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A B S T R A C T   

The environment where we live and recreate can have a significant effect on our well-being. More beautiful 
landscapes have considerable benefits to both health and quality of life. When we chose where to live or our next 
holiday destination, we do so according to some perception of the environment around us. In a way, we value 
nature and assign an ecosystem service to it. Landscape aesthetics, or scenicness, is one such service, which we 
consider in this paper as a collective perceived quality. We present a deep learning model called ScenicNet for the 
large-scale inventorisation of landscape scenicness from satellite imagery. We model scenicness with an inter
pretable deep learning model and learn a landscape beauty estimator based on crowdsourced scores derived from 
more than two hundred thousand landscape images in the United Kingdom. Our ScenicNet model learns the 
relationship between land cover types and scenicness by using land cover prediction as an interpretable inter
mediate task to scenicness regression. It predicts landscape scenicness and land cover from the Corine Land Cover 
product concurrently, without compromising the accuracy of either task. In addition, our proposed model is 
interpretable in the sense that it learns to express preferences for certain types of land covers in a manner that is 
easily understandable by an end-user. Our semantic bottleneck also allows us to further our understanding of 
crowd preferences for landscape aesthetics.   

1. Introduction 

In a time where increasing urbanization is a constant factor across 
the world, we sometimes need a break from the busy and tiring reality of 
the modern city to enjoy greener and relaxing landscapes. Landscape 
beauty, also referred to as scenicness, is indeed a driver for tourism 
(Krippendorf, 1984), while it is also a driver for the creation of cultural 
value (Havinga et al., 2020; Daniel et al., 2012). Beyond providing 
tourists and artists a place to seek out, landscape scenicness has also 
been found to improve people’s quality of life. Velarde et al. (2007) 
reviewed literature covering the relationship between health and land
scape beauty, and found that observing scenic landscapes is associated 
with a reduction in stress, improved attention capacity, better recovery 
from illnesses, a feeling of general well-being, and positive improve
ments to one’s mood. Grinde and Patil (Sep. 2009) conducted a litera
ture study on the relationship between plants and quality of life and 
found that the absence of plants is associated with a lower quality of life 
and health. Seresinhe et al. (2015) quantified the relationship between 
scenicness and self-reported health, and found that scenic environments 

are associated with an increase in self-reported health. In a later study, 
they also considered the relationship between self-reported happiness 
and landscape beauty, and found that people are happier in scenic en
vironments (Seresinhe et al., 2019). As such, there is a significant 
incentive to knowing where scenic landscapes are located, as well as to 
understand the factors which contribute to landscape scenicness. 

Much research has been devoted into determining landscape sce
nicness. Theoretical research on the topic stems back to the 1960s 
through the 1980s, when major theories about human-landscape in
teractions were formed, as summarized by Schroeder and Daniel 
(Schroeder and Daniel, 1981). A popular measure for landscape beauty 
at the time was the Scenic Beauty Estimate, which depended on crowd
sourced ratings based on images of the landscape (Daniel, 1976). As 
scenicness is a subjective quality (since ‘beauty is in the eye of the 
beholder’), accessing such information directly from the observer was 
(and still is) the only possible way, in the hope that the individual 
subjective views would then converge to a set of collective rules of 
perceived beauty. The practice of estimating landscape beauty then 
adopted digital means by the time that computers and geo-information 
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systems became widely available, such as relating crowdsourced sce
nicness beauty estimates to land cover types through geo-information 
systems (Palmer, 2004). Recent efforts in data collection (Seresinhe 
et al., 2017) led to the distillation of the first large scale crowd-sourced 
dataset of landscape preferences, called ScenicOrNot1, consisting of 
217,000 ground-level images with scenicness scores from three or more 
annotators. This dataset is of sufficient size and diversity to allow for the 
emergence of machine learning research aimed at the automatic esti
mation of landscape scenicness, which was mostly tackled by means of 
convolutional neural networks (Marcos et al., 2019; Seresinhe et al., 
2017; Workman et al., 2017). However, it maybe difficult to acquire 
ground-based images of remote regions, such as those from the Geo
graph project2, on which the ScenicOrNot dataset is based. For such 
regions, it could be beneficial to use remote sensing imagery, which are 
available globally and are frequently updated, to provide the scenicness 
assessment. Furthermore, remote sensing imagery is not affected by 
ground-based image biases such as weather patterns such as cloudy 
versus blue skies or the presence of rainbows, or photographers’ biases 
on which scenes or objects to photograph. In this respect remote sensing 
imagery could be considered more objective than ground based images. 
The question remains to know if it is possible to predict scenicness 
directly from remote sensing images: in other words, we formulate the 
hypothesis that the characteristics visible in satellite images (e.g. land 
cover), allow us to estimate the beauty of the landscape. To verify this 
hypothesis, we resort to a deep learning approach. 

In recent years, Convolutional Neural Networks (CNNs) have become 
a popular tool for image analysis in the remote sensing domain (Zhu 
et al., 2017). CNNs are commonly applied to typical remote sensing 
tasks such as land classification (Sumbul et al., 2019; Demir et al., 2018), 
or precise objects delineation at very high resolution (Campos-Taberner 
et al., 2016; Maggiori et al., 2017; Volpi and Tuia, 2017). While they are 
traditionally applied to RGB and multispectral data, there nowadays 
exists a wide corpus of literature about the use of deep learning for other 
modalities, such as hyperspectral remote sensing (Audebert et al., 2019). 
As a result, deep learning is becoming increasingly popular in the geo
sciences community, where the technology is used to tackle a wide range 
of problems, such as weather prediction, snow pack modeling or climate 
change monitoring (Camps-Valls et al., 2021). 

However, their superior performance on a variety of tasks comes at a 
price of interpretability, since CNNs offer less transparency in their 
predictions compared to other machine learning models. Researchers in 
machine learning are therefore increasingly stressing the importance of 
interpretability in deep learning systems (Samek and Müller, 2019; 
Miller, 2017) in order to be able to challenge the assumptions of deep 
neural networks and to assess whether a model is trustworthy. Addi
tionally, interpretability can be used to discover meaningful patterns to 
further our understanding of which learned patterns matter most 
(Lapuschkin et al., 2019). 

While interpretability as a means of improving trust in deep learning 
models has picked up considerably in computer vision, it is still in its 
infancy for remote sensing tasks, and traditional machine learning 
methods have proven to be easier to interpret (Huysmans et al., 2011). 
In particular, understanding how variables contribute to predictions has 
been heavily studied with tree-based and kernel methods. Tree-based 
methods allow for interpretability by ranking input variables accord
ing to their influence on the final prediction, such as mode impurity and 
mean decrease in accuracy for Random Forest models (Biau and Scornet, 
2016). Gaussian Processes allow for model inversion and parameter 
retrieval through their confidence intervals (Svendsen et al., 2020). 
Linear combinations of multiple kernels can be used to obtain variable 
importance estimates for kernel methods (Tuia et al., 2010). But when it 
comes to deep learning methods, the ranking of inputs importance is less 

straightforward, and the one of the inner feature needs extra engineering 
steps. Instead, Post-hoc input attribution methods such as Class Atten
tion Mapping (Zhou et al., 2016) are frequently considered as a solution 
to the interpretation problem for deep neural networks trained on 
remote sensing imagery. These methods are used to highlight which 
regions of the image contribute the most to the output of the model. 
They are commonly used in various object retrieval tasks, such as 
locating solar panels (Imamoglu et al., 2017), structures of interest 
(Vasu et al., 2018), or airplanes (Fu et al., 2019). Attribution methods 
such as Class Activation Maps (Zhou et al., 2016) work well when there 
is a clear right or wrong answer visible in the image. For instance, an 
airplane can be clearly identified by a human in a very high resolution 
satellite image, making the correctness of a pixel attribution method 
easy to verify. However, attribution methods are less effective when a 
task is subjective or when it depends on the coalescence of multiple 
patterns, which cannot easily be highlighted in the image. Scenicness is 
one such task, as landscape beauty can be the result of the interplay 
between visible elements of the landscapes, and such interplays cannot 
easily be highlighted in the input images. We therefore have to consider 
alternative interpretation methods to explain our predictions. 

To help us understand the drivers of landscape scenicness using deep 
learning, we adopt semantic bottlenecks (Marcos et al., 2020; Marcos 
et al., 2019), which use the prediction results of an intermediate task, 
ideally objective and made of human-understandable concepts, to pre
dict the target task, while still allowing models to be trained in an end- 
to-end fashion. Such models have previously been applied for scenicness 
estimation from ground based images. As proposed in (Marcos et al., 
2019), the prediction of image scenicness may depend on its content, 
such as the presence of snow, clouds, or roads. The presence of each 
object or concept may then be used to create a scoring vector for the 
prediction of scenicness. In that case, the semantic bottleneck was 
therefore made of a series of scene class objects and, to each object, a 
positive (this objects impacts scenicness positively) or negative (this 
object impacts scenicness negatively) weight was assigned. The final 
score was made of a bias (average scenicness) plus the combination of 
the single detected object scores. We build on this concept for ground- 
based images and adapt it to the task of scenicness prediction from 
remote sensing imagery while using land cover as an interpretable in
termediate task. In doing so, we improve on our preliminary study 
(Levering et al., 2020) by adapting our model to accommodate differing 
scenicness scores within the same land cover class, since depending on 
the context one land cover type can impact positively, negatively, or not 
at all the beauty score. In addition to the estimation of the scenicness of 
landscapes, our model therefore also allows us to study the relationship 
between landscape scenicness and land cover types. 

In this paper we conceptualize an interpretable deep learning model 
for remote sensing imagery which uses land cover prediction as an in
termediate task for landscape scenicness regression (Section 2). We train 
our model to reproduce average ScenicOrNot beauty score at the level of 
single patches extracted from Sentinel-2 images over the United 
Kingdom. We implement a semantic bottleneck forcing predictions to be 
explicit in the land cover classes that the model is observing and 
explicitly using to predict the scenicness. To do so, we use the Coper
nicus CORINE land cover inventory (EU Copernicus Program, 2018) and 
predict intermediate land cover multilabel maps. Our results (Section 4) 
show that we can extend existing scenicness prediction models with an 
interpretable bottleneck without experiencing any loss of accuracy, 
neither in the scenicness nor land cover prediction task. In return, our 
model provides explanations about what it is observing and what leads it 
to decide for a certain beauty prediction. As such, it becomes simple to 
challenge the decisions of the model and analyze errors. 

2. Methods 

We propose an interpretable model for landscape scenicness esti
mation that uses a semantic bottleneck (Marcos et al., 2019). We design 

1 http://scenicornot.datasciencelab.co.uk/  
2 https://m.geograph.org.uk 
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the semantic bottleneck such that it uses the outputs of a land cover 
prediction task to estimate the scenicness of a given satellite image. We 
refer to our model as ScenicNet. 

Our model is summarized in Fig. 1. It uses a standard CNN backbone 
tasked with feature extraction, a multi-label land cover classifier inter
mediate head and a scenicness regressor, which depends linearly on the 
output of the land cover classifier. Since it comprises two separate 
prediction heads considering different tasks learned from different 
datasets (see Section 3), it can be seen as a multitask model such as in 
(Marmanis et al., 2018; Volpi and Tuia, 2018). 

Our main contribution is a method to disambiguate intra-class sce
nicness differences by allowing the model to discover sub-classes with 
different scenicness values associated to them. We call these sub-classes 
modes. Each mode corresponds to a neuron within a group of neurons 
associated to the same land cover class. Each mode is also connected to 
the scenicness head (via the weights w described below). Each mode 
therefore contributes to both the detection of land cover and to the 
estimation of beauty. The number of modes per class is defined by a 
hyperparameter, M, manually set. Summing up, for each land cover class 
c ∈ C, the model has M outputs, each with an associated learned sce
nicness weight. This means that a land cover class can influence sce
nicness positively when in a given association of classes, and then 
negatively when associated to others. Depending on the specific asso
ciation, one or the other mode of the class will be activated. 

2.1. Land cover head 

Our model first has to predict C land cover classes from the feature 
extractor. The feature extractor produces C × M scores Z ∈ RC×M for 
each mode input m ∈ {1,…,M} belonging to a given class c ∈ {1,…,C}, 
where zc,m corresponds to the features of mode m in class c. These scores 
are then normalized, Eq. 2) and summed for each class, Eq. (3), to obtain 
the C land-cover class scores as a vector ̂y ∈ RC. As depicted in Fig. 1, the 
land cover prediction problem is casted as multi-label, i.e. every class is 
considered separately and can be detected simultaneously with others. 
We use a binary cross entropy loss for every land cover class c ∈ {1…C}
and compare predictions ŷ with the ground truth y ∈ {0,1}C. 

For the purposes of scenicness prediction, we want to force the model 
to choose which mode to use for a given sample to reduce ambiguity on 
which modes contributed to each prediction. In order to keep the sce
nicness prediction layer interpretable, we also want the model to only 
keep the modes that have a meaningful contribution to the prediction 
process active. To do so, we first calculate a Softmax non-linearity for 

each mode input m ∈ {1,…,M} belonging to a given class c ∈ {1,…,C}: 

softmax(zc,m) =
ezc,m

∑M

j=1
ezc,j

(1)  

For each element zc,m we then multiply their respective softmax scores 
with a sigmoid over the mode input to compute the mode presence 
probability for a given mode rc,m of matrix R: 

rc,m = sigmoid(zc,m)⋅softmax(zc,m) (2)  

The softmax ensures that only one mode is dominantly active as all class- 
specific contributions sum to one. Through direct multiplication with 
the sigmoid non-linearity we allow the model to indicate which modes 
are active, if any. We can then use this mode presence matrix R to obtain 
class presence scores by summing all mode presence scores rc,m 

belonging to a given class c: 

ŷc =
∑M

m=1
rc,m (3)  

We can use these class-wise land cover presence scores in the following 
sum over c binary cross-entropy functions (one per land use class) 
(Fig. 2a): 

L CLC(y, ŷ) = −
∑

c
ŷclog(yc)+ (1 − yc)log(1 − ŷc) (4)  

Where y is the ground truth for a single sample from the land cover 
dataset. 

The gradients learned from the land cover prediction (in pink to 
purple colors in Fig. 1) are then backpropagated into the main body of 
the CNN through the class-specific multi-mode land cover bottleneck. 
The updated mode presence scores R will therefore impact the scenic
ness prediction described in the next section. 

2.2. Scenicness prediction head 

The second head of our model is responsible of predicting the land
scape scenicness as a regression problem. In order to regress a scenicness 
value, our model multiplies a learnable weighted matrix W ∈ RC×M 

elementwise with the mode presence scores matrix R to create a matrix 
V with mode-specific scenicness contributions, where vc,m represents the 
contributions of a single mode: 

Fig. 1. Architecture overview of our semantic bottleneck. The model first extracts a matrix of Z features from a satellite image. Over these Z features it then 
multiplies a classwise softmax with a sigmoid non-linearity (Eq. (2)))) to extract mode presence scores R. Land cover presence is predicted from these features by 
summing the resulting matrix (Eq. (3)). We multiply this presence matrix with one learned weight per mode to derive their scenicness contribution for a given sample 
(Eq. (5)). The sum of all modes is added together with a bias term to create the final scenicness prediction (Eq. (6)). 
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vc,m = rc,m⋅wc,m (5)  

The sum of all mode contributions is then added together with a bias 
term b ∈ R in order to compute the predicted scenicness value: 

ŝ =

(
∑C

c=1

∑M

m=1
vc,m

)

+ b (6)  

We then use this predicted scenicness score to compute the following 
squared error loss function: 

L SoN(s, ŝ) = (s − ŝ)2 (7)  

Where s is the crowdsourced scenicness score for a single sample. During 
training, we backpropagate the mean squared error of each batch. 

With a choice of M > 1, our model can learn more than one repre
sentation for each c ∈ {1…C} classes. However, we want to encourage 
the model to use the minimum number of modes needed for the pre
diction task to stop the model from forming complex non-linear in
teractions between multiple modes. We encourage this through the 
softmax in Eq. (2), through which we limit the activation budget of the 
model. The softmax rescales the contributions of each mode relative to 
all mode activations within a class. Therefore the model cannot activate 
all modes equally, forcing it to make deliberate choices on which modes 
to use for each training example. 

2.3. Combined loss function 

Each one of the two processing heads of the model backpropagates 
gradients related to a loss specifc either to the land cover task (L CLC, Eq. 
(4)) or to the scenicness estimation task (L SoN, Eq. (7)). The final loss of 
our explainable model is obtained by a weighted combination of the two 
terms: 

L = L SoN + λL CLC (8)  

where λ is a weighting term set empirically. 

3. Data and setup 

3.1. Data 

Our model is concurrently trained on two tasks, namely land cover 
prediction and scenicness regression. In order to generate the training 
data for both tasks, we lay out a regular grid of 1.60 km by 1.60 km 
across the entirety of Great Britain as a common prediction grid. For 
each grid cell we then collect three data sources (Fig. 2): 1) A land cover 
inventory, 2) a landscape scenicness dataset with location information, 
and 3) satellite imagery with a maximum of 1% cloud coverage across 
Great Britain.  

- Land cover. For the land cover prediction we make use of the CORINE 
land cover inventory of 2018 (EU Copernicus Program, 2018). The 
CORINE Land Cover (CLC) is a pan-European dataset created from a 
combination of Sentinel-2 imagery and national land cover products. 
It consists of a hierarchy of three levels. CLC Level 1 consists of five 
land cover classes; 1) Urban, 2) Agriculture, 3) Forests and natural 
areas, 4) Wetlands, and 5) Water. CLC level 3 contains fine-grained 
land cover classes, such as 111) Continuous Urban Fabric, and 
421) Salt Marshes. For our experiments, we use CLC Level 1 as 
training labels, and we use the L3 labels for a qualitative assessment 
of the modes of our model in the discussion Section. We opt for a 
more simplistic land cover classification task to ensure that the 
model is able to learn an accurate representation of land cover 
classes. For each grid cell we create a binary vector where 0 and 1 
denote absence and presence for each class. We show this process as 
well as the land cover classes of the first-level hierarchy of CLC in 
Fig. 2a.  

- Landscape scenicness. We derive our landscape aesthetics score from 
ground-based image evaluations from the ScenicOrNot dataset. 
ScenicOrNot (SoN) is a crowdsourced dataset consisting of 215,000 
ground-level images across Great Britain obtained from the Geo
graph UK project. Each image is rated with a score between 1 (not 
scenic) to 10 (most scenic) for their landscape aesthetic beauty by 
one or more volunteers on an openly accessible online platform. 
Moreover, each image is stored with their geolocation, and as such 
they can be analyzed spatially. For each grid cell in our regular grid 
we assign the average scenicness score of the geotagged images 
within its bounds. We display this process in Fig. 2b. Fig. 3 illustrates 
the final ground truth, as well as the histogram of its distribution 
across the U.K.  

- Remote sensing data. As input to our model we use Sentinel-2 satellite 
imagery. We download atmospherically corrected (L2A) satellite 
tiles with at most 1% cloud coverage across Great Britain, which 
have been taken between 2018 and 2019. We retain the 10-and 20 
meter resolution bands of each satellite tile. We upsample the 20 m- 
resolution bands to 10 m using nearest neighbour interpolation. We 
remove any image patches which have all-zero values in the red, 
green, or blue colour bands. In total, we collect 121,067 patches of 
size 160 × 160 pixels, corresponding to an extent of 1.60 × 1.60 ki
lometers each. Land cover information is available for all of these 
patches, while scenicness scores are available for 83,374 patches. We 
randomly sample splits of 75/15/10% for training, validation, and 
testing. We sample without geographical stratification to maximize 
the opportunities for the model to learn meaningful scenicness dif
ferences for each class. 

The scripts for creating our ground truth dataset can be found in the 
following Zenodo repository: https://zenodo.org/record/4762134. This 

Fig. 2. Ground truth creation; (a) CORINE values are aggregated to their 1st digit, then assigned a binary present/not-present label. (b) SoN image scores within the 
patch boundary are averaged, which gives us the patch scenicness score. 
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repository also contains a PyTorch implementation of our model 
architecture. 

3.2. Set-up 

As feature extractor we use a ResNet-50 (He et al., 2016), which has 
not been pre-trained as we use multi-spectral imagery. We set the 
number of class-specific modes M to 3 and we initialize the weights in W 
for the class-specific modes to 0.5, 0.01, and − 0.5 respectively, so that 
the model is encouraged to develop non-symmetrical scenicness con
tributions for each mode. The scenicness prediction of our model is 
dependent on the land cover prediction task, but during training both 
tasks compete for signal. To avoid that the model learns a bottleneck 
optimized for scenicness and that is not aligned with the CLC semantics, 
we set a larger weight λ for the land cover loss in Eq. (8), to a factor 10. 

We explore the benefit of having multiple modes by running a 
baseline experiment with M, the number of sub-class nodes per class, set 
to 1, which makes it functionally equivalent to a linear regression 
dependent on the class prediction score. We train both models for 15 
epochs with the ADAM optimizer (Kingma and Ba, 2015). We set the 
initial learning rate to 0.0005 and we add a weight decay factor of 
0.0001. We use 16 samples per batch. During training we weight each 
loss by the inverse square root of their frequency so that we can train on 
a balanced number of samples. 

For every training iteration, we sample one batch to compute Eqs. (4) 
and (7). If both labels (CLC and SoN) are available for a given patch, then 
we compute both losses for the sample. When processing a sample only 
having land cover information (and no ScenicOrNot label), we set the 
loss of Eq. (7) to 0. We combine and backpropagate the losses according 
to Eq. (8). We repeat this procedure until the smallest dataset (SoN) is 
exhausted, at which point the epoch ends. 

We compare our models against unconstrained ResNet-50 models 
trained on each task separately. For the land cover prediction task, we 
set the number of outputs of the final fully-connected layer to 5 to equal 
the number of CORINE classes in the level-1 hierarchy. For the task of 
scenicness regression we set the number of outputs of the fully- 
connected layer to 1 such that the model regresses one single scenic
ness, as in (Workman et al., 2017; Levering et al., 2020). We also test the 

performance of our model with M = [2, 5] using the same training set
tings, but with a random initialization of W. We evaluate the land cover 
prediction performance of our model using the average F1-score (van 
Rijsbergen, 1979) for each class. The F1-score gives the harmonic mean 
between the precision and the recall of a given class. A value of 1 in
dicates perfect precision and recall. To assess the scenicness perfor
mance of our model we use the root mean squared error (RMSE) across 
all examples. We also calculate Kendall’s Tau (Kendall, 1938) over the 
predicted scenicness scores, which is a ranking correlation coefficient 
which tests whether two arrays have similarly-ranked values. For Ken
dall’s Tau, 1 indicates a perfect relationship between the predicted 
scores and the ground truth, and − 1 indicates the inverse. 

Finally, we compare the results of our scenicness regression to 
models which directly regress the scenicness score from the CORINE 
ground truth labels. We train a linear model using the level-1 hierarchy 
of CORINE to compare to our 1-mode linear bottleneck. We then train a 
random forest regressor (Breiman, 2001) with 50 trees, a maximum 
depth of 25, and a minimum of 5 samples per split on the L1 and L3 
CORINE ground truth labels to test the performance of our multi-mode 
models against. 

4. Results and discussion 

4.1. Numerical scores 

In Table 1 we display the numerical performances of the four 

Fig. 3. Ground truth creation; (a) Map of the ground truth scores of every patch in our dataset. (b) Histogram of all patch scores.  

Table 1 
F1-score, RMSE, and Kendall’s τ of each model on the test set.   

land cover F1-score Scenicness  

RMSE Scenicness τ    

Only CORINE 0.846 – – 
Only SON - 1.027 0.452 
ScenicNet (1 mode) 0.859 1.080 0.435 
ScenicNet (2 modes) 0.867 1.053 0.441 
ScenicNet (3 modes) 0.872 1.038 0.456 

ScenicNet (5 modes) 0.872 1.036 0.457  
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considered models. Each of our ScenicNet models outperform an un
constrained network on the land cover prediction task. Our 3-mode and 
5-mode ScenicNet models also match the scenicness regression baseline 
on the Kendall’s τ. Our results show that our ScenicNet model is able to 
leverage its modes to learn complex land cover class representations 
which relate to scenicness in varying ways, rather than the single 
learnable pattern for the 1-mode model. The numerical improvements of 
our multi-mode mode ScenicNet models on the land cover F1-score also 
indicates that the land cover prediction task seems to benefit from the 
scenicness prediction task, which is an underlying assumption of multi- 
task learning (Caruana, 1997). 

For the baseline and the 3-mode ScenicNet model we also present the 
precision, recall, and F1-score for each land cover class, which can be 
found in Table 2. Our 3-mode ScenicNet model improves on the baseline 
for land cover prediction on all land cover classes. In the cases of urban 
and wetlands our model particularly improves the number of recalled 
samples. 

To test the relationship between land cover and scenicness, we 
compare our models against a linear regressor and a random forest re
gressor which use the land cover ground truth labels to directly regress 
the scenicness score. We show our results in Table 3. Remarkably, our 
linear 1-mode model outperforms the score-to-score regression models. 
We hypothesize that our model is able to provide better performances in 
predicting scenicness from LC classes by allowing for subtle modifica
tions to the LC probability maps that help with scenicness regression. 
Our results also show that these subtle modification not only do not 
degrade the LC prediction performance, but actually provide a sub
stantial boost due to the synergy between the two tasks. By contrast, 
both a linear model and a random forest regressor use only the binary 
label present in the ground truth, without the possibility of tweaking it 
to improve the scenicness prediction performance. 

4.2. Mode Activity 

While our model is initialized with M modes, the Softmax function of 
Eq. (2) lets the model spend an activation budget across its modes. 
Through this activation budget, the model develops the tendency to 
allocate the vast majority of the signal on a single mode. By doing so, we 
encourage the model to learn a specific mode only if it needs to account 
for classes with contrasting scenicness values, such as forests near a city 
compared to forests in a scenic highland. As a result, it can occur that 
modes for some classes become inactive (i.e. the sigmoid + softmax 
combination never activates above 0.5), as there are too few intra-class 
contradictions to account for. In the case of M = 3, we found that the 
model eventually converges to use 2 modes per class at most, while the 
inactive modes can be pruned without affecting the performance of the 
model. Setting M to 2 resulted in a solution that is slightly worse than 
M = 3, while M = 5 resulted in a model with similar performance. As 
M = 3 gives a model with similar performance but less complexity, we 
chose this model for our experiments and discussion. We list the active 
modes of our 3-mode model for each class in Table 4. The choice of M 
should therefore be determined through experimentation, as it should 

capture the latent dynamics between the two tasks. 

4.3. Visual evaluations 

In this section we evaluate the performance of our 3-mode model, as 
well as its activation patterns and the behaviour of its mode. Fig. 4 il
lustrates the scenicness predictions of our 3-mode ScenicNet model 
alongside the ground truth. As can be seen, the model picks up on the 
major patterns of the ground truth scenicness labels. It is visible that 
major cities such as London and Manchester are considered unsightly, 
while Scotland and Wales are considerably more scenic than England. 
Our model also captures the relationship between elevated areas and 
scenicness, where higher areas typically correlate with greater scenic
ness. However, it is also apparent that the model is unable to approxi
mate extreme values, such as those found in downtown London and the 
Scottish highlands, which we suspect to be caused by an under- 
representation of these values in the ground truth, as suggested by the 
histogram in Fig. 4. 

We explore the latent space of our 3-mode ScenicNet model to un
derstand which patches our model considers visually similar. Our main 
interest with this experiment is to discover whether visually-related 
areas and concepts are similar in the high-dimensional latent space of 
the CNN model. We reduce the 2’048 outputs of the feature extractor to 
100 principal components using a Principal Component Analysis 
(Pearson, 1901), which are then reduced to 2 dimensions using t-SNE 
dimensionality reduction (Maaten and Hinton, 2008). t-SNE is a non- 
linear visualization technique that performs dimensionality reduction 
by learning an embedding that preserves neighborhood structures, i.e. 
samples that are neighbors in the high dimensional space must remain 
neighbors after projection. For the t-SNE hyperparameters, we use a 
perplexity of 300, a learning rate of 200, and we set the number of it
erations to 1’000. We show the resulting plots for the predicted sce
nicness and class labels in Fig. 5. We find that the latent space of our 
model is organized by the predictions made through the class-specific 
modes. Predictions routed through each mode relate to strongly 
differing land cover archetypes, which are grouped by their relative 
scenicness. This organizes the latent space into an arrangement where 
both similarity in land cover visuals (e.g. ”bare rocks” and ”sparsely 
vegetated”) as well as their relative scenicness are important. An 
example of this behaviour can be seen on the overlap between modes 3 
+ and 4+: activations of both of these modes are neighbours in the latent 
space, while they both have a considerably high learned scenicness 
score. From Table 4, we can infer that these modes are activated by a 
similar set of fine-grained land cover concepts, namely highland and 
plains environments. These findings are encouraging as they indicate 
that the model is consistent in the concepts it considers to be scenic 
between different but related land cover classes. The plots of the modes 
also reveal a gradual transition in visual similarity from man-made land 
cover classes to natural areas. The large cluster in the center is domi
nated by un-scenic agriculture and urban land covers, which corre
sponds to England’s countryside. To the right, it is connected with and 
slowly transitions into a cluster dominated by mixed agriculture and 
woodland environments typically found in Wales, the north of England, 
and Scotland. From this transition we infer that the model considers 
natural areas to be more scenic. This pattern is reflected in the gradient 
of the top-left cluster. It sees urban areas on the far-left of the cluster 

Table 2 
Class-wise performance metrics of the CORINE baseline and ScenicNet with 3 
modes. In each column we display the performance of the baseline on the left, 
and our model on the right.   

Precision Recall F1     

Base- line Ours Base- 
line 

Ours Base- 
line 

Ours 

Urban 0.859 0.865 0.701 0.740 0.772 0.798 
Agriculture 0.971 0.974 0.936 0.946 0.954 0.960 
Forests and 

Natural 
0.848 0.974 0.821 0.946 0.835 0.960 

Wetlands 0.805 0.781 0.617 0.775 0.699 0.778 
Water 0.973 0.965 0.968 0.979 0.970 0.972  

Table 3 
RMSE, and Kendall’s τ of models trained to regress scenicness from the land 
cover ground truth labels.   

Scenicness  

RMSE Scenicness τ   

Linear (L1) 1.150 0.417 
Random Forest (L1) 1.081 0.425 
Random Forest (L3) 1.061 0.444  
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transition into very scenic natural areas and wetlands at the other edge 
of the cluster, which suggests that there is a similar transition of sce
nicness from man-made to natural areas for coastal environments. 

Effect of multiple modes to the final prediction. The learned bias of our 
model is 4.65, which corresponds to an average value of scenicness for 
the whole region. Deviations from this value are related to the land 
cover-related weights. We further assess these deviations by analyzing 
the most-recalled level-3 CORINE classes per mode in Table 4, as well as 
their weights. We find that each class has at most two active modes with 
a large difference in scenicness scores between both modes. Each mode 
tends to recall different thematic clusters, such as mode 4-(the minus 
sign represent here the negative influence this mode has on scenicness) 
recalling flat coastal wetland environments, while mode 4 + tends to 
recall elevated boglands, Scottish highlands and loch environments, 
which impact landscape beauty positively. This spatial binning effect of 
the positive and negative modes can be seen in Fig. 6 for all classes, 
except for the Urban and Agriculture classes. The Urban class defaults to 
one single un-scenic mode, while the Agriculture class experiences 
strong mixing between its two modes, as both semantic clusters tend to 
be widespread throughout the country. The presence of human in
fluences on the landscape can be seen in the water and wetland classes. 
While the coastline of England is predicted to be very scenic (mode 5+), 

its rivers and estuaries are only mildly positively associated with sce
nicness (mode 4-). This pattern is visible for all of the major estuaries in 
England. However, the inlets and open waters connected to the ocean in 
Scotland are considered strongly positive. While inland waters are only 
mildly positively associated with scenicness as in England, its presence 
strongly correlates with natural areas (mode 3+) and wetlands (mode 
4+). The weights of these modes indicate that our model considers these 
land cover classes to be very scenic in the Scottish highlands. This in
dicates that people value inland water environments, but mostly for 
their nature and wetland environments. The validation of such obser
vations, for example via interviews, could be the topic of further studies. 

The learned weights of our modes can be related to three previously 
quantified observations. Firstly, our model supports the notion that the 
presence of human influences and structures in a landscape reduce the 
beauty of it (de Vries et al., 2012; Lindemann-Matthies et al., 2010; 
Palmer, 2004; Hodgson and Thayer, 1980), as visible by the scenicness 
weights of modes 1, 2- and 5-. However, not all classes with human 
influences are considered un-scenic, such estuaries and beaches in mode 
5-. Secondly, landscape beauty is greater in natural areas where there is 
an open canopy (Schirpke et al., 2013; Hill et al., 2007), which can be 
inferred from the differences in scenicness values of modes 2+, 3-, 3+, 
and 5+. These results are corroborated by the spatial patterns of modes 

Table 4 
Modes for each class with their learned scenicness score, and their most-recalled level-3 CORINE labels. We renamed modes according to their scenicness score and 
removed inactive modes from the table. While our model is trained with the coarse 5-class first-level hierarchy ground truth of CORINE, the two modes of each class 
(except urban) are associated with differing fine-grained land cover concepts.  
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3 + and 4+, which can be seen in the forest map of Fig. 6. These modes 
are considered very scenic, while their recalled geo-located patches 
often correspond with hilly and mountainous regions. Lastly, our 

learned weights for the agriculture class do not directly support survey 
data which indicates that the British public enjoys the British country
side for its landscape beauty (Hall et al., 2004). It should be noted that 

Fig. 4. Left: Geotagged scenicness scores from the ScenicOrNot project. Right: Scenicness values predicted by 3-mode ScenicNet model. Scenicness is clipped be
tween 1.5 and 7.5 to show more variation in the 3-mode model. 

Fig. 5. Low-dimensional representation of the prediction outputs of our 3-mode ScenicNet model, visualized using t-SNE. We display the predicted scenicness scores 
for each datapoint as well as the predictions of the active modes of each class. The red colors of each mode refers to modes with the most negative weight within each 
class, while green is used for the mode with the most positive weight within each class. 
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these quantified patterns are difficult to relate to our research, as they 
cover different countries or regions, as well as using different mea
surement techniques. Further research may attempt to learn patterns on 
a local scale to see whether local patterns in the United Kingdom extend 
across regions. 

5. Conclusions 

In this paper we present and test a novel method for large-scale 
inventorization of landscape scenicness, which uses land cover predic
tion as an interpretable intermediate task. Our model is able to learn 
scenic and un-scenic representations of the same land cover type by 
being able to choose which of several land cover-specific weights to use 
for the scenicness regression task. Our model outperforms an uncon
strained model on the task of land cover prediction while matching an 
unconstrained model on scenicness regression. Furthermore, our model 
is able to express preferences for fine-grained land cover types while 
being trained on just five coarse land cover concepts, which allows us to 
study the relationship between landscape beauty and land cover types. 
Our work also opens up possibilities for knowledge and sub-class dis
covery. We note that our findings are still subject to the fact that all data 
come from the U.K. and only apply to landscape preferences in the U.K., 
and most probably provided by British citizens. Expanding these 

findings to global measures of landscape aesthetics would require a 
larger corpus of crowdsourced data, as well as images coming from all 
over the world. Creating such dataset would open the possibility for 
cultural and global studies about human preferences and appreciations 
of nature. 
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Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller, K.-R., Mar. 

2019. Unmasking Clever Hans predictors and assessing what machines really learn. 
Nature Communications 10 (1), 1096, number: 1 Publisher: Nature Publishing 
Group. https://www.nature.com/articles/s41467-019-08987-4. 

Levering, A., Marcos, D., Lobry, S., Tuia, D., 2020. Interpretable Scenicness from 
Sentinel-2 Imagery. In: Proceedings of the 2020 International Geoscience and 
Remote Sensing Symposium, Hawaii, p. 4. 

Lindemann-Matthies, P., Briegel, R., Schüpbach, B., Junge, X., Nov. 2010. Aesthetic 
preference for a Swiss alpine landscape: The impact of different agricultural land-use 
with different biodiversity. Landscape Urban Plan. 98 (2), 99–109 http://www. 
sciencedirect.com/science/article/pii/S0169204610001830.  

Maaten, L.v.d., Hinton, G., 2008. Visualizing Data using t-SNE. J. Mach. Learn. Res. 9 
(86), 2579–2605 http://jmlr.org/papers/v9/vandermaaten08a.html.  

Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., 2017. High-resolution aerial image 
labeling with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55 
(12), 7092–7103. 

Marcos, D., Fong, R., Lobry, S., Flamary, R., Courty, N., Tuia, D., Sep. 2020. Contextual 
Semantic Interpretability. arXiv:2009.08720 [cs]ArXiv: 2009.08720. http://arxiv. 
org/abs/2009.08720. 

Marcos, D., Lobry, S., Tuia, D., 2019. Semantically Interpretable Activation Maps: what- 
where-how explanations within CNNs. In: 2019 IEEE/CVF International Conference 
on Computer Vision Workshop (ICCVW), pp. 4207–4215 iSSN: 2473–9944.  

Marmanis, D., Schindler, K., Wegner, J.D., Galliani, S., Datcu, M., Stilla, U., 2018. 
Classification with an edge: Improving semantic image segmentation with boundary 
detection. ISPRS. J. Int. Soc. Photo. Remote Sens. 135, 158–172. 

Miller, T., 2017. Explanation in artificial intelligence: Insights from the social sciences. 
Artif. Intell. 267, 1–38 arXiv: 1706.07269.  

Palmer, J.F., 2004. Using spatial metrics to predict scenic perception in a changing 
landscape: Dennis. Massachusetts. Landscape and Urban Planning 69 (2), 201–218 
http://www.sciencedirect.com/science/article/pii/S0169204603001968.  

Pearson, K., Nov. 1901. LIII. On lines and planes of closest fit to systems of points in 
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of 
Science 2 (11), 559–572, publisher: Taylor & Francis _eprint: doi: 10.1080/ 
14786440109462720. https://doi.org/10.1080/14786440109462720. 

Samek, W., Müller, K.-R., 2019. Towards Explainable Artificial Intelligence. In: Samek, 
W., Montavon, G., Vedaldi, A., Hansen, L.K., Muller, K.-R. (Eds.), Explainable AI: 
Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer 
Science. Springer International Publishing, Cham, pp. 5–22. doi: 10.1007/978-3- 
030-28954-6_1. 

Schirpke, U., Tasser, E., Tappeiner, U., 2013. Predicting scenic beauty of mountain 
regions. Landscape and Urban Planning 111, 1–12 http://www.sciencedirect.com/ 
science/article/pii/S0169204612003271.  

Schroeder, H., Daniel, T.C., Mar. 1981. Progress in Predicting the Perceived Scenic 
Beauty of Forest Landscapes. Forest Science 27 (1), 71–80, publisher: Oxford 
Academic. https://academic.oup.com/forestscience/article/27/1/71/4656458. 

Seresinhe, C.I., Preis, T., MacKerron, G., Moat, H.S., 2019. Happiness is Greater in More 
Scenic Locations. Scientific Reports 9 (1), 1–11 https://www.nature.com/articles/ 
s41598-019-40854-6.  

Seresinhe, C.I., Preis, T., Moat, H.S., 2015. Quantifying the Impact of Scenic 
Environments on Health. Scientific Reports 5 (1), 1–9 https://www.nature.com/ 
articles/srep16899.  

Seresinhe, C.I., Preis, T., Moat, H.S., 2017. Using deep learning to quantify the beauty of 
outdoor places. Royal Society Open Science 4 (7), 170170, publisher: Royal Society. 
https://royalsocietypublishing.org/doi/full/10.1098/rsos.170170. 

Sumbul, G., Charfuelan, M., Demir, B., Markl, V., 2019. Bigearthnet: A Large-Scale 
Benchmark Archive for Remote Sensing Image Understanding. In: IGARSS, 
pp. 5901–5904. 
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