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A B S T R A C T   

Understanding the multidimensionality of microplastics is essential for a realistic assessment of the risks these 
particles pose to the environment and human health. Here, we capture size, shape, area, polymer, volume and 
mass characteristics of >60,000 individual microplastic particles as continuous distributions. Particles originate 
from samples taken from different aquatic compartments, including surface water and sediments from the marine 
and freshwater environment, waste water effluents, and freshwater organisms. Data were obtained using state-of- 
the-art FTIR-imaging, using the same automated imaging post-processing software. We introduce a workflow 
with two quality criteria that assure minimum data quality loss due to volumetric and filter area subsampling. 
We find that probability density functions (PDFs) for particle length follow power law distributions, with median 
slopes ranging from 2.2 for marine surface water to 3.1 for biota samples, and that these slopes were 
compartment-specific. Polymer-specific PDFs for particle length demonstrated significant differences in slopes 
among polymers, hinting at polymer specific sources, removal or fragmentation processes. Furthermore, we 
provide PDFs for particle width, width to length ratio, area, specific surface area, volume and mass distributions 
and propose how these can represent the full diversity of toxicologically relevant dose metrics required for the 
assessment of microplastic risks.   

1. Introduction 

Environmental microplastic consists of a complex, diverse mixture of 
particles with different sizes, shapes and polymer types (Burns and 
Boxall, 2018; Kooi and Koelmans, 2019; Rochman et al., 2019). Discrete 
classifications of these properties are however unable to capture the full 
diversity of the microplastic mixture (Kooi and Koelmans, 2019). Better 
parameterization of this mixture is needed, for those seeking realistic 
risk assessments (Everaert et al., 2020; Koelmans et al., 2020). Proba-
bility density functions (PDFs) are mathematical functions that describe 
the actual distribution of a certain microplastic characteristic. As such 
they have the potential to capture the continuous nature of the different 
properties of these diverse mixtures (Kooi and Koelmans, 2019). 

The advantage of these PDFs as opposed to more traditional discrete 
binning or classification methods is the level of detail that is maintained 
when presenting the results. Distributions can be compared more easily 
since their presentation is independent of the chosen bin width or class. 

Additionally, when the PDFs are parameterized, the resulting functions 
can form the basis for probabilistic (risk) modeling (de Ruijter et al., 
2020; Kooi and Koelmans, 2019; Mohamed Nor et al., 2021). They allow 
for the accurate definition of the dose metrics that are relevant for 
ecological effects or toxicological effects on humans, while retaining the 
diversity of environmental or dietary microplastic. For risk character-
ization, these dose metrics can be aligned for the exposure and effect 
assessment, by taking into account the effect mechanism (Koelmans 
et al., 2017). Thus far, PDFs have been parametrized for microplastic 
sizes, shapes and densities (Kooi and Koelmans, 2019), and these pa-
rameters have been used for risk assessments in the marine and fresh-
water environment (Everaert et al., 2020; Koelmans et al., 2020). A 
similar probabilistic approach has been used to characterize micro-
plastics in food and air, resulting in a probabilistic exposure assessment 
for humans (Mohamed Nor et al., 2021). 

The parameterization by Kooi and Koelmans (2019) was based on 
best available information, however, data on individual particle 
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characteristics was not available. Empirical data on particle size was 
obtained from published tables and graphs, so only binned count data 
for (arbitrary) size classes was used. Despite being a commonly used 
method, fitting a power law on binned data via linear regression on the 
log-log scale can result in substantial biases of the parameter estimates 
because with binning one loses the information on trends in the data 
within a bin (Clauset et al., 2009; Newman, 2005; White et al., 2008). A 
better approach is the maximum likelihood estimation (MLE) method 
(Clauset et al., 2009; Newman, 2005; White et al., 2008). For particle 
shape and density, Kooi and Koelmans (2019) combined average rela-
tive abundances of shape categories and polymer types with estimates of 
3D shape descriptions and polymer densities. These also are less accu-
rate than actual data on shape and polymer ID on an individual particle 
level. Therefore, here we aim to provide parameterizations of micro-
plastic PDFs, this time based on much higher-quality datasets with 
characteristics on the individual microplastic particle level. 

Microplastic characteristics such as size, shape and polymer type, 
can be obtained on the individual particle level using Fourier transform 
infrared (FTIR) imaging or Raman microspectroscopy, or when combing 
visual selection with attenuated total reflection (ATR)-FTIR. When 
combining FTIR imaging with automated analyses software like siMPle 
and the MPAPP (Primpke et al., 2020a, 2019), the comparability be-
tween studies is greatly enhanced. However, this type of detailed ana-
lyses, and the required sample preparation, is very time-consuming. 
Therefore, most researchers analyze only a fraction of their sample and 
filter, and assume that results obtained for these subsamples would 
apply to the whole sample and thus can be extrapolated back to 100% 
sample size (Lorenz et al., 2019; Mintenig et al., 2020). Although this is a 
common approach, few studies assessed to what extent subsampling 
affects the assessment of particle property distributions (Abel et al., 
2021; Brandt et al., 2021). Consequently, before detailed analyses of the 
actual data can take place, a better understanding of the adequacy of 
sample extrapolation is required. 

Aim of the present paper is to provide characteristics of microplastic 
particles across environmental compartments, via continuous distribu-
tions. Secondary aims are to assess to what extent subsampling affects 
the accuracy of such distributions, and to discuss how these distributions 
can be used to tackle the multidimensionality of microplastic with 
respect to dose metrics as used in risk assessment for the environment 
and human health. We perform a meta-analysis of data from five studies 
that used state-of-the-art FTIR imaging and automated image analyses 
software (Lorenz et al., 2019; Mani et al., 2019; Mintenig et al., 2020; 
Pan et al., 2021; Primpke et al., 2019). First, we quantify the loss of 
accuracy in PDF quantification due to subsample extrapolation, and set 
two quality criteria to assure representativeness. The five studies 
focused on different aquatic compartments, i.e. freshwater, marine 
surface water and sediment, waste water effluent and freshwater benthic 
invertebrates. We present and compare PDFs for microplastic length, 
width, width to length ratio, area, specific surface area, volume and 
mass, for the different aquatic compartments. Additionally, we param-
eterize and compare power law distributions (using the MLE-method), 
focusing on the aquatic compartment level, the sample level, and the 
polymer level. The distributions are discussed in the context of a realistic 
risk assessment framework capable of accommodating all microplastic 
dose metrics that may be relevant given the effect mechanisms identified 
for particulate matter from the environment (de Ruijter et al., 2020; 
Kögel et al., 2020; Wright and Kelly, 2017). 

2. Methods 

2.1. Data collection 

Particle length, width and polymer type data from five studies tar-
geting different environmental compartments were used. The environ-
mental compartments include marine surface water and sediment 
(Lorenz et al., 2019), freshwater surface water (Mintenig et al., 2020), 

freshwater sediment (Mani et al., 2019; Pan et al., 2021), waste water 
effluent (Mintenig et al., 2020; Primpke et al., 2019) and benthic 
freshwater biota (Pan et al., 2021) (Fig. 1). Note that results we obtain 
are specific for these datasets and do not necessarily apply to all sedi-
ment, water or biota samples worldwide. 

The studies differed regarding sampling methods and examined 
sample type (Table S1) but are comparable analytically. Particles >500 
µm (Lorenz et al., 2019; Mani et al., 2019) or >300 µm (Mintenig et al., 
2020; Pan et al., 2021) have been analyzed using stereo-microscopes 
and ATR-FTIR analysis. No data on particles >500 µm were available 
for the German waste water effluents (Primpke et al., 2019). Smaller 
particles were analyzed using µFTIR. Instruments from different manu-
facturers were used that either applied a focal plane array (FPA) detector 
(Bruker Hyperion 3000 (Lorenz et al., 2019; Mani et al., 2019; Primpke 
et al., 2019), Agilent Cary 620 (Pan et al., 2021)) or a single element 
detector (ThermoFischer Scientific Nicolet iN10 (Mintenig et al., 2020)). 
Further, all FTIR data were analyzed using the same reference database 
(Primpke et al., 2018) and automated particle identification using the 
software siMPle and MPAPP (Primpke et al., 2020a, 2019). The lower 
size detection limit depended on the µFTIR instrument and settings used, 
and was either 11 µm (Lorenz et al., 2019; Mani et al., 2019; Primpke 
et al., 2019) or 20 µm (Mintenig et al., 2020; Pan et al., 2021). 

Image analysis provided information on the particle’s length, width 
and polymer type. Based on these variables, other particle properties, 
including width to length ratio (W:L), surface area, volume, mass and 
specific surface area (SSA), were calculated. Particles were assumed to 
have an ellipsoid shape for surface area and volume calculations 
(Koelmans et al., 2020; Primpke et al., 2020b; Simon et al., 2018). Since 
the height of particles cannot be measured using ATR-FTIR and µFTIR 
imaging techniques, it was assumed that the median W:L ratio is equal to 
the median height to width ratio; therefore the height was calculated as 
median W:L ratio times width (Koelmans et al., 2020; Kooi and Koel-
mans, 2019; Primpke et al., 2020b; Simon et al., 2018). Particle mass 
was estimated by multiplying particle volume with the density of the 
detected polymer (Table S2). Specific surface area was calculated as the 
surface area divided by the mass. 

2.2. Extrapolation of subsample analyses 

Most studies analyze only a part of their samples and/or filter areas, 
after which data are extrapolated to represent the full sample. This as-
sumes particle characteristics detected for the subsample would apply to 
the whole sample as well. Since in reality two microplastic particles are 
never identical, this is a critical assumption. Using simulated samples 
and particles we tested to what extent subsampling and subsequent 
extrapolation influences the parameters of PDFs for particle size. Sub-
sequently, we set two quality criteria, based on the minimum number of 
particles in a sample (criterium 1) and the subsample percentage of the 
sample or filter (criterium 2) to assure we adequately capture the size 
distribution of a full sample. In order to be able to include a sample in 
the further data analyzes, at least one of the criteria had to be met. For 
details on these tests, the reader is referred to the Supporting Informa-
tion (Section S1). After this quality screening the number of particles 
included for each of the compartments was 3890 (biota samples), 
10,356 (effluent), 19,676 (freshwater sediment), 1748 (marine sedi-
ment), 21,004 (freshwater surface water) and 2502 (marine surface 
water). 

2.3. Parameterization of probability density functions 

Cumulative frequency distributions (CFDs) were plotted for particle 
length, width, W:L ratio, area, volume, mass and specific surface area, as 
well as relative abundances of polymer types per environmental 
compartment. Median and mean values, quantile ranges and standard 
deviations for these different properties were calculated. Subsequently, 
probability density functions (PDFs) were fitted for particle length, 

M. Kooi et al.                                                                                                                                                                                                                                    



Water Research 202 (2021) 117429

3

width, area, volume and mass, for the six compartments. PDFs for length 
and width were also analyzed on the sample level, and for length also on 
the polymer level. The particle length distribution of microplastics has 
been shown to follow a power law shape (Eq. S1) (Kaandorp et al., 2021; 
Kooi and Koelmans, 2019; Mattsson et al., 2021), and the same can be 
expected for width. Since particle height was calculated using the me-
dian W:L ratio times the width, particle height will also follow a power 
law profile. If particles would be perfect spheres or squares, one would 
expect a power law slope for volume of one third of the slope of length. 
Our particles are assumed to be ellipsoid-shaped, so we expect the vol-
ume and surface area to follow a power law as well, however with a 
lower slope exponent compared to the ones for length and width. Given 
the large range in volumes (several orders of magnitude) and the rela-
tively small range in densities, particle mass is expected to also follow a 
power law distribution, with a similar slope as the one for particle vol-
ume. The reciprocal of specific surface area, calculated as surface area 
divided by mass, was found to also follow a power law distribution after 
visual inspection of histograms. 

2.3.1. Fitting power laws 
Power laws usually only apply to values greater than some minimum 

(xmin), in our case the minimum particle length, width, area, volume or 
mass. This minimum size was determined using Kolmogorov-Smirnov 
(KS) statistics (Clauset et al., 2009). The maximum distance between 
the cumulative frequency distributions of the data and the model for a 
combination of xmin and α was determined. This calculation was opti-
mized to minimize the difference between the two distributions, 
resulting in the optimal x̂min. The power law exponent α was then esti-

mated as α̂ = 1+ n

⎡

⎣ln
∑

i

xi

x̂min

⎤

⎦

− 1

, according to maximum likelihood 

estimation (MLE) method (Clauset et al., 2009; Newman, 2005). To 
ensure good parameter estimates, each fit was bootstrapped, to obtain 
means and standard deviations of both x̂min and α̂. Calculations were 
performed with the poweRlaw package (Gillespie, 2014). The estima-
tion method was applied on three different levels: (a) the compartment 
level, (b) the sample level, and (c) a lumped aquatic system level. 

2.3.2. Particle distributions per aquatic compartment 
To obtain average distributions for particle length, width, area, 

volume and mass per aquatic compartment, we applied the MLE method 
on the datasets that were extrapolated to have an identical sample 
volume (Section 2.2). Particles >5000 μm in length were excluded from 
the analysis since a portion of these particles were removed by sieves 
before the analyses, but some slipped through. Therefore, it is unknown 

what fraction of all >5000 um particles was actually analysed. With a 
bootstrap (n = 100), the mean and standard deviation of both x̂min and α̂ 
were determined. 

Additionally, for particle length and width, we calculated x̂min and α̂ 
for each sample individually, again only for particles ≤5000 µm in 
length. For some samples, only one or two unique particle sizes were 
reported. These samples were excluded from power law fitting, given the 
lack of (continuous) distribution data. Also, we set a threshold of at least 
10 particles for a sample to be included. A final criterion was that the 
estimated mean α̂ had to exceed two times the standard deviation of α̂, 
based on bootstrapping (n = 500). Having one power law exponent per 
sample, we calculated median slopes per aquatic compartment. 

An ‘average’ power law exponent for aquatic microplastic was 
calculated by combining data for the four relevant aquatic compart-
ments, i.e. surface waters and sediments in both the marine and fresh-
water environment. Since the number of samples differed per aquatic 
compartment, a random subset of 5 exponents per compartment was 
selected, and the mean of these 20 exponent values was calculated. To 
account for the random variability, this process was bootstrapped (n =
10,000). Based on these results, one overall power law exponent for 
aquatic microplastic length and width was obtained. 

2.3.3. Particle size distributions per polymer type 
Besides calculating power law exponents per sample, we calculated 

exponents per polymer type per sample, for particle length only. Here, 
the same quality criteria as for the sample level calculations applied, i.e. 
≥2 unique sizes, ≥10 individual particles, and the bootstrapped (n =
500) mean was required to exceed two times the standard deviation. We 
compared exponent distributions per polymer type, and tested if cor-
relations between exponents of different polymer types across samples 
occur (Spearman’s rank correlation test). 

2.3.4. Comparison of the particle size distributions 
We tested for significant differences in power law exponent distri-

butions between the different aquatic media or polymer types using a 
non-parametric Kruskal-Wallis rank sum test, followed by a pairwise 
Wilcoxon rank sum test, with a significance threshold of p = 0.05. 

Additionally, Spearman’s rank correlation coefficients were calcu-
lated for the polymer-specific power law exponents. Spearman’s corre-
lation provides a pairwise comparison on the sample level, between two 
polymers, contrary to Kruskal-Wallis and pairwise Wilcoxon rank sum 
tests, that test for differences between groups. The Spearman’s corre-
lation coefficient would be 1 or − 1 if the two polymers show a mono-
tonic relationship, that is, if the exponent of one polymer in a certain 
sample would increase or decrease, so would the exponent of the other 

Fig. 1. Map of the sample locations, with colors indicating the different aquatic compartments. The detailed map is a cutout of the river Dommel, where many 
different samples have been taken in the main tributary. Points are slightly dodged to avoid overlap. Black stars indicate samples that did not meet the quality criteria 
(see Sections 2.2 and 3.1) or did not contain plastic particles, and were therefore excluded from further analyses. 
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polymer in the same sample. 

3. Results and discussion 

3.1. Selection of representative samples based on extrapolating 

An analysis was performed to verify to what extent subsampling 
negatively affects the representativeness of power law slopes obtained 
from extrapolated datasets. Based on the comparison of the fitted linear 
regression with the 1:1 lines, we conclude that original datasets with 
≥500 observations are acceptable (Figures S1, S2). Similar to the par-
ticle number criterium, we also checked for the representativeness of 
subsample percentages of the sample or filter. Here, based on compar-
ison of original versus extrapolated alpha values inferred from our 
simulated datasets, we set the criterium threshold at 60% (Figures S3, 
S4). Therefore, after extrapolation based on the correction factor (CF), 
we excluded datasets with both <500 particles and <60% of the sample 
or filter analyzed, from further analyses. 

Note that our 60% criterium, meant for finding accurate power law 
slopes, is consistent with two, laboratory based, criteria, where it was 
recommended to analyze at least 50% of the filter (Brandt et al., 2021; 
Mintenig et al., 2020). What both the theoretical and lab-based 
approach did not take into account was the sample volume. For 
instance, a large sample analyzed for 40% might give a better repre-
sentation of the actual environmental composition than a small sample 
analyzed for 80%. After all, for the estimation of a power law exponent 
for a sample we need a sufficient number of particles, irrespective of the 
volume of that sample. Sample volume criteria for natural waters have 
been suggested (Koelmans et al., 2019), however these are independent 
of subsample percentages. Ideally, there would be a combined criterium, 
based on expected plastic concentrations, sample volume and subsample 
percentages. 

With these two criteria in effect, 39 out of the 129 samples were 
excluded from our analyses (Fig. 1, black stars, Table S1), while the 
remaining 90 samples were composed of 9 marine surface samples, 13 
marine sediment samples, 21 freshwater surface waters, 11 freshwater 

Fig. 2. Cumulative frequency distributions for microplastic properties per particle, with a) length, b) width, c) width to length ratio, d) area, e) volume, f) weight and 
g) specific surface area. All distributions are plotted on a log x-axis scale, except for panel c, which uses a linear x-axis scale. The different colors indicate the different 
aquatic media. 
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sediments, 8 effluent samples and 28 biota samples. 

3.2. Characteristics of aquatic microplastics 

Cumulative distribution functions (CDFs) for particle length, width, 
width to length (W:L) ratio, surface area, volume, mass, and specific 
surface area capture the multidimensionality of microplastic charac-
teristics (Fig. 2; Table S3). Here we discuss the main features of these 
distributions, while later on we illustrate how they can inform the risk 
characterization based on specific effect mechanisms that require the 
specific data from these distributions (Section 3.6). Particle length has 
some clear discrete steps, which is the result of the pixel-based analyses 
when using µFTIR (Primpke et al., 2020b) (Fig. 2a). It is also clear that 
biota and freshwater surface water samples were analyzed with a 
detection limit of 20 µm as compared to 11 µm for the other samples. 
Freshwater sediment samples have been analyzed using two µFTIR in-
struments and with different settings, which explains the rapid rise at 20 
µm. Although the upper size limit of the samples is around 5000 µm, and 
even larger for some fibers, almost all the particles are <300 µm in 
length. At least 25% of the particles have a length equal to the detection 
limit (Table S3, first quantile), and for biota, freshwater surface water, 
freshwater sediment and marine sediment, the median is also very close 
or equal to the detection limit (Table S3). This illustrates the need for 
detailed analyses, where samples taken with meshes of 300 or 500 µm 
will not suffice to get representative plastic concentrations. Benthic 
invertebrate samples contained the largest portion of small particles, 
where a length larger than 20 µm occurs for less than 40% of the par-
ticles. We assume this is the result of size-selective feeding, where 
ingestion is limited by the mouth-opening of the organisms (Bern, 1990; 
Jâms et al., 2020; Koelmans et al., 2020). 

Fibers and particles have been combined in all of the analyses in this 
study. Here, we defined fibers as particles that have a length to width 
ratio ≥ 3, and a diameter of 15 µm (Mintenig et al., 2020; Primpke et al., 
2019). For all samples, 7.4% of the particles are classified as fibers. In 
the marine environment, hardly any fibers are found, with percentages 
<0.1%. For effluents, this percentage is 7.0%, for biota 8.6%, for 
freshwater surface waters 9.2% and for freshwater sediments 13.4%. 
The minimum length for fibers for the four compartments where fibers 
are abundant is 60 µm. Median lengths range from 100 to 140 µm, and 
maximum values vary between 2060 and 7470 µm. 

Even more so than for length, the width of at least half of the particles 
is 11 or 20 µm (Table S3). For biota, freshwater surface water, fresh-
water sediment and marine sediment, even the upper quantile is very 
close to the detection limit; indicating that 75% of the data has a width 
of 20 or 11 µm. The width is calculated based on the pixel arrangement 
(Primpke et al., 2020b, 2019), and can therefore be smaller than the 
detection limit. Because of this interpolation, the CDF is more smooth as 
compared to the CDF for particle length. 

The W:L ratio has a clear dominance of 1, i.e. the width is equal to the 
length. This can be explained by the dominance of small particles 
combined with the pixel-based analyses. Around 25% of the particles 
have a W:L ratio ≤ 0.5 (Fig. 2c, Table S3). The median W:L ratio is 0.67 
for all particles, including fibers, which was used to calculate the particle 
height and subsequently the volume. This value is close to the values 
used in the MPAPP (0.7) and by Simon et al. (0.69), which are both mean 
values of a smaller dataset (Primpke et al., 2020b; Simon et al., 2018). 
The mean value for all our particles is 0.69 too, however, since the data 
are not normally distributed, the median value was used for further 
calculations. 

Particle area, volume and weight show rather continuous distribu-
tions (Fig. 2d, 2e, 2f), still with rapid increases for the lower particle 
sizes. Particle volume and mass range over several orders of magnitude, 
which is the result of the three-dimensional shape of particles that 
already varies two orders of magnitude in length and width. Specific 
surface area (Fig. 2g) shows a rapid increase only for the larger values, 
seemingly the inverse of the other distributions, which makes sense 

given it was calculated as surface area divided by weight. Median values 
for the SSA range from 0.29 m2 g − 1 for freshwater surface waters to 
0.53 m2 g − 1 for marine surface waters (Table S3). These values are in 
the same order of magnitude as SSA values reported for different 
microplastic polymers; those ranged between 0.59 and 3.2 m2 g − 1 

(Godoy et al., 2019). 
Whereas particle mass is mainly influenced by the large variability in 

particle volumes, polymer densities are all relatively comparable 
(Table S2, Table S3). However, relative abundances of these different 
polymer types are different for different aquatic compartments (Fig. 3). 
The largest percentage of buoyant polymers is found in freshwater sur-
face waters, followed by effluents, benthic biota and marine surface 
waters. Sediments have the lowest percentage of buoyant polymers, 
which makes sense given that particles need to settle from the water 
column in order to reach the sediment. Processes like aggregation and 
biofouling can result in the settling of buoyant plastics to the sediment 
layer, however, these processes take time (Kooi et al., 2018). Effluents 
and freshwater sediments show the highest abundance of acrylates; 
potentially most of these particles settle in river sediments before they 
reach the marine environment. On the other hand, polyamide and pol-
ychloroprene are mainly found in the marine environment, so they could 
originate from another source than terrestrial inputs. For fibers, the 
polymer composition in the four compartments that contained sub-
stantial amounts (i.e. biota, effluents and the freshwater compartments) 
differed little from the overall sample analyses, with acrylates still the 
most abundant in freshwater sediments and rod-shaped rubber type 3 
particles (mainly ethylene propylene diene monomer (EPDM) rubber) 
dominating the polymer distribution for biota. 

Since all these distributions account for the actual multidimension-
ality of the particles, they represent a powerful tool set to assess the 
environmentally relevant exposure to biota. 

3.3. Microplastic particle size distributions for aquatic compartments 

Power law distributions were fitted on all data per water type, for 
particle length, width, area, volume and mass (Table S4, Figs. 4, S5 - S8). 
The minimum length for which the power law distributions are valid 
range from 56 ± 21 µm for marine sediment to 354 ± 86 µm for fresh-
water sediment (mean ± standard deviation). Below this minimum 
length, the observations start to deviate from the fitted distribution. 
Mean power law exponents for particle length range from 2.1 ± 0.03 for 
marine surface water to 3.3 ± 0.19 for freshwater sediment. 

For particle width, exponent values were very comparable to the 
ones found for particle length, ranging between 1.96 ± 0.03 for marine 
surface waters to 2.87 ± 0.17 for freshwater sediments. Since many of 
the particles have a W:L ratio of 1 (Fig. 2c), this was expected. The 
minimum size for which the width distributions follow a power law 
distribution are somewhat lower, between 22 and 127 µm (Table S4, 
Figure S5). 

For particle area, exponents are 1.3 – 1.7 times lower than for length, 
with exponents ranging between 1.50 ± 0.009 for marine surface waters 
and 2.00 ± 0.065 for freshwater surface waters (Fig. S6). For particle 
volume, exponents were again lower compared to particle length. For 
perfect spherical particles, a three times lower exponent would be ex-
pected for volume compared to length. Given the ellipsoid-shaped par-
ticles, the decrease was expected to be less than that, so the 1.4 – 2.1 
times lower exponent values for volume compared to length seem 
reasonable. For particle volume, power law exponents ranged between 
1.40 ± 0.004 for biota and 1.68 ± 0.08 for freshwater surface water 
(Fig. S7). As expected, exponents for particle mass differed little from 
those for volume, with values ranging between 1.32 ± 0.01 for marine 
surface waters and 1.65 ± 0.07 for freshwater surface waters (Fig. S8). 
The specific surface area (SSA) distributions per environmental 
compartment were parameterized as the reciprocal of SSA (Fig. S9, 
Table S4). The mean exponent values range between 1.98 ± 0.30 (ma-
rine surface water) and 2.82 ± 0.10 (freshwater sediment). 
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What should be noted for all these distributions, is that the fitted 
minimum size and exponent are not independent. In general, the 
exponent increases with increasing values of the minimum size. For the 
presentation of the data, we assumed independence, with the mean 
value for the minimum size as starting point of the valid fitted power law 
domain (Figs. 4, S5 – S9). For the largest particles, the power law dis-
tribution tends to overestimate the actual abundance. However, there 
are very few of these larger particles in the samples compared to the 

number of particles in the size ranges for which the power law is most 
accurate. 

To further study the variability in particle size distributions, power 
law distributions for particle length and width were fitted for individual 
samples (Fig. 5). For length, the estimated values for the minimum 
length for which the power law is valid ranged from 20 to 832 µm, for 
the 68 datasets that met the quality criteria (Section 2.3.2). The expo-
nents ranged from 1.4 to 7.9 for all samples. The power law exponent 

Fig. 3. Relative abundance of different polymers per aquatic compartment. Polymer types were labeled as “Other” when their abundance was <2% in all of the 
compartments. Polymers are ordered based on their density (Table S2), with all buoyant polymers above the “Other”, and all non-buoyant ones below, assuming a 
density threshold of 1 g cm− 3. “Other” polymers constitute a mixture of densities. 

Fig. 4. Particle length distributions for the 
different compartments. The blue vertical seg-
ments indicate the minimum size for which the 
fitted power law is valid. The brown slopes 
present the fitted power law distributions. The 
mean (solid line) and standard deviation 
(shaded area) are based on n = 100 bootstraps. 
The dotted line shows the continuation of the 
fitted slope beyond the minimum size. Here, the 
deviation of the particles from this line is 
apparent. Mean exponent parameters are 2.59 
± 0.04 for biota, 2.54 ± 0.01 for effluent, 3.25 
± 0.19 for freshwater sediment, 2.57 ± 0.20 for 
marine sediment, 2.64 ± 0.01 for freshwater 
surface water and 2.07 ± 0.03 for marine sur-
face waters (Table S4).   
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distributions for particle length of most compartments did not differ 
significantly from one another (p > 0.05). Only freshwater surface water 
differed significantly, both from biota (p = 0.0056) and from freshwater 
sediment (p = 0.042). 

For particle width, 64 datasets were included after taking into ac-
count the quality criteria. Minimum values for which the power law is 
valid ranged from 12 to 511 µm, and power law exponents ranged from 
1.7 to 7.0 for all samples. For width, only freshwater surface water and 
biota differed significantly (p = 0.034). There were no significant dif-
ferences between the exponents for particle length and width, when 
performing a pairwise comparison per environmental compartment. 

Besides the median values and ranges for the different compart-
ments, we also calculated one average ‘aquatic microplastic’ power law 
slope based on the four aquatic compartments, i.e. marine and fresh-
water sediment and surface water. We found that the length distribution 
of aquatic microplastic can best be described using a power law with a 
slope of 2.68, with values for individual samples ranging between 1.76 
and 4.62 (Fig. 5). For width, the best estimate for the slope is 2.64. 

3.4. Microplastic particle size distributions per polymer type 

Particle size distributions were calculated per polymer type, per 
sample (Fig. 6). In total, 421 power law exponents were calculated that 
fulfilled the set thresholds (Section 2.3.3), for a total of 21 different 
polymer types. Comparison of the exponents for different polymer types, 
irrespective of environmental compartment, revealed significant dif-
ferences between both polyethylene (PE) and polypropylene (PP) with 
acrylates, polyamide, polyethylene-chlorinated and rubber type 3 (p <
0.05). PE also differed significantly with nitrile rubber. Median values of 
the power law exponents for PE (2.5) and PP (2.7) are low compared to 
those for these other polymers, i.e. rubber type 3 (3.0), nitrile rubber 
(3.1), acrylates (3.2), polyamide (3.2), and polyethylene-chlorinated 
(3.3). This implies that relatively many large PE and PP particles are 
present in the samples, compared to the other polymers. 

There are several mechanisms that could explain the observed dif-
ferences in polymer-specific size distributions: different entry size of 
polymer particles, polymer-specific removal processes and fragmenta-
tion kinetics. The density of PE and PP is lower than the density of most 
of the other polymers (Table S2), and lower than that of water. At the 
same time, water samples are most abundant in our dataset (Fig. 5, 

Fig. 5. Power law exponent distributions for 
the different media, for particle length (left) 
and width (right). Median exponents for parti-
cle length are 3.05 (n = 12) for biota, 2.86 (n =
8) for effluent, 2.94 (n = 11) for freshwater 
sediment, 2.58 (n = 11) for marine sediment, 
2.5 (n = 20) for freshwater surface water and 
2.2 (n = 6) for marine surface water. For par-
ticle width, median exponents are 4.31 (n = 8) 
for biota, 2.98 (n = 8) for effluent, 2.83 (n = 10) 
for freshwater sediment, 2.61 (n = 12) for ma-
rine sediment, 2.49 (n = 21) for freshwater 
surface water and 2.29 (n = 5) for marine sur-
face water.   

Fig. 6. Power law exponents for different polymers ordered in increasing median power law exponent. Here, at least 5 individual exponent estimates are included per 
boxplot. With pairwise comparison, polyethylene and polypropylene were found to have a significantly lower median value compared to acrylates, polyamide, 
polyethylene-chlorinated and rubber type 3. Polyethylene also differed significantly with nitrile rubber. Cellulose refers to chemically modified cellulose. 
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Table S1). It is possible that size-selective settling of larger particles 
occurs for the non-buoyant plastics, i.e. acrylates, polyamide, rubber 
type 3 and nitrile rubber. With preferential removal of larger particles 
from the water surface, the power law exponent values will increase. 
Further, differences in fragmentation kinetics, i.e. resistance to frag-
mentation, could also affect the size distributions of different polymer 
types. Fragmentation is driven by environmental factors, including UV 
radiation, wind, waves and biodegradation, and the rate of fragmenta-
tion depends on physical, thermal and mechanical properties of the 
polymer (Min et al., 2020). Little is known about actual fragmentation 
rates, but polymers have been ranked on their probability of surface 
erosion, with that probability increasing with decreasing hydrophobic-
ity. Polyethylene and polypropylene have a low probability of surface 
erosion, whereas polyamide and acrylates are more likely to experience 
surface erosion (Min et al., 2020). Therefore, all of these mechanisms 
provide plausible explanations for the observed polymer-specific size 
distributions. 

The groupwise comparison among polymers indicates polymer- 
specific particle size characteristics. Aside from this groupwise com-
parison, we also tested for rank correlations (i.e. Spearman’s rank cor-
relation test). With these correlations, the focus is on the pairwise 
comparison on the sample level, in other words, are there differences in 
particle size characteristics between different sample locations? We 
found significant correlations (p < 0.05) for 9 polymer pairs, with cor-
relation coefficients varying between − 0.7 and +0.9 (Table S5, 
Fig. S10). For these polymers, it is clear that size distributions are 
location dependent, that is, some samples have relatively more small 
particles for the two correlated polymers compared to other samples. It 
is possible that differences in sources, environmental conditions that 
influence aggregation and biofouling, and physical processes that in-
fluence settling and burial explain the differences between the different 
locations. Environmental compartments alone do not seem to explain 
the difference in exponent values for different samples (Fig. S10). 

Some polymers that did not differ significantly in the group-wise 
comparison, do show a significant correlation. With comparison on 
the polymer level, a large spread in exponent-values will likely cause the 
polymer to not differ significantly from other polymers. On the other 
hand, such a large spread can still result in significant correlations, as 
long as the values are paired per sample location. 

3.5. General applicability of exponent values 

The compartments that we studied were heterogeneous. For 
instance, rivers in itself already represent a wide range of turbulence 
conditions. Furthermore, the studied compartments contained subsets 
from different systems, e.g. sediment from Rhine and Dommel, surface 
water from Meuse, Dommel and ditches adjacent to the Dommel, 
implying that different sediment morphologies and hydrodynamics are 
included. Nevertheless, our data shows that the exponent values cali-
brated per compartment have low relative standard deviation 
(Table S4). We argue that the exponent values, although operationally 
defined, can be used in a generic way for similar compartments. How-
ever, we emphasize that it would still be best if scientists studying other 
environmental systems or areas use the workflow presented here to 
obtain system-specific PDFs and exponent values. Exponent values 
calibrated for a specific compartment and set of conditions will always 
be most accurate. Only if such data are not available, the exponent 
values provided here could be considered as best available proxies for 
other systems. The values must then be used taking into account the 
uncertainty, for example by probabilistic modeling using a range of 
exponent values. We recommend this would anyway always be done 
when using the average value of 2.68 for aquatic microplastic. 

Another aspect related to applicability is the extent to which power 
law distributions and exponent values could make sense beyond the 
upper and lower bounds. A recent study parameterized a theoretical 
particle length distributions for ocean surface waters, based on a 

cascading fragmentation model and taking into account different, size- 
selective, particle transport processes (Kaandorp et al., 2021). 
Although model assumptions differed from some of the environmental 
conditions in the present dataset, they report a power law exponent 
value of 2.67 based on fractal fragmentation alone, which is similar to 
the average exponent value of 2.68 that we found for aquatic micro-
plastic, i.e. when combining freshwater and marine surface waters and 
sediments. The minimum size for which their power law regime was 
valid was in the order of several millimeters, whereas in our study 
minimum sizes ranged from 50 to 350 µm. This agreement may suggest a 
wider applicability; above our present upper size limit. In contrast, at the 
lower end of the size range, a study of nano-fragmentation of expanded 
polystyrene in a closed and mixed system showed that particle size 
distributions followed a power law shape distribution from 5000 down 
to 0.1 µm (Mattsson et al., 2021). 

The lower than expected abundance of the smallest particles based 
on the power law prediction (Fig. 4) can be explained by size-selective 
processes such as wind mixing, aggregation, settling and beaching 
(Kaandorp et al., 2021; Kooi et al., 2018). However, since we do not find 
a higher abundance of these smallest particles in sediments, only ag-
gregation and consequent settling would not explain this deviation from 
the power law regime. Another potential explanation relates to detec-
tion accuracy: Mattsson et al. could detect particles down to 10 nm by 
combining three different instrumental analytical techniques each tar-
geting a part of the total size range (Mattsson et al., 2021), whereas in 
our study detection limits were 11 or 20 µm, depending on the µFTIR 
instrument used. In the theoretical fragmentation study, data used for 
calibration reported values down to 100 µm (Kaandorp et al., 2021). So 
it seems that with a lower size detection limit, the minimum size for 
which the power law regime is valid is also lower. 

An upper size limit for the power law regime is not clearly defined. 
The five studies used here aimed at quantifying small particles, and 
consequently could not always take very large sample volumes. Studies 
that focused on larger particles, e.g. >300 or 500 µm using trawls, found 
power law regimes to extend to larger particle sizes too (Cózar et al., 
2014; Kaandorp et al., 2021). Similar to the minimum size, the 
maximum size for which the power law regime is valid might mainly be 
a result of sampling design. 

We therefore argue that the presented power law exponents are 
likely to be valid from 1 to 5000 µm, that is, the whole microplastic size 
range, although further research to validate this is recommended espe-
cially for the low end of the size range. It is possible that distributions 
beyond those limits still follow the same regime, but since there is little 
data on this, it is difficult to verify at this moment. The here presented 
observations support published approaches that use power law extrap-
olations to rescale number concentration data obtained with methods 
that target only part of the microplastic size range, to the full 1 to 5000 
µm size range (Everaert et al., 2020; Koelmans et al., 2020; Mohamed 
Nor et al., 2021). 

3.6. Linking probability density functions to ecologically relevant dose 
metrics for risk assessment 

We have discussed the main features of the probability density 
functions (PDFs) of different microplastic properties, for different 
compartments and polymers. All of these properties can inform risk 
characterization based on specific interactions with organisms that 
would require data specific to these distributions. Here, we discuss how 
these diverse interactions, their dose metrics, i.e. ecologically relevant 
metrics (ERM), and associated diverse microplastic characteristics can 
be unified to refine prospective risk assessment. 

The distribution of particle length and width (Figs. 2a, 2b, 4 and S5) 
is relevant for quantifying bioavailability. Bioavailability can relate to 
size limits for tissue uptake or translocation (Mohamed Nor et al., 2021), 
or when for instance the mouth opening has to be larger than the width 
of the particle for ingestion to occur (Jâms et al., 2020; Koelmans et al., 

M. Kooi et al.                                                                                                                                                                                                                                    



Water Research 202 (2021) 117429

9

2020). The average power law slopes for aquatic microplastic length and 
width (Table S4) are much higher than the previously reported value of 
1.6 (Kooi and Koelmans, 2019), which implies that the relative abun-
dance of microplastics that is bioavailable to organisms is higher too. 

The shape of the particle (Fig. 2c), here expressed via the width to 
length ratio, is important for shape-specific toxicity. Long, thin fibers for 
instance are considered more toxic (Au et al., 2015; de Ruijter et al., 
2020; Gray and Weinstein, 2017; Ziajahromi et al., 2017). We have 
shown that fibers make up a significant part of the particles in our data 
set, so it is important to focus not only on the number of particles, but 
also on the shape. 

Particle surface area is toxicologically relevant because it is the 
surface which makes contact with the biological system whereas the 
plastic itself is considered to have little toxicity. Surface area is 
considered to be the dose metric relevant for oxidative stress (Schmid 
and Stoeger, 2016). Furthermore, particle area is relevant for hazardous 
substances that bind to the surface: e.g. toxic trace metals and pathogens 
(Fubini, 1997; Schmid and Stoeger, 2016; Schwarze et al., 2007). 
Overall, particle surface area thus can be considered a very significant 
toxicologically relevant characteristic of small microplastic particles 
(Riediker et al., 2019), which emphasizes the importance of the envi-
ronmentally relevant area distributions that now are available (Figs. 2d, 
S6). 

Volume distributions (Figs. 2e, S7) would be required if one wants to 
quantify effects that depend on total volume ingested, such as the food 
dilution effect mechanism (de Ruijter et al., 2020; Rauchschwalbe et al., 
2021), which can be used to correct species sensitivity distributions or 
other frameworks that target this effect mechanism (Koelmans et al., 
2020). 

Similarly, particle weight (Figs. 2f, S8) is relevant for effect mecha-
nisms where the stressor needs to be expressed on a mass basis, like for 
organic chemical exposure, for which plastic associated-chemical con-
centrations are mass based (Bakir et al., 2016; Velzeboer et al., 2014). 
Mass distributions are also required for realistic number to mass con-
versions that remain true to the material as it occurs in nature (de Ruijter 
et al., 2020; Koelmans et al., 2020). 

Some effect mechanisms for particle toxicity correlate best with 
specific surface area, i.e. area per mass (m2 g − 1) (Figs. 2g, S9). For 
instance, in vitro cytotoxicity (Guthrie Jr, 1997; Michel et al., 2014) and 
inflammation (Stoeger et al., 2006; Tran et al., 2000) are found to be 
related to the SSA of particles. Also, the SSA can be a measure for 
chemical adsorption to microplastics (Godoy et al., 2019). 

Polymer type (Fig. 3) influences transport and fate characteristics of 
the particles, and therefore the bioavailability and accessibility for 
species living in different habitats. Besides bioavailability, biological 
and chemical interactions can also be polymer specific (Endo and 
Koelmans, 2016; Frère et al., 2018; Godoy et al., 2019; Velzeboer et al., 
2014). 

3.7. Alignment of exposure and thresholds effect concentrations for 
different dose metrics 

For a consistent characterization of microplastic risk, the dose metric 
used for the exposure assessment needs to be the same as the metric used 
for the effect assessment (Koelmans et al., 2017). Because there are 
different exposure and dose metrics, we describe here a method to align 
and convert them. The example is based on number concentrations, 
however we provide equations to convert these into concentrations for 
other metrics as well. A numerical example for all calculations in this 
workflow is provided as Supporting Information (Section S3). 

3.7.1. Rescaling exposure data 
Previously we have provided a method to rescale environmental 

microplastic number concentrations measured with methods that target 
different size ranges, to the complete, default microplastic size range (i. 
e. 1 – 5000 μm) or any other desired size range (Koelmans et al., 2020). 

Given an upper limit (UL) and lower limit (LL) of the measured and 
default size range, a dimensionless correction factor (CFmeas) is defined 
that rescales the measured (M) number concentration for a certain size 
range to the number concentration for the microplastic default (D) size 
range (e.g., 1 to 5000 μm), based on the power law distribution for 
length (L) with slope αL (Table S4) (Koelmans et al., 2020): 

CFmeas =
L1− α

UL,D − L1− α
LL,D

L1− α
UL,M − L1− α

LL,M
(1) 

The measured exposure number concentration (C meas; #/L) is 
multiplied with CFmeas to obtain a rescaled exposure number concen-
tration (C env = CFmeas × C meas) that represents the complete, environ-
mentally relevant range. For best accuracy, a value for αL is preferably 
used that is calibrated for the particular environmental compartment 
such as that in Table S4. The rationale for using compartment level 
exponent values (i.e. Table S4) is the ecological relevance for aquatic 
communities for which the habitat would be defined on a compartment 
level rather than a sample level. 

Mean values such as those for ’aquatic microplastics’ of 2.68 are 
better avoided unless the uncertainty around the mean is justified 
probabilistically. 

3.7.2. Rescaling effect data 
The rescaled exposure concentrations as calculated using Eq. (1) 

represent the default microplastic size range and should be compared to 
threshold effect concentrations (EC) for a particular effect mechanism 
(and thus ERM), which are expressed for the same default size range. 
This requires two corrections. 

The first correction is needed because only a part of the default 
microplastic size range is bioavailable to exert effects. For instance, 
ingestion of the particles often is considered to be a prerequisite for 
particle effects (de Ruijter et al., 2020), in which case thus a correction 
for bioavailability via ingestion is required. Tissue uptake or trans-
location also are size restricted (e.g. Mohamed Nor et al., 2021), which 
thus also would require a size-related bioavailability correction. The 
required equation for these corrections is as follows. The threshold effect 
concentration for the bioavailable size fraction of particles (ECpoly; #/L) 
can be related to the threshold effect concentration for the environ-
mentally relevant (1 to 5000 μm) range of particles (ECenv; #/L) by 
using a slight modification of the CFmeas in Eq. (1) (CFbio): 

ECenv = ECpoly × CFbio (2) 

The only difference between CFmeas and CFbio is the use of UL,B and 
LL,B in the denominator for CFbio, representing the upper and lower size 
limit of the bioavailable size fraction, respectively. 

The second correction is required because reported effect concen-
trations almost always relate to monodisperse microplastic particles, 
whereas in nature, microplastic particles are polydisperse. This second 
correction is specific for the ERM under consideration, because poly-
dispersity is defined by the power law slope for that ERM (Table S4). For 
a given effect threshold for ERM x (where x for instance is number, mass, 
volume, area or specific surface area) it does not matter if this threshold 
relates to mono- or polydisperse particles as long as the magnitude of the 
threshold remains the same (Koelmans et al., 2020). For instance, if the 
ERM is particle volume, one would calculate total volume of the 
monodisperse particles at the threshold effect number concentration 
reported in literature, and then calculate which number concentration of 
polydisperse particles has the same volume, while using the power law 
slope for volume (Koelmans et al., 2020). As this can be done for any 
ERM x, we here introduce a generic equation which preserves the ERM 
of interest between mono- and polydisperse particles at a certain ERM 
threshold effect level: 

ECpoly × μx,poly = ECmono × μx,mono (3) 

Here, ECmono (#/L) is the effect number concentration for 

M. Kooi et al.                                                                                                                                                                                                                                    



Water Research 202 (2021) 117429

10

monodisperse particles and μx, mono is the mean value for ERM x for these 
monodisperse particles (e.g., from literature test data). If the ERM is 
‘number’, μx, mono is 1. Note that Eq. (3) can also be used to convert EC 
values for distributions with different degrees of polydispersity. If the 
probability distribution of ERM x follows a power law regime, the mean 
ERM value for the polydisperse particles, μx,poly, can be calculated as: 

μx,poly =
1 − αx

2 − αx
×

x2− αx
UL − x2− αx

LL

x1− αx
UL − x1− αx

LL
(4) 

UL and LL relate to the upper and lower limit in ERM x for which the 
mean is calculated, and αx is the power law exponent value of ERM x. 
Note this equation does not apply when αx is exactly 1 or 2; see section 
S2 for a derivation including versions for all αx values, and Table S4 for 
different exponent values. Calculation of the limits UL and LL differs for 
different dose metrics. For length and width, the limits are determined 
by the aforementioned bioavailability limits. For length, given the 
default microplastic size range, LL and UL are equal to 1 and 5000 μm, 
respectively. If bioavailability relates to ingestion, the limits for width 
would range between 1 μm (LL) and the mouth opening of the organism 
(UL). For surface area and volume, UL and LL can be calculated using the 
appropriate ellipsoid equations (see Section 2.3), for which then the 
same minimum and maximum bioavailable values for length and width 
are used, while for height a value of 0.67 × width is used. For mass, the 
limits can be calculated by multiplying (bioavailable) ellipsoid volume 
with the average density (Table S3). For specific surface area, the surface 
area is divided by the mass. By combining Eqs. (2) to 4, the threshold 
effect concentration for the ERM of choice (ECenv) can be calculated. 

Now that the threshold effect concentration (ECenv) and the exposure 
concentration (Cenv) are aligned and scaled to the full 1 to 5000 μm 
microplastic size range, a consistent risk characterization can be done 
(numerical example, see Section S3). Note that the characterization is 
based on number concentrations, which may seem counterintuitive if 
the actual ERM would relate to e.g. volume, mass or area. However, we 
can easily convert exposure and effect number concentrations into for 
instance equivalent volume, mass or area concentrations (μm3/L, μg/L, 
μm2/L) by multiplying them with the mean value of their respective 
power law distributions (Eq. (4)), which yields: 

Cenv,ERM,x = μx, poly × Cenv and
ECenv,ERM,x = μx, poly × ECenv

(5) 

In this case the limits LL and UL in μx, poly (Eq. (4)) would relate to the 
values of the ERM at the 1 and 5000 μm size limits, respectively, rather 
than to bioavailability limits. In the risk characterization (Cenv,ERM,x 

/ECenv,ERM,x), however, μx, poly cancels out. Eq. (5) also defines the con-
version of number to mass concentration or vice versa. Finally, the 
above procedure applies to one ERM at a time. However, microplastic 
particles are likely to cause multiple effects simultaneously, once their 
respective threshold effect concentrations are exceeded. This means that 
the approach offered here can be used to rank the impact thresholds for 
the different dose metrics of interest with the most sensitive one deter-
mining the ultimate risk. 

4. Conclusions 

Continuous power law distributions for microplastic particle char-
acteristics length, width, area, volume, mass and specific surface area 
have been parameterized, taking new quality criteria for accuracy loss 
due to subsampling into account. We show how each of these particle 
characteristics links to a dose metric relevant for microplastic effect 
mechanisms. We found that distributions of these characteristics 
differed for marine and freshwater surface waters and sediments, waste 
water effluents and benthic freshwater biota. We demonstrated that 
distributions for particle size were polymer-specific. With the presented 
distributions and scaling laws, exposure data from environmental con-
centrations, as well as effect concentrations obtained in experiments 

using monodisperse particles, can be aligned and rescaled to obtain 
consistent risk characterizations that fully represent the multidimen-
sionality of microplastic. 
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Kögel, T., Bjorøy, Ø., Toto, B., Bienfait, A.M., Sanden, M., 2020. Micro-and nanoplastic 
toxicity on aquatic life: determining factors. Sci. Total Environ. 709, 136050. 

Kooi, M., Besseling, E., Kroeze, C., van Wenzel, A.P., Koelmans, A.A., 2018. Modeling the 
fate and transport of plastic debris in freshwaters: review and guidance. Freshwater 
Microplastics. Springer, pp. 125–152. 

Kooi, M., Koelmans, A.A., 2019. Simplifying microplastic via continuous probability 
distributions for size, shape, and density. Environ. Sci. Technol. Lett. 6, 551–557. 

Lorenz, C., Roscher, L., Meyer, M.S., Hildebrandt, L., Prume, J., Löder, M.G.J., 
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