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METHODOLOGY

Quantification of spatial metal accumulation 
patterns in Noccaea caerulescens by X‑ray 
fluorescence image processing for genetic 
studies
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Abstract 

Background:  Hyperaccumulation of trace elements is a rare trait among plants which is being investigated to 
advance our understanding of the regulation of metal accumulation and applications in phytotechnologies. Noccaea 
caerulescens (Brassicaceae) is an intensively studied hyperaccumulator model plant capable of attaining extremely 
high tissue concentrations of zinc and nickel with substantial genetic variation at the population-level. Micro-X-ray 
Fluorescence spectroscopy (µXRF) mapping is a sensitive high-resolution technique to obtain information of the 
spatial distribution of the plant metallome in hydrated samples. We used laboratory-based µXRF to characterize a 
collection of 86 genetically diverse Noccaea caerulescens accessions from across Europe. We developed an image-
processing method to segment different plant substructures in the µXRF images. We introduced the concentration 
quotient (CQ) to quantify spatial patterns of metal accumulation and linked that to genetic variation.

Results:  Image processing resulted in automated segmentation of µXRF plant images into petiole, leaf margin, leaf 
interveinal and leaf vasculature substructures. The harmonic means of recall and precision (F1 score) were 0.79, 0.80, 
0.67, and 0.68, respectively. Spatial metal accumulation as determined by CQ is highly heritable in Noccaea caerules-
cens for all substructures, with broad-sense heritability (H2) ranging from 76 to 92%, and correlates only weakly with 
other heritable traits. Insertion of noise into the image segmentation algorithm barely decreases heritability scores of 
CQ for the segmented substructures, illustrating the robustness of the trait and the quantification method. Very low 
heritability was found for CQ if randomly generated substructures were compared, validating the approach.

Conclusions:  A strategy for segmenting µXRF images of Noccaea caerulescens is proposed and the concentration 
quotient is developed to provide a quantitative measure of metal accumulation pattern, which can be used to deter-
mine genetic variation for such pattern. The metric is robust to segmentation error and provides reliable H2 estimates. 
This strategy provides an avenue for quantifying XRF data for analysis of the genetics of metal distribution patterns in 
plants and the subsequent discovery of new genes that regulate metal homeostasis and sequestration in plants.
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Background
Understanding the mechanism of metal accumulation in 
plants is of great importance. Large areas of the world are 
enriched with potentially toxic trace elements, either for 
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anthropogenic reasons, such as metal mining and smelt-
ing, or for natural, geochemical reasons. Increased expo-
sure of humans to certain metals affects human health, 
including an increased risk of cancer [1–3]. Most metals 
that affect human health also have a negative effect on 
plants. There are, however, some plant species that are 
extremely tolerant to metal exposure and that hyperaccu-
mulate certain trace elements to very high concentrations 
in their leaves. Hyper accumulating species can be used 
to extract certain metals and metalloids from the soil 
[4], either to clean the soil, a process called phytoreme-
diation, or even to extract valuable metals from soils con-
taining sub-economic concentrations without disrupting 
the topsoil in a process called phytomining [5, 6]. Hyper-
accumulator plants also take up trace elements essential 
for human health, such as iron (Fe), zinc (Zn), manganese 
(Mn) or copper (Cu). By understanding the plant physi-
ology and the underlying genetics of metal accumula-
tion, cultivars can be bred that contain higher contents 
of these micronutrients in their edible parts, which will 
benefit their nutritional value. Such biofortified cultivars 
can help fight mineral malnutrition, one of the major 
causes of human mortality worldwide [7]. To unlock 
these applications of metal accumulation, an improved 
understanding of the underlying genetics is required.

Noccaea caerulescens is a particularly interesting spe-
cies to study in this regard. It can accumulate and toler-
ate extraordinary concentrations of Zn, cadmium (Cd), 
and nickel (Ni) [8], and some accessions even lead (Pb). 
Moreover, there is substantial variation in metal accumu-
lation genotype and phenotype between different popula-
tions of this species [8–10]. Several genes are known to 
participate in metal hyperaccumulation. These include 
genes for metal influx transporters that take up metals 
into the cytosol [11, 12], for metal tonoplast transporters, 
which transport metals and their chelators to and from 
the vacuole [13, 14], for metal efflux transporters, which 
exclude excess metals from the cytosol and are involved 
in transportation towards the shoot [12], and for a range 
of regulatory and signalling proteins [15]. Yet many genes 
remain to be uncovered to gain a full understanding of 
metal accumulation.

While total metal concentrations are routinely 
obtained using destructive sample analysis techniques, 
such as Inductively Coupled Plasma Atomic Emission 
Spectroscopy/Mass Spectrometry (ICP-AES/MS), more 
complex phenotypic traits remain underexplored, such as 
the spatial distribution of the metallome across plant tis-
sues. Previous work on metal distribution was limited to 
mostly qualitative analysis. For instance, leaf tip Zn accu-
mulation and a homogenous leaf distribution of Ni was 
found using laser ablation inductively coupled plasma 
mass spectroscopy [16]. Fluorescent probes were used 

in combination with microscopy to find that Zn accu-
mulation is not affected by plant age, that  phosphorous 
concentration decreases upon Zn accumulation in older 
plants and that Zn mainly locates to the apoplastic space 
of leaf epidermal cells [17]. Spatial accumulation patterns 
were found not to differ between plants grown in a natu-
ral environment versus those grown hydroponically [18]. 
Finally, the use of  synchotron-based X-ray fluorescence 
microscopy  on the closely related Noccaea tymphaea 
uncovered that Zn and Ni do not necessarily colocalize in 
Noccaea [19]. Overall, these studies lack the comparison 
of metal accumulation distribution phenotypes across 
many accessions. Image-processing and elemental map-
ping methods will enable discrimination between traits 
that are specific to the accessions and those that hold for 
the whole species. Also, it will allow for the determina-
tion of genetic heritability of metal distribution patterns 
which can lead to the discovery of novel genes and pro-
cesses that regulate metal homeostasis.

X-ray Fluorescence Spectroscopy is a non-destructive 
elemental analysis technique that is capable of detect-
ing a wide range of elements covering most of the plant 
metallome [20, 21]. Micro  X-ray Fluorescence (µXRF) 
uses an X-ray source to illuminate a sample enabling 
mapping fresh or hydrated plant specimens with a spatial 
resolution as small as 1 µm and a detection limit as low 
as 5 µg g−1 for transition metals [22]. µXRF is singularly 
suited for such applications, as it is a non-destructive 
method for obtaining quantitative spatial information 
of elemental distribution in physically intact biological 
materials that avoids introducing artefacts associated 
with standard sample preparation protocols, such as sec-
tioning and fixation [23].

When initially viewing µXRF scans of different acces-
sions of Noccaea caerulescens, differences were observed 
in the spatial distribution of metals in leaves, the peti-
ole, leaf margin, leaf vasculature and leaf interveinal 
substructures (Fig.  1). The petiole anatomically consists 
largely of vascular bundles and hence the XRF signal 
would be dominated by elements that concentrate in 
the phloem (given that xylem is typically dilute). Based 
on physiological knowledge, differences between petiole 
and leaf blade vascular  bundles are therefore expected 
to be small. To test these qualitative observations, sub-
structures must be segmented by classifying each pixel of 
the image as belonging to the background or one of the 
substructure classes. Image-processing techniques can 
segment images into regions representing these substruc-
tures by considering characteristics of their shape and/or 
pixel intensities. Every pixel in the image can be classified 
to belong to a certain substructure. A complete review 
of machine-vision algorithms for plant-part segmenta-
tion is out of the scope of this article, but some relevant 
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examples are described below. Thresholding is often used 
to extract an object from a uniform background based 
on the pixel intensity or colour [24, 25] Instead of using 
a static threshold, dynamic thresholding techniques, 

such as Otsu thresholding or local thresholding, make 
the algorithm more robust to variations in illumination. 
A leaf can be subdivided in different substructures using 
classical image-processing techniques. For instance, 

Fig. 1  A batch of 24 N. caerulescens plants, corresponding to three plants of eight accessions, grouped together per accession, imaged by a 
photography, and b processing of the µXRF scan to visualize Zn concentration as a false-colour image, with black corresponding to the lowest and 
white to the highest Zn concentrations
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morphological opening can be used to segment the peti-
ole from the blade [26]. Leaf margins can be detected 
using the morphological gradient operation to mark an 
edge of arbitrary width along the foreground mask of 
the leaf [27]. Vasculature can be detected based on their 
small width using morphological opening [24, 28]. Leaf 
vasculature has also been separated from the leaf tis-
sue based on pixel intensities [25]. Alternatively, edge-
detection algorithms based on the second-order image 
derivative, such as the Laplacian operator, have been 
used to identify vasculature [29]. Lastly, ‘Artificial Ants’ 
have been used too to segment the vasculature by trac-
ing edges [30, 31]. Active-contour methods form another 
set of image-processing techniques that allow the detec-
tion of plant parts [32, 33]. In recent years, deep-learning 
techniques have become popular for plant-part segmen-
tation, e.g., [34–36]. These methods, however, require 
a lot of training data. For this study, a method based on 
classical image-processing techniques shows to be more 
effective. Our method uses intensity thresholding to seg-
ment the plant from the background. Blade and petiole 
are separated using morphological opening. The leaf 
margin is found through a morphological gradient opera-
tion, and finally, the leaf vasculature and interveinal tis-
sue are separated using a Laplacian operator.

The objective of this study is to develop a method to 
quantify the spatial distribution of metal accumulation in 
different plant substructures and to determine the broad-
sense heritability of these metal distribution phenotypes. 
To this end, we have spatially  mapped the metallome 
by µXRF in a diversity panel of different N. caerules-
cens accessions grown in a hydroponic nutrient solution 
enriched in Zn and Ni. We propose an image-processing 
method to segment the µXRF images of N. caerulescens 
into four different substructures (petiole, leaf margin, leaf 
interveinal and leaf vasculature). Consecutively, we intro-
duce a numerical description of spatial metal distribu-
tion, the concentration quotient (CQ), which is used to 
determine the heritability of spatial metal distributions 
across the N. caerulescens diversity panel. While data are 
obtained for the whole metallome, the analysis focuses 
exclusively on the two elements supplied in excess, Zn 
and Ni, and two general, abundant elements, K and Ca.

Results
Metal distribution in the plants
The Noccaea caerulescens accessions are grown in 
batches of eight accessions each, in hydroponics, with five 
plants per accession. The three best growing plants are 
used for µXRF analysis. The three plants per accession are 
highly comparable in plant size and appearance, between 
accessions there is considerable variation, reflecting the 
genetic variation that is expected for a diversity panel of 

accessions originating from the north-west of Spain to 
the south of Finland (see Additional file 1). After 1 week 
of hydroponic growth at 2 µM Zn and no Ni, plants are 
supplied with fresh solution containing 20  µM Zn and 
100  µM Ni  (all as sulfate salts), to induce accumulation 
of both Zn and Ni. Plants continue to grow well, although 
some accessions develop mild chlorosis of the leaf blades, 
but no signs of metal toxicity or severe deficiency are 
observed when shoots of three plants per accession are 
mounted for µXRF analysis (Fig. 1).

The possibility of radiation-induced damage in µXRF 
analysis (especially in fresh hydrated samples) is an 
important consideration that may limit the information 
sought from the analysis [23]. The aim of µXRF analy-
sis is to examine physiologically as close as possible to 
the natural state of the plant. ‘Damage’ can be defined 
as any change to the specimen that compromises the 
examination of these processes. We could not discern 
any physiological changes (such as wilting, discolora-
tion, etc.) consequential to the µXRF analysis. This can be 
explained because the source produces a flux of 2.2 × 108 
photons s−1 in a 25-μm beam spot, at a maximum dwell 
of 100  ms. This results in a deposited radiation dose of 
just 6.6 Gy [23]. Throughout the study, Zn and Ni will be 
considered, which are the metals provided at elevated 
concentrations, and which are known to be hyperaccu-
mulated by N. caerulescens. In addition, two reference 
metals, Ca and K are considered, which are normally 
abundant and well spread over the leaf. Total plant metal 
content is calculated from the µXRF scans (Fig. 1 for Zn) 
and compared to ICP-AES data obtained from material 
collected after the µXRF-scanning (see Additional file 2: 
Fig S1). These two datasets correlate reasonably well for 
all metals (Pearson’s r = 0.87, 0.83, 0.78, 0.73 for Zn, Ca, 
K, and Ni respectively).

Segmentation quality
Using traditional image-processing techniques, a seg-
mentation algorithm has been designed for the raw 
images which is applied to the dataset (Fig.  2). Four 
classes of plant substructures are discriminated: 
petiole, leaf margin, leaf vasculature (vein) and leaf 
interveinal tissue (tissue) (Fig.  3c). The algorithmic 
segmentation is evaluated using 4000 manually classi-
fied pixels. Considerable differences in recall and preci-
sion are seen between the classes (Fig. 3b). The petiole 
can be segmented with a recall of 90%. The recall for 
leaf margin is 74%, with 16% of the leaf margin pixels 
being erroneously predicted as petiole. Confusion also 
exists between vasculature and interveinal tissue pixels 
resulting in a recall for the vasculature class of 62% and 
for the tissue class of 73% (Fig.  3b). Precision scores 
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for petiole, margin, vasculature, and tissue are, respec-
tively, 0.696, 0.868, 0.721, and 0.633.

Petioles are misclassified when the petiole crosses or 
closely borders a leaf. This is often the case for young 
developing leaves positioned close to the centre of the 
rosette (Fig.  4a, b). Margin pixels are misclassified as 
petiole when the leaf extends along the petiole (Fig. 4c, 
d), or wherever small developing leaves are errone-
ously classified as petiole. Vasculature and interveinal 
tissue are mixed up in the vicinity of tertiary vascula-
ture because image resolution is too low to discrimi-
nate these very fine structures (Fig. 4e, f, g, h). Finally, 
the method cannot handle very small plants, which 
are completely mis-classified as “petiole”, but this only 
applied to three plants in the experiment.

A sensitivity analysis shows effects of segmentation 
parameter values on the harmonic mean of precision 
and recall (F1-score). Increased F1-scores in one sub-
structure often coincide with decreased scores in other 
substructures (Fig.  5). Increasing the kernel size used 
for the morphological opening causes a larger part 
of the plant to be classified as petiole (Fig.  5a). The 
increase in petiole F1-score coincides with decreased 
F1-scores for all other substructures. Sensitivity of the 
F1-score is tested for three parameters that influence 
vein and tissue segmentation; the Laplacian opera-
tor kernel size (Fig.  5b) and two binary thresholds 
that convert the result of the Laplacian operation into 
vasculature- and intervascular tissue masks (Fig.  5c, 
d). Increasing the kernel size causes more pixels to 

K, Ca, Ni, Zn image
Plant

segmentation

Plant mask

Background mask

Substructure
segmentation

Compton scatter
image

Fig. 2  Flow chart of the segmentation algorithm. Blue striped boxes denote inputs, grey diamonds denote image processing steps. White box 
denotes an intermediate result, colours denote the five output classes

Fig. 3  Comparison of Compton scatter image and pixel-for-pixel classification. a Compton scatter X-ray image of a Noccaea caerulescens plant. b 
row-normalized confusion matrix showing evaluation of ground-truth. Horizontal axis sums up to 1. c Classification of the major plant structures: 
petiole (orange), leaf margin (violet), leaf vasculature (vein)(pink) and leaf interveinal tissue (tissue)(green)
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be classified as vein and less as tissue (Fig.  5b). This 
raises the F1-score for both vein as well as tissue. 
A similar pattern is visible for the threshold on the 
Laplacian that segments thin vasculature from tissue 
(Fig. 5c). Hardly any effect on the F1-score is observed 
when changing the threshold for segmenting thick 
vasculature (Fig.  5d); increases in recall are set off by 
decreases in precision and vice versa (see Additional 
file 2: Fig S2).

Comparison of leaf substructures
To compare metal accumulation in substructures 
across all accessions, the metal concentrations are first 
normalized to the plant mean (Fig. 6). A large range of 
normalized mean substructure concentrations is visible 
for the petiole and margin across all metals. Remark-
ably, while Zn and Ni colocalize in most plants, this 
does not result in equal amounts of under- and overac-
cumulation of the two metals in any given substructure. 
The vasculature is the only substructure that consist-
ently accumulates all metals above the plant mean. 
Other substructures over accumulate some metals but 
under accumulate others. The differences reported here 
are only observed when metal concentrations are nor-
malized; the large variation in mean plant metal con-
centration between the accessions overshadows the 
differences of within-plant metal distribution (Fig. 6).

Broad‑sense heritability determination
Broad-sense heritability (H2) values indicate how much 
the phenotypic variance of a population can be explained 
by genetic rather than environmental factors [37]. H2 can 
be used to relate phenotypic traits to genetic variation 
and is an important tool for evolutionary biology and 
plant breeding [37, 38]. The higher the H2, the easier it 
will be to use the trait values for genetic analysis, as the 
phenotypic variation effectively reflects genotypic vari-
ation. Since we have determined phenotypes for three 
replicate plants of each genotypically homogeneous 
accession, we can estimate the non-genotypic (environ-
mental/error) component of the total phenotypic vari-
ance, from the variance within genotypes. Next to several 
metal concentration and distribution traits, we have also 
measured plant size, which is for many plant species a 
trait with high heritability. As an example (Fig.  7), the 
phenotypic variation for plant size is high, when compar-
ing the different accessions, but much smaller between 
plants of the same accession. Consequently, the broad-
sense heritability of plant size is high, at 87.8% (Fig. 7d).

To determine the heritability of metal accumulation 
in substructures, a metric is sought that holds informa-
tion on the accumulation in a substructure independent 
of the substructure’s size and mean concentration in the 
plant. The concentration quotient fulfils these demands. 
It expresses the mean concentration in the substructure 
divided by the mean concentration in the plant (Eq. 13). 

Fig. 4  Examples of misclassified pixels. Compton scatter and segmentation of petiole (a, b), leaf margin (c, d), leaf vasculature (e, f), and leaf 
interveinal tissue (g, h)
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Similar to plant size, the Zn CQ values of the petiole 
(Fig.  7b) also show low variation within accessions, and 
high variation between accessions. The same is true for 
the Zn CQ values of all other analysed substructures. The 
plant mean concentration of Zn results in the highest H2 
at 94.7% (Fig. 7d).

To exclude the possibility that the CQ-metric meas-
ures some other heritable trait by proxy, we have exam-
ined whether the metal CQs of substructures correlate 
with plant size, mean metal concentration or the size 
of the substructure relative to that of the plant. Metal 
CQs of the petiole, leaf margin and leaf interveinal tis-
sue generally correlate only weakly with plant size and 
mean Zn, Ni, K, and Ca concentrations (see Additional 
file 2: Table S1). For Zn vein CQ there is some correlation 
with plant size (r = 0.15) and mean zinc concentration 
(r = 0.41). This indicates that plants with higher Zn con-
centrations tend to store it increasingly in their vascula-
ture. Also, for the other three metals there is a correlation 
between metal vein CQ and mean concentration, but the 
correlation is not always positive (see Additional file  2: 

Table S1). Nickel vein CQ correlates positively with mean 
metal concentration (r = 0.38), while K- and Ca- CQ cor-
relate negatively with mean metal concentration (respec-
tively, r =  − 0.34, and r =  − 0.55). The latter means that 
K and Ca are not increasingly stored in the vasculature 
upon increasing metal concentration. All metals in all 
substructures correlate only weakly with the relative sub-
structure size (see Additional file 2: Table S1).

As expected, there is negative pairwise correlation 
between the Zn CQs of the different substructures. Nota-
bly, the vein Zn CQ correlates to the margin Zn CQ with 
r = − 0.50 and margin Zn CQ correlates to petiole Zn 
CQ with r = − 0.41; an increased accumulation in one 
substructure is paired with a decreased accumulation 
in one or more other substructures. Similar correlations 
are found for pairwise substructure CQ correlations for 
other metals (See Additional file 2: Fig. S3).

As a control for the validity of CQ as a metric for metal 
accumulation heritability, random substructures are cre-
ated for every plant. These random substructures con-
sist of five square patches randomly distributed over the 

Fig. 5  Sensitivity segmentation quality to four segmentation parameters by F1-score. a Kernel size used for morphological opening operation on 
binary plant masks to yield blade and petiole separation. b Kernel size of Laplacian operator to detect edges. c Binary threshold on the calculated 
Laplacian operator to segment thinnest vasculature. d Binary threshold on the calculated Laplacian operator to segment wider vasculature. Values 
on the X-axis with asterisk are used for all analyses. Substructures are indicated in orange (petiole), violet (leaf margin), lilac (leaf vasculature; vein) 
and green (interveinal tissue; tissue)
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Fig. 6  Distribution of shoot metal concentration for every 6th accession for respectively Zn, Ca, K, and Ni (a–d) as measured by ICP-AES. 
Comparison of normalized mean metal concentrations per substructure for all N. caerulescens accessions for respectively Zn, Ca, K, Ni, (e–h) derived 
from μXRF image analysis. Mean substructure metal concentrations are Z-score-normalized using the plant mean and standard deviation

Fig. 7  Genetic variation for traits determined based on the µXRF images for three plants per N. caerulescens accession, for a plant size, b zinc CQ 
values for the petiole, c zinc CQ values for a randomly drawn substructure. Every third accession in the dataset was chosen for display. In d, some of 
the broad-sense heritability (H2) scores (in % of total phenotypic variance) for indicated traits and for the random substructure CQ value are shown
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plant image. The H2 for the random substructures CQ is 
very low (Fig. 7c). Such low H2 is indeed expected unless 
there is an unforeseen problem with the CQ value calcu-
lation or the image processing, which is not the case.

Finally, we assessed the robustness of CQ values against 
classification errors, by introducing ‘noise’ into the clas-
sification algorithm. This is done by assigning a random 
class to a certain percentage of plant pixels, but this 
hardly alters the H2 scores even when assigning random 
classes to > 20% of the plant’s pixels (see Additional file 2: 
Fig. S4), meaning this image assessment method is robust 
against segmentation errors.

The H2 of substructure CQ is very high across all sub-
structures and imaged metals, all above 75% (Fig.  8). 
In a way this is remarkable, as a pair-wise correlation 
between the metals shows that the CQs of substruc-
tures are only weakly correlated (See Additional file  2: 
Fig. S5), not exceeding r = 0.34. The only exceptions are 
the correlation between Ni and Ca CQ for the vascula-
ture (r = − 0.55), and of Zn and Ni CQs (r ≥ 0.46 for any 

substructure). This means that while the H2 of substruc-
ture CQs are consistently high across metals, this is not 
caused by common biological processes, except perhaps 
for the regulation of Zn and Ni homeostasis in leaves.

Heritability of metal colocalization
While CQ could be used to quantify the spatial locali-
zation of metals, it does not quantify the colocalization 
of metal pairs. The extent of metal colocalization can be 
investigated by calculating a Pearson’s correlation coeffi-
cient per plant for the pixel values of every pair of metal 
images (Fig. 9). A remarkable diversity is observed with 
metal correlations ranging from weak negative correla-
tions to moderately positive correlations depending on 
the accession. The exception is the correlation between 
Zn and Ni; for all plants there is a weak to strong positive 
correlation between Zn and Ni concentrations (Fig. 9a). 
The extent of colocalization between metal pairs varies 
between genotypes; plants within accessions display sim-
ilar correlation coefficients, while correlation coefficient 
differences between accessions are relatively large. This 
results in high broad-sense heritability for all analysed 
metal pairs (Fig. 9b).

Discussion
Image‑segmentation quality
For most leaf structures, the image segmentation was 
successful. Only image segmentation of the vasculature 
may need future improvement. While the segmentation 
of primary and secondary vasculature was successful, the 
prediction of tertiary vasculature was very unprecise. The 
current resolution of the µXRF image is lower than the 
width of most tertiary vasculature, resulting in the pixels 
only partially representing the reflectance of the vascula-
ture, with a large influence of the interveinal tissue. This 
makes it difficult to accurately classify pixels as either 

Fig. 8  Broad-sense heritability (H2) of metal accumulation for each 
the four substructure CQ values for zinc (Zn), potassium (K), nickel 
(Ni), and calcium (Ca) for the petiole (orange), leaf margin (violet), 
leaf vasculature (vein; lilac) and leaf interveinal tissue (tissue; green) 
substructures

Fig. 9  Colocalization of metals. a Correlation coefficients (r) for correlation of the zinc (Zn), calcium (Ca), potassium (K) and nickel (Ni) pixel-based 
concentration values per plant. b Broad-sense heritability (H2) of the correlation coefficients
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vasculature or interveinal tissue. The reported segmenta-
tion accuracy is also influenced by errors in the manual 
ground-truth labelling. The problem of low resolution 
of the tertiary vasculature also challenges manual clas-
sification. The exact pixel at which the blade-edge starts 
is somewhat arbitrary, leading to some errors in setting 
the ground-truth for the margin segmentation. Similarly, 
the boundary between the substructures petiole and leaf 
margin is somewhat arbitrary to draw. Furthermore, in 
many images, a narrow strip of leaf blade can be seen 
running along the petiole, this cause misclassification of 
some leaf margin areas as petiole.

While a higher-resolution image could solve some of 
these problems, adjustment of the segmentation strat-
egy could provide an alternative solution. Instead of 
classifying all pixels in the image, some regions of high 
uncertainty could be excluded. In particular, the tertiary 
vasculature and surrounding areas as well as the region 
where blade and petiole meet could be excluded. This 
approach was not used in the current investigation as the 
CQ-based H2 seemed robust enough against misclassifi-
cation. Moreover, excluding specific regions could intro-
duce some bias in the concentration quotients.

Image segmentation sensitivity & generalizability
As expected, the segmentation method is sensitive to 
variation of the image processing parameters. While the 
general strategy of segmenting plant structures based on 
shape- and pixel intensity-attributes can be translated 
to other datasets and species, the exact algorithm and 
parameter values will need to be optimized for new set-
tings. A custom segmentation algorithm would need to 
be created for every new species. When generalization to 
many other species is desired, we recommend the intro-
duction of a machine-learning approach. To this end, the 
image processing strategy described in this article could 
be used to generate a labelled ground-truth dataset for 
multiple species. Next, a deep convolutional neural net-
work could be trained to learn generalized substructure 
segmentation from this data [39]. Alternatively, syn-
thetic data could be created by generating images based 
on structural plant models [40–42]. However, structural 
plant models would require reparameterization for indi-
vidual species as well. This is likely to take an equal or 
longer time than the image processing strategy described 
here. It will however result in a significantly larger 
dataset.

Image segmentation robustness
In many cases, the accuracy of image segmentation is 
essential for the reliable extraction of spatial attributes 
from metallome maps. However, because the calculated 
CQs are averaged over the plant substructures, the metric 

turned out to be robust against misclassification of plant 
pixels; insertion of noise in the segmentation algorithm 
did not affect CQ heritability when 20% of pixels were 
randomly classified. Remarkably, when noise is injected 
by assigning a random class to ≥ 50% of the pixels, herit-
ability is still high. This is probably because the majority 
of the plant surface is taken up by the interveinal tissue. 
As the majority of pixels in each plant belongs to this 
interveinal tissue class, when random classes are assigned 
to a progressive percentage of pixels, the true underlying 
class becomes progressively dominated by the interveinal 
tissue class. Therefore, for injection percentages larger 
than 20%, the substructure CQs increasingly reflect the 
tissue CQ, which on its own has high H2 (see Additional 
file 2: Fig. S4).

Heritability of metal accumulation patterns
Previous work linking phenotype to genotype through 
heritability has relied much on one-dimensional phe-
notypic traits such as yield components [43, 44], mor-
phology [45], or photosynthetic efficiency [46, 47] and/
or traits relating to plant geometry [47, 48]. Here, we 
translate spatial concentration patterns into a numerical 
metric to link them to genetic variability. This may allow 
for the discovery of novel genes and regulatory elements 
of these complex processes. In addition to the already 
established link of total metal accumulation to genotype 
[10], we show here that the spatial accumulation patterns 
are also heritable. The concentration quotient is a robust 
metric to determine heritability of metal accumulation 
patterns. We expect that this metric can be combined 
with data on single nucleotide polymorphisms between 
accessions to find novel genes and regulatory processes 
involved in metal homeostasis. The heritability of metal 
CQs is remarkably similar across different metals even 
though CQs for the different metals are only slightly cor-
related to one another. Some of the similarity in herit-
ability across metals may be explained by the method 
with which µXRF intensity rasters were converted into 
concentration rasters; an equal thickness was assumed 
for the whole plant. If the thickness of the substructures 
varies individually between accessions, this may have 
affected the reported concentrations in the substruc-
tures. Therefore, some of the CQ heritability may relate 
to substructure thickness instead of metal accumulation. 
To counter this, any strong relationship between sample 
thickness and metal concentration would have shown up 
as a correlation between the pixel intensities of the dif-
ferent metals. This correlation was not observed. Still, 
for future investigations we recommend an estimation of 
the thickness of substructures [49]. No other phenotypic 
traits were found that explain the consistent patterns of 
substructure CQ heritability.
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The impact of the plantlet thickness on metal 
accumulation analysis through µXRF scanning
The thickness of N. caerulescens leaves varies, with peti-
oles thicker than the foliar vasculature and the leaf lam-
ina  the thinnest. This may affect the calculation of total 
metal content based on µXRF scanning images. When we 
perform a sensitivity analysis for sample thickness using 
a portable XRF scanner, it is apparent that sample thick-
ness variations between 200 and 800  μm (the thickness 
range observed for N. caerulescens) do not have a major 
effect on the intensity of the K and Ca signals. How-
ever, for the heavier Ni and Zn elements the difference 
becomes more pronounced (see Additional file 2: Fig S6). 
This will enhance any positive correlation of observed Zn 
and Ni concentrations but will only have a minor effect 
on the CQ values for these metals.

Metal accumulation and colocalization patterns
While the biological interpretation of the images and the 
heritability analysis is not the focus of this report, and has 
not been analysed in great detail, it is still interesting to 
draw a few conclusions. N. caerulescens is a metal hyper-
accumulator of three, perhaps even four, metals, Zn, Ni, 
Cd and Pb, which in itself is a rare trait. Zn and Ni hyper-
accumulation is so far only described for the Noccaea 
genus and the Dichapetalum genus [50]. The few species 
in which natural Ni-Zn hyperaccumulation may occur 
are therefore likely to be members of the Noccaea genus. 
However, since high concentrations of both Ni and Zn 
in soil rarely occurs in nature, co-hyperaccumulation of 
both metals will only accidently occur in natural popula-
tions of Noccaea species. For all N. caerulescens plants we 
examined, wide ranges of colocalization were observed 
for the metal pairs, from no obvious colocalization to 
strong positive or negative colocalization. The only metal 
pair that showed consistent positive correlation in spatial 
concentrations was that of Zn and Ni. As noted above, 
this correlation may have been emphasized by local dif-
ferences in leaf thickness that influence especially the Zn 
and Ni measurements but not those of Ca and K.

The positive colocalization we find appears to contrast 
with previous observations for N. caerulescens [16] and 
our earlier observations in the closely related Noccaea 
tymphaea [19] in which different localization patterns for 
Zn and Ni were found. One obvious difference in meth-
odology between these reports and our work is that we 
exposed plants to both elevated Zn and Ni supply, in a 
1:5 concentration ratio, to ensure accumulation of both 
metals. The work on N. tymphaea was performed on 
wild-collected plants and the previous work on N. caer-
ulescens was performed on plants supplied with high 
Zn or with Ni supply, but not  combined in one treat-
ment. The extent of colocalization in N. caerulescens we 

studied, seems influenced by the genotype of the plant. 
In our analysis, we find accumulation of metals to asso-
ciate largely within the vasculature, which is in line with 
previous findings for N. caerulescens in which Zn was 
localized using transverse leaf sections [18]. In the other 
reports on N. tymphaea and N. caerulescens, the highest 
Zn concentrations are found in the tissues surrounding 
the vasculature [16, 19], so slightly out of the vasculature. 
The aforementioned investigations consider only one or 
a few accessions. Since metal accumulation patterns are 
shown to be highly heritable, considering one accession 
will not be sufficient to make general claims about accu-
mulation patterns on the species level.

Conclusions
A general strategy for plant substructure segmentation of 
µXRF scans is proposed for plants similar to N. caerule-
scens in plant architecture, and a metric is developed to 
link phenotypic variance in the spatial distribution of the 
plant metallome to genetic variance. Spatial metal-accu-
mulation patterns, as measured by CQ, are highly herit-
able in N. caerulescens for all metals and all segmented 
substructures. While image segmentation quality can 
benefit from higher resolution images, the segmentation 
quality was sufficient to extract highly heritable pheno-
typic traits on metal accumulation. Segmentation qual-
ity was highest for petiole and margin, and lowest for 
vasculature and leaf tissue. The quality depends on the 
image-processing parameters, which were optimized for 
the given dataset. The heritability scores for the various 
tested phenotypic traits were not significantly influenced 
by the segmentation quality when noise was injected. 
This indicates that the CQ-metric is robust to, at least 
some, segmentation error. The strategy employed in this 
study can be used to quantify elemental distributions 
patterns obtained from synchrotron or laboratory µXRF 
datasets of (hyperaccumulator) plants to assist in the 
comparative analysis of differential accessions, mutants 
or dose treatments, and thus be a valuable tool for the 
discovery of new genes that regulate metal homeostasis.

Methods
Plant material and cultivation
A diversity panel of 96  N. caerulescens accessions is 
used (Additional file 1), which have all been propagated 
for at least three generations by single-seed descent upon 
self-pollination to create phenotypically homogeneous 
lines. Before germination, surface-sterilized seeds are 
sown on 0.6-ml PCR-tubes of which the bottom is cut 
off and which are filled with 0.3% gelling agent (Gelzan, 
Sigma-Aldrich) (made with 0.5 × strength Hoagland’s 
nutrient solution). Seeds are stratified for six days at 3 °C, 
and a drop of 10 µM gibberellic acid (GA4 + 7; Duchefa) 
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is applied on top to break any seed dormancy. After 
germination at 26  °C, tubes with germinated seeds are 
transferred to the hydroponics culture after three days, 
when the fully expanded cotyledons have emerged. The 
hydroponic system is set up in a temperature-controlled 
growth chamber. Four separate rectangular contain-
ers (11  cm height × 30  cm width × 40  cm length; 11 L 
each) are filled with a modified 0.5 × strength Hoagland’s 
nutrient solution: 3 mM KNO3, 2 mM Ca(NO3)2·4 H2O, 
1  mM NH4H2PO4, 0.5  mM MgSO4·7 H2O, 1  µM KCl, 
25  µM H3BO3, 2  µM MnSO4·4 H2O, 2  µM ZnSO4·7 
H2O, 0.1 µM CuSO4·5 H2O, 0.1 µM as Na2MoO4·2 H2O 
and 20 µM Fe-HBED. The solution is set to pH 5.5 with 
KOH and buffered using 2 mM MES (2-(N-morpholino) 
ethane sulfonic acid). The solution is kept constantly aer-
ated using an air stone at the bottom of each container. 
In each container, 35 plants are grown in open 0.6-mL 
Gelzan-filled bottomless PCR tubes inserted into 3  cm 
round plastic baskets with a foam disk to allow the roots 
to be immersed in the nutrient solution. After one week, 
the nutrient solution is replaced with a fresh solution, 
containing 20  µM ZnSO4 and 100  µM NiSO4 to induce 
accumulation of both Zn and Ni [10]. To calculate free 
ionic activity of Zn and Ni a simulation has been per-
formed using the software GEOCHEM-EZ, with 90.2% 
of Zn present as the free ion, and 92.2% of Ni present as 
the free ion, in both cases the remainder is complexed 
with NO3, SO4 and PO4, while 100% of Fe3+ is complexed 
with HBED. The nutrient solutions are changed com-
pletely after one week, at which interval the pH has not 
changed substantially (< 0.2 pH change). Plants are grown 
for 20  days in hydroponics with a 12–12  h light–dark 
photoperiod, under high intensity full spectrum Valoya 
B200 LED lights (Valoya Oy, Helsinki Finland), with a 
photosynthetic photon flux density at of 350 μmol m2 s−1 
(measured with an Apogee MQ-500 instrument) at 
26/20 °C day/night temperatures.

Elemental mapping using µXRF
Before being destroyed by acid digestion, freshly 
hydrated, plantlets of which the roots were cut off, 
were mounted and scanned using a modified ATLAS 
X instrument (IXRF Systems) at the Centre for Micros-
copy and Microanalysis, The University of Queensland, 
Australia. On the µXRF motion stage (300 × 300 mm), 
the whole plantlets were mounted, and to retain their 
position, shape, and moisture content during the meas-
urement, the plantlets were sandwiched between a 
100-μm thick cellulose acetate sheet (below) and a 
sheet of 6-μm thick Ultralene thin film (top). Prior 
to the mounting of the plantlets the main root was 
cut off and  thereafter the whole plantlet was  tightly 
sealed in the mounting with thin film. There was no 

visible leakage from the cut surface. The µXRF system 
is equipped with two 50-W X-ray sources fitted with 
polycapillary focussing optics: XOS microfocus Mo-
target tube producing 17.4 keV X-rays (flux of 2.2 × 108 
ph s−1) focussing to 25 μm FWM and a Rh-target tube 
producing 20.2  keV (flux of 1.0 × 107 ph s−1) focus-
sing to 5  μm FWM. It has two KETEK H150 silicon 
drift detectors of 150 mm2 coupled to a XIA Mercury 
X4 signal-processing unit. Typical energy resolution 
is < 145  eV with a maximum input count rate of 2  M 
counts per second. During measurements of all plant-
lets, all parameter settings and environments were kept 
constant; temperature at ~ 20  °C, using the Mo 25  µm 
X-ray source at a 50 kV, 1000 µA, a rise time of 0.25 µs 
and a per-pixel dwell of 100  ms. The XRF spectra on 
the UQ µXRF facility were acquired in mapping mode 
using the instrument control package (Iridium, IXRF 
Systems) from the sum of counts at the position of the 
principal K-line fluorescence peak for each element. 
These were each exported into ImageJ as greyscale 8-bit 
TIFF files. The sum of counts images for Zn, K, Ca, 
and Ni as well as the Compton scatter image were used 
here.

Chemical analysis of plant samples
At the end of the cultivation period, the plants were 
harvested and divided into shoots and roots. While the 
shoots were mounted for µXRF scanning (see above), 
the root samples were rinsed with de-ionised water 
and dried at 60 °C for 72 h in a dehydrating oven. After 
scanning, also the shoot samples were collected from 
the cellulose acetate sheet and oven dried. Each sample 
was then weighed (~ 50  mg) and digested using 1  mL 
HNO3 (70%) in a hot block (ThermoFisher Digital Dry 
Bath) with a 1-h programme at 70 °C and a further  1-h 
at 125  °C, and then diluted to 10  mL with ultrapure 
water (Millipore 18.2 MΩ·cm at 25 °C) for subsequent 
analysis. Aliquots were analysed by Inductively Cou-
pled Plasma Atomic Emission Spectroscopy (ICP-AES, 
Thermo Scientific iCAP 7400) for the macro-elements 
Na, Mg, Al, P, S, K and Ca and the trace elements Mn, 
Fe, Cu, Ni and Zn in radial and axial modes depend-
ing on the element and expected analyte concentration. 
All elements were calibrated with a four-point curve 
covering analyte ranges in the samples. In-line inter-
nal addition standardization with yttrium was used 
to compensate for matrix-based interferences. Qual-
ity controls included matrix blanks, certified refer-
ence material (Sigma-Aldrich Periodic Table Mix 1 for 
ICP TraceCERT®, 33 elements, 10  mg L−1 in HNO3), 
and Standard Reference Material (NIST Apple 1515 
digested with HNO3).
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Segmentation of plant substructures
Substructure classes were assigned to every pixel in the 
µXRF scans. One pixel can belong to one of the following 
five classes: background, petiole, leaf margin (margin), 
vasculature (vein) or leaf interveinal tissue (tissue). Sev-
eral traditional image processing techniques were used in 
sequence to segment the substructures (Fig. 2).

To create the plant foreground mask, the K, Ca, Ni 
and Zn grayscale images were binarized using the Otsu 
thresholding method, which finds the intensity threshold 
that separates the pixel intensities in two classes based on 
a minimization of the intra-class intensity variance [51]. 
This results in four binary masks for each metal type; MK , 
MCa , MNi , and MZn . The union of these masks resulted in 
the plant-foreground mask:

Using morphological image processing [52], the fore-
ground mask could be divided into a blade and a peti-
ole based on the feature that petioles are less wide than 
blades. An opening operation with a structuring element 
of size 15 × 15 was applied in a single iteration to remove 
the petiole and yield the blade mask.

Subtracting the blade mask from the plant mask pro-
vided the petiole mask. To remove small artefacts from 
the petiole mask, a connected-component analysis was 
done and all connected components with an area smaller 
than 0.001% of the image area were discarded:

A mask of the leaf margin with a width of three pix-
els (corresponding to ~ 100  µm) is obtained by taking 
the internal gradient, which is the difference between 
the blade mask and the erosion of the blade mask with a 
structuring element of size 3× 3:

where ⊖ is erosion and b is the 5 × 5 structuring element.
The vein mask was created based on the Compton 

scatter image, ICompton , which shows the vasculature 
with higher intensities compared to the leaf tissue. A 
Laplacian operator with a kernel size of 7 × 7 was used 
to calculate the second-order derivative of the Compton 
scatter image in order to detect. The Laplacian highlights 
regions in the image with rapid intensity change, thus 
highlighting the vein structure. The result of the Lapla-
cian operation was used in two ways. The thicker primary 
and secondary vasculature were segmented by threshold-
ing the Laplacian image Mvein1 , and the thin tertiary vas-
culature was located by thresholding the Laplacian image 

(1)Mplant = MK ∪MCa ∪MNi ∪MZn

(2)Mblade = opening(Mplant, 15× 15)

(3)Mpetiole = coco(Mplant −Mblade, 0.001%)

(4)Mmargin = Mblade −Mblade⊖b,

for values below 0 followed by a skeletonization to reduce 
the thickness of the tertiary vasculature Mvein2 . The com-
bined vein mask was obtained from Mvein1Mvein2 and an 
intersection to exclude detections on the leaf margin:

Finally, the leaf-tissue mask was obtained by taking the 
difference between the blade mask, the margin mask, and 
the vein mask.

With the four masks, Mblade , Mmargin , Mvein , and 
Mtissue , every pixel in the image is classified in one of 
the four substructure classes. All image processing steps 
were carried out using the NumPy (1.19.2) and OpenCV-
Python (4.2.0.34) packages for Python.

Evaluation of segmentation
To determine the segmentation quality, for each of the 
petiole, margin, vein, and tissue substructure classes, 
1000 predicted pixels were randomly selected and dis-
played to a researcher unaware of their predicted class. 
These pixels were then manually classified as belonging to 
one of the four classes to obtain a ground-truth classifica-
tion and to calculate the precision, recall and F1-scores 
per class: A sensitivity analysis of the F1-score was run 
on four parameters of the segmentation algorithm.

 where M is the confusion matrix that holds the ground-
truth classes in the rows and the predicted classes in the 
columns. Mrc indicates the value in the confusion matrix 
on row r and column c , which indicates how often a true 
class r was predicted as class c.

A sensitivity analysis of the F1-score was run on four 
parameters of the segmentation algorithm. Parameter 
values were incremented from two steps below to two 
steps above the chosen parameter values. The structur-
ing element used for the opening operation that yielded 

(5)Mvein1 = Laplacian(ICompton) < −2500

(6)Mvein2 = skeleton(Laplacian(ICompton) < 0)

(7)Mvein = (Mvein1 ∪Mvein2) ∩ (Mblade −Mmargin)

(8)Mtissue = Mblade −Mmargin −Mvein

(9)Precisioni =
Mii

∑

jMji

(10)Recalli =
Mii

∑

jMij

(11)F1i = 2 ∗
Precisioni ∗ Recalli

Precisioni + Recalli
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the blade mask Mblade was varied from 7 × 7 to 23 × 23. 
The Laplacian operator kernel was varied from 3 × 3 
to 11 × 11. The threshold on Laplacian(ICompton) that 
yielded Mvein1 (Eq. 5) was varied from − 3500 to − 1500. 
The threshold on Laplacian(ICompton) that yielded Mvein2 
(Eq. 6) was varied from − 200 to 200.

Random substructures
In addition to the segmented substructures, “random 
substructures” were generated. A random mask was cre-
ated to compare heritability of phenotypical traits for real 
substructures (petiole, margin, tissue, veins) to a random 
non-existing substructure. The heritability in these non-
existing substructures was expected to be low and served 
as a negative control of our heritability calculations.

For every plant, a random mask was generated consist-
ing of 5 squares of 30 × 30 pixels at a random location on 
the plant surface. Where these squares overlapped with 
the background, they were cropped to be fully contained 
within the boundaries of the plant mask.

Concentration Quotient
The images of metal concentrations can be translated 
into a numerical trait by analysing the accumulation in 
plant substructures relative to the whole plant. To this 
end we introduce the “concentration quotient” (CQ) as 
the mean concentration in a plant substructure (e.g., the 
petiole) divided by the mean concentration in the whole 
plant:

where Np and Ns are the number of pixels belonging to 
respectively the plant and the substructure,Ap and As are 
the set of pixels belonging respectively to the plant and to 
a substructure, and P

(

x, y
)

 is the µXRF derived concen-
tration of a pixel at location 

(

x, y
)

 . If CQ = 1 , the mean 
concentration within a substructure is equal to that of the 
plant. CQ > 1 shows relative higher concentration within 
the substructure, while CQ < 1 shows relative lower con-
centration within a substructure. CQ allows for an esti-
mation of the heritability of spatial metal distribution.

Heritability and other statistics
The contribution of genotype to the observed phenotypes 
was calculated by estimating the broad-sense heritability 
(H2, also called repeatability [53]):

(12)Mrandom = random_squares
(

Mplant

)

∩Mplant

(13)CQ =

1
Ns

∑

(x,y)∈As
(P
(

x, y
)

)

1
Np

∑

(x,y)∈Ap
(P
(

x, y
)

)
[−]

Var(G) is the variance of the genotype and Var(T ) is 
the total variance. The H2 scores were calculated for the 
CQs of Zn, K, Ca, and Ni for the petiole, leaf margin, leaf 
interveinal tissue and leaf vasculature substructures (in 
total 16 traits). For comparison, H2 was also calculated 
for plant size and the mean plant concentration of the 
four metals. Variance components were estimated using 
mixed models of the following form:

where both G (genotype) and ε (error) are random terms 
in the mixed model. A mixed model is fit so that the n 
accessions are represented by a vector β of size n that 
estimates the observed numerical phenotypes of the rep-
licates as closely as possible. The difference between this 
estimation and the actual observed numerical phenotype 
results in the error term ε. Var(G) is the variance of β. 
Var(T ) is the sum of Var(e) and Var(G).

All models were checked for assumptions of normal-
ity and equal variance. Assumptions hold for all models 
except those in which the CQ of a random substructure 
was used as phenotype (see “random substructures” 
below). In these cases, there is some correlation between 
fitted model values and model residuals. The variance 
components were estimated by the VarCorr function 
from the lme4 package in R statistical software. Total 
variance was calculated as the sum of the Genotype and 
ε variance.

All reported correlation coefficients (r) were calculated 
using Pearson’s correlation coefficient. Code is available 
at https://​github.​com/​Lucas​YEAST/​nocca​ea.

Sensitivity analysis on the effect of the sample thickness
The thickness of the imaged rosette leaves is not con-
stant. To assess the impact of sample thickness on the 
accuracy of metal concentration calculations, seventeen 
leaves of N. caerulescens were used to cut 6-mm diameter 
discs from, that were dried in the oven for 48 h at 60 °C. 
The disc leaves were measured using a portable XRF 
instrument (Thermo Fisher Scientific Niton XL3t 950 
GOLDD+) on top of a sheet of paper, a 2-mm thick tita-
nium (99.995% pure) plate, and a 2-mm thick molybde-
num (99.995% pure) plate [49], followed by acid digestion 
for ICP-AES analysis. The spectra of the disc leaves were 
processed using the GeoPIXE software (http://​nmp.​csiro.​
au/​GeoPI​XE.​html), and the modelled thickness param-
eter was adjusted to vary from 200 µm to 800 µm with an 

(14)H2
=

Var(G)

Var(T )

(15)P = G + ε

(16)Var(T ) = Var(G)+ Var(ε)

https://github.com/LucasYEAST/noccaea
http://nmp.csiro.au/GeoPIXE.html
http://nmp.csiro.au/GeoPIXE.html
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increment of 100 µm. The concentrations determined by 
ICP-AES analysis were used as a comparison with con-
centrations calculated based on GeoPIXE analysis.

Abbreviations
µXRF: Micro-X-ray fluorescence microscopy; CQ: Concentration quotient; H2: 
Broad-sense heritability; XRF: X-ray fluorescence microscopy; margin: Leaf 
margin; vein: Leaf vasculature; tissue: Leaf interveinal tissue.
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Additional file 2: Figure S1. Scatter plots showing μXRF- versus ICP-AES 
determined total metal content data per plant. Figure S2. Sensitivity 
analysis on recall and precision. a), e) kernel size used for morphologi-
cal opening operation on binary plant masks to yield blade and petiole 
separation. b), f ) kernel size of Laplacian operator to detect edges. c), g) 
Binary threshold on the calculated Laplacian to segment thinnest vascula-
ture d), h) Binary threshold on the calculated Laplacian to segment wider 
vasculature. Values on the X-axis with asterisk are used for all analyses. 
Figure S3. Correlation coefficients for pairwise correlations of the four 
substructure CQ for the four metals investigated. Figure S4. Robustness 
of CQ to incorporation of noise. a,b,c,d,e,f show the distribution of actual 
pixel classes under the noise-injected masks. For noise injection > 20% all 
classes in the noise masked have a majority of pixels that actually belong 
to the “tissue”-class. g) Broad-sense heritability (H2) of zinc CQ for the four 
substructures where the classification of substructures has been injected 
with increasing amounts of class noise. Percentages denote the fraction 
of pixels in the plant that has been assigned a random substructure class. 
Injection of noise does not decrease H2. Figure S5. Correlation coeffi-
cients for correlations between the CQs of metal-pairs for all substructures. 
Figure S6. The ratios of metal concentrations as calculated based on 
GeoPIXE analysis of portable XRF data, compared to the concentrations 
determined by ICP-AES, as a function of the sample thickness parameter 
set in the GeoPIXE quantification. Ni concentrations are below the detec-
tion limit of the portable XRF instrument and are not included. Table S1. 
Correlation of substructure CQ with three other plant traits.
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