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Abstract
1.	 Plants are members of complex communities of which arthropods are the most 

speciose members. The role of carnivores in shaping the outcome of multi-trophic 
interactions by top-down control of herbivores has been well studied. Particularly, 
the positive impacts of natural enemies of herbivores on plants through direct 
(consumptive) and indirect (non-consumptive) effects on their prey and hosts 
have received considerable interest, while multi-trophic interactions that result in 
negative effects on plants have received little attention.

2.	 Negative impacts of carnivorous arthropods have been documented and arise 
when carnivores directly affect plants and/or their interactions with beneficial 
arthropods. In general, negative effects may be compensated by positive effects 
of other carnivorous arthropods, but their presence and significance is likely to be 
underestimated in tri-trophic interactions.

3.	 Recent studies have revealed that the composition and dynamics of the plant and 
arthropod community have a significant effect on plant fitness. Therefore, we en-
courage an approach that accounts for a larger community of species and interac-
tions associated with plants, including interaction types in which carnivores may 
negatively affect plants.

4.	 This review highlights specific interaction types that ultimately lead to negative 
effects of carnivores on plants. This synthesis presents alternative hypotheses to 
those that predict that carnivores invariably benefit plants. Testing potential costs 
and benefits of carnivores to plants will advance our understanding of indirect 
plant defence.
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1  | INTRODUC TION

The importance of carnivorous arthropods in shaping plant-
herbivore interactions has been well investigated (Abdala-Roberts 
et al., 2019; Price et al., 1980). By “carnivorous”, we mean the habit 
of feeding on other animals, which includes omnivores that feed on 
both plants and animals as well as intraguild predators (Boitani & 
Powell, 2012; Coll & Guershon, 2002; Polis et al., 1989). In addition 
to the direct suppression of herbivores by consumption (Gómez & 
Zamora, 1994), the landscape of fear by the presence of predators 
extends its effect on herbivores through non-consumptive effects 
(Abram et al., 2019). The benefit for plants of herbivore suppression 
by predators may also result in selection on plant traits that inciden-
tally maximise predator performance as means of indirect plant de-
fence (Price et al., 1980). There is extensive support that predators 
select for plant structures that offer housing to predators, as well 
as food bodies or extrafloral nectar to nourish predators. Moreover, 
herbivore-induced plant volatiles (HIPVs) reveal herbivores to pred-
ators and are hypothesized to function as a ‘cry for help’ (Dicke & 
Baldwin, 2010). So far, only a few studies have highlighted that the 
attraction of natural enemies of herbivores may lead to plant fit-
ness benefits (Kergunteuil et al., 2019; Schuman et al., 2012). The 
principle of ‘the enemy of my enemy is my friend’, has stimulated 
fundamental research on the evolution of plant traits that maximise 
predator performance as well as applied research to use natural ene-
mies as biological control agents in agriculture (Aartsma et al., 2017; 
Turlings & Erb, 2018).

However, predators may also have negative effects on plant per-
formance. This is apparent when carnivorous arthropods directly 
feed on the plant, indirectly increase herbivory via non-consumptive 
effects or decrease plant pollination (Puentes & Björkman,  2017; 
Romero & Koricheva,  2011). In some cases, natural enemies of 
herbivores increase plant damage to maximize their own fitness, 
through direct feeding (omnivores; Puentes et  al.,  2018) or by in-
creasing feeding by the host (koinobiont parasitoids; Rahman, 1970; 
Xi et al., 2015). This may result in an antagonistic relationship be-
tween plants and natural enemies of herbivores because of their 
opposed interests: plants are usually under selection to reduce her-
bivory (including from omnivores and parasitized herbivores) while 
natural enemies are under selection to increase their fitness, which 
may include feeding from the plant (Kaplan et  al.,  2016). In other 
cases, carnivores affect plant interactions with other members of 
the herbivore and carnivore communities via plant-mediated ef-
fects and intraguild predation (Polis et al., 1989; Stam et al., 2014). 
Hence, carnivore presence causes complex cascading effects on 
other arthropods which may result in negative feedback effects on 
the plant (Kessler & Halitschke, 2007; Poelman & Dicke, 2014). We 
hypothesize that such scenarios become especially apparent when 
tri-trophic interactions are placed in a wider plant and arthropod 
community context. Nevertheless, plant fitness costs resulting from 
the attraction of carnivores are rarely experimentally addressed or 
considered in concepts of plant defence (but see Ode, 2006; Romero 
& Koricheva, 2011).

As stated in Pearse et al. (2020), indirect plant defence traits as 
well as natural enemies of herbivores might come with costs, which 
have received considerably less attention than benefits. In the pres-
ent review, it is not argued that the overall effect of all carnivores in-
teracting with a plant during the whole season is negative. Instead, it 
is hypothesized that (1) depending on the context, not all carnivores 
have a positive effect on plants, (2) an apparent overall positive ef-
fect of all carnivores interacting with a plant could be the result of 
the sum of both positive and negative effects and (3) a large part of 
these negative effects of carnivores on plants are indirect (affecting 
the plant through other arthropods). Therefore, experiments that 
are not performed in natural environments, which include interac-
tions with communities of arthropods, may underestimate the nega-
tive effects. In addition, negative effects of some carnivores on plant 
fitness could act as a balancing counter-selective force against some 
indirect plant defence traits. This implies that plant traits interacting 
with carnivores are not always positively selected by all carnivores 
but instead are influenced by the sum of positive and negative inter-
actions with different carnivores, depending on the context.

Here, we review interaction types (Figure 1) in which the pres-
ence of a predator and/or parasitoid could lead to negative effects 
at the individual plant level, depending on plant and arthropod com-
munity composition.

2  | C ARNIVORES INCRE A SING PL ANT 
DAMAGE

2.1 | Direct effects of plant-feeding by omnivorous 
arthropods

The most apparent and direct effects of predators on plants are 
caused by omnivorous arthropods that feed on both herbivores 
and plants (Coll & Guershon,  2002; Figure  2). Despite the well 
documented positive role of omnivores on plants through pest sup-
pression (van Lenteren et  al.,  2018), herbivory by omnivores may 
reduce plant performance as much as herbivory by true herbivores 
(Puentes & Björkman, 2017). Negative effects of omnivorous preda-
tors are even more extensive when these omnivores vector plant 
pathogens or specifically feed on plant reproductive structures 
(Albajes et al., 2006). In addition to tissue loss, direct plant feeding 
by omnivores also induces costly defences in the plant (Pérez-Hedo 
et al., 2015), which can result in a waste of resources and a nega-
tive effect on plant performance, depending on the context (Züst 
& Agrawal, 2017). Plant induction by omnivores is an efficient re-
sistance strategy against some—but not all—subsequent herbivores 
(Pappas et al., 2015; Zhang et al., 2018). Such induction of a plant 
defence response against herbivores reduces plant growth, carbon 
fluxes and photosynthetic capacity (Züst & Agrawal, 2017).

Two of the most important factors affecting the dietary choice 
of omnivorous arthropods are plant quality and prey availability 
(Hunter,  2009; Kester & Jackson,  1996). Many omnivores prefer to 
feed on arthropod prey as a more nutritious food source than plants 
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(Moerkens et  al.,  2020), but this is not always the case (Eubanks & 
Denno, 1999). An increase in plant quality and/or a decrease in prey 
availability (or quality) leads to more omnivore plant damage (Agrawal 
et al., 1999). Hence, we hypothesize that in a context with good qual-
ity plants and limited arthropod prey, plant feeding by omnivores may 
lead to plant fitness reduction, although this remains to be demon-
strated (Table 1; Adar et al., 2015; Puentes & Björkman, 2017).

2.2 | Herbivore feeding altered by parasitoids

Parasitoids are insects (usually wasps or flies) which lay their eggs 
on or in a host that will be killed upon parasitoid development 
(Godfray, 1994). Koinobiont parasitoids do not fully arrest their host 
from growing and feeding while the parasitoid larva is developing (as 

F I G U R E  1   Five interaction types 
in which carnivores may have negative 
effects on plants: (a) increased direct 
feeding damage done to the plant, by 
omnivorous arthropods (left) or by 
herbivores in response to parasitization by 
a gregarious koinobiont parasitoid (right), 
(b) reduction in plant pollination due to 
direct and indirect effects of carnivores 
on pollinators, (c) carnivorous aphid-
tending ants can increase hemipteran 
herbivore survival and herbivory, (d) 
carnivores alter plant response to 
herbivory early in the season and make 
plants more vulnerable to negative 
interactions with other arthropods 
arriving later in the season, (e) intraguild 
predators (feeding on both herbivores and 
predators) may negatively affect other 
predators, resulting in reduced control of 
herbivores
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F I G U R E  2   Overview of a four-trophic-
level food web with negative and positive 
carnivorous arthropod effects on plant 
fitness
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opposed to idiobiont parasitoids, that arrest their host growth after 
oviposition by paralyzing the host; Mackauer & Sequeira,  1993). 
Therefore, herbivores that are parasitized by a koinobiont parasitoid 

are still able to move and feed on plants for a certain amount of time. 
In most documented cases, herbivores parasitized by a solitary para-
sitoid grow and feed less compared to unparasitized ones, resulting in 

TA B L E  1   Positive and negative expected outcomes for plants in different plant-carnivore interaction types

Interactions type
Positive effects for 
plants

Hypothesized negative effects 
for plants

Current evidence for negative 
effects

Carnivores increasing plant damage 
(Figure 1a)

Omnivores reduce 
herbivore pressure and 
plant damage

Omnivore plant-feeding 
negatively affects plants, and 
induction of a plant defence 
response can be costly if 
useless

Reduced crop yield (Puentes 
et al., 2018)

Herbivores parasitized 
by (koinobiont, mostly 
solitary) parasitoids 
grow and feed less

Some koinobiont parasitoids 
(mostly gregarious) enhance 
their host's growth, resulting in 
more plant damage

Reduced plant fitness (Xi 
et al., 2015) Increased plant 
damage (Ode, 2006)

Carnivore effects on pollinators (Figure 1b) In general, predation 
by carnivores reduces 
plant damage via 
killing/repelling 
herbivores

When disrupting plant 
mutualism with pollinators, 
carnivores reduce plant 
pollination

Reduced plant fitness 
(Antiqueira & Romero, 2016)

Non-consumptive effects of carnivores on 
herbivores (Figure 1c)

Carnivores or aphid-
tending ants repel most 
of the herbivores on 
the plant

Aphid-tending ants cause 
an outbreak of the tended 
herbivore

Reduced plant fitness (Canedo-
Júnior et al., 2017; Ortega-
Ramos et al., 2020; Renault 
et al., 2005)

Negative effects may be 
increased when herbivores 
are vectors of pathgens and 
spread towards kin plants

/

Impact of carnivores on plant-mediated 
interactions (Figure 1d)

Plant-feeding by 
omnivores induces 
cross-resistance 
against herbivores, and 
volatiles that attract 
natural enemies of the 
herbivores

Volatiles produced by plant in 
response to omnivore feeding 
can also attract herbivores

Plant induction (reviewed by 
Pappas et al., 2017) Plant 
attraction of herbivores (Pérez-
Hedo et al., 2015)

Parasitized herbivores 
induce a lower plant 
resistance response, 
which could save 
some resources. Their 
HIPVs repel other 
parasitoids, preventing 
super-parasitism

Remaining unparasitized 
herbivores benefit from lower 
plant defence and repellence 
of parasitoids

Plant induction (Poelman 
et al., 2011; Tan et al., 2018)

Altered HIPVs attract 
hyperparasitoids, whose 
presence can cause 
detrimental effects

Deterrence of parasitoids (Kafle 
et al., 2020) and attraction 
of hyperparasitoids (Zhu 
et al., 2015)

Carnivores kill 
herbivores which limits 
plant damage and 
prevents/reduces plant 
induction

Killing of a first herbivore with 
low impact on plant fitness, 
prevents the plant from being 
induced and protected against 
a subsequent herbivore 
with high negative fitness 
consequence on plant

/

Intraguild predation (Figure 1e) The presence of many 
carnivores can have 
a synergistic effect 
that reduces herbivore 
damage on the plant

A (dominant) carnivore can kill 
and repel other carnivores, 
resulting in a lower control of 
herbivores and a higher plant 
damage

Reduced plant biomass (Finke & 
Denno, 2005)
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reduced plant damage (Bustos-Segura et al., 2019; Gols et al., 2015; 
Hoballah & Turlings, 2001). However, some koinobiont parasitoids 
enhance herbivore growth for their own benefit, leading to para-
sitized herbivores causing more damage than unparasitized ones 
(Ode, 2006; Rahman, 1970; Xi et al., 2015). Some parasitized aphids 
also increase feeding because of a reduced food assimilation effi-
ciency (Cloutier & Mackauer, 1980). In addition, parasitized aphids 
are still able to reproduce and even increase their fecundity before 
death, producing heavier offspring with a higher fecundity, which 
could have positive immediate consequences for population growth 
(Kaiser & Heimpel, 2016). Parasitoids regulate the growth of their 
host according to their resource needs (Harvey, 2005). Accordingly, 
the feeding behaviour of a parasitized herbivore is more likely to in-
crease when several parasitoids are developing inside (e.g. gregarious 
parasitoid and/or superparasitism) with potential negative effects on 
plant fitness (Smallegange et al., 2008). Solitary parasitoids can also 
increase their host feeding if the amount of resources available in 
the herbivorous host is not sufficient for the optimal development of 
one parasitoid larva (Harvey et al., 2010). Finally, we speculate that 
increased herbivory due to parasitism is particularly common in an 
ecological context with few hosts (increased superparasitism risks) 
and/or hosts of poor quality (increased need for host growth regula-
tion by parasitoid to reach maximal development). When parasitoids 
enhance the feeding by their host this would lead to differential in-
terests of the carnivore and the plant and may result in reduced plant 
fitness (Xi et al., 2015; Table 1).

3  | C ARNIVORE EFFEC TS ON 
POLLINATORS

Such different interests of plants and predators also arise when 
predators consume organisms that are beneficial to plants, such as 
pollinators (Knight et al., 2006; Romero et al., 2011). Plants in areas 
with a high density of predators suffer from reduced pollination and 
fitness, caused by pollinators avoiding these high-risk areas and/or 
direct predation of pollinators (Romero & Koricheva, 2011). The non-
consumptive effects of predators on pollination may be substantial. 
For example, crab spiders are generalist sit-and-wait ambush preda-
tors on flowers that can benefit the plant by feeding on herbivores 
(Romero & Vasconcellos-Neto, 2004); yet, they can also have nega-
tive effects by decreasing pollinator visits and seed set (Antiqueira & 
Romero, 2016; Gonçalves-Souza et al., 2008).

In addition, predators may affect pollinators by interfering with re-
ward availability to pollinators. In rare cases, carnivores such as ants or 
wasps, feed on floral nectar without pollinating the flowers (Maloof & 
Inouye, 2000). Both nectar robbers, that make a hole in the petal tissue 
to have direct access to the nectar, and nectar thieves, that feed on nec-
tar without pollinating the plant because of a morphological mismatch, 
reduce pollinator visitation time and efficiency (Irwin et al., 2001, 2010). 
Fitness costs of reduced pollination are particularly apparent for plants 
that solely depend on pollinators for reproduction or when pollen and 
pollinators are limited (Burkle et al., 2007; Ibarra-Isassi & Oliveira, 2018).

When ants enter food-for-protection mutualisms with plants 
(see Section  4), their presence is not always beneficial. If plants 
fail to restrict ants to vegetative parts, their movement to inflores-
cences can lead to nectar robbing, predation or repellence of polli-
nators (Ibarra-Isassi & Oliveira, 2018; Levan & Holway, 2015; Ohm 
& Miller, 2014). In order to minimize these negative effects, flowers 
can produce ant-repellent compounds (Junker et al., 2011) and EFNs 
are hypothesized to localize ants (and other carnivores) at vegeta-
tive parts, distracting them from visiting flowers and lowering the 
negative effect on pollinators and reproductive fitness (Ness, 2006; 
Villamil et al., 2019).

4  | NON- CONSUMPTIVE EFFEC TS OF 
C ARNIVORES ON HERBIVORES

In addition to the landscape of fear that affects pollinators, the pres-
ence of predators affects herbivore behaviour. Herbivores adapt their 
dispersal behaviour according to predation risks (Lima & Dill, 1990). 
When prey are hiding, predator presence could reduce herbivore 
dispersal and increase herbivore density as well as plant damage (Sih 
& Wooster, 1994). On the other hand, carnivores can increase her-
bivore dispersal to neighbouring plants in several ways (e.g. escape 
behaviours or prophylactic feeding of herbivores). Herbivore disper-
sal has positive consequences for the “original” plant, which is re-
leased from herbivory (Sabelis et al., 1999). However, in cases where 
the direct neighbourhood consists of mostly kin plants, negative in-
clusive fitness consequences are expected; this effect is increased 
when herbivores are vectors of plant pathogens (Culshaw-Maurer 
et al., 2020).

Non-consumptive effects of predators extend to specific ant-
mediated interactions that may enhance herbivore damage to 
plants. While carnivorous ants are able to directly feed on herbi-
vores, they engage in non-consumptive, mutualistic relationships 
with honeydew-producing herbivores (mainly Hemiptera). In return 
for food, ants protect honeydew producers against their natural en-
emies and/or prey on competing herbivores (Ohm & Miller,  2014; 
Way,  1963). In most cases, plants benefit from these interactions 
(Styrsky & Eubanks, 2007), but ant presence can have a deleterious 
effect of on plant fitness (Canedo-Júnior et  al., 2017; Ibarra-Isassi 
& Oliveira, 2018; Renault et al., 2005; Table 1). Aphid-tending ants 
can cause pest outbreaks of tended (Ortega-Ramos et  al.,  2020) 
and co-occurring hemipterans (Yoo et  al.,  2013) as they remove 
Hemiptera-produced honeydew, reducing their disease incidence 
(Nielsen et  al.,  2010). An increase in the hemipteran population is 
especially costly in a community context where herbivore pressure 
of non-hemipteran herbivores is low, because plants will benefit 
less from the predation services of ants (Ortega-Ramos et al., 2020; 
Styrsky & Eubanks, 2010). A negative effect on plant fitness arises 
when the presence of ants enables the negative effects of hemipter-
ans to exceed the costs inflicted by the herbivore community in the 
absence of ants (Ortega-Ramos et al., 2020). In addition, the pres-
ence of ants can indirectly increase colonization by herbivores able 
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to escape ant-attack, which profit from the deterrence of other local 
carnivores (Alves-Silva & Del-Claro, 2016).

5  | IMPAC T OF C ARNIVORES ON PL ANT-
MEDIATED INTER AC TIONS

5.1 | Omnivorous predator effects on plant-
mediated interactions

Less apparent negative effects of predators come about by indirect 
trait-mediated interactions that may include networks of indirect 
species interactions. This cost is particularly high when induced 
defences are not effective against subsequent herbivores. For ex-
ample, phloem feeders perform equally well on omnivore-induced 
plants compared to non-induced control plants (Pappas et al., 2015; 
Zhang et al., 2018). In addition to the cost of induction (Section 2.1), 
we hypothesize feeding damage of omnivores to be particularly 
costly when it causes induced susceptibility, facilitating subsequent 
herbivores (Underwood, 1998). This is particularly the case for om-
nivores using a piercing-sucking mode of plant feeding (e.g. mirids) 
because they secrete effectors responsible for induced susceptibil-
ity (Dong et al., 2020).

Plant volatiles induced by omnivores are hypothesized to result 
in a fitness cost when revealing the location of host plants to herbi-
vores (Dicke & van Loon, 2000). Citrus plants infested with the om-
nivore phytoseiid Eusius stipulatus were found to be more attractive 
to the prey herbivore Tetranychus urticae, with no clear pattern of 
attraction to conspecifics of the phytoseiid omnivore (Cruz-Miralles 
et  al.,  2019). In a different system plant feeding by two different 
omnivores resulted in the attraction of the herbivorous pest Tuta 
absoluta (Pérez-Hedo et al., 2015). However, no studies quantified 
the plant fitness consequence of this attraction of herbivores. This 
negative effect could be increased in a community context where 
omnivore feeding attracts herbivores but the omnivores are not nu-
merous enough to suppress the arriving herbivores. Furthermore, 
we speculate that if specialist natural enemies of common pests do 
not find hosts on plants damaged by omnivores, they may learn and 
avoid this type of cue (Stephens, 1993).

5.2 | Koinobiont parasitoid effects on plant-
mediated interactions

Koinobiont parasitoids developing inside their herbivorous host may 
negatively impact plant fitness when disrupting plant-mediated in-
teractions with other community members. Physiological changes 
induced by parasitoids in their host mediate parasitoid-plant inter-
actions (Poelman et al., 2011). Parasitized caterpillars have reduced 
levels of salivary elicitors, leading to a reduced plant induction re-
sponse to herbivory (Cusumano et  al.,  2018; Tan et  al.,  2018) and 
may increase plant susceptibility to subsequent herbivores (Stam 
et  al.,  2014). We hypothesize that parasitoid larvae manipulate 

the plant response to increase their host's performance (but see 
Bukovinszky et al., 2009) and, thus, their own fitness, leading to a 
conflict of interest between parasitoid and plant. This may, however, 
strongly depend on the herbivore degree of specialization with the 
plant secondary compounds and its ability to detoxify or seques-
ter them. In some cases, parasitized caterpillars and aphids induce 
a higher level of plant secondary compounds compared to unpara-
sitized insects (Ode et al., 2016; Vaello et al., 2018). In cases where 
parasitoids reduce their host plant damage and increase plant re-
sponse to herbivory (Tan et  al.,  2019), it could lead to a waste of 
plant resources.

In parallel to changes in direct defences, also indirect defences 
are also differentially affected by parasitized herbivores (Poelman 
et al., 2012; Zhu et al., 2015) and may cause a plant fitness cost by 
repelling beneficial carnivores from plants. Parasitoids detect their 
host's presence on plants through HIPVs and prefer those induced 
by unparasitized herbivores over those induced by parasitized her-
bivores (Fatouros et  al.,  2005; Kafle et  al.,  2020). How generalist 
predators respond to HIPVs elicited by plants hosting parasitized 
herbivores is mostly unknown. Plant volatiles induced by parasitized 
herbivores have likely been under selection to be less attractive or 
even repel other carnivores, because prevention of host death is crit-
ical to parasitoid fitness (Kaplan et al., 2016). This represents another 
example of conflicting interests of plant and parasitoid. Differential 
induction of HIPVs by parasitized and unparasitized herbivores are 
exploited by members of higher trophic levels, such as hyperpara-
sitoids, to locate their host (Poelman et al., 2012; Zhu et al., 2018). 
Hyperparasitoids can reduce parasitoid efficacy through the produc-
tion of allelochemicals. These induce parasitoid dispersal from envi-
ronments with suitable hosts present, locally releasing herbivores 
from parasitoid pressure (Höller et al., 1994; Petersen et al., 2000). 
Additionally, if an individual plant is attacked by several generations 
of an herbivore, hyperparasitization of the first parasitoid generation 
may reduce parasitoid populations and increase herbivory during the 
next generations of the herbivore (Tougeron & Tena, 2019).

5.3 | Carnivores reduce herbivore-induced plant 
vaccination

When an herbivore induces plant cross-resistance against another 
herbivore, the suppression of the former by a carnivorous arthropod 
may result in a negative effect on plant fitness (McArt et al., 2013). 
So called “plant vaccination” (sensu Kessler & Baldwin, 2004) is a 
positive plant-mediated effect whereby an early-season herbivore 
with no or neglectable effects on plant fitness induces a plant de-
fensive response effective against a subsequent herbivore with an 
important negative effect on plant fitness (Agrawal, 1998). For ex-
ample, Kessler and Baldwin (2004) showed that mirid bugs Tupiocoris 
notatus induce the same resistance response in tobacco plants as 
Manduca larvae Manduca quinquemaculata but without plant fitness 
reduction. As a result, plants first induced by mirid bugs are still in-
duced and protected when attacked by the subsequent herbivore 
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and thereby realize a significant fitness benefit. We speculate that 
predation of the mirid bug could result in a higher likelihood of plant 
colonisation by Manduca with fitness consequences that are larger 
than the benefit of predation of the mirid. Finally, this may not apply 
to koinobiont parasitoids because their host can still feed and induce 
the plant during a certain period of time (Bustos-Segura et al., 2019).

6  | INTR AGUILD PREDATION

A wide range of carnivorous arthropods is commonly present in 
natural and agricultural systems (Gagnon et al., 2011) and while they 
individually suppress pest pressure, their co-occurrence can lead to 
synergistic or antagonistic effects on each other. This has the poten-
tial to affect prey populations and plant fitness (Finke & Denno, 2002; 
Müller & Brodeur, 2002). Intraguild predation (IGP) is described as 
an interaction in which two predators have the same food source 
(extraguild prey), but also have a direct trophic interaction between 
them (Polis et  al.,  1989; Figure  2). This leads to a combination of 
competition and predation between carnivores. IGP causes a vari-
ety of direct and indirect ecological effects (Finke & Denno, 2002), 
which result in alleviation of predator pressure on herbivores when 
intraguild interactions dominate (Müller & Brodeur, 2002). Negative 
effects of IGP through an increase of herbivore populations appear 
to be strongest in simple habitats with low biodiversity. Increased 
structural complexity of a habitat reduces the chance of IGP taking 
place, due to the availability of refuges and alternative prey for sub-
ordinate carnivores (Snyder, 2019). In community contexts with low 
plant diversity (such as agroecosystems) and carnivorous arthropods 
with overlapping traits, the negative effects of (direct and indirect) 
IGP are expected to impact herbivore suppression and plant fitness.

Direct interactions between carnivores are often asymmetrical: 
one carnivore feeds on the other but not vice versa. Asymmetrical 
IGP can be negative for plant fitness and pest suppression. The 
outcome of this interaction is mostly dependent on the size, mo-
bility and feeding style of the carnivores involved (Müller & 
Brodeur, 2002; Snyder, 2019). Plant fitness suffers the most when 
the more vulnerable carnivore is the main pest regulator (Vance-
Chalcraft et al., 2007) or in the presence of an aggressive intraguild 
predator (Rosenheim et  al.,  1993). Additionally, carnivores inter-
act indirectly through IGP by trait-mediated effects when a carni-
vore affects the (foraging) behaviour, activity or habitat choice of 
other guild members, with consequences for their prey (Schmitz 
et al., 2004). Behavioural alterations through enemy-associated cues 
(e.g. frass, aggregation pheromones, contact infochemicals) impact 
complex community dynamics, alleviating carnivore pressure and 
ultimately leading to larger herbivore populations on the focal patch 
(Culshaw-Maurer et al., 2020). For example, the presence of an in-
traguild predator can repel other carnivores (Raymond et al., 2000) 
and affect their oviposition site selection (Pineda et al., 2007). These 
trait-mediated effects can reduce the foraging efficiency of other 
carnivores or result in leaving the focal patch, without contacting 
the intraguild predator (Mouratidis et al., 2021). We hypothesize that 

negative effects on plants due to IGP mainly arise in the presence of 
a strong intraguild predator dominating other carnivores and poorly 
(or sub-optimally) controlling pests, which are strengthened through 
its trait-mediated effects.

7  | CONCLUSIONS AND FUTURE 
DIREC TIONS

Some plant traits, such as domatia for ants or mites, facilitate a mu-
tualistic interaction between carnivorous arthropods and plants. As 
discussed by Pearse et al. (2020), other plant traits involved in indi-
rect plant defence are multifunctional, suggesting that other factors 
select on them. This prevents these traits from becoming more spe-
cialized towards indirect plant defence functions. Furthermore, we 
hypothesize that the specificity of carnivore-plant interactions can 
be an important factor in the specialization of plant traits toward an 
indirect defence role. In this review, we argue that negative effects 
of some carnivorous arthropods may also play an important role as 
a counter-selection force against the indirect defence function of 
some plant traits. This is possible in a situation where a plant trait 
favours herbivore suppression by some carnivores (indirect defence 
function) but also favours, to a lesser extent, negative interactions 
with other carnivores. In addition, we stress that antagonistic plant-
carnivore interactions should be considered along mutualistic and 
commensal plant-carnivore interactions in order to have a better un-
derstanding of selection forces driving indirect plant defence traits.

Although some of the negative effects of predators, such as om-
nivory or predation on pollinators, are well characterized (Puentes 
et al., 2018; Romero et al., 2011), indirect negative effects resulting 
from plant-mediated interactions initiated by predators or parasit-
oids have been largely overlooked. The notion that predators may 
directly or indirectly induce plant responses that lead to changes 
in the interaction of plants with other community members has 
resulted in identification of a range of interaction types in several 
plant species that are initiated by natural enemies (Stam et al., 2014). 
These studies have provided evidence that these interactions can 
result in negative consequences for plants such as the attraction 
of new herbivores or enhanced plant damage. Major challenges for 
future studies will be to unravel whether the negative effects of 
carnivores on plants indeed translate into negative effects on plant 
fitness and whether this fitness cost is still present when the indirect 
interactions initiated by natural enemies are studied in the natural 
context of the interacting community. This can only be achieved 
through field experiments exposing plants to the arthropod com-
munities naturally present in their environment. Furthermore, our 
study focused on carnivorous arthropods, but similar interactions 
may take place with non-arthropod carnivores aboveground (e.g. liz-
ards, birds) and belowground (e.g. nematodes; Mäntylä et al., 2011; 
Rasmann et al., 2005).

Negative effects of predators on plant fitness may result in se-
lection on plant traits to reduce these costs. Arguing from this per-
spective, we earlier presented examples of such selective forces in 
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the deterrence of ants from flowers (Section 3). Alternatively, some 
of the interaction types may be largely driven by the benefit of natu-
ral enemies, with neutral effects on plant fitness or with limited po-
tential for plants to control for these interactions. For example, after 
parasitism koinobiont parasitoids manipulate their insect host and 
host plant to create a suitable environment for their offspring (e.g. 
increased herbivore feeding, deterrence of conspecifics through 
HIPVs), which can ultimately result in negative effects on plants (van 
der Meijden & Klinkhamer, 2000). However, plants may not be able 
to counter the negative effects of interacting with natural enemies 
of their herbivores, for example, when parasitoids affect elicitors in 
herbivore oral secretions that are critical for plants to recognize her-
bivory in the first place.

In conclusion, by summarising the current knowledge about the 
negative effects of carnivores on plants we urge future work to 
quantify the potential of these interactions for selecting on plant 
traits. We recommend the study of plants in their natural environ-
ments where the interaction with natural arthropod communities 
can lead to negative effects.
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