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Abstract

The Brassica rapais an important vegetable crop grown through et Wworld. This study
aimed to explore the morphological, molecular anetabolic relations among the diverse
morphotypes in a core collection of 168 accessidiese accessions were genotyped with
AFLP and MYB markers, and morphological observaiovere recorded on 26 traits under
vernalized treatment-H NMR was conducted for untargeted metabolite ifingf while LC-
MS-PDA-QTOF was used for both untargeted metabgiailing and targeted analysis of
carotenoid and tocopherol pathway. The unsuperviskdsification methods, such as
hierarchical clustering and PCA/PCoA on morpholaggrker and LC-MS datasets grouped the
accessions according to geographic origins ané@idesgent to morphotypes. Two sub-groups of
oil types were discovered based on genetic and ISCdstasets. The highly significant Mantel
correlations were found between dissimilarity neasi in all combinations of datasets except
with NMR. RF classification, a supervised approaeas also used to identify the distinguishing
markers, NMR bins and LC-MS peaks in pair-wise sifasations of four STRUCTURE classes
as well as morphotypes. In addition, associatiowliss were conducted to identify molecular
markers correlated SPAD value of leaf color undethbvernalized and non-vernalized
conditions by using RF regression and unified mirsatlel approach, and also LC-MS peaks
using RF regression approach. The correction wa a@mly for population structure in RF
regression, and for both population structure amship relations in unified mixed model
approach, but obtained similar results. The astatibC-MS peaks and markers were varied
according to vernalization treatment confoundechwiteir growing conditions. Finally, the
correlation network analyses were conducted, segdgydor targeted metabolites of caretenoid
and tocopherol pathway, and RF regression selec@dS peaks for SPAD trait under
vernalized conditions. The simple and partial datren analyses were used to explore the
direct and indirect correlation of metabolites. T@ssociated markers were integrated in partial
correlation network to reveal the genetic regulatad metabolites under the pathway. The
annotation of metabolic peaks and identificatiommaip position of markers is essential to know
their biological relevance. Thus, these kinds afigtcan be used for to explore the relations of
morphotypes in a population and their distinguighrariables.

Key words: Core collection, multivariate statistical toolandom forest, variable selection,
population structure, association study, networking



Chapter 1: Introduction

The genusBrassica comprises a large numbers of genetically diversd aconomically
important speciesBrassica rapa the first domesticated@rassica species, has a long and
independent history of cultivation in Europe andadZhaoet al.,2005) and encompasses some
key morphotypes: vegetable or fodder turnip (sspa, formerly subsp.rapifera, used for
edible swollen roots), oil-seed turnip rape or @smturnip rapeB( rapassp.oleifera,used for
seed-extracted oil), Chinese cabbage (psginensisan Asian heading vegetable with tightly
overlapping pale green leaves), Pak choi (semensisa Chinese non-heading dark green and
thick leaves with broad, thick, white petioles),orfatsuna including mizuna and mibuna (ssp.
nipposinica,many thin narrow serrated or non-serrated leaVakunoet al.,2007), broccoletto
(ssp.ruvo, a European vegetable with an enlarged and comp#otdscence), Wutacai (sp.
narinosg, sarson, and Caixin or Caitai (Patersdral.,2001; Warwicket al.,2008; Zhacet al.,
2005). The oil seed type sspeiferais further divided into sub-groups based on theawgh
habit: winter and spring types (Zhabal.,2005), and sarson into three types: brown sarsgm (
dichotoma, yellow sarson (ssprilocularis) and toria as a result of history-long breedirngres$

in India (Duhoon and Koppar, 1998).

A core collection ofB. rapa, used in this study, consists of 168 accessionsesepting the
different morphotypes. Based on allele frequenceAFLP markers, Zhacet al., (2007a)
identified four sub-groups: a turnip group, a Pakiagroup, a spring oil group and a Chinese
cabbage group this core collection.

B. rapais the most commonly consumed vegetable and eill ®2op through out the world
because of its high nutritional importan&rassicavegetables are a rich source of secondary
metabolites and phytonutrients, including differetypes of glucosinolates, carotenoids,
flavonoids, vitamin C and folic acid, which havealite promoting roles (IOPBrassica
vegetable nutrigenomics, 2006-2010). Isoprenoids s1$ tocopherol and carotenoids are well-
known antioxidants; carotenoids are the main pragrof vitamin A synthesis (Zhoet al.,
2008). Despite some researches on the nutritionpbitance and availability of isoprenoid
compounds, the study on genetic regulation of #gm®tenoids and tocopherol pathwayBn
rapa is still insufficient. The unraveling of the bioghetic regulation of carotenoids and
tocopherol, and finding genetic markerdBirassicaassociated with the presence and abundance
of health-promoting compounds is essential to imerthe nutritional quality of commercial
cultivars.

Breakthroughs in high-throughput technologies amdent advances on statistical tools
especially in ~omics have exponentially increaskd study of metabolomics. Metabolic
characterization is essential for quality improveinef plants, for instances, nutrient content,
colour, flavour, defense mechanisms. In an untacgeapproach (also called metabolic
fingerprinting), a global screening of as many abetites as possible is performed to generate



guantitative measurements of compounds with largaknown chemical structures, whereas a
set of metabolites in a selected biochemical paylova specific class of compounds is profiled
in a targeted approach, called metabolic profi{Atiwood et al.,2008; Dettmeket al.,2007).
Metabolite levels fluctuate according to developtaknenvironmental, physiological and
pathological conditions. The identifications of ejgs-specific secondary metabolites and
differences in their levels between species arentisd to know the species-specific metabolites
and to understand the interaction of the cell wiglenvironment (Verpoortet al.,2007).

B. rapa has a wide natural variation in phytonutrient cosipon and a large range of
concentrations, and the study of the biochemiceérdity can play a complementary role in
metabolomics research. Liquid Chromatography-Massc®ometry (LC-MS) is used to detect
highly rich polar or semi-polar and thermo-labilesfively or negatively charged compounds
(Weckwerth and Morgenthal, 2005). Mass spectrom@#$) provides useful information on
the mass and is required to identify the molectdamula of the detected metabolites (Moco,
2007). It is known that no single analytical tecjug is sufficient to extract and detect all the
metabolites (De Voet al., 2007), mostly due to ionization techniques, chrmg@phy and
detector capabilities (Weckwerth and Morgenthal)3)0 Therefore, it is preferable to use a
wide spectrum of chemical analysis techniquesdpid; reproducible and stable analyses which
cover more different types of metabolites preserthe biological sample. In addition, Nuclear
Magnetic Resonance (NMR) is a powerful tool to tdfgrwide-spectrum structural groups of
complex mixtures of compounds from biological saesplLianget al.,2006; Warcet al.,2003).
Unlike GC-MS, where derivatization is essentiakl &C-MS, which is biased against less polar
compounds (Hendrawast al., 2006; Wardet al., 2007),'H NMR can detect all the proton-
bearing tH) compounds including most of the non-polar “oigancompounds such as
carbohydrates, amino acids, organic and fatty aeichénes, esters, ethers and lipids present in a
sample (Warckt al., 2003). A combination of MS and NMR techniques sgdi here to have a
large coverage of thdérassica metabolome, and is reported as the most powenfal a
informative to detect and identify metabolites francomplex mixture (Smitlet al., 2006;
Verpoorteet al.,2007).

Phenotypic and genotypic characterization playsrgortant role in plant breeding and genetic
studies. The use of DNA markers has emerged asvarfid tool for the assessment of genetic
relationships and exploring the genetic make-upadiections of accessions. AFLP (Amplified
Fragment Length Polymorphism, (Warwickt al., 2008; Zhaoet al., 2005) and MYB
(myeloblastosis, (Diez, 2008) markers are very ulskfr genotyping and genetic analysis of
Brassicaspecies. AFLP markers are highly reproducible emst efficient, and can generate a
large amount of genetic information sampled acrb®s entire genome rather than from a
specific location without prior sequence informatia a rapid way (van Berloet al.,2008; Vos

et al., 1995; Zhao, 2007). The MYB protein family, thedest transcription familyis involved

in metabolic pathway regulation (secondary metabo)j pigmentation, developmental control,
regulation of plant responses to environmentabfacand hormones, and Myb genes are present



throughout the genome #frabidopsis(Riechmann and Ratcliffe, 2000). Diez (2008) régabin

a Master thesis that MYB markers such as AtMYB 28/1YB29 and MYB 34/ATR1 are
distributed throughout the genome and involvedhim tegulation of biosynthesis of secondary
metabolites, for instance glucosinolateslrmassicaspecies.

The application of multivariate statistical ana$ysbols is useful for the distinguishing different
groups of samples based on phenotypic and genoityfmamation, as well as to filter out the
markers or metabolites correlated with specificgr@Weckwerth and Morgenthal, 2005). In this
study, we applied both unsupervised multivariatdstgcluster analysis and principal component
analysis (PCA)) and supervised tools, such as ranfdeest classification and regression which
uses ariori information.

Hierarchical clustering is an unsupervised clasgifon technique which discovers and
visualizes group structure across accessions faretit levels (Dopazo, 2007), while PCA is a
dimension reduction technique that allows to viegahnd help the interpretation of groupings
of accessions based on linear combinations (knosvprimcipal components) of the original
variables preserving most of the information (WeekWv and Morgenthal, 2005). These
statistical tools enable the visualization of madplgical, genetic and metabolic coherence
based on their inherent correlative behavior.

Random forest (RF) is a machine learning statilstical for classification as well as non-
parametric regression with variable selection festwhich can identify the relevant predictor
variables even in complex interactions (Diaz-Ugaaihd Alvarez de Andres, 2006; Pastaal.,
2006; Stroblet al.,2008). The popularity of this tool has been insmeg within the scientific
community because of its ability to handle wideadats with higher number of variables than
samples, high correlation among the variablesddathulti-collinearity), large numbers of noise
variables, mixtures of categorical and continuousdigtors, multi-class problems with high
predictive accuracy (Diaz-Uriarte and Alvarez dedfes, 2006; Strobét al., 2008). It has an
internal cross-validation and few parameters neeblet fine-tuned (Gislasoat al., 2006). It
returns the most important variables which accdomeither classification of different groups or
which explain large parts of the variation presgnt continuous trait of interest in a non-
parametric regression approach (Pagaal., 2006; Stroblet al., 2008).. Here, we apply RF
classification to select metabolic peaks and gemeséirkers important in classifying the different
groups of the core collection. Additionally, the R¥gression approach was used to identify the
metabolic peaks and genetic markers which are mdedcwith leaf color, an important
morphological trait for the characterization of iplootypes.

Metabolic variation is the evident even in the skamdrom identical genotypes under well-
controlled conditions. The variations of the metdabs depend on the levels of other
metabolites under the pathway. Metabolic networie give a glance of the physiological
pathways of the plant at a particular developmémes by visualizing the observed correlation
of metabolic variation (Steuest al., 2003). Networks can either be based on simplesBrar
correlations or on partial correlations. Simple rBea correlation shows the both direct and



indirect correlation between the metabolites, wherpartial correlation used to filter out the
indirect correlation. A partial correlation measuthe correlation between the two variables
after the influence of one or several other vadabs removed or controlled (Khanin and Wit,
2007). Such correlations can reflect the underlyimgchemical network of the pathways
(Morgenthalet al.,2006). Hence, a correlation network is a usefal to get a “fingerprint” of
the underlying metabolic pathways. Metabolites eaks with higher numbers of connections
are regarded as the essential compounds of aylartigathway. The integration of associated
markers in the network can benefit from additiogehetic information based on marker-
metabolite connection (Khanin and Wit, 2007) asl aglrelatedness of the compounds, and can
help identify the unknown compounds.

In this study, a core collection Bf rapaspecies is used to explore the groups and sub-graiup
accessions based on the morphology, metabolic csitiggo (NMR and LC-MS) and molecular
markers using unsupervised hierarchical clustesimgy PCA. Univariate as well as multivariate
statistical tools are applied to identify phenotypraits as well as genetic markers which can
distinguish the (group?) structure and morphotypethe core collection. Association studies
are conducted with the objective of identifying MS peaks and molecular markers correlated
with leaf colour. The associated metabolic peaksvasualized in correlation networks to make
the aid in the interpretation of relationships, ame integrated with their associated markers to
discover the importance of markers as well as ate$ of the metabolic peaks.

In addition, results of the targeted metabolic iirgf of the carotenoid pathway d@. rapa
species is visualized with associated markerssdareelation network, and compared with the
underlying pathway in order to get to know the tielas between metabolites and makers. This
study will help to understand the variation at nimrpgical, genetic and metabolic levelsBn
rapa species. Association studies and networking isulse know the underlying pathways in
relation to genetic information.



Chapter 2: Background of the data

2.1 Plant material
A core collection of 169 accessions Bfassicarapa with different morphotypes originating
from various parts of the world (Table 1; appendugs studied to explore their morphological,
genetic and metabolic variability, and study therisrelationships between accessions as well as
between variables over accessions. The morphotgpksgled were Broccoletto (BRO), Chinese
cabbage (CC), Chinese turnip rape (OR), FoddenpgufiaT), Komatsuma (KOM), Mizuna
(MIZ), Pak Choi (PC), Spring oil (SO), Vegetablertp (VT), Winter oil (WO), Yellow Sarson
(YS) and Turnip green (TG) (Fig. 1). Within thisreccollection, a set of 31 lines consisting of
19 lines of Chinese cabbage (CC), 3 lines of Kouoras4 lines of Pak choi (PC) and 5 lines of
turnip (T-1) were obtained from 5 plant Zi Caitai_Komatsuma
breeding companies of the Netherlands (Tgkii Sagon,
Europe BV, Bejo Zaden BV, Nick Seminis Wutacal
and Syngenta). T
Chinese Cabbage (CC), turnip types (FT + VT)
and oil types (WO+SO+YS+OR) were the

Turnip rapa

dominating numbers of accessions in the cpre s

Turnip green
2
Broccoletto
7

Chinese Cabbag
56

collection. These accessions were collected

from various parts of the world by three gene 22

banks namely the Dutch Crop Genetﬁ:{g' 1. Composition of 8 rapacore collection
with number of accessions per morphotype

Resources Center (CGN) of Wageningen, and

Chinese Academy of Agricultural Sciences (Institatevegetables and Flowers (CAAS-IVF)
and Oil Crop Research Institute (CAAS-OCRI)) of @hi(Requena, 2007; Zhao, 2007). Two
accessions were kindly obtained from Dr. T. Oslitimiversity of Wisconsin, USA).

Mizuna
5

2.2 Morphological data

Morphological data were recorded from plants in fgrowing conditions: vernalized and non-
vernalized conditions. For the vernalization, gerabeéd seeds were treated with cold
temperature (&) in a dark room for 31 days and then transplatdetie greenhouse (16 hours
light, 18-2PC temperature). As a result the plants were veredlto induce flowering and seed
setting. The dataset consists of 26 morphologicatst on 164 accessions. The data were
acquired in experiments conducted in a randomizadptete block design (RCBD) with 4
blocks in the March of year 2007. For the non-vezed condition, seeds were directly sown in
pots without prior cold treatment. Altogether odl§ flower morphological traits in 2006 and
SPAD (a quantitative measurement of leaf colourpsneements in August of both 2006 and
2007 have been recorded. Thus, data from vernatinedition that have observations on all
traits (Table 2) were only analyzed using multigtei statistical tools to explore the

o



morphological relations of morphotypes and thearalsterization. The traits were grouped into
four categories; flowering traits, leaf traits,fler morphological traits and plant architectural
traits. Among a total of 26 morphological traitsaf color (LC), leaf edge shape (LES), petal
shape (pS) and petal color (PC) are qualitativiessirand presence of petiole (PP) is a binary
trait, which were visually scored on ordinal anddorary scale. The traits had been recorded in
different measurement units; however, some obsenst especially in floral morphological
traits of turnip rape, were missing because thesessions flower extremely late and seedling
vernalization does not accelerate flowering. Thiaitkeof traits measured and their descriptions
are shown in Table 2. Only SPAD traits from botatments (vernalized and non-vernalized
conditions) were used in a trait-specific assocrastudy. SPAD observations correspond to the
amount of chlorophyll present in leaves or leaboo] where the transmittance of red light (650
nm) and infrared (940 nm) radiation through thd l#as measured with the help of a SPAD
meter (SPAD-502 (Minolta SPAD Chlorophyll meterlRequena, 2007). These measurements
were recorded per block in 2 days (between 10:G0D 28100 hr) on the adaxial side of the
premature as well as fully mature leaves, and #vemaged.

2.3 Marker data

The marker genotyping was done by using 218 AFL®P I MYB motif-directed markers on
168 accessions with few missing values. MYB markarget the largest family of transcription
factors ofArabidopsis which are generally present throughout the genofrtbe Arabidopsis
but, sometimes, also appear in clusters (Diez, RF8LP markers are generally more scattered
across the genome, however, this depends on thecties enzymes used. Three primer
combinations for AFLP markers and 4 enzymes for MWirkers were used for marker
genotyping. Among these markers, 90 markers hagerkmrmap positions in a reference Double
Haploid (DH) mapping population of Brassica rapacross (Yellow Sarson 143 x Pak Choi
175). Both types of markers are dominant markers.

2.4 NMR data

'H-NMR is a powerful tool to identify the structurgtoup of complex mixture of compounds
because of presence of hydrogen in almost all mtdscof biological samples (Liangt al.,
2006, Wardket al.,2003).*H-NMR, one-dimensional approach, measures the ausfgn of the

H atom of molecules by using radio frequency pul3é®e subsequent emission of radiation is
detected as signal of compounds.

NMR data with 236 bins in the range of 0.32-10 ppmcketed every 0.04 ppm, were made
available for analysis. The measurements wereethout on 50 mg sample (dry weight basis)
from each 166 accessions (5 weeks old) using 50@ BHicker and NMR solvent [MeOD-
KH,PO, buffer in D,O (1:1, v/v), pH 6]. The data were already scatetbtal intensity as a pre-
processing step so that each bin had relativeadrtee total intensity. Water bucket effects and
technical errors on 4.96-4.76 and 3.32 spectrunre wemoved before proceeding analyses. In



comparison to marker and LC-MS datasets, two amesscWU5S6 and RC-144 were absent in
the NMR dataset.

2.5 LC-MS data

LC-MS (Liguid Chromatography-Mass Spectrometryyvidely used method to detect the heat-
labile compounds, such as phosphates compoundsnzyone (CoA), isoprenes, alkaloids,
phenylpropanoids, glucosinolates, and flavonaoldislike gas chromatography, a solvent is
used in the mobile phase to isolate the compouas the samples and photodiode-array (PDA)
was used to break the compounds into varying gizésgments. lonization can be done based
on positive or negative charge (Hall, 2006) butaieg mode ionization was used in this study
to detect compounds such as, isoprenoid, flavonghtsosinolates. The fragmented masses
were detected by mass detection devices quadrmpdedf-flight (QTOF). Finally, LC-MS
result a 3-dimensional graph of chromatogram anskrspectrum consisting of signal intensities
(abundance), retention time and mass-to-charge feio value. Thus, chromatogram separates
the compounds present in original mixture of samgdel MS provides their fragmentation
patterns which are unique to each compounds.

The dataset of untargeted metabolic profiling wesvidled for the identification of grouping
patterns of accessions, and discriminating metaludiaks among different morphotypes. In
metabolic profiling, LC-PDA-QTOF-MS technique waspéied to single-plant-samples of 168
accessions (same as marker dataset) at 5 weeksxakept few early flowering accessions were
at flowering stage) with 12 technical replicatesnir the accession CC-068 and biological
controls of RO18 and L58 accessions. Pre-procesigmals for accessions where none of the
168 accessions had peak intensities greater thauwv&Qe were deleted to prevent the effect of
noise signals, and hence, the dataset was redumedd6779 peaks to 5546 peaks. Most of the
LC-MS peaks were represented by the combinatiarenfrotype, mass and scan number in the
form of “centrotype_mass_scan”. The centrotypes lteeh assigned based on the multivariate
correlation of peak intensities of masses in comfom with the scan number (retention time),
so that a centrotype consists of peaks that arelated to each other and fall within the same
retention time window. Some peaks that were natcated to any centrotype were coded with
the letter “A” followed by a number, for example A2, A3 and so on. In metabolomic studies,
a transformation using the logarithm is essentiamiake a normal distribution with intensity-
independent variance (Pietildinen Kéd al., 2007). Here, a lggransformation was done to
decrease the influence of very high values as agetitretch the very low values (Steinfathal.,
2008).

In addition, a targeted metabolic profiling of 1@tabolites; folate, chlorophyll-a and, -
carotene, lutein and its derivatives, neoxanthialaxanthin, andx-, B-, y-and d-tocopherol of
carotenoids and tocopherol pathway were measuged.@-PDA-QTOF-MS technique. Those
metabolites were used for network analyses.



Table 2: Phenotypic traits used for the measurements ofra collection ofB. rapaafter
vernalization

Trait type Abbreviation Description

A. Flowering trait
Number of days from transplant till the

Flowering in time DTF appearance of the first open flower (days)

B. Leaf traits
Leaf length LL from base of petiole to tip of laraifcm)
Lamina blade length Lbl Distance from the tip laatio the fist lobe (cm)
Lamina width LW Lamina width at the widest pointr(c
Leaf index LI Ratio of Lbl/LW
Leaf area LA The whole surface of full leaf inchgliobes (crf)
Leaf perimeter LP The edge of full leaf (cm)
petiole length PL Distance from the base of the petiole to

button of lamina (cm)
Leaf lobes LB Number of lobs on the leaf
Visual score (1= dark, 2= high green, 3= medium

Leaf color LC green, 4= light green, 5= green-yellow, 6= yellow)
Score (1= Entire, 2= Slightly serrated, 3=

Leaf edge shape LES Intermediate serrated, 4= Very serrated)

Presence of petiole PP Score (0= absent, 1= pjesent

SPAD SPAD Chlorophyll content

C. Flower Morphological traits

Corolla length CL Symmetric length between pefals)

Corolla width Cw Symmetric width between petalsr(m

Petal length pL Distance from base to the topepetal (mm)

Petal width pwW Petal width at the widest point jnm

Petal index pl Ratio of pL/pW

Petal area pA The whole surface of petal Gnm

Petal perimeter pP The edge of petal (mm)

Petal shape pS Scored (1=round, 2= oval, 3= elehgat
Visual screening of petal color (1=orange, 2= high

Petal color PC yellow, 3=Yellow, 4= medium yellow, 5=light yellow)

D. Plant Architecture trait

Leaf number LN Number of the leaves when theffoster opens

Plant branch PB Number of the branches at flowetimg

Plant height PH Distance from the cotyledons to the top of the
plant at pre-mature stage (cm)

Plant final height PfH Distance from the cotyledons to the top of the

plant at mature stage (cm)
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Chapter 3: Study of morphological, molecular and m&bolic
relationships of different B. rapa morphotypes

3.1 Materials and Methods

3.1.1 Cluster analysis

Clustering, also called class discovery, is anceafry data analysis tool which sorts homogeneous
groups of samples across the variables into regpeecttegories by maximizing the degree of sintylari
within a group and dissimilarity between the gro@gst and McClure, 2004)An agglomerative
hierarchical clustering algorithm was used to exptbe relationships of accessions at differerdléev
(Dopazo, 2007). This algorithm first considersiadl accessions as separate ones and then sudgessive
groups accessions into larger and larger clustgitoualy a single cluster is obtained (Podani,D0The
Pearson correlation coefficient was used to cagaadissimilarity matrix. This dissimilarity measu
makes groups of the accessions based on theingatfeobservations rather than on the size afative
values (Wit and McClure, 2004) on morphologicaitgrar metabolic profiles. Howevedaccard's
distance was used for the molecular marker dataubecof its better performances in analyzing
asymmetric binary variables (Duadeal., 1999; Everitt, 1980) such as dominant markers. mbst
popular linkage method, UPGMA (Unweighted Pair-@rtethod using Arithmetic average), a type of
average linkage method, was used to calculateigtace between two clusters. Unlike the single and
complete linkage methods, UPGMA grasp the infomnasibout all pairs of distances (Quackenbush,
2001),and joins two clusters having the lowest averagfarmie to form a new cluster.

Cluster analyses of morphological and NMR data wkyee using the “pvclust” package, an
add-on package for R-statistical software, whiclseases the uncertainty of hierarchical
clustering caused by sampling error of data throdgyo types of measures: Bootstrap
probability (BP) and Approximately Unbiased (AU)vplue (Suzuki and Shimodaira, 2006a).
The BP of a cluster means the frequency of thetelubat appears in the bootstrap replicates
(Shimodaira, 2002). The BP has been widely usethamy scientific studies; however, it is
biased due to use of constant sample size throaghedootstrap replicates (Lépez-Lopszl.,
2008), which may not be the case at populationll&le AU test is newly devised multi-scale
bootstrap technique which reduces the bias in Ingsi$ testing (Lopez-Lopeet al., 2008;
Shimodaira, 2002; Suzuki and Shimodaira, 200@hnyl controls the type-I-error (Shimodaira,
2002). Multi-scale bootstrapping procedure, in tkisidy, bootstrap the samples with 10
different sample sizes (ratio of new sample siZearidl original sample size; N ranged from 0.5
to 1.4 by 0.1 as default setting), and generated000bootstrap replicates of each sample size.
Hierarchical clustering was performed to each Hdompssample to get the sets of bootstrap
replications of dendrogram, and computed BP foheaenple size. A theoretical curve (z(N') =
v * sgrt (N'/N) + ¢ * sgrt (N/N") is fitted to thebserved BP values along the different sample
sizes to estimate coefficients v and ¢, and AU Ipevds calculated by using the equation AU =
®(-v + c) where® is the standard normal distribution function, andnd c are coefficient of
each cluster (L6pez-Lopest al.,2008; Shimodaira, 2002; Suzuki and Shimodaira42@izuki
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and Shimodaira, 2006b). The AU p-value gives thabability of each cluster at population
level (Suzuki and Shimodaira, 2004). The greater the lpeyahe greater the probability a
cluster is the true cluster.

High memory requirement in bootstrap proceduregeisily for large dataset (LC-MS), and
lack of distance function for binary variables foarker data in “pvclust” package, GeneMaths
statistical software (Applied Maths BVBA, Belgiumyas used instead of bootstrapping
procedure for cluster analyses of LC-MS and madie¢aset.

The software STRCTURE was used to identify the pséelasses in the populations based on
Bayesian clustering approach, and assign the ihai samples with their membership
probabilities of being in those classes in unsupeds approach. This approach classifies the
accessions into classes on the basis of their mge@otype under the following assumptions:
the marker loci linkage disequilibrium between spygations (classes) and in Hardy-Weinberg
equilibrium state within a subpopulation (Pritchatdl.,2000)..

A supervised approach such as ‘classification’ 9eduto classify accessions into given input
classes; however, unsupervised approach suchusteéckanalysis’ discovers the classes without
prior information. RF predicts the membership pholigy of each accession in a supervised
classification approach in which the class infoloratis used asprior information. The
comparisons on the alignment of the accessions meae, in this study, among unsupervised
hierarchical classification based on different (pfmlogy, marker, NMR and LC-MS) datasets,
STRUCTURE software given membership probabilityiigsonly the marker dataset) and RF
membership probability on different datasets (molply, marker, NMR and LC-MS) with
prior information of STRUCTURE classification. Hencthese comparisons give a visual
evaluation of hierarchical clustering of accessidi®e details of this random forest analyses are
described in Chapter 4.

3.1.2 Principal Component Analysis

PCA is the most commonly used visualization techaiqn multivariate statistics. It finds the
variability of accessions with minimum loss of infzation available in the dataset. Pearson
correlations between all variables were, first,evlaed to get the overview of suitability of all
the datasets for principal component analysis (PGX)A was done for the morphological,
NMR and LC-MS dataset using their correlation ntasito discover groupings of accessions
based on the patterns of metabolic expression.l&liethese analyses were conducted by using
the “FactoMineR” package in R-software (Hussaral.,2008). For PCA, LC-MS data were log
(base 2) transformed but for NMR, data were autedcavith and without log (base 2)
transformation. For autoscaling, the mean of eagh Wwas subtracted from individual
observations and divided by their respective stahdaviation. Despite having various thumb
rules namely; 80 % rule, broken stick model (Zedral., 2007), Kaiser’'s rule (eigenvalue-
greater-than-one-rule), Horn’s procedure(La#tnal., 2003), the most practical and commonly
used approach “elbow-effect” in scree plot was usedetermine the number of PCs for score
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plots because of its simplicity, and high limitation sample size on aforementioned thumb
rules (Lattinet al.,2003).

Score plots, a tool of PCA, were used to visudheehighdimensional data in lower dimensions (first
few PCs). Similarly, correlation-variable plots weanade to visualize the variables (morphological
traits) space in relations to accession groupiagd,to examine the cosine angles between variables.
The cosine angle between the traits in correlatatable plot approximates the correlation of two
traits, while its length is proportional to the iaace. Traits which are plotted in the same dwecti
have a high and positive correlation, at angl® th@y have a small correlation, and in opposite
directions indicate high but negative correlatibatijn et al., 2003). For each PC, the loadings (or
weights) reflect the influence of the original @dfes on the PCs, whereas the scores (coeffididm o
PC) reflect the contribution of each PC in evemgia (Colquhoun, 2007). Because of very large
numbers of variables and too messy figures withoytvariable groupings, variable-plots in case of
NMR and LC-MS are not shown.

3.1.3 Principal Co-ordinate Analysis

Principal Coordinate Analysis (PCoA), also calleétnc multidimensional scaling (metric
MDS), was applied for the marker dataset. It caruded to visualize any kinds (dis)similarity
matrices (Zuuet al.,2007); however, PCA utilizes only either corredatior covariance matrix.
The AFLP and myb markers, in this study, are domtina nature and had properties of
asymmetric binary variable. Hence, Jaccard’'s birdisgance function was used to calculate
dissimilarity matrix instead of using correlation @pvariance function. Similar to PCA, PCoA
reduces the dimensionality based on eigenvaluetieguand produces latent variables. An add-
on package “ecodist” was employed to visualizeltiwation of accessions in low-dimensional
spaces in the R-software (Goslee and Urban, 2007a).

3.1.4 Mantel test

The Mantel test was used to evaluate the pairwaseekations between dissimilarity matrices
(Goslee and Urban, 2007b; Luo and Fox, 1996; Risstal.,2008). Since Mantel test uses a
permutation procedure to test the statistical ficanice of matrix correspondeneeth the null
hypothesis of random correlations, it is robustctorect type | error (Legendre, 2000) and
widely used in population genetics and ecologitadly (Telles and Diniz-Filho, 2005). Mantel
test yields Mantel r statistic based on the nornealiMantel statistic (equation 1). This statistic
is normalized via a standard normal transformatitrere the mean of the matrix is subtracted
from each element and then each element is di\bgee standard deviation.

LMo b =) (1) (Dutilleul et al., 2000)
\/{Z Z(dx-“" —dx )2] [Z Z(d‘l”’ - (IY)Z]

where, & and & for the distances between observational urdtsdi’, anc %~ and v are
the means of the distances derived from the obsengaon variables X and Y respectively.
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Mantel test resolved the violated assumption oépshdence by making random permutations
between rows and columns of either test matrix [€oand Urban, 2007b; Luo and Fox, 1996;
Smouseet al., 1986). In this study, only 163 accessions comnuoallt datasets were taken to
avoid the influence of differing numbers of samplBsstances matrices were calculated from
autoscaled data (subtraction of the mean of eadabla from individual observations and
divided by their respective standard deviation)omler to create distances based on the
correlation matrices (Lattiet al., 2003) because the Pearson correlations were skso i
clustering and PCA for morphology, NMR and LC-M&cdard’s binary distance measure was
used for the marker dataset. An “ecodist” package¢he R statistical software was used to
calculate all the distance matrices and simple atdests (Goslee and Urban, 2007a), whereas
Mantel test was conducted with 10,000 permutations

3.2 Results
3.2.1 Cluster analysis and Principal Component Angkis (PCA)

3.2.1.1 Morphological traits:

Applying cluster analysis on all 26 morphologicadits from all 164 accessions, five groups
were identified at 95 % confidence level, markedreg box in Fig. 2; groups were mainly
composed of Mizuna, Pak Choi (PC), Oil (mainly Stonf Bangaldesh and India), European
Turnip (ET) and Chinese Cabbage (CC) were idedtifitowever, a mixture of PC and Oil (WO
form Pakistan and OR from China), ET and CC coudd dbserved at higher level of
dissimilarity. Mizuna consists of only two genotgp&uropean Turnips were separated far apart
from rest of the accessions whereas, PC and Oile imea close group, and broccoletto from
Italy were attached in the group of CC from Asig(R2). Numbers in red color in each edge
meant probability of each cluster (in percentagepé¢ a true cluster. The clustering of the
accessions based on morphological traits was ggna@maagreement with their geographical
origin and had good correspondence with the merhlgerprobability calculated through
random forest statistical analysis on morphologicats in vernalized conditions (baerC)I and
STRUCTURE class membership probability based on RARInd MYB markers (barpld).
Most of the company based lines were within thestelu of older accessions of respective
morphotypes indicating the possibility of similabrmhological characteristics.

High correlation of the morphological traits (Fi§; Appendix) suggested PCA for good
visualization of genotypes in lower dimensional cgs and dimension reduction by forming
orthogonal latent variables for easy interpretatidore than 50 % the total variance, (31.22 %
by PC1 and 23.87 % by PC2), was explained bytivetPCs (Table 3).
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Fig. 2: Dendrogram oBrassicacore collection based on morphological traitsenmalized condition with
Pearson correlation distance function and UPGMR4age method-indicates geographical origin

(purple: Europe, blue: Asia, red: Company linesegr America)®-Supervised membership probability of
being in four STRUCTURE classes obtained from ramflorest analysis on morphological trafts,
Unsupervised membership probability of being inrfoasses calculated by STRUCTURE software using
markers. Colors in barplotsaand® indicate skyblue: class 1, red: class 2, yelldass 3, purple: class 4

and white: no class information.

PC1 resulted in good separation of European Tur(ip3 and Chinese Cabbage (CC) (Fig. 4),
where leaf traits (PL, LP, LL, LB, LA and LES) alF were accountable for ET and plant
architecture traits (LN, PB, PH and PfH) and LCrelaterized CC. CC had yellowish green leaf
color (LC) and were taller in plant

height at both pre-mature stage (PH -1 chinese Cabbage. .. I
70.02 cm) and at mature stag

(117.79 cm). PC and CC were clear
distinguished by PC2 (Fig. 4), an
higher petal area (PA), petal widt}.
(PW), corolla length (CL), corollg
width (CW), lamina width (LW), leaf|:
area (LA) and petiole presence (P| .
were observed in CC in contrast { | A
PC, however, petiole were present| ..
Pak Choi (PC) (Fig. 6). A small |PakChoi+ Oil + Turnips
group of Mizuna was identified i ‘ ‘

0 5 10

5 .
eeeeeeeeeeeee
15370 ;

rrrrr

voias

o

PC3 which had high petal index (hig | Dt |

petal length but low width),F'g' 4:.PCA-Score plot of 163 accessions ofera core
collection based on 26 morphological traits with 1

(dimension=1) and PC 2 (Dimension=2)
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elongated petal shape, leaf edge shape (LES)ligiityhigher number of leaves (12) when the first
flowers opens (Fig. 6). Some traits; LA, LW, LblfHPand LC were seems more important in
distinguishing genotypes because of higher loadmfyst two PCs (Table 4). Similarly, differemels

of correlation in terms of cosine

=)

angle among the traits can be
observed in variable plot (Fig.¢) | | 5 I
Different colors in score plof
represent the origin of the

oo | ™. Mizuna

o -

accessions: colors were not well
separated in PC2 and PCB.
However, all the Asian (red color
and European originated (blu

color) Brassica accessions, Wwith
few exceptions, were distinct in the

] . . Pak Choi

first PC. Like clustering, aimost all

company lines and three American .|

accessions were, interestingly, |n T T 0 ; T
the closed with older accessions pf { Dnersn 20397

their morphotypes (Fig. 4 and Fidrig. 5 PCA-Score plot of 163 accessions of lpa core
5) collection based on 26 morphological traits with 1

(dimension=1) and PC 2 (Dimension

ol u :

Chinese Cabbage

© .,
I=1 -pS N

Dimension 2 (23.87%)
Dimension 3 (9.59%)
2

Pak Choi

T T T T T T T
-1.0 -05 0.0 05 1.0 -05 00 05 1

Dimension 1 (31.23%) Dimension 2 (23.87%)

Fig. € PCA-variable plot of 26 morphological traits irCP (Dim=1), PC2
(Dim=2) and PC3 (Dim=3) iB. rapa core collection.

Table 3: Variance and Cumulative variances explained by fis@ PCs on morphological traits
scored over 164 vernalized accessions

PCs Percentage of variance Cumulative percentageiance
PC1 31.22 31.22
PC 2 23.87 55.10
PC 3 9.58 64.69
PC4 7.60 72.29
PC5 5.36 77.65
PC 6 4.24 81.89
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3.2.1.2 Molecular markers

B | | | \_40
T ?

IEEZ % N i T : 1 1 It 5
r f lL li N L ;—60

| European Turnip & Broccoletto I oil I Chinese Cabbag | Pack choi & Asian turnip mixture I Qil-1l |

Fig. 7: Dendrogram showing the groups Bfassicacore collection based on DNA markers with
jaccard’s distance function and UPGMA linkage mdtleindicates geographical origin of accessions
(pink: Europe, blue: Asia, green: America, red: ®amy), °>-Supervised membership probability of
being in four STRUCTURE classes obtained from ramdorest analysis on markefsUnsupervised
membership probability of being in four classesgkdted by STRUCTURE software using markers.
Colors in barplot§ and® indicate skyblue: class 1, red: class 2, yelldass 3, and purple: class 4.

Four distinct groups; European Turnip (ET) and Bodetto (BRO), Chinese Cabbage (CC), a
mixture of Pak Choi and Asian turnips, and oils everell separated in cluster analysis and were
in very good agreement with their geographic origtig. 7). Oils were appeared in two sub-
groups, however, only three accessions (SO-0310&0and SO-038) in Oil-Il sub-group with
low membership probability and seven accessionsIBL SO-034, SO-035, SO-039, RO-18,
YS-033, YS-143) in sub-group Oil-I. The memberspipbability of each accession calculated
by RF was almost similar to STRUCTURE membershipbpbility calculated based on
molecular markers. Like morphological traits basddstering, most of the genotypes of
breeding company fell within the groups of oldecessions indicating the possibility of similar
genetic backgroups in their pedigree.

Principal Co-ordinates Analysis (PCoA) also showede distinct groups of ET, mix group (oil,
Asian turnip, PC and CC) and oil in two dimensiospaces (dimension 1 versus 2) were well
separated. Similar to clustering, oils groups vase found in two small sub-groups, where Oil-
Il sub-group (SO-032, SO-034, SO-037, SO-038 andlR4 was in close distance with Asian
turnip, PC and CC; however, Oil-l comprised of Y&0YS-143, SO-035, SO-039 and RO-18
was distinctly isolated in PCo2 (Fig. 8). The coigrof the genotypes names indicates their
respective origin (blue: Europe, red: Asia, blagknerica, green: Company) which was also
well distinguished by PCoA. Only the first threenginsions had eigen value more than 1 (dim
1=3.07, dim 2=2.079 and dim 3=1.098) indicatingsthalimensions account for more variance
than that of one of the original variables.
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3.2.1.3 NMR
wn__ Oll-l

In NMR, cluster analysis was s
not effective in identifying
different groups ofBrassica

04

03

RCMM

accessions through different
distance functions; correlation%, N ST
Euclidean, Manhattan anfz ) Qi smjn;sian |
data transformation}: | Turnlp ng Ch9| Chinese
techniques. Pearsof e &mww“f;gz ‘., Cabbage
correlation distance function &4 European Turnip. "y “’? E&WM’%‘ o
was better than Euclidean | . . % T H%M«;g;]m
distance function because @f 7| " s s
groupings of at least CQ | | |

o2 a1 o0 o 02

groups in PCL1. In hierarchicg
PCo 1 (Eigenvalue=3.07)

clustering via multi-scaleFig. 8 PCoA-score plot oB. rapacore collection based on AF
neitherand MYB markers with PCol and PCo2.

bootstrap,
geographical  origin  nor

STRUCTURE membership probability matched with thesiering, however, some patches of
Chinese cabbage, oils and European turnip wereodasérig. 9).

Fig. 9 Dendrogram showing the groups Bfassicacore collection based on NMR bins with Pearsc
correlation distance and UPGMA linkadgeindicates geographical origin of accessions (piakrope,
blue: Asia, green: America, red: Company lin8s$upervised membership probability of being in fou
STRUCTURE classes obtained via. random forest aisabn NMR datasef;Unsupervised membership
probability of being in four classes calculatedSSWRUCTURE software on molecular markers. Colors |
barplof and® -indicate skyblue: class 1, red: class 2, yellolass 3, and purple: class 4.
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NMR bins were highly
correlated with each other (Fig.
10; Appendix) because of wid
coverage of metabolites. i
PCA, albeit PC1 (45.42 %) an
PC2 (10.98 %) explained mor
than 55 % of total variancéd
(Table 5), only Chinesg?
Cabbages (CC) were clos
together (Fig.11). Origin of thq
accessions (colored labels) did
not comply with PCA score
plot. Most of the genotypes$
obtained from breeding

companies, especially CdQ 0 0 0 " 0 0 2

Dimension 1 (45 42%)
were also in the groups of— .
, o g ) P Fig.11: PCA-Score plot of Brapa core collection based on
Asian-originated CC (Fig.11).

NMR bins with PC1 (dim=1) and PC 2 (Dim=2)
Large number of NMR bins

had equal loadings on all PCs, however, almofXiIR bins of 8 and 9 ppm, and some bins of
1 and 6 ppm were important for positive impact @1LPNMR bins 3.8-60, 3.68-60, 3.84-60,
and 3.36-61 had relatively higher loadings and tiegig correlated with PC1. Although first
two PCs explained > 50 % of total variance; NMRsbirad small differences in their loadings
values across all PCs (data not shown).
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Table 5. Variance and cumulative variances (%) explaingtbp 10 PCs in PCA on NMR dataset

PCs percentage of variance cumulative percentagari@nce
PC1 45.42 45.42
PC 2 10.98 56.40
PC3 6.34 62.74
PC4 5.03 67.77
PC5 4.32 72.09
PC6 3.37 75.46
PC7 3.02 78.48
PC 8 2.42 80.90
PC9 2.08 82.98
PC 10 1.66 84.64
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3.2.1.4 LC-MS:

o xox xcc)xc::ix xecoxx :; a

European Turnip & Broccoletto Pack Choi & Asian turnip mixture Qil-Il Chinese Cabbage [oil-1 ]

Fig.1z: Dendrogram showing the groups Bfassicacore collection based on LC-MS peaks with
correlation distance function and UPGMA linkage Ineet, ®indicates geographical origin of
accessions (purple: Europe, blue: Asia, green: Amagred: Company)’-Supervised membership
probability of being in four structure classes o@ted in random forest on LC-MS peaks, c-
Unsupervised membership probability of being inrfdififerent classes calculated via STRUCTURE
software using molecular markers. Colors in baPpéotd © indicate skyblue: class 1, red: class 2,
yellow: class 3, and purple: class 4

Cluster analysis on LCMS data showed the presehéeuo distinct groups oBrassica Like
molecular markers, two small sub-groups of o0ild:I@50-034, SO-035, SO-039, RO-018, YS-
033, YS-143) and Qil-1l (RC-144, SO-031, SO-032,-&X7, SO-038) were discovered. The
Oil-1l sub-group had lower membership probabilifyaccessions of being placed in oil groups.
The membership probability of being in four classafculated through RF analysis on this
dataset was in good consent with their origin (furgurope, blue: Asia, green: America, red:
Company) of accessions, and with the membershipatibty calculated using molecular
markers via. STRUCTURE software (Fig.12). Similarmmorphology and marker, company
lines of Chineses cabbage were in close groups@iSrassica
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Fig.13 PCA-score plot oB. rapacore collection based on LC-MS
peaks with PC1 and PC2

Table 6. Variance and cumulative variances (in %) explaibg top 10 PCs in PCA on LC-MS dataset

PCs percentage of variance Cumulative percentagar@ince
PC1 18.06 18.06
PC 2 11.70 29.76
PC 3 4.74 34.51
PC 4 3.78 38.28
PC5 2.81 41.09
PC6 2.42 43.52
PC7 1.92 45.44
PC8 1.90 47.34
PC9 1.75 49.09
PC 10 1.51 50.60

PCA showed two well-separated small groups of nd a group of CC in correlation based
score plot of PC1 (18.06 %) versus PC2 (11.70 %§ @&ccession origin (blue: Europe, red:
Asia, black: America, green: Company) did not cgpend with the spatial distribution of

accessions (Fig.13). The variances explained by Wwé&se quite low where top 10 PCs had
carried out only 50 % of total variances (Table $3ore plot in combination of either PC 2
versus PC 3 or PC1 versus PC3 did not give any gimwupings of collections (figure not

shown). Variable plots on some combinations ot fiesv PCs did not provide any information
to get idea of contributing variables of differ@aicession groups (figure not shown).

3.2.2 Mantel test:
Simple Mantel test indicates highly significant redation ¢ <0.01) between distance matrices
of morphological traits (vernalized), molecular kens and LCMS indicating high correlation
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among them. However, non-significant correlationsravobserved in all combinations with
NMR (Table 7) which was also observed in clustelysis and PCA score plot.

Table 7. Mantel correlation between dissimilarity matrices

Dissimilarity matrix ~ Dissimilarity matrix Mantel r p-value (2-sided) C.I. (95%)

Morphology Marker 0.456 0.0001 0.43, 0.49
Morphology LCMS 0.17 0.008 0.15,0.21
Morphology NMR -0.018 0.7 -0.048, 0.01
Marker LCMS 0.48 0.0001 0.423, 0.52
Marker NMR 0.00224  0.967 0.045, 0.0435
NMR LCMS -0.0222  0.70% -0.057, 0.007

- p-value < 0.01 level of significanc&; non-significant at:=0.05

3.3 Discussions

Brassica rapacomposed of several morphotypes, is a widely grepecies for vegetable and
oil purposes in the world. AlthoudgB. rapaaccessions are diverse in their geographic origins
this study was conducted to analyze their morphodgmolecular and metabolic relations.

The application of unsupervised grouping techniguesnely hierarchical clustering, Principal
Component Analysis (PCA) and Principal Coordinatealisis (PCoA) on morphological
observations, molecular markers and LC-MS peaksaled the clusters of 168 accessions with
good correspondence with geographic origins, andsger extent with morphotypes. A study of
genetic relations of the same core collection basedFLPs also showed that the accessions
from the same geographic origins cluster togetheneéf they were from different morphotypes
(Zhao et al., 2005). In hierarchical cluster analyses, the witstigroups of morphotypes;
European turnip and broccoletto, Pak Choi and Asianip, two oil sub-groups, and Chinese
cabbage (CC)were discovered based on 359 marke8sAFLP and 141 myb) and 5548 LC-
MS peaks rather than morphological traits and NNdecsroscopy (Fig. 2, 7, 12). Clustering
based on both molecular markers and LC-MS peakgsamns FT-047, VT-007 and VT-044
originated from Soviet Union, and accessions VT-@08 VT-008 from India fell within the
group of European turnip. Since the Soviet Uniors wavery large country, which spanned
Eastern Europe and Asia, we cannot be sure whétlese accessions should be considered
European or Asian. On the other hand, Europeamaitig turnips FT-056 (France) and FT-097
(Germany) were close to Asian turnips. This couldgest that these accessions were developed
from germplasm from different geographic originarththeir present growing area. Among those
accessions, FT-056 from France was also reportedud®r accession of European turnip
groups (Zhacet al., 2005). Similarly, PC-022 from Netherlands (onlyeamon-Asian Pak Choi

in this study), was a strong outlier of Pak Chaugy and close to CC in LC-MS profile. The
difference in growing area might affect the quanivie levels of metabolites or be developed by
crossing with CC. However, McGrath and Quiros ()9@Xiewed hybrids between CC and PC
is less vigorous than that of CC and turnips. @es (SO and YS and WO) accessions were
clearly separated into two sub-groups based on L@GNS to a lesser extent also the case based
on AFLP/myb markers, although the numbers of atleasions were few in comparison to other

22



morphotypes. Based on molecular markers, one bHgsaup (Oil-1) consists of three SO types
of Bangladesh (SO-034, SO-035, SO-039), annual (¥i%&-033, YS-143) and Rapid cycling
(RC-144) at higher genetic distance with high STRURE class membership probabilities.
The other oil sub-group (Qil-1l) was consists di@t three different SO types (SO-031, SO-037,
S0-038) with low membership probabilities (Fig. milarly, in LC-MS, the oil sub-group
(Oil-I) was composed with the same accessions asdahmarker dataset; three SO (SO-034,
S0-035 and SO-039) and annual oils (YS-033, YS-tie other SO types (SO-031, SO-032,
S0O-037 and SO-038) were with WO types (WO-080, W&2;0N0-084 and WO-085) and
Rapid cycling (RC-144) in the other sub-group (Dil{Fig. 12). But these WO types of
Pakistan were grouped together close to the Asiamps and Pak Choi in dendrogram of
marker. Zhacet al., (2005) profiled similar accessions using AFLPs aitgb found two small
groups of oil types, the WO from Pakistan in onke-gtoup, and the annual oils- YS (originally
developed in India) and SO from Bangladesh in tiherosub-group. Some SO types aligned in
both sub-groups in this study were together with ifShe one oil sub-group of Zhaai al.,
(2005). This shows that YS and SO formed a strahggsoup, which might be due to the same
geographic origins of these morphotypes in theohystThe SO and YS might be from the north-
east part of Indian sub-continent, and developetkpendently after the split of India and
Bangladesh. But other SO types mainly from Indi&AUand Germany form weak sub-group
with WO types in only LC-MS dataset. The LC-MS datiacontained large number of variables
which cover wider range of metabolites, but theilatbde markers may not cover the whole
genome. However, we can consider WO types as aaepgroup from YS because it might be
developed separately from the western part (Pakisté Indian sub-continent, Although YS
accessions in this study were from USA and GermitgGrath and Quiros (1992) reported that
they were likely developed independently in Indrathis core collection, 31 company lines of
different morphotypes were also included, and tlveye grouped with older accessions of their
respective morphotypes indicating similar genetickgrounds.

The allocation of the accessions in each dendrogne® compared with the membership
probabilities obtained by the software ‘STRUCTURB&sed on allele frequency of myb and
AFLP markers) and RF classification (based on thepective datasets). Although RF
classification is a supervised technique which usesthis case, prior information of the
STRUCTURE classification, those comparisons helpntke a visual representation of the
classification of accessions by cluster analysisiexd out on different datasets of this study.
Marker dataset provide the chance to compare loieial clustering and STRUCTURE
software groupings. But, in other datasets, STRUREUmembership plot from molecular
markers can be compared with hierarchical clusgerand RF classification based on
morphological,'H-NMR and LC-MS datasets. Those comparisons shaittre clustering of
accessions based on molecular markers are in ggre@éraent with the LC-MS dataset and to
lesser extent with morphological traits.
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The hierarchical clustering on morphological tratss more powerful to distinguish broccoletto
from European turnips (Fig. 2) although the turnigzsts were not taken into account. From
visual observation, broccoletto are, indeed, d#ifér for several morphological traits as
compared to the turnip groups. Broccoletto hadivelly shorter leaf perimeter (LP), leaf length
(LL), lamina blade length (Lbl), lamina width (L\Wnd petiole length (PL) than turnips. In
addition, less number of leaf lobes but higher leainber and very early flowering (32 days)
were observed in Broccoletto. Zhabal., (2005) also reported strong stem with short irdden
length and small flower heads as edible part incBotetto but turnips have a swollen
hypocotyls and tap root with varied shape and cdBut these morphotypes were clustered
together in dendrograms based on the genetic ataboie information. A previous study also
showed close genetic relation of broccoletto andofean turnips based on AFLP markers
(Warwick et al.,2008; Zhacet al.,2005).

PCA and PCoA were conducted on all different dasase visualize the locations of different
morphotypes in two-dimensional plots and identifhe tdistinguishing variables of those
morphotypes. PCoA, a variant of PCA, on molecularkars discinctly separated European
turnips and oil sub-group (Oil-1) from other acdess indicating their diverse genetic
backgrounds. However, CC, PC, Asian turnip andwll-group (Oil-Il) were clearly separated
into sub-groups that were placed togethea big group (Fig. 8) indicating the more similar
genetic background among them compared to the EBaropurnip group and Oil-1. In the case
of LC-MS, PCA distinguishes only CC and Oil-1 iretfirst two PCs, which explain 29.76 % of
the total variance present in the LC-MS dataseg.{B). The results of cluster analysis and
PCA/PCoA imply that molecular markers and LC-MSlgsia were more powerful to discover
the natural groupings @&. rapathan morphological and NMR datasets. In case oR\lMtaset,
PCA was able to group only CC although they wer¢ distinctly isolated from other
morphotypes (Fig.11), but not any grouping in @ustnalysis (Fig. 9), which indicateksl-
NMR did not distinguish groups of accessions adogrtb morphotyes or geographic origins in
both cluster analysis and PCA.

In addition, the correlation of the dissimilaritgatrices of different datasets that used for
clustering and PCA/PCoA were compared using Matgsl, where LC-MS and marker had
highly significant correlation (p-value = 0.0001lipllowed by their combinations with
morphology. But NMR had non-significant correlatiith other datasets (Table G)he results

of Mantel test also supported a good correspondehgearker and LC-MS datasets on the
groupings of accessions, followed by morphologataervations.

Molecular markers provide the more reliable infotima at the gene level for the study of
genetic relationsSimilarly, LC-MS has high sensitivity and specificin the detection of the
metabolites even if present in low concentratiarthsas secondary metabolites on the basis of
molecular masses of chemicals. Therefore, moréndisgroups were discovered according to
morphotypes or the geographic locations. BUNMR is less sensitive technique than LC-MS which
detect only abundant and proton bearing compownds, as organic acids. Besides, one dimensional
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'H-NMR generates the overlapping NMR bins due tgdatumbers of contributing compounds and
multiple signals (Colquhoun, 2007; Widaret al., 2006), that might hinder the separation of
accessions in this study. PCA on morphologicatstrdistinguished CC, European turnip, PC and
mizuna. Interestingly, a group of mizuna morphosypes discovered only through morphological
traits, such as high petal index (high petal leragil low width), elongated petal shape, leaf edge
shape and relatively higher number of leaves wherfitst flower opens (Fig. 6). Among two older
mizuna accessions (MIZ-019 and MIZ-128) and thegany lines (K-1, K-2 and K-3), only MIZ-
019 and K-2 formed one sub-group in both clusteand PCA, and MIZ-128 and K-1 were close
together only in the PCA (Fig. 5). Zhabal., (2005) also observed the differences between tio o
mizuna accessions, which was also supported hygtmiing regions, where MIZ-019 was from the
Netherlands, and MIZ-128 from Japan. These twolsubtgroups of mizuna suggest that company
lines K-1 and K-2 might be closely related with M1Z28 and M1Z-019 respectively or developed with
the breeding objectives of replacing the older sgioas. European turnips were different because of
very late flowering, leaf morphology (longer pertere higher area, longer length and very long
petiole length) and plant architecture (less nunhégr and plant brangtwhile Pak Choi, CC and
mizuna had distinct flower morphology (Fig. 6). Therphological traits, such as leaf color (LC)f lea
area (LA), and presence of petiole (PP) were a¢ablain distinguishing CC from Pak Choi. CC had
yellowish leaf color, higher leaf area and absetiofe in comparison with Pak Choi.

PCA/PCoA form new latent variables (called PCs/HRthe linear combination of original variables,
such as molecular markers, NMR bins and LC-MS pdakthis study, PCA on metabolic peaks
(NMR and LCMS) and PCoA on molecular markers cowtlidentify the variables accountable for
the different morphotypes. In stead, smear of bkasawere observed in variable plots of PCA/PCoA
because large numbers of variables had uniforninigsavith small difference over the variables. This
analysis suggests that the individual moleculakerdrC-MS peak/NMR bin had non-linear relations
with small and interaction effects. Thus, this gtwdas followed by a more powerful variables
selection technique, Random Forest, was usedrbfigthe distinguishing variables.

3.4 Conclusions

B. rapa core collection has diverse morphological, meiabaind genetic relations, which
corresponds with the geographic origins and alslo morphotypes. LC-MS peaks were capable to
distinguish two small sub-groups of oil, which alsdends to some extent in case of molecular
markers. Moreover, morphological traits are alsanéb important in isolating some of the
morphotypes, such as mizuna, broccoletto. Differemirphological traits that distinguish
morphotypes were identified. Among all datase@;NLS peaks and molecular marker information
were in more congruence in grouping the accessadlasved by morphological observations. But
'H-NMR spectroscopy was not effective to distinguibte accessions in accordance with
morphotypes as well as geographic origins.
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Chapter 4: Identification of unique molecular markers and
metabolic peaks in distinguishing different morphoypes ofB. rapa
core collection

4.1 Materials and Methods

4.1.1 Random Forest
Random forest (RF) is an improved version of thas€ification and Regression Trees (CART)
method. However, CART builds only one classificatiee but random forests build a
collection of multiple classification (and/or regsgon trees), and are, therefore, named “forests”.
RF uses both a boosting and a bagging strategysewdaosting reduces the both the variance
and the bias of the classification and bagging ceduthe variance (Gislasat al., 2006)
Important features of RF are: good prediction aacyy relatively robust to outliers and noise, it
returns useful internal estimates of predictioreand variable importance (Breiman, 2001), it
can handle the “small n large p” problem of higmensional data and also complex interactions
of variables and situations with highly correlatatiables (Strobkt al., 2008). RF can have
overfitting problem (Segal, 2004) and can estimidue variables importance for the both
classification as well as regression (Breiman, 2@i&lasoret al.,2006; Truonget al.,2004).
RF does not allow any kinds of missing values; datputation was done by considering 20
neighbouring observations using Euclidean metricairK nearest neighbour algorithm in
morphology and marker datasets. An “impute” package-software (Hastiet al.,2008) was
used by setting the parameters at maximum 20 %ingigs row and 50 % column.

4.1.1.1 RF Classification

RF makes an ensemble of trees and may have magstsdo produce an unbiased estimate of
the classification error (Pargg al.,2006). All trees are more or less independentachether
because each tree is built by taking a bootstragpka(random sampling of two-third of the
samples with replacement) of the original datalédathe training set), and a random subset of
the variables (at each split as a candidate setapébles). Thus, the computational load is
reduced, and it can handle the high dimensiona @ak<< p) (Gislasoet al.,2006) Each tree

is fully grown (unpruned) to obtain low-bias, higariance and low correlated tree. At end, RF
averages over all trees resulting low-bias, lowiarare and low correlated trees giving good
prediction (Svetniket al., 2003). On an average, about one-third of the maigdata are not
sampled in training set, called out-of-bag (OOBypkes which are used as the test set. The test
set data (OOB samples) are then run down thedrbe tlassified by the random forest, and the
classification for the'l tree is predicted by comparing the estimate ofQ@B samples to their
real class. Based on the majority of votes overttbes of the forest, the OOB samples are
assigned to a particular class. The classificatoror can then simply be estimated by
comparing the estimated class with their true clabel. Thus, there is no need for an extra
cross-validation (Gislasoet al.,2006; Panget al.,2006; Svetniket al.,2003). For the variable
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selection, RF starts with a forest using all vdgabn a random subset of variables at each split
node and then builds new forests at each step wligtEarding the variables with the smallest
importance (also called backward elimination). Thilie OOB error rate is considered as a
biased estimator to assess the overall predictioor eate of the algorithm (Diaz-Uriarte and
Alvarez de Andres, 2006). The 0.632 + bootstraphowtwhich use a weighted average of the
re-substitution error (the error when a classifseapplied to the training data) with OOB error
gives the better prediction error rate of the c¢fesdion (Diaz-Uriarte and Alvarez de Andres,
2006). The smaller the OOB error rate, the beterlassification of the samples(Pagepal.,
2006)

RF randomly permutes the values of predictor végmbf the OOB samples and then run down
the tree to get new classification. The predictbrelassification of OOB samples in terms of
correct classifications of OOB samples is compdrefbre and after permuting the predictor
variables and averaged over all trees. If the ptiedh accuracy substantially decreases after the
permutation indicate the association of those béagin the classification of samples (Gislason
et al., 2006; Panget al., 2006; Svetniket al., 2003). RF measures the importance of each
variable by mean decrease in the prediction acguaad mean decrease in Gini index. Gini
index measure the impurity of split selection eigan machine learning, such as RF, CART,
however, it is biased in favor of variables havinigher numbers of categories and continuous
variables, and offering more splits in classifioat(Stroblet al.,2008; Strobkt al.,2007).

A web-based package of random forest classificati@eneSrF” was used for classification
purposes (Diaz-Uriarte, 2007). GeneSrF can handlerge dataset and also deal with the
problem of multiplicity (lack of stable selectiohariables upon the repetitive analyses). Diaz-
Uriarte and Alvarez de Andres (2006) suggestecdtdmsidering the biological relevance of the
selected variables to address the stability problarthis study, box plots on selected variables
were drawn to compare the relevance of selecteidhblas in classification of the accessions.
GeneSrf uses the 0.632+ bootstrap method usind@0Gtrap samples to produce an unbiased
estimate of the prediction error. For this analyalsthe default settings were retained because
of no significant changes on its performances avigle range of settings except in extreme
cases (Svetnilet al., 2003). The default setting on parameter “mtry’e(thumber of random
variables selected at each node) for classificaisothe square root of the total number of
variables and number of samples in each end namtkegize) is at one. The minimum node size
determines the minimum size of nodes below whicfuniier split will be attempted.
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4.2 Results

4.2.1 Marker
In random forest classification of four STRUCTURHEasses, 38 markers were selected as
distinguishing markers for those four classes. mhaekers were repeatedly observed on different pair-
wise comparisons of different groups present ia tlare collection. Among 359 AFLP and MYB
markers, 10 markers were found important in disigigng class 1 versus class 2, 8 markers for class
1 versus 3, 24 markers for class 1 versus 4, 3arsaftr class 2 versus 3, 24 markers for class2ise
4, 2 markers for class 3 versus 4, 4 markers fangSk cabbage (CC) versus Pak choi (PC) and 4
markers for European (EU) versus Asian turnips I@8p The importance spectrum plot also showed
the clear differences between the markers—
importance before permutation (origin +
data) and after permutation indicating te
higher importance of marker in separati g -
the four classes (Fig. 14; Appendix). Form

Fig.15A: | | "= Fig.15B:

mbeTaD

Fig.15C:

Samples

classes comparisons of class 1 versus 2, _ Peder

class 1 versus 4, and class 2 versus

markers (out of 10), 23 markers (out of 2i4)

and 21 markers (out of 24), respective y i

were found common with the 38 markefs Fig.18G: || | -a= Fig.15ﬁj§ Fig.15l:

comparisons. This indicates that class 1, 2 - L
and 4 were the most diverse groups amgng

all groups (classes). However, 2 markers. ——r _ o
groups ( ) Fig. 15 Class membership probability of accessions

(out of 2), 4 markers (out of 4) and 4RF classification based on markers) of beinghin:
markers (out of 4) of comparisons of clas€lass 1 in four STRUCTURE classes comparigsn;

3 versus 4, CC versus PC, and EU versuslass 1 with respect to class@; Class 1 with
respect to class 8- Class 1 with respect classk

_ _ class 2 with respect to classR3;class 2 with respect
congruence with markers found importanto class 4G-class 3 with respect to classHk CC

in all 4 classes classification, even thoughvith respect to PCl- Asian turnip with respect 1

they had very few numbers of distinguishing marlsetected. In contrast, all three and 7 (out of 8)
markers importantly selected in class comparisb@sversus 3, and 1 versus 3, respectively, were no
observed in the comparisons of 4 classes. Aimbdliférent combinations of classes (groups)
comparisons had low classification prediction etnomvever, EU versus Asian turnip comparison had
highest error (0.148) followed by CC versus PC8B)@nd all 4 classes comparisons (0.083) (Table ),
and Fig. 15 also showed the high-misclassificatamt®rdingly. All possible comparisons among the
different classes (groups), altogether 59 markeysewniquely listed, in which 22 markers have
known map position based on DH mapping populatiovielow Sarson 143 and Pak choi 175 bi-
parental cross (Table 9).

Asian turnip, respectively, were also in

28



Table 8 RF classification errors obtained in pair-wisenparisons in Marker dataset

Comparisons Class prediction error*  Leave-one-aatt$trap error

All four STRUCTURE classes  0.083 0.122
Class 1vs. 2 0.066 0.093
Class1vs. 3 0.055 0.079
Class1vs. 4 0.028 0.043
Class 2vs. 3 0.037 0.053
Class 2 vs. 4 0.043 0.065
Class 3vs. 4 0.025 0.038
CCyvs. PC 0.085 0.107
EU vs. Asian turnip 0.148 0.179
*- Bootstrap (0.632+) estimate of prediction error.
4.2.2 NMR
Fig. A: [ | re= Fig. B [ | e Fig. C

RF classification conducted in NM
dataset selected 32 NMR bins accountapl
for the distinction of four STRUCTUR

classes with prediction error 0.27. In —
classification of accessions into pair-wi e
classes, 14 bins were identified s
important bins to distinguish class 1

+ Class s
cazed

versus 3, 4 bins for class 2 versus 4, 2 bjns -
for class 3 versus 4, 2 bins for CC versgjzs; !

PC and 9 bins for and EU tumip verslis. o i
. . . .. .. Fig. 17 Class membership probability of
Asian turnip with different classification 5ccessions (RF classification based on NMR) of

errors for class prediction of accessionseing in: A-Class 1 in four STRUCTURE classes

and variable importance (Table 10 and 11§omparison;B-Class 1 with respect to class @;
. Class 1 with respect to class B: Class 1 with
The importance spectrum plot

_ respect class £- class 2 with respect to classF3;
showed the clear differences between thgjass 2 with respect to class &-class 3 with

importance  of NMR bins before respect to class 41- CC with respect to PQ;-
permutation (original data) and afterAS|an turnip with respect to European Turnip.

permutation indicating the higher importance ofsbin separating the four classes (Fig. 16;
Appendix). In comparisons of selected bins, 1&l§out of 14) of class 1 and 2, 24 bins (out of
32) of class 1 versus 4, 4 bins (out of 4) of clas®rsus 4, 2 bins (out of 2) of CC versus PC,
and only 3 bins (out of 9) of EU versus Asian tpewere in common with the bins selected on
all 4 classes classification (Table 11; AppendBased on selected bins, class 1, class 2 and
class 4 were appeared as most distinguishing dlasseng all groups of this core collection,
where high numbers of distinguishing bins selectedeparate pair-wise classifications were
correspondence with bins selected in all 4 classegarison. Among all these comparisons, the
errors for class prediction and variable importafieave-one-out bootstrap error) were higher in

bins for class 1 versus 4, 3 bins for class-2- B e
|

also
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the group classifications of Europe versus Asiamips, four STRUCTURE classes, class 1
versus group 2, and class 2 versus 4 accordingbre®er, Fig. 17 showed the membership
probability of each accession of being in differesses during the RF classifications in
different groups’ combinations.

Table 10 RF classification errors obtained in pair-wisassl comparisons in NMR dataset

Comparisons Class prediction error*  Leave-one-oatstrap error
All four STRUCTURE classes 0.27 0.35
Class 1vs. 2 0.22 0.275
Class 1vs. 3 0.055 0.077
Class 1vs. 4 0.066 0.097
Class 2vs. 3 0.054 0.073
Class2vs. 4 0.147 0.198
Class 3vs. 4 0.027 0.041
CCuvs. PC 0.0791 0.113
EU vs. Asian turnip 0.393 0.425

“Bootstrap (0.632 +) estimate of prediction error.

4.2.3 LC-MS

RF classification used for variable selection testidguish 4 STRUCTURE classes of
classification selected 64 LC-MS peaks (noted hbytrotype mass_scan) among 5546 peaks
(variables) with class prediction error (0.166) asadiable importance error (0.23) (Table 12).
Those 64 selected peaks represented 31 differatriotgoes, which indicates the possibly that
these signals represent the same compounds or coweipdrom the same chemical groups
(isotopes of a chemical derivative). Out of 64 sild peaks, only 21 peaks could not annotate
the chemical name, where 16 peaks were from l4atgpes, and 5 peaks didn't have any
centrotype (Table 13).

Importance spectrum plot of top 200 peaks showedldar differences between the importance
of peaks for the original data and that of randemutation (Fig. 18; Appendix).This plot
indicates that top 200 peaks did good job in cfasdion of accessions into four classes, where
higher the differences, the higher the importanicpeaks in differentiating four STRUCTURE
classes. The clustering based on these selectadCoMS peaks gave similar distribution of
accessions with that of dendrograms based on V%216 peaks (Figure not shown).

In pair-wise comparisons, 3 peaks for class 1 \& ®yr class 1 vs. 3, 2 for class 1 vs. 4, 3 for
class 2 vs. 3, 41 for class 2 vs. 4, 2 for clags.3, 14 for CC vs. PC and 26 for EU vs. Asian
turnip were found important in assigning the acoess into different classes in the RF
classification (Table 13) with different classifica and variable selection error (Table 12). All
the peaks (3 peaks out of 3) of RF classificatibalass 1 vs. 2, 2 peaks (out of 2) of class 1 vs.
4, 27 peaks (out of 41) of class 2 vs. 4, 3 peaks ¢f 26) and 5 peaks (out of 14) were also
observed in RF selected peaks in the classificatioall the accessions into 4 STRUCTURE
classes, however, none of the peaks of classtiesiof class 1 vs. 3 (5 peaks), and class 2 vs. 3
(3 peaks) were common.
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Table 12 RF classification errors obtained in pair-wisassl comparisons in LC-MS dataset

Comparisons Class prediction error*  Leave-one-oat$trap error
All four STRUCTURE classes 0.166 0.23
Class 1vs. 2 0.117 0.152
Class 1vs. 3 0.055 0.078
Class 1vs. 4 0.053 0.074
Class 2vs. 3 0.051 0.070
Class 2vs. 4 0.117 0.162
Class 3vs. 4 0.028 0.042
CCvs. PC 0.058 0.085
EU vs. Asian turnip 0.221 0.277

*- Bootstrap (0.632 +) estimate of prediction error

Classification error for class predictio
and variable importance fof
classification were highest in th
classification of accessions into EU vs: |-
Asian turnip, followed by the} |
classification into all four
STRUCTURE classes, class 2 vs. 4, a;i’id 7 N
class 1 vs. 2 successively which Was m— Fe—
also visualized in figure (Fig. 19). i :-55,_.-._.~_~~,.:.,nF.~iw9'~18H F'g %,5_3.'"
The selected peaks in four classiw | ' : ' -
comparison were visualized in box pl t

to see the level of metabolites present Tflg

T
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cccccc
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i ) 1¢. Class membership probability of
different STRUCTURE classes (Fig. 20gccessions (RF classification based on LCMS) of
Appendix). Box plots showed that being in:A-Class 1 in four STRUCTURE classes
Centrotypes: 4108 (Isopropyl comparison;B-Class 1 with respect to class @:

) Class 1 with respect to class B; Class 1 with
glucosinolate), 4815  (Methylpropyl regpect class £- class 2 with respect to classF3:
glucosinolate) , 5400 and 4867class 2 with respect to class @&-class 3 with

(glucopyranoside derivatives), 5441 respect to class 41- CC with respect to PQ:-
8845 and 9223, and peaks:ASlan turnip with respect to European Turnip.
A194 501 706, A190 388 1036 and A86 484 2174 wessept only in class 1 (European
Turnip) whereas, centrotypes: 4932, 4990, 5248 rtifderol caffeoyltetra glucoside), some
peaks; 5236_708_ 784, 5236_707_785, 5236_1191 7885386 1192 787 belonging to a
centrotype 5236 (Chlorogenic acid), and centrot@@@2 were only in class 4 (Chinese
Cabbage). Peak A62_ 449 632, and centrotype 5028r¢&tin diglucoside), 7673 and 5600
were dominant in class 3 (Oils) and 4 (Chinese agbpbut some of them were also in classes 1
and 2 (Pak Choi and Asian Turnip).

Two small groups of oils type observed in both ®usnalysis and PCA, where SO-034, SO-

035, SO-039, RP-18, YS-033 and YS-143 were in aoagwith high level of 6882 _666 1076
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and 5600_357_849 peaks, and low level of 8515 6410 land 8722 565 1442 peaks than
another oil groups consisting of SO-037, SO-038 &©144 (Fig. 21; Appendix). RF
classification prediction error was 0.03915 in cammgon of two small groups of oil type.

4.3 Discussion

Accessions were classified by using RF classiboatipproach, which can handle larger numbers of
variables (marker loci, NMR bins and LC-MS peaksgnt that of accessions. The previous studies
reported its ability to explore complex interacicand non-linear relations of predictor variabiss,
internal cross validation properties; few paransetezed to be adjusted and better performances on
multi-class situations (Cutlest al., 2007; Barrett and Cairns, 2008). In addition, R&ssification
approach was used for the estimation of variab®iance and error rates in this study.

Molecular marker:

In RF classification based on molecular markers,(falts in STRUCTURE class 4) was the most
distinct morphotypes from European turnip, Asiamifuand Pak Choi (PC) because higher numbers
of markers were needed for the distinguishing timsghotypes in pair wise comparisons (Table 9).
European- and Asian- turnips, and CC and PC wese tbgether because they showed differences in
fewer (4) markers. In a pair-wise comparison o€ (composed of Asian turnip and PC) with class
4 (CC), high numbers of markers (24) were diffetheir presence or absence between the classes,
however, few markers (4) had distinguished CC adar®rphotypes. This suggests that CC is close
to PC in their genetic background, but distinatrfrAsian turnips.

European and Asian turnips were differing only aarf markers suggesting a very similar genetic
background despite being diverse in their geogcaphigins. Hence, those two geographically
different morphotypes might have been differertiate a later stage of the domestication process.
Based on this study, oil morphotypes (represengetdass 3) were more close to class 2 followed by
classes 4 and 1, which indicated that oils areeclos Asian turnips and PC in their genetic
backgrounds. However, the identification of mapitfmyss of the molecular markers is essential to
know whether these markers are in the same positioat. Several genetic studies show Brassica
accessions of different morphotypes are more teladised on the geographic origin despite being in
different morphotypes (McGrath and Quiros, 1992;rWitk et al., 2008; Zhacet al., 2005). This
study is also in agreement with those studies awsly that accessions originating from the same
geographic origins are closer than morphotypes frmre distant geographic origins.

Nuclear Magnetic Resonance (NMR)

Based on NMR metabolic profiles, classificatioraotessions into European- and Asian- turnip had
higher classification error for the prediction dhsses as well as variable importance (Table 10)
followed by classification of four classes, clasyetsus class2, and class 2 versus class 4 in a
decreasing order. Class 4 (dominated by CC) was distisict from class 1 (dominated by European
turnip), where 32 NMR bins had higher importancdifferentiating those classes (Fig. 17). Fourteen
(14) NMR bins were able to distinguish class 1 w®r@ but only very few NMR bins were found
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important in distinguishing other pair-wise classifions. Although 9 NMR bins were able to
distinguish European- and Asian- originated tugnigpe high numbers of miss-classification of
accessions were observed in class membershipFuptl(7-1) showing no prominent differences in
NMR-based metabolome for these two turnips. Thalteesignified that European turnips differ
largely in metabolic composition from CC and PaloiChowever, class 4 (CC) does not show a
distinct metabolic composition than that of Asiamips and Pak Choi (class 2) which might be
because of close relation of CC with PC. And CCR@dliffer only in two NMR bins (possibly only
two metabolites). Class membership probabilitysp{6ig. 17) also showed a large numbers of outlier
accessions in pre-defined classes suggesting ditaeNMR bins are not able to distinguish the
accessions.

A 2-dimensional NMR analysis might be more helpduldentify possibly distinguishing metabolites,
since this method improves the resolution by redutie overlapping signals of NMR bins (Nilsson
et al.,2004). In another study of metabolic differentiatof B. rapawhere response upon the attack of
herbivores was investigated, Widagtaal.,(2006) suggested 1-dimensional NMR was not effe¢t
identify discriminating metabolites because of theerlapping of NMR signals and spectral
complexity. The relatively high classification ernmight be because of overlapping of chemical
compounds over the NMR bins. In contrast with th@ecular marker and LC-MS datasets, cluster
analysis and PCA based on the NMR dataset in tilnity svere also unable to discover the distinct
groups of morphotypes.

LC-MS

Similar to NMR metabolite profiling, the classifitan error was higher in the classification of
accessions into European- versus Asian- originatedps, followed by classification of the four
STRUCTURE classes, class 1 versus 2, and classsveass 4 (Table 12). But in contrast to NMR
and marker-based classifications, high numbersCaMS peaks were involved in distinguishing class
2 versus class 4 followed by EU- versus Asiandpgrand CC versus PC (Table 13). Class 2 is one of
the most heterogeneous groups composed of Asiapsuand PC, Asian turnip was more
heterogeneous than others in cluster analysis. l&ads to select higher number of peaks in class
comparison including differential peaks intensitigthin Asian turnips morphotype. RF classification
resulted the slightly different numbers of varialds important variables during the repeated aslys
Diaz-Uriarte and Alvarez de Andres (2006) also achdite stability problem for variable selection and
suggested to consider the biological relevancéhefselected variables. Thus, we suggest to take
relatively larger numbers of selected variabled, tarobserve the biological relevances. In thidystu
biological differences were visualized via. boxtplgraph (Fig. 20). The cluster analysis based on
those selected 64 peaks also showed more simskabdtions of accessions to clustering based on
whole 5546 peaks (figure not shown). This indicd®s classification had good performance in
selecting variables.

The quantitative and qualitative differences ofabetic peaks, that were obtained RF classification,
were observed among the four classes. The quaditdifferences were observed in two annotated
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compunds: a glucopyranoside-derivative (4,7-Megasidiene-3,9-diol, 3-Ketone, 9-@-[-
arabinopyranosyl-(1->g)-D-glucopyranoside]) was present only in class Grggean turnip) and
chlorogenic acid and some other metabolites (nbageotated) were specific to CC morphotypes
(class 4). Also other morphotypes, such as Asianipu PC, oils have unique non-annotated
metabolites (many mass peaks do not have an aondt&esides, other annotated and non-annotated
peaks had quantitative differences among the flagses (Fig. 20). RF classification was reported as
an effective method for the classification of sas@nd detection of unique peaks in metabolomic and
proteomic high-dimensional datasets since it cgre asith multicollinearity situations, allows the
assessment of complex interactions of peaks, & dopposedly not suffer from overfitting problems
and allows estimation of the importance score akpdBeckmanmet al., 2007; Barrett and Cairns,
2008; Enotet al.,2006). However, Segal (2004) reported the proldEwverfitting in a study based
on data simulation because of unpruned tree irorarfdrest.

In cluster analysis and PCA, oils were separattm tino possible sub-groups, each with a small
number of accessions. The separation indicateg|ubatitative variations oil-metabolites between
these subgroups. RF classification was used tdifigldme distinguishing LC-MS peaks for these sub-
groups. Among six centrotypes, three centrotypes wesent at relatively higher level only in Oil-I
sub-group (SO, YS) but the other three centrotyye at higher level in Qil-Il sub-group (SO, WO,
RC) (Fig. 21)This result signifies the presence of two oil sutiigs inB. rapaspecies. Thus, RF was
able to classify the different morphotypes withittentification of discrimination LC-MS peaks

4.4 Conclusons

RF classification had good performances in clasgjfthe accessions and also identifying the
distinguishing molecular markers, NMR bins and LG-deaks in all class comparisons as well as
pair-wise morphotypes classifications. Europeard Asian turnips were less distinguishable as
compared to other pair-wise classifications irdallasets. Similarly, CC and PC were closely related
on their genetic backgrounds as well as metabolitents but CC and European turnips were the most
distinct apart. However, the annotation of LC-M@kgeand identification of map positions of marker
are important to confirm the results.

In addition, RF classification made selections ofaoular markers, NMR bins and LC-MS peaks that
were found important in classifying the accessiots different morphotypes. The qualitative and
guantitative differences of metabolites were olegamong the morphotypes. The performance of RF
classification was better in molecular markersla@eMS than that of NMR dataset.
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Chapter 5: Identification of LC-MS peaks and molecular markers
associated with leaf color oB. rapa

5.1 Materials and Methods

5.1.1 Correction of SPAD traits for the populationstructure and correlation
analysis

Plant genetic resources, even a single species pbpulation level are genetically and
phenotypically diverse due to varied geographyunmstand/or artificial selection, mutation,
migration, natural recombination and several spwdas or induced factors. TBe rapacore
collection used in this study has different subtpafions due to their independent origin in
Europe and Asia, and long-history of domesticaaod breeding. Zhao (2007) also found the
presence of four groups (classes) of sub-populatighis core collection in his Ph. D. studies.
The influence of population structure on correlasios very large and therefore it is necessary to
control for false positive associations in assammmapping (Balding, 2006; van Berlat al.,
2008; Yu et al., 2006). In this core collection, four distinct das, identified using the
STRUCTURE softwardPritchardet al.,2000),were considered for mean comparisons to see
the influence of population structure on SPAD wvimalysis of Variance (ANOVA). The
residuals obtained from the ANOVA, which was assdine be free from the influence of
population structure, were stored for the assamiastudies. The model used for ANOVA was
yi=un + G + g, where, y is the SPAD observation in th® BTRUCTURE group andhj
observationp for common mean, Gor the effect of thel STRUCTURE group (i= 1,..,4) and
g; for random error inl group and'} observation.

Pearson correlations among SPAD traits of all tlw@®ditions (vernalized condition 2007, and
non-vernalized conditions 2006 and 2007) were tesidhave an idea of how the same traits in
different conditions compare to each other. Theniitance of Pearson correlations was
examined using a simple student’s t-test proceddliehe ANOVA and correlation tests were
done using R-statistical software.

5.1.2 Random Forest Regression

LC-MS measurement and marker genotyping datasets &avery high number of variables
(5546 peaks in LC-MS, 359 markers) with respedh number of samples (168 accessions).
An ordinary multiple regression approach can notdiea the problem of “small n large p” as
well as multi-collinearity situation. Therefore, this study, an RF regression was used for
SPAD traits (a quantitative measurement of leabobf all three conditions to find the
associated metabolic peaks and molecular markéishvare robust to handle those problems.
The main goal of a RF regression approach is t &irset of variables that best predicts the
variation present in a continuous trait of interd$te percentage of variance explained by RF is
defined as 1- (Mean square error (MSE)) / (Variaoteesponse) where MSE is the sum of
squared residuals on the OOB sampletded by the OOB sample size (Pagtal.,2006). This
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measure shows the performance of set of varialylexplaining the variation present in trait of
interest. RF regression yields two important meassumean decrease in accuracy and mean
decrease in MSE for all the variables. The meamedse in accuracy is measure by comparing
the true class label of the sample with the pltyaf OOB class votes after the permutation of
random subset of variables (Breiman, 2001). Thadrighe amount of decrease in importance
measures is, the higher is the importance of tkhasables.

RF regressions on residuals of SPAD traits weredected by using the “randomForest”
package of the R-software (Breimaat al., 2008). RF regression approach is suitable for
association studies especially in case of largebmusof predictor variables, where interactions
of predictors are present and no need to specifgem@unettaet al., 2004). The number of
trees (ntree) was adjusted at 5000 because of dempuemory limit; however, all other
parameters were adjusted in the default settingsmuse of no significant changes on its
performances over wide range of settings excem@xireme cases (Svetnét al., 2003). The
default settings on parameter “mtry” (the numberasfdom variables selected at each node) is
the one-third of the total variables (p/3) and ivenber of samples in each end node (nodesize)
is at 5 samples. The node size determines the mmisize of nodes below which no further
split will be attempted.

5.1.3 Unified mixed model
An association mapping study was also conducteddiiberent SPAD traits separately in a
unified mixed model approach using the software $BE (Zhanget al., 2006). This mixed-
model approach takes into account multiple levélelatedness and has good control of type |
and type Il error rates over other methods €Yal.,2006). A population matrix (Q-matrix) and
a kinship matrix (K-matrix) were used in the mixewdel (Q + K method), hence, named a
unified mixed model. Marker data was used to caleuthe Q-matrix in a Bayesian approach
via. STRUCTURE software (Pritchaet al.,2000) and the K-matrix in the TASSEL software.
Q-matrix provides the genetic relation between different groups of a population while K-
matrix measures the relatedness of accessionsavgtioup. The statistical model of the Q + K
method employed in TASSEL is:
y=Xp+Zu+e
wherey is the trait of interest (here: SPADJ;is an unknown vector containing fixed effects,
including genetic markers and population struct{@®@; u is an unknown vector of random
additive genetic effects from multiple background@lC¥or individuals/lines; Xand Zare the
known design matrices containing the marker infairoma ande is the unobserved vector of
random residual. The and evectors are assumed to be normally distributed mithmean and
variance of “/"('il where G =6%K with c%as the additive genetic variance andskthe kinship
matrix. Homogeneous variance was assumed for @sewors, which means Rs2., whereo?is

the residual varianceAnd 6%, ang 6% are calculated by Restricted Maximum likelihoodE[RL)
approach (Bradburgt al.,2007).
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5.2 Result

Results of association studies of LC-MS peaks amwtecnlar markers with SPAD traits of
vernalized conditions 2007, non-vernalized condi2006 as well as 2007 were presented in the
subsequent sections.

5.2.1 Summary statistics of SPAD traits:

5.2.1.1 Mean comparison of four STRUCTURE classes:
The means of SPAD values from accessions fromalleSTRUCTURE classes were compared
for vernalized SPAD of 2007, non-vernalized SPAD kafth 2006 and 2007 in one-way
ANOVA test. SPAD of vernalized (p-value=0.0003), AP non-vernalized 2006 (p-
value=0.0007) and SPAD non-vernalized 2007 (p-ved)ievere highly significant, however
class 1 in for data vernalized SPAD 2007, classr2lata non-vernalized SPAD 2006, and class
1 and 2 of non-vernalized 2007 were only signiftbadifferent from the other groups in that
experiment at LSD (at 5 % level) in multiple compans (Table 14). In relation to SPAD trait,
two clear groups of accessions were found whergsclahad higher mean SPAD trait value
indicating dark leaf color in the year 2007 butssl®2 was darker in year 2006. Albeit this
analysis might be biased because of varied nunfb&ca@ssions among the classes, the general
ideas can be drawn regarding the effects of diffiectasses of this core collection on association
studies.

Table 14 Summary statistics of SPAD traits across the SCRURE classes

Growing Statistical STRUCTURE classes LSDy
conditions summary Class 1 Class2 Class3 Class4 o5
Vernalized 2007 Mean 36.10 33.62  31.06 30.67 3.346
# of samples 38 69 8 48 -
Std. error 0.941 0.699 2.052 0.838 -
Non-vernalized Mean 33.93 35.74  30.78 31.66 3.195
2006 # of samples 38 69 8 48 -
Std. error 0.899 0.667 1.960 0.800 -
Non-vernalized Mean 34.461 3756 29.867 28.186  3.795
2007 # of samples 37 68 8 48 -
Std. error 1.079 0.796 2.320 0.947 -

2indicates the significant mean differences ffhmnd vice versa i\

5.2.1.2 Correlation of SPAD traits grown in differant conditions and years:
Pearson correlations of SPAD vernalized 2007 wiBAB 2006 and SPAD 2007 of non-

vernalized conditions was 0.45 and 0.49 respegtivel spite of being different years,

correlation between SPAD 2006 and SPAD 2007 withi@ non-vernalized condition was

higher (r = 0.66) than with vernalized conditiorhi§ might be the reasons for getting different
associated markers as well as LC-MS peaks in oelath SPAD traits measured even in the
same years.

37



5.2.2 Association study of LC-MS peakswith SPAD traits
In RF regreSS|on of LC_MS peaks on the SPAD under vernalization 2007
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Fig. 22: RF regression selected the top 30 MS-peaks fc

variance explained was very low?#2.28 %). SPAD residuals on vernalized condition in 2007 yeec
color indicates common peaks with non-vernalizeaddion.
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Fig. 23 RF regression selected the top 30 MG- peaks fc Fig. 24 RF regression selected the top 30 MG-peaks fc
SPAD residuals on non-vernalized condition in 20Réd colo SpPAD residuals on non-vernalized condition in 20&&c¢
indicates common peakS common with vernalized ¢mmrdanc color indicates common peaks common with verna
blue color indicate common within non-vernalizeahdition. condition and blue color indicate common within fon

vernalized condition.

Similarly, 25 known centrotypes and 2 peaks witknanwvn centrotype in the top 30 selected peaks
found important in explaining the variances of SP&BIt under the non-vernalized condition
(R?=22.39 %) of 2006 (Fig. 23). In case of non-vemeali condition of 2007, the top 30 peaks
consisting of 20 centrotypes were importantly aissed with SPAD trait (B=21.44 %)(Fig. 24).
Within non-vernalized condition, 8 centrotypes cstitsy of 12 (based on MSE) and 15 peaks
(based on node purity) from SPAD 2006, and 15 pézsed on MSE) and 16 peaks (Node purity)
from SPAD 2007 were found common (Table 15). Hetfeese common peaks could signify the
important compounds in relation to SPAD traits Bifassica under non-vernalized condition.
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However, only two centrotypes, namely; 5441, 9834 ane peak: A60_448 872 associated with
SPAD of vernalized condition of 2007 were matchéith weaks selected for non-vernalized SPAD
2006, and with only two peaks; 9834 457 1891 (basddSE) and 4867_175 698 (based on node
purity) of non-vernalized SPAD 2007 (Table 15). Beection of different peaks for SPAD traits of
vernalized and non-vernalized conditions is in egrent with the low correlation between SPAD of
these two conditions.

5.2.3 Association study of molecular marker with SPAD traits

In RF regression of markers with residuals of BIRB traits, four markers, namely; pTAMCAC.90.2,
Mse.M476.5, Rsa.M385.1 and Alu.M394.5 were foundhlyi associated with SPAD trait of
vernalized condition, 2007 (Fig. 25), and RF regiagsexplained 8.11 % variances of SPAD on this
condition. In association mapping studies via TASSEftware, pTAMCAC.90.2 and Alu.M394.5
were also significantly (p-value = 0.05) associatéd SPAD vernalized condition.

In non-vernalized condition, SPAD was measuredidt2and 2007, and association mapping studies
were done separately in both conditions. RF regresshowed markers; Hae.M461.3,
pGGMCAA154.10. Markers pTAMCAC-181.4 and pTAmMCAT.3B6vere the top most variable
accordingly with high impact on explaining the aades of non-vernalized SPAD 2006 (Fig. 27).
Same markers were also found the most importasslyczated with non-vernalized SPAD under 2007,
moreover, one more marker; Hae288.8 was also hasdpciated (Fig. 29). Also in association
mapping studies from TASSEL software, the same ensurés found in RF regression analyses were
the most significant markers. pTAMCAT.336.9 (p-ead0.0013), Hae.M461.3 (p-value=0.0014),
PpTAMCAC.438 (p-value=0.0024), pGGmMCAA.154.10 (puesd0.0024), Mse.M271.2 (p-
value=0.0027) and pTAMCAC.181.4 (p-value=0.0062evtke top most important markers. Out of
top five markers obtained from RF regression, tope markers selected from RF regression were
same as TASSEL's result. In these RF regressidss,nBarkers explained 10.14 % and 8.98 %
variance of non-vernalized SPAD 2006 and 2007 otispd/. Box plots in Fig. 26, 28, 30 (see
appendixshowed only few markers seem associated with SPADunder different conditions.
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Fig. 25 List of the selected markers onFig. 27: List of the selected markers on RFig. 29 List of the selected markers on RF
RF regression on the residuals of SPAEegression on the residual of SPAD on Nregression on the residual of Nuarnalizec
on vernalized 2007 vernalized 2006 SPAD 2007
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5.3 Discusson

Association study of LC-MS peaks with SPAD traits:

LC-MS peaks associated with SPAD was selected derato identify metabolites involved in
leaf color (measured by SPAD) Bf rapa. The differences in leaf color as well as assediat
LC-MS peaks were observed between with- and witheetnalization treatment. Among the
top 30 LC-MS peaks association with SPAD under akzad condition, 24 peaks were from 22
centrotypes, suggesting the possibility of 22 défé compounds; however, the remaining 6
peaks did not have a centrotype assigned. Thosks pgh unknown centrotype might be
different compounds.

Under the non-vernalized condition, eight centreygonsisting of 11 peaks associated with
SPAD traits of plants grown in 2006 and 15 pea&mfplants grown in 2007 were in agreement
despite the different growing years. Those 8 céyes most probably are the important
compounds that are involved in leaf color developiménder non-vernalized condition. The
remaining peaks were not in agreement with the pé&aknd under the non-vernalized treatment
indicating a high influence of environmental coradis, even though plants were grown in a
similar growth season (August). In comparison wigaks selected for SPAD of vernalized
plants, only three centrotypes and one
unidentified peak were in common. Those «
common centrotypes and peaks suggest a set
of basic compounds which are essential for //\
development of different colors. e
The SPAD correlation was higher within the -
non-vernalized conditions despite grown |n
the same seasons of different years than thasft
of vernalized plants grown in the same year® . mmion 200 Noovemalizaion, 2007 Vemeizaion, 2007
but in different seasons. This showed that. -

. . Fig. 31: Changing patterns of SPAD values
leaf color was influenced under the different,” jitferent morphotypes under with and
treatments and growing seasons. Under theggthout vernalization treatments.

two treatments, only the light condition was

different because of growing the plants in difféareronths. Vernalized plants were grown in
March 2006 and non-vernalized plants were grownteartsplanted in August (in both 2006 and
2007) when the day length is longer and the intgns light is higher. Besides, vernalized
plants also develop faster and vigorously that mlbgcate metabolites to, for example flowers
and other reproductive parts earlier. Althoughritean SPAD values varied only in class 1 and
2 under with- and without- vernalization treatméfable 15), the variation SPAD values were
observed on morphotypes (Fig. 31). Morphotypeshsag VT, KOM, TG had higher SPAD
value under vernalized condition but other morppesyhad high variation. The differences in
SPAD values might be due to either light conditduring the plant growth or vernalization
effect. A separate study is needed to partitionetfiect of vernalization and / or light in leaf

——BRO —®—CC FT K —¥— KOM *—MiZ —+4— OR
—pPC ——S0 —-—T —0—T6  —=\VT WO ----YS

Dvalu

Growing conditions
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color development. The annotation of selected ogyye or peaks is essential to know the
biological relevance of the compounds related &f olor in B. rapa Some of the earlier
studies also reported the influence of vernaliratan the growth and development of
morphological traits. Guet al (2004) found an increased number of inflorescdmaaches, and
reduction of stem diameter, final leaves number &ndl plant height under vernalization
treatment inB. oleracea Burtonet al (2008) observed a significant reduction of leafmiber in
vernalizedB. napus During vernalization, the exposure to low tempae slows down the
plant growth and development, and the plant resumoasal growth only after being transferred
to the higher temperatures. However, for many atoss flowering time is seriously reduced,
so they show quicker development with less vegatagrowth. Because of the late initiation of
plant growth and development, the characteristicamorphological traits are affected by
vernalization. A significant variation on leaf aaglength and shape but no effect on leaf ratio
(leaf blade length divided by total leaf length) svalso recorded due to the effect of
vernalization inArabidopsis thaliangHopkinset al., 2008). However, there was no previous
study regarding the effects of vernalization wispect to leaf color dd. rapaaccessions, and
further study is necessary to confirm the changeseaf color under vernalized and non-
vernalized conditions.

Association study of markers with SPAD traits:

RF regression and a mixed model are two differgr@aches that were used to identify
markers associated with SPAD under vernalizatiah raan-vernalization. In the RF regression
approach, SPAD under three different conditiongnakzed 2007, non-vernalized 2006 and
2007) were first corrected for the possible infloemf population structure, and then used for
marker-trait association studies. Zhabal., (2007a) found that the correction for population
structure significantly reduces the number of fgesitive results in marker-trait associations in
almost similarB. rapacore collection to the one used in this study. idpemost markers (two
in vernalized and six in non-vernalized condition®re found in common in both approaches.
However, association mapping, which takes into aostdhe population structure does not
sufficiently address the complex pattern of relatss$ of all the accessions (Zhetal.,2007b).

Yu et al, (2006) suggested to include both population singct(Q-matrix) and kinship
information (K-matrix) to have better control ofisus marker-trait association than correcting
for only one matrix. This mixed model approach urdgs both population structure (in the Q-
matrix) and individual relatedness within and begwgopulations (in the kinship or K-matrix)
to correct for multiple levels of relatedness ratthen only population structure. This approach
had a better performance on controlling both fgssitives (type | error) and false negatives
(type 1l error) with higher statistical power tharsimple regression approach, and also higher
than association analysis considering only kinsalatedness (Yu and Buckler, 2006; #¥ual.,
2006; Zhacet al.,2007b). RF regression approach can also be useddociation studies and it
gave the similar markers in this study, with thathe mixed model approach. Although, RF
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regression approach is not commonly used for aagogistudies, Lunnettet al.,(2004) used it
for genome-wide association study of SNP marketls @@mplex human diseases and reported a
better performance than standard univariate metlesgscially in high dimensional data. RF
regression can handle large numbers of predictatis small effects using their interaction
(Lunnettaet al., 2004); however, other regression methods suchss® Iregression, elastic net
cannot handle the interaction effects of predictariables (Personal communication C.
Maliepaard).

This study showed that RF regression had a comieapaibformance with mixed model without
necessity of calculating K-matrix separately likeghe mixed model approach. Zaual.,(2008)
suggested to use sufficient numbers of co-domimaokecular markers (for example; SSR
markers) rather than dominant markers (for exaniRh?D, AFLP, myb) distributed across the
genome in calculating population structure and famrelatedness of individual accessions.
However, only 359 AFLP markers were used for thiglg, where only 90 markers have their
map position. Hence, we are not sure whether thhes&ers are sufficient in number and well-
distributed across the whole genome. Thereforeasisggnment of map position to markers and
maintenance of sufficient markers through out teeagne is essential to confirm these results
and to draw the conclusion on the necessity of dhkeulation of kinship relatedness of
accessions for the association study.

Similar to LC-MS peaks-SPAD association, the sintjjan marker-trait association was found
for SPAD traints under non-vernalized treatment@and 2007) than that of vernalized (2007).
Among the top 30 RF selected markers, 9 markerg Wwecommon in association with SPAD
under both vernalilzed and non-vernalized condgjand 12 markers were common with non-
vernalized conditions. However the common markersd within non-vernalized condition
were in the top rank with high importance (markegdréd box in Fig. 25, 27, 29). Zhat al.,
(2007a) also found no correlation in days to flamgr(DF) trait under with- and without-
vernalization. The previous literatures reporte@ tbffect of vernalization treatment on
morphological traits (discussed earlier). Thuss thuggests that SPAD might have different
QTLs under these two conditions. In a QTL mappitglyg in a doubled haploid population
(namely DH68) of a cross YS 143 x PC 175 undervemalized treatment, the same QTLs
had recorded for SPAD of two different growing sees April and August in 2007 (Personal
communication:Dunia Pino Del Carpio), which supports the simfilarin the results of
association studies within the non-vernalized tneait. But the markers for those QTLs were
different from the results of this study, which midpe because of different mapping population
as well as allelic frequency. The oil type acceassicsuch as YS-143 (one of the parents of
DH68) were very few (only 8 accessions) in cordemion, which cause the variation in allelic
frequency. Therefore, it is important to take iatwount for the effect of vernalization treatment
and growing conditions when carrying out metabahd genetic studies B. rapaaccessions.
Box plots in Fig. 26, 28 and 30 showed the smallferences in SPAD trait with respect to
marker alleles indicating no strong associatiormairker-SPAD trait. Reasonably, the SPAD
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trait could have relatively less variation in tpigpulation or the associated markers may not be
representing the genomic regions contributing leaibr development. The SPAD value of
different morphotypes in Fig. 31 also explainedtigely small range of variation within each
growing condition. Thus, the use of populationhwitider variability in leaf color or gene-
targeted markers genotyping could be helpful fothier research.

5.4 Conclusions

The effects of vernalization together with lighthdations during plant growth were discovered
in identifying LC-MS peaks and makers associateth VPAD traits inB. rapa accessions,
which indicate the influences of environmental éaston metabolic profile as well as genetic
factors of leaf color development. RF regressioly enth structure correction had comparable
performances with unified mixed model approachexding including both population structure
and kinship relations of the accessions.
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Chapter 6: Network Analysis of metabolic peaks assmated with
carotenoid pathway and leaf color oB. rapa

6.1 Materials and Methods

A Network is an extended form of graph with addigibinformation on the vertices and the edgfes
the graph (de Noowt al., 2005). In marker integrated metabolites netwotks, vertices are
metabolites (or LC-MS peaks) and markers, and edgesspond to their correlations, where an
edge is given between vertices if the metabolittabwite correlations or marker-metabolite
associations are higher than some pre-definedhibidss Simple Pearson correlations and patrtial
correlations were calculated to construct metabaglierelation networks. The stronger the
correlations, the thicker the edges while the highe degree of connections, the bigger the size of
vertices. Hence, correlation networks give a gogdalization of how metabolites are related to
each other, and also give the functional and régulaelations of metabolites by comparing them
with known biochemical pathway (Urseet al., 2008). For the construction of the metabolic
networks, Pearson correlations were estimatedddarheted metabolites, and also for 30 unknown
metabolites selected by random forest (regresgipnoach) statistical analysis on the SPAD trait
(vernalized condition 2007). Correlations were wlalied after correction for population structure to
remove the spurious correlations. This was donsttmyng residuals of metabolites in analysis of
variance (ANOVA) with four structure groups, anerhthe correlations were calculated on those
residuals.

In the simple Pearson correlations (zero-orderetations), there may be overestimation of
correlations because of both direct and indirdetioms between metabolites. This also estimates
false correlations between two metabolites, whigghinbe because of other metabolites of the
pathway. Thus, those networks may not have stfaigiard correspondence with the underlying
metabolic reaction network (Khanin and Wit, 2007rlyenthalet al.,2006; Steueet al., 2003).
Partial correlation coefficients were used to ffiltee causal relationship of metabolites due to
indirect effect of other metabolites from large tars of potential links in simple correlation which
measures the direct correlation after removingetifiects of intermediate metabolites or ancestry
metabolites of the pathway (Khanin and Wit, 200he exact undirected dependency graphs (UDG)
were constructed for n metabolites (16 metabaiiteébke carotenoid pathway and 30 in vernalized
SPAD network) by estimating full-order partial adations. In full order partial correlation, n-2
variables (14 metabolites in the carotenoid pathaved/28 peaks in SPAD network) were controlled
while calculating the correlation between the remmg two because it is not possible to control one
or a set of specific metabolites in undirected petwOpgen-Rhein and Strimmer, 2007). Partial
correlations give the exact correlation between itwatabolites, even though two or more than two
indirect pathways are present (de la Fuettal., 2004). Thus, comparison of simple and partial
correlation networks indicate the direct or indineetabolites relations in the underlying pathway.
The associations of markers with metabolites waesdyaed by one-sample t-tests of each marker
with the residuals of the SPAD traits, and thessst-results were then integrated into the partial
correlation network by using the t-test statistiovisualize the association of the markers with the
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metabolites. All the t-test statistics were divididthe highest one to convert them into 0-1 ssale
that it will be in the comparable with metabolitetatbolite correlations for effective visualization.
Metabolite-marker integrated networks provide tifermation of the linked markers of metabolites
in the pathway. Markers which are associated witihenthan one metabolite might linked to genes
involved in transcriptional regulation, and, in trast, more markers associated with one metabolite
might signify the presence of multiple QTL effeots that metabolite. All the correlations, partial
correlations and t-test results for marker assoasitwere calculated in the R-statistical software.
Full-order partial correlations were estimated byng the “corpcor” package (Schaeétral.,2008)
while  their  significance tests were calculated vidhe function “pcor.test”
(http://www.yilab.gatech.edu/pcor.himlAll the networks were constructed using the Pgeph
drawing software (Batagelj and Mrvar, 200f8) visualization of the correlation matrix of
metabolites and associated markers. In all netwaiksple and partial correlation and marker-
metabolites association having g-value < 0.05 wesed as a threshold to retain an edge in
metabolites networks and metabolites-marker assmtigAn FDR correction algorithm suitable for
dependency condition developed by (Benjamini ankutfeli, 2001) was used to calculate g-values
in the R-software. This algorithm is less conséveathan Bonferroni (Salvadaat al., 2005) and
local FDR (fdr) (Aubertet al.,2004), and is superior in controlling false disagvrate in highly
correlated variables (Pounds, 2006). For easy pirgtation and visualization, correlation of
metabolites have > |0.5| were marked with greeor,cahd the remaining ones in grey scale, while
all the marker-metabolites association were presgdnta red colour.

6.2 Results

Networks constructed based on simple and partiakd@e correlations as well as markers
integration for (1) targeted metabolites of caretdnpathway, analyzed by LC-MS, and (2)
selected LC-MS peaks of unidentified compoundstedlato SPAD traits (leaf color) of
vernalizedBrassicacore collection are shown below:

6.2.1 Networking of targeted metabolites of Carotemids and tocopherol pathway
Simple correlation based networking shows that rmb#te metabolites are related to eachother;
however, two distinct groups of networks (tocophartd carotenoids) appeared at a high level
of correlation (pearson B 0.5). Only two negative correlations were foundweaen o-
tocopherol and an unidentified compound, and betvigtein-1 and lutein-2. The metabolites
tocopherolg-tocopherol, lutein-1 and an unidentified compo@mamed as UNKNOWN in the
network figures) were less involved in this pathwé#yese had less connectivity with other
compounds (the smaller the size of vertices, thetdhe degree of connectivity) (Fig. 32).
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Fig. 3z Network visualization based on "
simple Pearson correlations of targeted
metabolites of the carotenoid pathway.
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In partial correlation network, many
relations observed in zero-order correlatipn
disappeared; however, some new relatiops,
especially negative correlations, were also
appeared. Like in the simple correlation netwovkg branches of the pathway were observed.
The tocopherol pathway splits from the carotenoathway, and linkage between thye
tocopherol and chlorophyll-a act as a bridge betwibe two pathways. Three lutein derivatives,
and in between chlorophyll-a, Lutein-2, and Lut8ihad a negative clique, while chlorophyll-a-
isomer, neoxanthin and violaxanthin, and chlorobayichlorophyll-a-isomer and violaxanthin
had a positive clique (Fig. 33).

Fig. 3% Partial correlation networks af
targeted metabolites of carotenoid pathway.. s )
and integration of associated markegrs. =
Green lines indicate a partial correlatipn
network, where solid lines for positive ang--
dotted lines for negative correlation of th
metabolites. Red lines describe the markers’ .
associations. The thickness of the lijes™ . T
represents the strength of relations. Rolind e [/ )
vertices with black labels symbolize™ S
metabolites while square boxes (pink colpr) oottt/ 7 VA
with blue label are indicating markers. Y e
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Markers’ associations with the metabolitgs ™
were integrated in the partial correlation netwaok depict the genetic information of the
pathway regulation (Fig. 33). Dotted lines betwélem marker and metabolites described the
presence of marker (gene) that had negative as®ociaith the metabolites indicating down-
regulation in the pathway (Fig. 33). Markers; pTAANKG244.7, Hae-M278.4, pTAMCAC-
258.2, pGGmMCAA-355.2, pGGmMCAA-344.8, pGGmMCAA-197.4TAmMCAC-335.7 and
pGGmMCAA-105.8 have association with at least 2 bwites. These kinds of associations
could delineate genetic loci harboring importanhege that regulate the metabolites together,
although pGGmMCAA-335.2 marker is only weakly asaton with the respective metabolites.
On the other hand, two or more than two markere\aéfliated with metabolites; chlorophyll-a,
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lutein-1 and an unidentified compound. However, ptpt analysis gave impression of having
false positive association of markers pGGMCAA-10pB8GmMCAA-332.4, pGGMCAA-279.3
and pGGmMCAA-353.0 with an unidentified compoundd ggGGmMCAA-162.6 marker with
folate compound at 0.05 level of g-value, whereléwel of metabolites did not seem different
with alleles of the markers (Fig. 34; appendix).

6.2.2 LC-MS peaks for vernalized SPAD

Fig. 3t Simple Pearson correlatign
network of selected LC-MS peaks related, —— .

to SPAD in the vernalizeBrassicacore | |\
collection. The thickness of lings

indicates the strength of correlation, solid
lines for positive correlation and dot lings
for negative correlations. The green lines
show for correlatiorr |0.5] and grey lineg
for < |0.5|. The bigger the size of the Koo 31
vertices indicates the higher numbers| of
connection in the network. \ '

R201_504 724\

918_1095_1338

Visualization of Pearson correlatioE _ \
network of RF selected top 30 LC-ME ’
peaks for SPAD trait in vernalized condition shdhat most of the peaks have connections to at
least other peaks except 9535 543 1740, 9396 786 dsd A73_468 873. In this network,
peaks with the bigger size of vertex symbolize ghér degree of connections; whereas, the
smaller sized vertices mean lower connections. Mostmonly, peaks with higher connectivity
have a higher strength of relations. Negative taticns (dot lines) were also observed between
some peaks. Peaks with centrotype 5441, 7599, 10088, 6528, 9244 and 6967 had high
numbers of connections with other metabolites. ¢yppes coded by a letter “A” followed by
numbers, for example, A60, A61, A201, A298 and AdEe for all the peaks that did not have
centrotype (Fig. 35).

In partial correlation based networking, only fewnnections remained while some new
relations were also established. The LC-MS peald$ 9543 1740 and A73_468 873 have new
relations of positive correlation with A298 378 288nd 5441 407_816 respectively although
they were free in the simple correlation networleld®ons between 10208 569 2313 and
9834_634_1891, 9273_837_1659 and 7209 536 1159, 808 971 with 6487_523 971 and
7599 777 1271, and A478 454 783 and 5210 453 78Bspemained in both simple and
partial correlation network with correlation > 0Similarly, A61_449 173 and 7599 777_1271
had negative correlation in both correlation neksoll the green lines described correlations
between the metabolic peaks, whereas red lines slssaciations of markers with metabolites.
Marker information was integrated into the partalrelation network, where more than one
marker was related to the most of the metabolitemetabolic correlation network indicated by
green lines, the thicker the lines, the higher shength of correlation. Similarly, markers
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integrated with metabolic peaks shown in red ling® thicker the line, the higher the

explanation of variance of the metabolic peaks.tidi@ peaks which have connections with the
same marker(s) may be either the same compoundkeoco-regulated compounds. Some
markers have negative association (red dotted)lwéh metabolites, where the mean of peak
intensity was higher with the recessive markerlallélowever, some peaks were associated
with more than one marker, for example; peak 52%8_483 has connections with 16 markers
(Fig. 36).

¢ _,?cAP«v«aGE MA@NU'WSA A "‘SB'NMMQ,!JT N“(;NJMEB .
Fig. 3€: Partial correlation network of — meemc® e W ,%GGMCM“,': ,,.‘)Gc,mcﬂ\l*w;-zam
metabolic peaks and integration (of | T
markers. Green lines  deno

correlations, where dotted line fq
negative and solid lines for positiy
correlations of LC-MS peaks. Re
lines indicate the associations
markers with peaks. Red squg
vertices represent markers and roy
coloured vertices represent LC-M
peaks.

6.3 Discussion

Network analyses were conducted on the data frogetad metabolites profile of the carotenoid
and tocopherol pathway, and, separately, on the £§GMaks associated with SPAD under
vernalization. The simple Pearson correlation wsesiio understand the interaction between the
metabolites. However, simple correlation based aeksv are of limited use because of
confounding effects of direct and indirect assaore of metabolites on each other, which can
overestimate the strength and number of links betwaetabolites (Khanin and Wit, 2007).
Hence, the simple correlatiaan not distinguish between indirect relations etabolites of the
underlying pathway. Therefore, | also investigatael partial correlations. A partial correlation
assesses the strength of the relation between stabwlites after controlling the effects of other
metabolites (Khanin and Wit, 2007). Hence, parti@irelation networks depict only the direct
linear associations of metabolites (Khanin and \2Q7; Opgen-Rhein and Strimmer, 2007).
Full-order partial correlation calculates the relatof two metabolites controlling the influence
of all the metabolites of network, which depictdyotine independent correlation between two
metabolites. However, de la Fuerge al., (2004) suggested the second-order correlation to
construct independent network. In this study, tbhk-drder partial correlation network was
constructed where lower-order partial correlatismot possible because of unknown direction
of topological order of the metabolites in undiegttnetwork (Opgen-Rhein and Strimmer,
2007).
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Network analysis of targeted metabolites of carotemd and tocopherol pathway:

In the carotenoid and tocopherol pathway, negativgelations were observed betwe&n
tocopherol and an unidentified compound, and batviecopherol and lutein-1 and lutein—2
indicating the possibly antagonistic effects betveem.

The simple Pearson correlation (simple correlatishpwed the correlation of almost all
metabolites with each other with different strengtlialse discovery control (FDR) of 0.05 (Fig.
32). Even though almost all metabolites were cotateto each other, two distinct groups of
metabolites were observed based on the strengtheotorrelation. One group consisted of
different tocopherol compounds while another grbap

chlorophyll and its derivatives, folate, lutein aris e

Glyceraldehyde-3-P

PP + pyruvate

derivatives, beta-carotene, violaxanthin and netMan k- "“Y:;?:Ezr:"v'- ¢

Those two groups indicate the possibility of twarwhes im _ . N, L.
of a pathway. Partial correlation based networkivag Flsageionn, T S
incorporated with associated markers (Fig. 33), rehle | = " adee

y-tocopherol  &-tocopherol

marker-metabolites association was calculated @b ( awcarotens  p-carotone

. v v
a-tocopherol  B-tocopherol e

level of FDR using simple two-sample t-test affer rocosneros
correcting for population structure. The partial

correlation also showed the presence of two bramoha Fig 37 Overview of carotenoid and
carotenoid and tocopherol pathway. Tocopherol arfgcopherol pathways in plants.

. . , (Source: DellaPenna and Pogson, 2006)
carotenoid were splitted into two branches from

geranylgeranyl diphosphate (GGDP) in pathway shbwiellaPenna and Pogson (200Big (
37), and have competition for the substrate GGDP éetvthese two branches (Lindgren, 2003).
Within the tocopherol sub-branch; and a-tocopherols, and- and B- tocopherols were in
separate chains (DellaPenna and Pogson, 2006; MasdieDellaPenna, 2007). This study
discovered negative correlations betwgemandp- tocopherols on the one hand, andands-
tocopherols on the other hand suggesting the gbigsif competition between two chains for
substrate but not detail previous studies on thaations were found. Similarlyy- and y-
tocopherols had associated with the one marker pG&w197-4, ands- and p-tocopherols
with another pGGmMCAA344-8. But DellaPenna and Pong&906) reported the same locus
VTEL involved in the synthesis of boéh andy-tocopherol, and VTE4 locus in the conversion
of 8- to B-tocopherols, ang- to a-tocopherol. This suggests that these markers nbighinked

to the same gene.

The negative correlation of lutein and its derivesi with g-carotene, violaxanthin and
neoxanthin indicate for the presence of separaaércind might have competition in substrate
for lutein biosynthesis. DellaPenna and Pogson g20énd Kopsell and Kopsell (2006)
demonstrated the pathway with the split of lycopene o- andp- carotene, where-carotene
involved in the synthesis of lutein, afiecarotene for violaxanthin and neoxanthin. Sincéhbo
lutein and violaxanthin are the component of caroi#, the relation of biosynthesis of lutein
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and violaxanthin was not emphasized in the liteetuHowever, it has been reported that
carotene is formed if ongring ande- ring attached to lycopene, afiecarotene formed if two
B-rings attached (Lu and Li, 2008). In this studyarker Hae-M278.4 was strongly associated
with B-carotene, neoxanthin and folate, and marker pTAQ@A8.2 with B-carotene,
violaxthin and chlorophyll-a-isomer (Fig. 3®)dicating these markers could be linked to a
common regulatory gene of this side-chain becawd&Penna and Pogson (2006) enlisted the
defferent genes were involved in the biosynthebisagch of these metabolites (DellaPenna and
Pogson, 2006). In green plant tissue, lutein immdbabundant than violaxanthin (Lu and Li,
2008). Hence, there could be competition for théssates for these two side-chains of
carotenoid pathways.

In addition, markers associated with more than twetabolites may indicate that those
metabolites might have a regulatory gene in commohe linked to same genes. In contrast,
metabolites with more than one marker could inéi@ther the possibility of markers all linked
to the same gene or the presence of multiple QTécts, if those markers correspond to
different genomic regions. The identification ofngéc map position of these markers is
essential to confirm the possibility of the presewnt one or more associated genes. Similarly,
negative association of marker-metabolites maycatei the down-regulation of gene associated
with corresponding markers will stimulate the melabs synthesis (Fig. 34; appendix). Thus,
this type of network analyses was largely usedhestudy of metabolic pathway to explore the
relations of metabolites and their genetic contra pathway.

Network of LCMS peaks associated with SPAD traits nder vernalized condition:

LC-MS peaks associated with SPAD under vernalimatondition were selected in an RF
regression approach and used for network analgsmple and partial correlations of those
selected metabolites were calculated for networdyais to know the relation of metabolites
involved in leaf color, and here again associatedkers were integrated to allow also a genetic
interpretation. The top 30 selected peaks wereiexdush a correlation network. Most of the
peaks were from different centrotypes indicatingsoly different compounds. Like in the case
of the carotenoid and tocopherol pathway above pteks with higher connectivity possibly
indicate that important compounds might play a nolthe different leaf colors (Fig. 35).

In the partial correlation network, only a few psakmained in connections than that of simple
correlation network, and also some of new connestiwere discovered (Fig. 36). The peaks
connected with very high strength of correlatiorboth simple and partial correlation networks
could indicate the possibility of having the meti#les with similar chemical structures or
strongly co-regulated compounds of the pathway.il&ity, some of the peaks with negative
correlation in both correlation networks could iwate that compounds are present in different
sub-branches of the same pathway and might haveetition for the common substrates.
Associated markers were also added in the partalelation network that will helpful to
annotate the peaks by prioritizing them. If ondl@ peaks is annotated, network analysis will
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facilitate to predict compounds, its function arahetic interpretation of other peaks of network
based on the strength of peaks correlations an#empeaks association as well as to make
genetic interpretation. Here again associated mankere identified by simple two-sample t-
test procedure after correction for population ctrce. However, the markers associated with
LC-MS peaks selected for SPAD in this network asiglywere different from the markers
identified via RF regression and the mixed modelthe association study (Chapter V).
Statistically, those differences might be due twm-step procedures adopted in this t-test
procedure, where LC-MS peaks first selected for BRAit of vernalized condition via. RF
regression and then, marker-LC-MS peaks associafiten correcting for population structure
were done. However, in marker-trait associationlissiwith vernalized SPAD trait in previous
chapter, marker-SPAD trait association was direslydied by correcting the population
structure. Hence, these were two-step procedumsetkr, biologically, the markers associated
with SPAD trait indicated the correlation of markevith the leaf color phenotypes, whereas in
case of marker-LC-MS peaks (selected for vernal@Pd@D trait) gave the marker correlated
with metabolites involved in leaf color developmeBéesides, SPAD measurement were at pre-
mature and fully mature stages of plants but LC-Mfalysis was conducted on 5 weeks old
plant samples. This difference in growth stageddcaffect on the qualitative and quantitative
composition of metabolites, and make differencesamker-trait association studies. Therefore,
annotation of LCMS peaks and further studies orrdess and function of annotated peaks, and
mapping the markers are necessary to have detailéerstanding and exploration of pathway
related to leaf color dBrassica rapaaccessions.

6.4 Conclusion

The network analysis based on simple and partialeladion of the metabolites was found
useful to know the direct and indirect relation métabolites under a certain pathway. The
network analyses of the targeted metabolites obteanid and tocopherol pathways, in this
study were in good correspondence with the undeglgarotenoid and tocopherol pathway of
the plants. The integration of associated marketke correlation network provides the genetic
relation of the metabolites in a pathway. The neking of the selected LC-MS peaks related to
leaf color ofB. rapashowed the possibility of exploring the relatiafsLC-MS peaks making
ease to annotate those peaks and their internetatider a particular pathway.
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Chapter 7: Further direction

Random forest (RF) is an example of machine legrsiatistical technique. The comparative
study with other machine learning techniques, sagbport vector machine will be helpful to
know the performance of RF classification.

RF classification gave the relative importancehaf variables in classifying the accessions into
different classes and morphotypes. Further studydayg appropriate supervised classification
techniques, such as different kinds of Discrimina@malyses will be useful to develop
discriminating equation of RF selected variables diassifying the accessions into different
groups.

Mapping of molecular markers and annotation of LG-lgeaks associated with SPAD trait is
important to draw the conclusions on the naturgeies whether major or minor genes are
related to leaf color, and understanding the regufgpathway of leaf color development.

In this study, the combined effect of vernalizatiand light condition have influence on
association studies. Hence the further study tarseép effects of these two factors will be useful
to confirm the effect of vernalization on assoadatstudies.

Network analysis based on lower-order partial datien might improve the networks of

metabolites since the full-order partial correlatiosed in this study, consider conservative in
explaining the relations of metabolites.
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Appendices

Table 1 List of accessions used in this study with geplgi@origins and their STRUCTURE classes
membership probabilities

Structure class membership

Geographic  Structure probabilities
S.N. Accession origin class C1 Cc2 C3 C4
Broccoletto (sspbroccolettg
1 BRO-025 Italy 1 0.77 0.0190.179 0.032
2 BRO-026 Italy 1 091 0.032 0.04 0.018
3 BRO-027 Italy 1 0.6720.024 0.245 0.059
4 BRO-028 Italy 1 0.8530.073 0.057 0.018
5 BRO-029 Italy 1 0.9 0.023 0.07 0.007
6 BRO-030 Italy 1 0.8380.092 0.043 0.028
7 BRO-127 Japan 2 0.17 0.4610.321 0.049
Caixin (sspparachinensis
BRO-103 Indonesia 2 0.009.771 0.213 0.006
9 PC-078 Netherlands 2 0.010.557 0.393 0.039
Chinese Cabbage (sqekinensis
10 CC-048 Soviet Union 2 0.010.477 0.476 0.03
11 CC-049 Netherlands 4 0.016.106 0.869 0.009
12 CC-057 China 4 0.0120.282 0.701 0.005
13 CC-058 Czech Republic 4 0.006.112 0.878 0.004
14 CC-059 Korea 4 0.0070.024 0.888 0.082
15 CC-060 China 4 0.08 0.0930.821 0.006
16 CC-061 Yugoslavia 2 0.008.605 0.378 0.01
17 CC-062 Germany 4 0.0350.15 0.809 0.007
18 CC-067 Japan 2 0.009.517 0.469 0.005
19 CC-068 Bulgaria 4 0.0080.057 0.931 0.004
20 CC-069 USA 4 0.0860.316 0.584 0.014
21 CC-070 Korea 4 0.0250.375 0.584 0.016
22 CC-071 Japan 2 0.05D.539 0.346 0.058
23 CC-072 China 4 0.06 0.0640.822 0.054
24 CC-073 China 4 0.0090.366 0.583 0.043
25 CC-093 China 4 0.0340.146 0.773 0.047
26 CC-094 Japan 4 0.01®».201 0.78 0.007
27 CC-095 China 2 0.2360.526 0.232 0.006
28 CC-112 China 4 0.0050.426 0.562 0.007
29 CC-113 China 4 0.0220.249 0.591 0.138
30 CC-114 China 2 0.0130.539 0.435 0.012
31 CC-125 Korea 4 0.0110.391 0.543 0.055
32 CC-140 Japan 4 0.00D.371 0.616 0.006
33 CC-141 Japan 4 0.019.027 0.947 0.01
34 CC-142 Japan 4 0.00®.018 0.931 0.045
35 CC-150 China 4 0.0180.389 0.572 0.021
36 CC-153 China 2 0.0170.604 0.366 0.012
37 CC-156 China 4 0.0770.195 0.66 0.067
38 CC-158 China 4 0.02 0.2620.653 0.065
39 CC-160 China 4 0.0090.257 0.724 0.01
40 CC-161 China 4 0.0080.367 0.617 0.009
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Table 1 (continued)

41 CC-163 China 2 0.0130.508 0.409 0.07
42 CC-165 China 4 0.0120.425 0.551 0.012
43 CC-167 China 4 0.01 0.2340.713 0.043
44 CC-168 China 4 0.0450.174 0.766 0.015
45 CC-169 China 4 0.0090.391 0.594 0.007
46 Kenshin Korea 4 0.0070.256 0.711 0.026
47 Sumiko F1 (CC1) Company 4 0.01 0.01 0.973 0.007
48 Manoko F1 (CC2) Company 4 0.032.136 0.827 0.004
49 niZ12-42 (CC3) Company 4 0.00p.018 0.973 0.003
50 Optiko F1 (CC4) Company 4 0.010.098 0.87 0.018
51 Bilko F1 (CC5) Company 4 0.009.013 0.975 0.007
52 Morilloxstorido F1 (CC6) Company 4 0.009.019 0.949 0.026
53 Vitimo (CC7) Company 4 0.0050.008 0.984 0.004
54 Nikko F1 (CC8) Company 4 0.00D.007 0.982 0.003
55 Winter pride (CC9) Company 4 0.008.011 0.981 0.004
56 Sambok rapids (CC10) Company 4 0.001093 0.884 0.012
57 Tropic emperor (CC11) Company 4 0.00B061 0.918 0.016
58 Bulam plus (CC12) Company 4 0.02D.01 0.959 0.004
59 Sun green (CC13) Company 4 0.024028 0.921 0.027
60 Gold leaf (CC14) Company 4 0.009.013 0.973 0.01
61 m1l (CC15) Company 4 0.019.106 0.862 0.013
62 m2 (CC16) Company 4 0.0050.01 0.981 0.003
63 m3 (CC17) Company 4 0.00®.107 0.883 0.005
64 m4 (CC18) Company 4 0.01 0.0780.909 0.003
65 m5 (CC19) Company 4 0.0520.02 0.923 0.005
Turnip (ssprapa)

66 FT-001 Netherlands 1 0.93 0.029.031 0.014
67 FT-002 UK 1 0.8570.074 0.029 0.04
68 FT-003 Netherlands 1 0.898.043 0.059 0.005
69 FT-004 Denmark 1 0.8390.063 0.069 0.029
70 FT-005 Germany 1 0.944.018 0.033 0.006
71 FT-047 Soviet Union 1 0.723.238 0.027 0.012
72 FT-051 Soviet Union 2 0.308.437 0.048 0.207
73 FT-056 France 2 0.240.355 0.338 0.06
74 FT-086 Pakistan 1 0.4770.14 0.243 0.141
75 FT-088 Netherlands 1 0.60D.297 0.076 0.026
76 FT-097 Germany 1 0.486.182 0.317 0.015
77 VT-006 India 1 0.4950.264 0.069 0.173
78 VT-007 Soviet Union 1 0.8320.017 0.109 0.042
79 VT-008 India 1 0.7090.089 0.132 0.07
80 VT-009 Japan 2 0.1420.801 0.026 0.032
81 VT-010 Hungary 1 0.8180.052 0.127 0.003
82 VT-011 Soviet Union 1 0.4350.492 0.056 0.017
83 VT-012 Japan 2 0.0890.64 0.061 0.21
84 VT-013 Japan 2 0.2120.764 0.012 0.012
85 VT-014 Italy 1 0.9120.031 0.048 0.01
86 VT-015 ltaly 1 0.8030.164 0.016 0.017
87 VT-017 Netherlands 1 0.8340.034 0.047 0.085
88 VT-018 Netherlands 1 0.752.071 0.173 0.005
89 VT-044 Soviet Union 1 0.8350.021 0.107 0.037
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Table 1 (continued)

90 VT-045

91 VT-052

92 VT-053

93 VT-089

94 VT-090

95 VT-091

96 VT-092

97 VT-115

98 VT-116

99 VT-117

100 VT-119

101 VT-120

102 VT-123

103 VT-137

104 Turnip primera (T1)

105 Turnip oasis (T2)

106 Turnip natsu komachi (T3)

107 natu-haturei (T4)

108 kt-189 (T5)
Pak Choi (sspchinensiy

109 PC-022

110 PC-023

111 PC-076

112 PC-099

113 PC-101

114 PC-107

115 PC-171

116 PC-172

117 PC-173

118 PC-177

119 PC-183

120 PC-184

121 PC-185

122 PC-186

123 PC-187

124 PC-189

125 PC-191

126 PC-193

127 L58

128 Green fortune (PC1)

129 White (PC2)

130 Misome (PC3)

131 Tatsoi (PC4)
Neep greens (ssperviridis)

132 KOM-041

133 KOM-118

134 TG-129

135 TG-131

Mizuna (sspnipposinica

136

MIZ-019

Italy
Netherlands
Germany
France
France

United Kingdom

Netherlands
Japan
Japan
Japan

Netherlands

Netherlands
Japan

Uzbekistan

Company

Company
Company
Company

Company

Netherlands
China
China
China
China

Hong Kong
China
China
China
China
China
China
China
China
China
China
China
China

Unknown

Company
Company
Company
Company

Japan
Japan
Japan
Japan

Netherlands

1

N

N[\)NNHNNHI—‘NNNI—‘

I\)I\JI\)I\JI\)I\JI\)I\JI\)I\JI\)I\J[\)I\JI\)I\JI\)N

2
2
2
2

NDNDDNDN

0.892 0.031

0.721 0.253

0.065
0.076
0.016
0.039
0.009
0.016
0.055
0.143
0.216
0.069
0.012
0.04
0.045
0.025
0.163
0.032
0.071
0.108
0.043

0.013
0.057
0.012
0.006
0.007
0.011
0.009
0.032
0.076
0.144
0.013
0.047
0.152
0.028
0.007
0.019
0.204
0.225
0.206

0.769.101
0.8750.097
0.8280.126
0.8220.161

0.884.051
0.1170.708
0.0520.655
0.1120.675
0.89D.078
0.71D.195
0.07@.727
0.414€.532
0.636.194
0.286.663
0.312412
0.220.442
0.190.554

0.13®.37 0.365
0.020.673 0.223
0.0310.515 0.335
0.08 0.6830.04
0.01 0.6740.313
0.009.948 0.023
0.019.815 0.159
0.01 0.8720.074
0.01 086 0.122
0.088.858 0.041
0.0920.882 0.018
0.0110.904 0.08
0.014€.926 0.019
0.0080.955 0.011
0.008).866 0.108
0.009.915 0.075
0.0320.806 0.154
0.019.945 0.036
0.0090.761 0.212
0.028858 0.063
0.000.938 0.047
0.060.861 0.065
0.028.866 0.028

0.126
0.082
0.119
0.197
0.003
0.021
0.007
0.044

0.008
0.012
0.008
0.004
0.041
0.028
0.018
0.005
0.008
0.005
0.019
0.051
0.008
0.007
0.078

0.079.802 0.06 0.064
0.11 045 0.362 0.079
0.17®.792 0.022 0.013
0.169.636 0.168 0.033

0.12®.699 0.09 0.082
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Table 1 (continued)

137 MIZ-128
138 Mizuna (K1)
139 Mibuna (K2)
140 Green boy (K3)
Turnip rape (sspleifera)
141 OR-209
142 OR-210
143 OR-211
144 OR-213
145 OR-216
146 OR-219
147 S0-031
148 S0-032
149 S0-034
150 S0-035
151 S0-037
152 S0-038
153 S0-039
154 S0-040
155 WO-024
156 WO-080
157 WO-081
158 WO-083
159 WO-084
160 WO-085
161 WO-087
162 RC-144
163 RO18
Yello sarson (sspricolaris)
164 YS-033
165 YS-143
Wutacai (sspnarinosg
166 PC-105
167 cwu56

Japan
Company
Company

Company

China
China
China
China
China
China
USA
India
Bangladesh
Bangladesh
Bangladesh
Germany
Bangladesh
Canada
Sweden
Pakistan
Pakistan
Pakistan
Pakistan
Pakistan
Pakistan
USA

United Kingdom

Germany
USA

China

Zai Caitai (sspchinensisvar. purpureaBailey)

168

ZCt62

NI\)I\JN

NNNRPRPRPRP L gWhwon ST NNNNNON

3
3

3
3

2
2

2

0.2040.659
0.190.747
0.053.539

0.05@.536

0.173.736
0.0660.737
0.1030.813
0.172 0.5

0.1880.63

0.043
0.017
0.152
0.329

0.031
0.19
0.028
0.189
0.167

0.14 0.6760.112

0.4450.274
0.1070.447
0.02D.01
0.004.006
0.180.375
0.149.285
0.004.009
0.788.176
0.88®.047
0.319.262
0.348.219
0.30D.092
0.164.401
0.3940.4
0.348.427
0.0480.334
0.008.014

0.00®.009
0.0030.007

0.024
0.029
0.015
0.006
0.047
0.032
0.005
0.032
0.05
0.247
0.255
0.334
0.28
0.022
0.044
0.03
0.017

0.009
0.005

0.03 0.8950.063
0.009 0.899 0.081

0.073 0.757 0.031

0.094
0.039
0.256
0.079

0.06
0.007
0.056

0.139

0.015
0.072
0.257
0.416

0.954
0.984
0.397
0.534
0.982
0.009
0.017
0.176
0.177
0.273
0.155

0.184
0.185
0.589
0.964

0.976
0.985

0.013
0.01

0.139

Frequency

1.0

-05

Pearson

T
0o 05

Correlation

Frequency

4000

3000
1

2000

1000

MNo. of NMR bins = 236
No of Correlation = 27,730

-05

T
oo

05

Pearson Correlation

Fig. 3: Frequency distribution of

Fig. 10: Frequency distribution of

correlation among morphological traitsorrelation among NMR bins
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Table 4: Loading values of morphological traits (Vernatizen first three PCs

Variables PC1 PC?2 PC 3

PL 0.95 0.07 0.10
LP 0.90 0.25 0.14
LL 0.88 0.31 0.22
DTF 0.86 0.04 -0.07
LB 0.82 -0.13 0.11
LA 0.58 0.68 0.05
LES 0.46 0.09 0.22
LW 0.43 0.74 -0.05
SPAD 0.42 -0.27 -0.19
PP 0.41 -0.46 0.013
Lbl 0.39 0.65 0.36
pl 0.06 -0.47 0.74
pS 0.06 -0.46 0.58
pL -0.02 0.48 0.47
LI -0.04 -0.06 0.71
pP -0.06 0.74 0.08
pwW -0.07 0.85 -0.37
pA -0.08 0.87 -0.14
Cw -0.11 0.76 -0.20
CL -0.11 0.76 0.09
LC -0.42 0.53 0.25
LN -0.47 0.22 0.53
PfH -0.66 0.44 0.11
PB -0.66 0.07 0.18
pC -0.76 -0.10 0.05
PH -0.80 0.33 0.15

Importance (unscaled)

Importance Spectrum: first 200 genes Importance Spectrum: all genes Importance Spectrum: first 200 genes

0,015

0,020
0.004
I

0,003
I

0,015
0,005 0,010
0,002
I

0.010
Tmportance {unscaled)
0.001
|

0,005

0,000
[
0,000

0.000

100 150 50 100 150 100 150
(Ordered) Variable (Ordered) Variable (Ordered) Variable

Fig. 14: Variable importance Fig. 1€ Variable Fig. 1& Variable importance

spectrum plot of the top 200importance spectrum plotSPectrum plot of the top 200

markers in RF classification of all NMR bins (236) in LC-MS peaksinRF

of accessions into RF classification of pIaSS|f|cat|on of accessions

STRUCTURE four classes —accessions into into four STRUCTURE
STRUCTURE four classes classes
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Table 9 List of RF (classification) selected markers freomparisons made among all four STRUCTURE

groups, CC versus PC, and European versus Asiapgaf aB. rapacore collection genotyping with 359
AFLP and MYB markers

S.N Markers Map position S.N. Markers Map positon
1 Alu-M175.5%¢ - 31 pTAMCAC-165.6 Chr.10: 78 cM
2 Alu-M258.1-¢¢ - 32 pTAMCAC-171.5° -

3 Alu-M357.F Chro.1: 60.3 cM 33 pTAMCAC-192-8° -

4 Alu-M380.0"° Chro.3: 6.1 cM 34 pTAMCAC-244-2 Chr.10: 76.1 cM
5 Alu-M401.8-2¢ Chr.7: 83 cM 35 pTAMCAC-273'6 Chr.2: 84.5 cM
6 Alu-M487.5"¢ Chr.1: 61.6 cM 36 pTAMCAC-290°9 Chr.3:1.2cM

7 Hae-M199.6° - 37 pTAMCAC-293.6° Chr.3: 0.6 cM

8 Hae-M202.22¢ Chr.7: 83.5 cM 38 pTAMCAC-315-9° -

9 Hae-M341.6°¢ - 39 pTAMCAC-326.% -

10 Hae-M356.5 - 40 pTAMCAC-63.8 Chr.5: 77 cM
11 Hae-M373.9 Chr.7: 15.4 cM 41 pTAMCAC-94'6" -

12 Hae-M458.5 - 42 pTAMCAT-170.3% -

13 Mse-575.5*" Chr.7: 40.2 cM 43 pTAMCAT-173'8°9¢ -

14 Mse-M197.3¢ - 44 pTAMCAT-175.7° -

15 Mse-M232.&° - 45 pTAMCAT-199.6%¢ -

16 Mse-M242.0 - 46 pTAMCAT-209.8° -

17 Mse-M308.8¢¢ - 47 pTAMCAT-240.3 Chr.5: 54.2 cM
18 Mse-M354.8 - 48 pTAMCAT-243.4° -

19 Mse-M356.4%° - 49 pTAMCAT-252.2 Chr.10: 77.8 cM
20 Mse-M431.8 - 50 pTAMCAT-278.7 -

21 Mse-M455_7¢¢ - 51 pTAMCAT-282.5" -

22 pGGmMCAA-127. - 52 pTAMCAT-313.16°¢ Chr.1: 63.7 cM
23 pGGmMCAA-152.22" - 53 pTAMCAT-334.2 Chr.8: 78 cM
24 pGGmMCAA-165.8 Chr.2: 67.8 cM 54 pTAMCAT-336°9 -

25 pGGMCAA-181.5° - 55 Rsa-M124 % -

26 pPGGMCAA-217.2° - 56 Rsa-M241 %9 -

27 PGGMCAA-224.3 Chr.6: 46.9 cM 57 Rsa-M268.8 Chr.10: 78.7 cM
28 pGGMCAA-359.2 Chr.8: 34.5 cM 58 Rsa-M346.4 -

29 pTAMCAC-112.3%¢ - 59 Rsa-M489 % Chr.7: 84 cM
30 pTAMCAC-157.8%2 -

Lall 4 STR groups-1 vs. 2”1 vs. 3% 1vs. 452 vs. 3%

2 vs. 4]-3 vs. 49-CC vs. PC-EU vs. Asian turnip
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Table 11: List of RF (classification) selected NMR binsrtacomparisons made on all four

STRUCTURE groups, CC versus PC, and European vAsas turnips of 8. rapacore

collection

S.N. NMR bins S.N. NMR bins S.N. NMR bins

1 nmr-0.88-66° 19 nmr-2.28-63 37 nmr-5.2-57

2 nmr-0.92-68 20 nmr-2.36-63° 38 nmr-5.24-56°
3 nmr-0.96-66° 21 nmr-2.4-63 39 nmr-5.84-5%2
4 nmr-1-66 22 nmr-2.48-63 40 nmr-5.88-55°
5 nmr-1.08-66° 23 nmr-2.64-62 41 nmr-5.92-58"
6 nmr-1.24-65% 24 nmr-2.68-62* 42 nmr-5.96-5%
7 nmr-1.28-65% 25 nmr-2.8-62 43 nmr-6.16-54
8 nmr-1.32-65° 26 nmr-2.84-62% 44 nmr-6.28-54°
9 nmr-1.36-6% 27 nmr-2.92-62 45 nmr-6.52-54
10 nmr-1.48-65°9 28 nmr-3.36-61 46 nmr-7-532°
11 nmr-1.52-65%° 29 nmr-3.4-6% 47 nmr-7.4-53
12 nmr-1.56-65% 30 nmr-3.84-58 48 nmr-7.64-51
13 nmr-1.6-65° 31 nmr-4.04-59 49 nmr-7.68-51*
14 nmr-1.76-64° 32 nmr-4.56-58 50 nmr-7.76-5%
15 nmr-1.8-64%" 33 nmr-4.6-58 51 nmr-7.84-51?
16 nmr-2.08-64° 34 nmr-5.04-57 52 nmr-8.08-50
17 nmr-2.12-68° 35 nmr-5.08-57 53 nmr-8.2-53%"
18 nmr-2.16-63% 36 nmr-5.12-57" 54 nmr-9.84-48

Lall 4 STR groups-1 vs. 2,°-1 vs. 3% 1 vs. 4%-2 vs. 352 vs. 4-3 vs. 4%-CC vs. PC!-EU vs. Asian turnip
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Table 13 List of RF (classification) selected LC-MS pedilaam comparisons made on all four STRUCTURE classes
CC versus PC, and European versus Asian turnifBofrapacore collection

S.

Centrotype_mass
_scan No.

Chemical
formula

Chemical compounds

S. Centrotype_mass
N. _scan No.

57
58

3435_479 161

3384 259 159
4108_360_404
4108_361_402

4128 402_41%

4128 403 416

4128 404_415

4128 470 418

4294 454 48Y
4294 667_48Y
4373 210 501
4373 792_49%
4492 351 520
4492 352 520

4492_368_52F

4492 369 519
4492 385 527
4492 453 519
4492 705 520
4492 _706_518
4492 _707_519
4492 708 520
4492 709 519
4492 721 _521°
4492 _730_520
4492 _731_520
4492 _761_521
4504_440 518
4577_517_581
4815_750_689
4838 405_695

4867_502_70t"
4932_691 714
4932_692_718

4990 1479 738

5028_1124_74%

5028_1125_748

5028_1126_746
5028_1128 746
5028_1139 74¢
5028_1140_746
5028_1142_746
5028_1193_748
5028_1215_748
5028_1216_746
5028_1217_745
5028_562_746
5028_563_746
5236_1191_78%
5236_1192_787
5236_353_78%
5236_354_78%

5236_355_78%
5236_443_78%°
5236_707_78%
5236_708_78%

5400_501_797
5400_502_796*"

CHINGS
CHNGS

ClGH 1809

CuHaNGS

Ca4H3s011

C49H58030

Ci16H1509
CieH1809
CieH1809
CieH1809
C16H1809
C16H1809
CieH1809
CieH1809

Ca4H3s011

Isopropyl glucosinolate
Isopropyl glucosinolate

caffeoylquinic acid (isotope 353)

Methylpropyl glucosinolate (isotope)

4,7-Megastigmadiene-3,9-diol, 34
Ketone, 9-O-[?-D-apiofuranosyl-
(1?2)-?-D-glucopyranoside]

Quercetin 3-(2-

feruloylsophoroside) 7-diglucosidg

chlorogenic acid
chlorogenic acid
chlorogenic acid
chlorogenic acid

chlorogenic acid
chlorogenic acid
chlorogenic acid
chlorogenic acid

a glucopyranoside-derivative (4,7-
Megastigmadiene-3,9-diol, 3-Ketone,
O-[o-L-arabinopyranosyl-(1->)-D-

glucopyranoside])

h

59 5248 1193 786

60 5248 1272 78%
61 5248 1273 785
62 5248 1274 785

63 5441 433 819

64 5441_434_820

65 5600_357_849

66 6124 173 92t

67 6124 337_92tF
68 6124 338 92tF
69 6124 339 91%°
70 6124 359 92t¢f
71 6124 _675_92tF
72 6481_173_971°

7: 6481_337 971

74 6481_338_971
75 6481_339_97%
76 6481_359 97%
77 6481_405_9741°
78 6481_675_976
79 6481_697_96%
80 7622 291 1278
81 7673_431_1290
82  7746_115 131%
83 6573 _431_101%
84 6736_214 1054
85 7033_925 1092
86  7448_658 1229
87  7550_1287_125%
8{ 7550_643_125%
89 7606_445 1274

9(  7746_279 1312
91  7781_422 1321
92  7781_425 1318
93 7784 643 _131¢
94 8845_387_1482
95 8149 308 1378

96 8253_989 1388
97 8515 649 141b
98 8515 _650_141b
99 9153_429 1611
100 9223 415 1631
101 9244 436_1640
102 9399 402_170%
103 9640_479 1787
104 9722 462_182¢
105 9722 463_182¢
106  10224_748 2357

107 10038_418_2103
10¢  A190 388_1036
109  A194 501_796
11C  A42_431 1949

111 A201_504 724
112 A220 221 943
113 A45_433 1247
114 A682_609_2068

115 A62_449 632
116  A86_484 2174"

Chemical Chemical
formula compounds
CigHs6029 unknown
kaempferolcaffeoy
CagHs6029 Itetraglucoside
CigHs6029 unknown
CigHs6029 unknown
fragment
Coumaroylquinic
Ci6H1808 acid |
fragment
Coumaroylquinic
Ci16H150s acid Il
Malic acid, O-(4-
Hydroxycinnamoyl)?
CiHANOS,  Hexyl glucosinolate 2

L 4 STR groupg1 vs. 271 vs. 3% 1 vs. 4%-2 vs. 352 vs. 4/-3 vs. 49-CC vs. PC}-EU vs. Asian turnip.
Note: Centrotypes coded by an alphabet “A” follodsgchumbers, such as A42, A62 and so on meant pétakso centrotype.
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Table 15 List of selected LC-MS peaks for SPAD traits bypdom forest regression
based on percentage decrease in MSE

SPAD vernalized condition SPAD non-vernalized condition| SPAD non-vernalized condition
2007 2006 2007

Peaks %INncMSE| Peaks %IncMSE Peaks %IncMSE
10099 223 2165 3.891396 10043 615 2104 4.30H 10074 919 2140 8.713213
10208 569 2313 3.54392 10074 919 2140 1.87E+( 10074 920 2140 6.124533
4373 408_495 5.17449 10074 920 2140 1.47E+(J 10074 951 2139 8.094092
5210 453 783 8.88985 10074 951 2139 1.04E+(d 10094 761 2162 6.98667
5268 1409 785 3.7724 10094 761 2162 2.12E+( 10094 762 2161 7.097879
5441 407_816 16.35216| 10094 762 2161 1.89E+(J1 3435 542 159 5.665481
6317 824 943 3.963386| 3498 551 160 5.33E+p0 3757_192 173 6.56678
6487 _407 971 5.361152 3583 300 162 4.79E+00 4484514 5.221399
6487 523 971 5.715385 3874 436 206 5.04E+00 4631648 5.150911
6528 523 994 4.297159 3930 436 223 4.15E+00 4630624 9.874111
6756 _668 1058 4.7709995441 407_816 4.06E+00| 5066 323 747 5.647579
6967_935 1080 3.513804 6120 715 922 4.59E+00 5865887 5.851048
7209 536 1159 3.8977536317 385 942 4.04E+00| 6236 1081 925 5.16328
7599 697 1272 3.664648 6456 393 962 1.41H 6882_1015 1079 6.683104
7599 777 1271 11.22918 6894 439 1077 5.96H 6882 359 1076 11.90077
7918 1095 1338 3.7254534 7119 455 1122 6.67H 6882 666 1076 6.57919
8156 475 1377 4127084 7150 433 1134 8.78H 6882 697 1075 6.133402
9236 1157 1641 4.297 7276_803 1181 5.41E+00 7252 378 1176 5.655705
9244 705 1644 3.92075 7360_770_1209 5.20E+Q 7276_801 1180 5.391558
9273 837_1659 3.640021 7497 311 1239 4.24H 7276_802 1180 5.477931
9396 _746_1699 3.45931 7550 1287 1257 6.32E+( 7276_803 1181 6.010609
9535 543 1740 4743934 8149 454 1376 4.668 7360_769 1209 9.454385
9834 634 1891 3.939378| 8340 _734 1394 1.22E+Q 7360_770_1209 11.32978
9838 661 1891 5.092471 8421 843 1409 4.058 7550 1287 1257 7.55464
A201 504 724 4.032738 9372 223 1691 4.37E| 7550 1288 1257 5.229669
A298 378 1894 3.87930| 9492 415 1738 5.48E+00 7683 345 1296 5.649296
A478 454 783 5.09543{ 9834 457 1891 5.10E+00| 8340 734 1394 11.79727
A60_448 872 3.504676| 9997 413 2056 1.45E+P1 9034 223 1549 BOB37
A61 449 173 5.008768 A211 518 1036 4.29E1 9492 415 1738 8.34907
A73 468 873 4.482524 A60 448 872 7.93E+00| 9834 457 1891 6.425288

Note: Color represents the matching of LC-MS peaks
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into four

ions

-axi

Intensities were In g

Box plots of RF selected 64 LC-MS peaks on cfasgion of all access
STRUCTURE classes. In box plots, 1 indicate fossld, 2 for class 2, 3 for class 3 and 4 for class

and log (base 2) of peaks

Fig. 2C
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Fig. 21: Comparisons of two small oil groups on the lesfethe distinguishing LC-MS
peaks identified in RF (Classification)
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Fig. 2€: Box plots showing the level of SPAD (correctedfopulation structure) of vernalized
condition in relation to the alleles of associatearkers
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Fig. 2€: Box plots showing the level of SPAD (correctedgopulation structure) of non-

vernalized condition, 2006 in relation to the akebf associated markers.

Note: “-absence of band (red color) ahgresence of band (green color) of dominant marker.

Markers showing allelic differences with SPAD vaweere shown here.
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Fig. 3C: Box plots showing the level of SPAD (correctedgopulation structure) of non-
vernalized condition, 2007 in relation to the akebf associated markers.
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Fig. 34: Box plots showing the level of targeted metalkeslin relation to the alleles of the

markers
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