haut après être arrivés à proximité de l’entrée des pièges. Ces comportements conduisent à
des dynamiques de capture des moustiques très différentes, et par conséquent à des méca-
nismes contrastés d’attractivité et de capture à courte portée des deux pièges. Par exemple,
le BG-Suna debout était plus attrayant que le BG-Suna suspendu, tout en étant également
le seul piège qui déclenchait des réactions de fuite des moustiques.

Sur la base de nos résultats du chapitre 2 intégrés à la littérature, nous avons développé

273



un nouveau piège odorant à flux d’air circulant : le M-Tego. Une spécificité de ce piège
est qu’il peut générer deux signaux d’hôte supplémentaires qui attirent les moustiques à
courte distance, à savoir la chaleur et l’humidité. Dans le chapitre 3, nous avons comparé
ce nouveau piège au BG-Suna en laboratoire et sur le terrain. Dans les deux conditions,
le M-Tego sans signaux supplémentaires à courte portée s’est avéré capturer plus de deux
fois plus d’An. coluzzii que le BG-Suna debout. Et lorsque le M-Tego a généré de la chaleur
et de l’humidité, il a capturé environ 4,5 fois plus de moustiques que le BG-Suna. Pour
comprendre pourquoi le M-Tego présentait des taux de capture si importants, nous avons
enregistré les trajectoires de vol des moustiques autour de ce nouveau piège avec ou sans
signaux supplémentaires à courte portée. En utilisant des outils d’analyse similaires à ceux
présenté dans le chapitre 2, nous avons montré que les moustiques sont plus attirés par le
M-Tego et passent plus de temps à proximité lorsque le piège génère de la chaleur et/ou de
l’humidité. En outre, nous n’avons pas observé de réaction de fuite des moustiques près du
M-Tego, ce qui pourrait expliquer pourquoi le M-Tego capture plus de moustiques que le
BG-Suna debout y compris lorsqu’il produit les mêmes signaux d’hôte.

Dans le chapitre 4, nous nous sommes concentrés sur les manœuvres de fuite des mous-
tiques volants. Pour les étudier, nous avons construit un nouveau système expérimental où
les moustiques ont été suivis en trois dimensions et en temps réel. Sur la base de la position
en temps réel d’un moustique, une tapette mécanique a ensuite été automatiquement dé-
clenchée pour simuler une attaque contre lui. Cela nous a permis d’étudier les performances
d’évasion des moustiques diurnes et nocturnes (Aedes aegypti et An. coluzzii, respective-
ment). A cette fin, nous avons enregistré le comportement de vol de ces deux espèces lors-
qu’elles sont attaquées par la tapette selon quatre intensités lumineuses allant de l’obscurité
à la lumière du jour par temps couvert. En utilisant des modèles linéaires généralisés Bayé-
siens (B-GLM), nous avons découvert que ces moustiques présentaient des performances
d’évasion améliorées dans leurs conditions de lumière naturelle respectives (jour par temps
couvert pour Aedes et sombre pour Anopheles). De plus, la performance d’évasion éle-
vée d’Anopheles dans l’obscurité s’expliquait principalement par son imprévisibilité accrue
dans ces conditions de lumière, tandis que la performance d’évasion plus élevée d’Aedes par
temps couvert par rapport au lever du soleil était due à ses évasions rapides induites visuel-
lement.

Dans le chapitre 5, nous avons zoomé sur les manœuvres d’évasion d’An. coluzzii dans
le but de comprendre si ils utilisent le flux d’air induit par l’agresseur pour réussir à s’échap-
per. Tout d’abord, nous avons comparé les performances d’évasion des moustiques lors-
qu’ils sont attaqués par une tapette pleine ou perforée, dans des conditions d’obscurité et
de faible luminosité. Nous avons montré que plus les mouvements d’air induits par l’at-
taque sont rapides, moins les moustiques sont touchés par la tapette. Cela démontre que le
flux d’air joue un rôle important dans les fuites de ces moustiques. Cependant, à ce stade,
on ne savait toujours pas si les moustiques utilisaient le flux d’air de manière passive ou ac-
tive. Ensuite, à l’aide de caméras vidéo haute vitesse (12 500 images per secondes) et d’un
nouveau logiciel de suivi basé sur un réseau de neurones profond, nous avons enregistré la

274



R

cinématique du corps et des ailes des moustiques volants lorsqu’ils s’échappaient. En com-
binant cela avec les résultats d’une simulation numérique (CFD) du flux d’air induit par
l’attaque, nous avons estimé les forces aérodynamiques impliquées lors des manœuvres des
moustiques. Nous avons découvert que, bien qu’apparemment se déplaçant passivement
avec le flux d’air, ces moustiques surfaient activement sur la vague d’étrave induite par la
tapette. De plus, nous avons constaté que, bien que les moustiques aient contribué active-
ment à la majeure partie de leur accélération de fuite, l’effet passif du flux d’air contribuait
également de manière significative à leur succès.

Enfin, dans la discussion générale, j’ai replacé les résultats de ces recherches dans un
contexte scientifique plus large. Je résume ce que nous avons appris sur les signaux at-
trayants et perturbateurs pour les moustiques et sur la façon dont ils réagissent à ces si-
gnaux. Je souligne que les repères visuels et le flux d’air sont d’importants signaux pertur-
bateurs pour les moustiques, notamment parce que les moustiques s’échappent plus sou-
vent lorsque l’intensité lumineuse est importante, et parce qu’ils utilisent activement le flux
d’air pour améliorer leurs performances d’évasion. Cependant, nos connaissances sur la fa-
çon dont les caractéristiques du flux d’air influencent les comportements de vol des mous-
tiques sont encore limitées et, par conséquent, il est nécessaire de poursuivre les recherches
sur ce sujet. Ensuite, je décris mon approche pour l’étude de la capture des moustiques et de
leur réponse d’évasion. Deux aspects importants de cette approche sont : (1) la visualisation
du comportement de vol des moustiques à l’aide de diverses techniques de visualisation de
données et (2) la quantification des performances de vol à l’aide de statistiques avancées.
Ensuite, j’explique comment cette approche pourrait également être utilisée pour mieux
comprendre d’autres comportements de vol des moustiques, comme l’atterrissage. Pour
conclure, je mets en évidence trois aspects importants qui régissent l’efficacité du piège :
l’attractivité du piège, le temps de résidence des moustiques à proximité d’un piège et l’effi-
cacité de capture du piège. J’explique comment nous avons développé le piège M-Tego en
essayant d’optimiser ces aspects en testant systématiquement des prototypes et en faisant
des itérations de conception. Sur la base de cette expérience, je fais des suggestions sur la
façon dont nos résultats pourraient être utilisés pour le développement ultérieur d’outils
de lutte contre les moustiques, et donc pour réduire la propagation des maladies transmises
par les moustiques.

275



276



A

Acknowledgements
Although I am passionate about flying things, for as long as I can remember, I felt like
mosquitoes have a personal vendetta against me, and consequently I always considered
them as my nemesis. Despite that, when I was first contacted by Florian to discuss a project
to study the flight of mosquitoes, I was hooked right away. I believe that this topic was
perfect for me. It allowed me to learn more about insect flight, to make new fundamental
discoveries and to contribute to the fight against mosquito-borne diseases. Doing all these
things required me to learn much about insect biology, build and use complex experimental
setups and to do advanced data analysis, all of which I enjoyed very much.

For this I am very grateful to Florian, who gave me the opportunity to work on this
project and with whom I wrote my PhD proposal. Your coaching (together with Johan
and others at EZO) before presenting my project to the WIAS jury will always remain in
my mind as the most intense and instructive three days of my life. I am even more grateful
to Florian for his supervision and support during my PhD project. I could not have wished
for a better supervisor. Your expertise, enthusiasm, and patience (sorry for being so stub-
born) during our numerous exciting discussions were very precious to me. You gave me the
freedom to be creative and even to make my own mistakes sometimes. I learned so much
also because of this. Finally, I really enjoyed our various debates and going to conferences
with you (especially if it was to eat some delicious salmon in the countryside of Sweden or
to hike in the French Alps).

Then I want to express my sincere gratitude to Johan, first for welcoming me in EZO
(you have built a great team there) and secondly for his supervision. I heard before coming
to Wageningen that you really cared about students, and I quickly realized that this is true.
I believe that you genuinely enjoy sharing your experience and passion for science, which
might explain why you always manage to find time for the PhD candidates in EZO. In
addition to those things, your abilities to pinpoint weaknesses in an analysis or a story, and
to get people to do their best were also very valuable to me during this project.

Jeroen, I am glad your role in the supervision team grew over the years, especially when
at the same time I went more and more into fundamental science. You brought balance to
the team by reminding us of the applied goals and that mosquitoes do not usually live inside
ultra-controlled experimental setups. Your many technical advice and great knowledge of
the literature were also really helpful. In addition, your optimism was very important to
me, especially in stressful times. Finally, thanks for showing me your little personal heaven,
this reminded me that there are more important things in life than work.

I am also grateful to Andrew, who got me to learn Python and showed me for the first
time how deep neural networks could be used for animal tracking. Thank you very much

277



for your patient help and for inviting me to visit your nice team in Freiburg. Many tech-
nical aspects of my thesis have been influenced by our collaboration, and I hope my future
work will be too. Martin, I really enjoyed discussing with you, although these talks are of-
ten quite long, they are always really interesting. I also valued very much your numerous
pertinent questions during lunch meetings.

The secret weapon of EZO is its team of technicians. Very skilled and always willing
to help PhD candidates with their thousands of problems. Thank you all!! Remco (‘the
setup architect’), despite being overworked you always come up with cool and practical
solutions. I really enjoyed designing experimental setups with you. Henk, thanks for your
patience and good mood. Sorry for always bothering you with uninteresting computer
issues, I promise sometimes I will come up with a nice histology problem. Leo, thanks for
all the energy that you invested in simulating the mechanical swatter. Annemarie (‘EZO’s
mum’), you are the corner stone of EZO, without you, everything would probably fall
down. Thanks for your constant helpfulness.

During my years as a PhD candidate, I had the joy of working with a few students.
Ton, Henry, Cedric and Antigoni, it was a pleasure supervising you, I have learned much
through this. Henry I am super proud of what we (mostly you) achieved. Working with
you was always eventful and exciting. Sadly, I never managed to convince you that insects
were mostly our friends. Cedric, thanks for having the courage to face malaria mosquitoes
in their natural habitat and for the very nice design inputs (the handle!). Antigoni, I really
enjoyed our discussions and your enthusiasm. I promise I will have time to dive into your
great dataset at some point.

Going to a new country to do a PhD can be quite a stressful experience. Luckily, I felt
welcomed right away and I could build a comfortable little nest in the e-wing of the Zodiac
building. This is mostly due to the great people of the Experimental Zoology group (EZO)
and of the Cell Biology and Immunology group (CBI). In particular, I want to thank all
my fellow (sometimes former) PhD candidates in EZO and CBI: Adrià, Andres (‘the wiz-
ard of statistics’), Annelieke, Carmen, Cees, Esther, Gauthier, Henri, Jules, Julia, Julian,
Lana, Mark, Marloes, Mike, Mirelle, Mojtaba, Myrthe (‘the lady with the fancy drink’),
Noraly, Olaf, Paulina (‘the smuggler’), Pim (‘the electrician’), Pulkit, Sem, Tiffany, Uroš
and Wouter. Thanks for the amazing PhD weekends, the PhD movies, the Rhine barbe-
cues and all the movie nights (#IwillmakeyouloveMiyazaki)! And also, thanks to all of you
and to Annemarie, Ellen, Florian, Guillermo, Henk, Johan, Karen, Leo, Martin, Re-
mco, Sander, Sander, and Steffen, for the many great moments during lunch and coffee
breaks, Labuitje (#Ceesbellydancing) and evening drinks. Finally, thanks to everyone in
EZO for all your nice input during our weekly lunch meetings.

In EZO, I shared an office with Cees, Pulkit and Wouter. Thanks to you three for mak-
ing my time there fun and comfortable. Because of you I discovered new music (#taytay-
forewer), had nice discussions and had plenty of occasions to complain about anything that
didn’t work in my project. Shout out to Carmen and Annelieke for their amazing office

278



A

makeovers! I will always remember the large number of items that you handpicked for us
(and the human-sized Eiffel Tower!). Cees and Pulkit, thanks for being my paranymphs!
If everything goes well, you will walk with me to the aisle of science. That means a lot to
me.

I am also very grateful to Willem and then Sander for welcoming me in the One Health
Entomology group! And, thanks to the entire group and especially to Helen, Jeannine, Jer-
oen, Julian, Marieke, Marilyn, Pieter, Tessa (‘the tiger tamer’) and Tim. Your hospitality
and knowledge were crucial for my project. I always enjoyed our weekly meetings during
which I learned so much about vector control.

Doing a PhD can be a rather demanding activity, luckily, I did plenty of other things
that allowed me to think about something else. Many thanks to all my climbing buddies
from the #PowerPof group: Annelieke, Carmen, Cees (‘the clamp’), Florian, Mike (‘the
nomenclator), Sander and Uroš (‘the cleaner’). It was a real pleasure to learn how to crawl
over rocks with you. Mirelle, thanks for all the nice hikes! I really enjoyed hunting mush-
rooms, boars and even owls with you. Carmen, Cees, Marloes, Mike and Pimie, thanks for
the great times at Rock Werchter! I never felt as tired of standing than after those weekends,
but it was definitely worth it. I would also like to thank Annelieke, Pulkit, Lisa (fish), Nor-
aly, Lisa (frog) and Cas for taking (good?) care of our vegetable garden with me. Having
this project next to my PhD was super important for my mental health. Surprisingly, we al-
ways managed to have some vegetables (OK mostly it was zucchini and pole slicing beans).
During my free time, I also had the pleasure of going to adventures, killing dragons, riding
(and curving!) mine carts, talking to woodpeckers (Woody!) and, of course, buying kick-
ass weapons! Thanks Noraly (‘our beloved GM, that would never dare killing us’), Henri,
Lana, Pulkit and Tiffany for these great moments! Finally, thanks Maria for the beauti-
ful walks, the macarons and the exciting discussions. Your support during my last year has
been really important for me.

De nombreuse fois pendant mon doctorat, j’ai repensé à tous les moments de mon
parcours en France qui ont contribué à me passionner pour la recherche sur la biomé-
canique du vol des insectes. Parmi ces moments, il y a sans aucun doute les années que
j’ai passé à l’UAOVLCM, le club d’aéromodélisme d’Orléans. Merci énormément, Paul,
Dédé, Jacques Delcroix et Jacques Blanchard, pour m’avoir appris comment fabriquer et
faire voler un avion, pour m’avoir donné le virus du modélisme et le gout de résoudre des
problèmes en bricolant. J’ai eu avec vous certains de mes meilleurs souvenirs d’enfance. Au
collège j’ai rencontré deux de mes meilleurs amis, Clément et Guillaume. Merci beaucoup
à vous deux de m’avoir donné la passion de la chasse aux insectes. J’ai eu ma première expé-
rience de recherche scientifique au Lycée avec Thomas et Aventin, et grâce aux conseils avi-
sés de Marie-Christine Baurrier (j’ai appris tant grâce à vous !). Merci infiniment pour cette
super aventure ! Je n’aurais sans doute pas fait ce doctorat sans avoir eu la chance d’étudier
la chute des graines ailées d’érable avant. Ramiro et Jérôme, je vous remercie beaucoup
d’avoir parlé de moi lorsque j’étais à la recherche d’un doctorat. Je n’aurais sans doute ja-
mais été aux Pays-Bas sans cela. Lucille, quand je suis arrivé à Wageningen, je ne connaissais

279



personne d’autre. Ta générosité me fut très précieuse dans ces premiers mois. Merci aussi
de m’avoir fait faire mes premières découvertes aux Pays-Bas, comme l’arboretum à Am-
sterdam et les huttes de castors à Wageningen. Enfin et surtout, je voudrais remercier ma
famille et plus particulièrement Manon, Jehan, Maman et Papa. Vous avez toujours cru
en moi, et sans cela je n’aurais surement pas osé quitter la France. Il est parfois compliqué
de vivre si loin de sa famille et votre soutien me fut très précieux durant toutes ces années.
Mamie et Grand-père, à mon adolescence, vous m’avez offert la musette du naturaliste de
la hulotte, avec à l’intérieur un très pratique filet à papillons. Depuis, je n’ai jamais reçu un
cadeau d’anniversaire qui ai autant changé ma vie. Maman et Papa, vous avez été les pre-
miers à me faire découvrir la beauté de la nature et à me montrer ce que faire de la recherche
signifiait. Merci pour ces inestimables présents.

It is well known that only acknowledgments are read. Thus, in an attempt to trigger your
curiosity and to make you check some of my figures, here are a few questions I tried to
answer in this thesis1.

How do mosquitoes achieve flight? answer in Fig. 1.2, page 14

How do mosquitoes find you? answer in Fig. 1.4, page 21

How do odour-baited traps work? answer in Fig. 2.1, page 44

How mosquitoes behave near traps? answer in Fig. 2.9, page 62

How did we develop a new trap? answer in Fig. 6.3, page 255

Is our new trap more efficient? answer in Fig. 3.1, page 99

How do mosquitoes escape from an attack? answer in Fig. 5.3, page 196

1Original idea from Cees Voesenek.

280



A

About the author
Antoine Cribellier was born in 1992 in Orléans,
France. At a young age, he was already passion-
ate about flying things. His passion started with
birds and quickly spreads to flying machines. At
the age of nine, he joined the local aeromodelling
club where he learned how to build and fly model
aeroplanes made of balsa wood and powered by
rubber bands. Already then, he enjoyed the me-
ticulous process necessary to get these aeroplanes
(sometimes as light as a bee) to fly as long as pos-
sible. In middle school, his passion extends to in-
sects, and especially to dragonflies that he likes to
pursue and photograph.

The seed of Antoine’s interest for scientific research was planted when, with two high-
school friends and under the supervision of his physics teacher, he started a one-year pro-
ject to study the fall of the winged maple-tree seed. In 2010, this project was extended
for a second year and was awarded two first prizes at two national scientific competitions
(Olympiades de Physique and C. Génial, France). In the meantime, a team of research-
ers in the Netherlands published their study on the aerodynamic of maple-tree seed in the
scientific journal Science. After discovering this fascinating paper, he and his friends de-
signed their own vertical wind tunnel in order to visualize the vortex above the rotating
seeds. In September 2010, they presented this wind tunnel and their results in the interna-
tional scientific competition EUCYS (European Union Contest for Young Scientists) in
Lisbon (Portugal).

After this first experience, Antoine decides to follow studies which would lead him to
do scientific research. During his BSc in physics and engineering (University of Orléans),
in 2013, he went on Erasmus mobility at the University of Cork (Ireland). Then, he ob-
tained his Master’s degree in mechanics at the University of Versailles (UVSQ). Having
first considered studying astrophysics, Antoine did an internship on pulsars in the CNRS
(National Centre of Scientist Research) of Orléans, and another one on the deorbiting of
satellites at the CNES (National Centre of Space Study) of Toulouse. Finally, he decided
to return to his original interest: biomechanics. Thus he carried out his MSc thesis at the
ONERA (the French Aerospace Lab) of Lille on the characterization of the flapping wings
of a micro-drone similar to insect wings.

281



In 2016, Antoine obtained his second MSc degree of fluid mechanics at the Univer-
sity of Lille 1, after completing his MSc thesis at the Research Institute on Insects Biology
(IRBI) in Tours. During this project, he studied the hydrodynamics of the movement of
water striders and mechanically simulated a leg at the air/water interface. At the same time,
and with the help of Florian Muijres, he obtained a personal PhD grant from the Wagen-
ingen Institute of Animal Science (WIAS), to study ‘How to catch a mosquito?’ in Wa-
geningen University (The Netherlands). This is only after starting his PhD in Wageningen
that he realized that his promoter, Johan L. van Leeuwen, was in the team of researchers
published the scientific article on the fall of maple seeds that had interested him so much
years before.

In July 2021, he started a postdoctoral research project at the University of Wageningen
to better understand how malaria mosquitoes swarm and mate. This project was funded by
a Human Frontier Science Program research grant and will be carried out by an interdiscip-
linary collaboration of four teams around the world (The Netherlands, Belgium, Burkina
Faso and USA).

282



P

List of publications
Pulkit Goyal, Antoine Cribellier, Guido C. H. E. de Croon, Martin J. Lankheet, Jo-
han L. van Leeuwen, Remco P.M. Pieters, Florian T. Muijres (2021). Bumblebees land
rapidly and robustly using a sophisticated modular flight control strategy. iScience 24, issue
5, 102407.

Thomas Steinmann, Antoine Cribellier, Jérôme Casas (2021). Singularity of the water
strider propulsion mechanisms. Journal of Fluid Mechanics 915, A118.

Antoine Cribellier, Jeroen Spitzen, Henry Fairbairn, Cedric Van De Geer, Johan L.
Van Leeuwen, Florian T. Muijres (2020). Lure, retain, and catch malaria mosquitoes.
How heat and humidity improve odour-baited trap performance. Malaria journal 19, is-
sue 1, 1-16.

Antoine Cribellier, Jens A. van Erp, Alexandra Hiscox, Martin J. Lankheet, Johan
L. van Leeuwen, Jeroen Spitzen, Florian T. Muijres (2018). Flight behaviour of malaria
mosquitoes around odour-baited traps: capture and escape dynamics. Royal Society open
science 5, issue 8, 180246.

283

https://doi.org/10.1016/j.isci.2021.102407
https://doi.org/10.1016/j.isci.2021.102407
https://doi.org/10.1016/j.isci.2021.102407
https://doi.org/10.1016/j.isci.2021.102407
https://doi.org/10.1017/jfm.2021.156
https://doi.org/10.1017/jfm.2021.156
https://doi.org/10.1186/s12936-020-03403-5
https://doi.org/10.1186/s12936-020-03403-5
https://doi.org/10.1186/s12936-020-03403-5
https://doi.org/10.1186/s12936-020-03403-5
https://doi.org/10.1098/rsos.180246
https://doi.org/10.1098/rsos.180246
https://doi.org/10.1098/rsos.180246
https://doi.org/10.1098/rsos.180246


284



E

Educational activities
Course Year ECTS
The basic package 1.8
WIAS Introduction Course 2016 0.3
Scientific Integrity and Ethics 2019 1.5

Disciplinary Competences 12.2
Grant Proposal 2017 6.0
Statistics for the Life Sciences – WIAS 2017 2.0
Python Data Science (IBM online course on edX) 2021 4.2

Professional Competences 5.9
Survival Guide to Peer Review – WIAS 2017 0.3
High Impact Writing - WIAS 2017 1.3
Supervising BCs and MSc thesis students 2017 0.6
Efficient Writing Strategies 2018 1.3
Brain Training 2018 0.3
Stress Identification & Management 2018 0.0
Project and Time Management 2018 1.5
The Final Touch: Writing the General Introduction and Discussion - WIAS 2020 0.6

Societal Relevance 1.2
Ansering the question of Everyday Health - Article on Mosquito host-seeking
behaviour

2019 0.2

Participation to the PreMal Supervisory Board + Advising activity 2019 - 1.0

Presentation Skills 4.0
SEB Conference, oral presentation (5th) of July), Sweden 2017 1.0
Burgers Symposium, oral presentation (31st of May) 2017 1.0
Insect bio-inspired microtechnology, poster presentation (21st of November) 2019 1.0
WIAS Annual conference, oral presentation (13th of february) 2020 1.0
SICB Online Conference, oral presentation (1st January) 2021 /

Teaching competences 6.0
Supervising a BSc student (Ton Kaarsgaren) 2017 1.0
Supervising one MSc thesis students (Henry Fairbairn) 2018 2.0
Supervising one MSc thesis students (Cedric van de Geer) 2019 2.0
Supervising one MSc thesis students (Antigoni Bougatsia) 2020 /
Teaching-assistant for Functional Zoology (≈ 20 hours) 2017 1.0

285



Teaching-assistant for Functional Zoology (≈ 35 hours) 2018 /
Teaching-assistant for Functional Zoology (≈ 35 hours) 2019 /
Teaching-assistant for Functional Zoology (≈ 15 hours) 2020 /

Total 31

Completion of the training activities is in fulfilment of the requirements for the education
certificate of the Graduate School Wageningen Institute of Animal Sciences (WIAS). One
ECTS equals a study load of 28 hours.

286



E

Caption of the covers

287



The research described in this thesis was financially supported by a doctoral fellowship
from the Wageningen Institute of Animal Sciences (WIAS).

Financial support from the Experimental Zoology Group of Wageningen University for
printing this thesis is gratefully acknowledged.

Layout & cover design by Antoine Cribellier
Thesis template by Cees J. Voesenek

Printed by Proefschriftmaken





BackFrontcover


	Propositions
	thesis - Antoine Cribellier.pdf
	Table of contents
	General introduction
	Evolution, physiology and biomechanics of insect flight
	The specificity of insect flight
	Insect flight control system
	To avoid crashing, nothing beats a good neurosensory system
	Studying escape manoeuvres to understand flight mechanics

	Mosquito interaction with vertebrates
	Why study the most annoying animal in the world?
	Even if you hide, mosquitoes will find you
	Mimicking humans or how to fool mosquitoes?

	Aims and content of this thesis

	Flight behaviour of malaria mosquitoes around odour-baited traps: capture and escape dynamics
	Introduction
	Materials and methods
	Experimental animals
	Experimental setup
	Simultaneous tracking of multiple flying mosquitoes
	Analyzing three-dimensional flight tracks
	Analysing the airflow dynamics around the mosquito trap

	Results
	Activity and capture rates of mosquitoes
	Positional likelihood of mosquitoes
	Airflow dynamic of the traps
	Mosquito flight dynamics
	Distribution of the capture probability

	Discussion
	Stereotypical mosquito flight dynamics
	Upwind- and downward-directed approach flights
	Fast upward-directed flight manoeuvres
	Combining the two stereotypical flight behaviours
	The flight behaviour of mosquitoes explains trap efficiency


	Lure, retain, and catch malaria mosquitoes. How heat and humidity improve odour-baited trap performance
	Introduction
	Materials and methods
	Experimental animals
	Odour-baited traps
	Experimental setups
	Dual-choice experiments
	Semi-field testing
	Mosquito flight tracking experiments
	Analysis of three-dimensional flight tracks
	Statistical analysis

	Results
	Capture efficiency of the traps
	Flight dynamics around the M-Tego
	Effect of heat and warm water on flight behaviour

	Discussion
	Conclusions


	Diurnal and nocturnal mosquitoes escape looming threats using distinct flight strategies under various light conditions
	Introduction
	Results
	Modelling the probability of being hit by the mechanical swatter
	The unpredictable flight behaviour of mosquitoes explains the low probability of being hit by the swatter
	Both mosquito species exhibit fast swatter-induced evasive manoeuvres more often in brighter light conditions
	The escape strategies of day and night active mosquitoes varies differently with light conditions

	Discussion
	Simulating a realistic attack
	Mosquitoes have a high escape performance due to their erratic flight behaviour
	Rapid escape manoeuvres are induced by both airflow and visual cues produced by the looming object
	Day-active Aedes mosquitoes exhibit higher escape performance than night-active Anopheles
	In the dark, night-active Anopheles mosquitoes have the highest escape performance
	Day-active Aedes mosquitoes show enhanced escape performance in overcast daylight
	Day-active and night-active mosquitoes escape differently in varying light conditions
	Conclusion

	Material and Methods
	Experimental animals
	The flight arena
	Experimental procedure
	Analysis of three‑dimensional flight tracks
	Statistical analysis


	Flight behaviour of malaria mosquitoes around odour-baited traps: capture and escape dynamics
	Introduction
	Results
	How does airflow impact mosquito escape performance?
	How do mosquitoes escape from a looming threat?
	Describing escape manoeuvres of mosquitoes
	Quantifying the effects of visual cues
	What drives mosquito escapes? Active versus passive effects

	Discussion
	The more airflow is generated during an attack, the better the mosquito escape
	Mosquitoes follow the helicopter model while manoeuvring
	Escape manoeuvres are mostly active
	How do nocturnal mosquitoes detect an attack?
	Conclusion

	Material and Methods
	Experimental animals
	The flight arena
	Experimental procedure
	Analysis of three‑dimensional flight tracks
	Estimating body and wing motion
	Classifying tracks as cruising or escaping
	Simulating the airflow conditions
	Estimating aerodynamic forces
	Statistical analysis


	General discussion
	The interaction of mosquitoes with vertebrates
	Odour-baited counter-flow traps as human mimics
	Simulating host defensive behaviour
	What we learned about mosquito flight behaviour
	How attractive host-cues influence the behaviour of mosquitoes
	How airflow and visual cues inform mosquitoes about a threat
	Mosquito-vertebrate interaction – Some additional perspectives

	Studying the capture and escape responses of mosquitoes
	The right setup to answer our questions
	Analysing thousands of flight tracks
	From body motion to forces
	Quantifying flight performance to understand perception
	Flight dynamics of mosquitoes – additional perspectives

	From fundamental research towards application
	Developing an improved mosquito trap
	Some perspectives for the development of vector control tools


	Summary
	Résumé
	Acknowledgements
	About the author
	List of publications
	Educational activities
	Caption of the covers

	Blank Page



