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A B S T R A C T

In urban drainage systems (UDS), a proven method for reducing the combined sewer overflow (CSO) pollution
is real-time control (RTC) based on model predictive control (MPC). MPC methodologies for RTC of UDSs in
the literature rely on the computation of the optimal control strategies based on deterministic rain forecast.
However, in reality, uncertainties exist in rainfall forecasts which affect severely accuracy of computing the
optimal control strategies. Under this context, this work aims to focus on the uncertainty associated with the
rainfall forecasting and its effects. One option is to use stochastic information about the rain events in the
controller; in the case of using MPC methods, the class called stochastic MPC is available, including several
approaches such as the chance-constrained MPC(CC-MPC) method. In this study, we apply CC-MPC to the
UDS. Moreover, we also compare the operational behavior of both the classical MPC with perfect forecast and
the CC-MPC based on different stochastic scenarios of the rain forecast. The application and comparison have
been based on simulations using a SWMM model of the Astlingen urban drainage benchmark network. From
the simulations, it was found that CSO volumes were larger when CC-MPC had overestimating forecast biases,
while for MPC they increased with any presence of forecast biases.
. Introduction

The state-of-the-art during the last couple of decades, regarding
he operation of urban drainage systems (UDS), has seen Model Pre-
ictive Control (MPC) (Maciejowski, 2002) been proved beneficial for
chieving optimal operation of the UDS (Cen & Xi, 2009; Gelormino &
icker, 1994; Halvgaard & Falk, 2017; Marinaki & Papageorgiou, 2005;
campo-Martinez, 2010; Sun, Joseph, Cembrano, Puig and Meseguer,
018; Sun et al., 2017, 2020; Svensen, Niemann, & Poulsen, 2019).
hile these studies have used different types of modeling and optimiza-

ion techniques to compute the best control actions; MPC applications
f UDS has predominately been assumed to be deterministic, including
he rain forecast (Cembrano et al., 2004; Cen & Xi, 2009; Gelormino &
icker, 1994; Halvgaard & Falk, 2017; Joseph-Duran, Meseguer, Cem-
rano, & Maruejouls, 2017; Marinaki & Papageorgiou, 2005; Ocampo-
artinez, 2010; Overloop, 2006; Sun, Cembrano, Puig and Meseguer,

018; Sun, Joseph et al., 2018, 2017; Sun et al., 2017; Sun, Puig and
embrano, 2020; Sun, Svensen et al., 2020; Svensen et al., 2019).
his in spite of models and forecasts are subject to uncertainty, and
ay risk in introducing sub-optimal or undesired behaviors to the

✩ This document is the results of the research project funded by the Spanish State Research Agency through the María de Maeztu Seal of Excellence to IRI
MDM-2016-0656), internal project of TWINs, and also supported by Innovation Fond Denmark through the Water Smart City project (project 5157-00009B).
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E-mail addresses: jlsv@dtu.dk (J.L. Svensen), congcong.sun@upc.edu (C. Sun), gabriela.cembrano@upc.edu (G. Cembrano), vicenc.puig@upc.edu (V. Puig).

MPC solutions. For a more realistic scenario, uncertainty has to be
considered as a part of the UDS. The way how the uncertainty is treated
by the control, becomes an important design decision: using a stochastic
approach, or robustly operating on worst-case assumptions.

1.1. Literature

While the basic formulation of MPC is deterministic and does not
consider uncertainty at all; how to handle uncertainty in MPC has
been researched for many years (Arellano-Garcia & Wozny, 2009;
Dhar & Datta, 2006; Evans, Cannon, & Kouvaritakis, 2012; Garatti,
Campi, Garatti, & Prandini, 2009; Grosso, Ocampo-Martinez, Puig, &
Joseph-Duran, 2014; Kouvaritakis & Cannon, 2016; Magni, De Nicolao,
Scattolini, & Allgöwer, 2003; Mesbah, 2016; Sun, Dai, Liu, Xia and
Johansson, 2018; Svensen, Niemann, Falk, & Poulsen, 2021; Wan &
Kothare, 2002). This has resulted in several different methods for
handling uncertainty divided into two categories; the group of the
methods known collectively as robust MPC (Kouvaritakis & Cannon,
2016; Magni et al., 2003; Sun, Dai et al., 2018; Wan & Kothare, 2002),
ttps://doi.org/10.1016/j.conengprac.2021.104900
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and the group known as stochastic MPC (Arellano-Garcia & Wozny,
2009; Dhar & Datta, 2006; Evans et al., 2012; Garatti et al., 2009;
Grosso et al., 2014; Kouvaritakis & Cannon, 2016; Mesbah, 2016;
Svensen et al., 2021).

The first group essentially considers the worst-case scenario and
operates conservatively so that the solution is optimal for all possible
realizations of the uncertainty. The second group addresses the un-
certainty by using knowledge about the uncertainty (Mesbah, 2016),
such as its distribution to only take the statistical likely scenarios into
account for the control.

In this work, we will focus on a method from the group of stochastic
methods known as chance-constrained MPC (CC-MPC) (Arellano-Garcia
& Wozny, 2009; Dhar & Datta, 2006; Grosso et al., 2014; Svensen et al.,
2021) to operate the UDS in order to reduce pollution to the receiving
waters through minimization of the combined sewer overflows (CSO).
Given that the CSOs are purely dependent on the volumes and flows
of the system; the overflow constraints are intrinsically feasible and
probabilistic insensitive, when CC-MPC is applied directly. We will
therefore use the revised CC-MPC formulation (Svensen et al., 2021)
in this work.

Stability of MPC is an important issue since local optimization
in a finite horizon does not always guarantee stability (Lee, Wang,
& Tan, 1996). The most widely approach to guarantee stability in
MPC approach is adding equality constraint on the final state in the
prediction horizon (Genceli & Nikolaou, 1993; Nicolao, Magni, & Scat-
tolini, 1998), which is used in important classical MPC problems, such
as tracking MPC. However, in this paper, the MPC optimize specific
objective functions instead of tracking a defined trajectory. Also given
that UDSs are intrinsically stable in reality and in models, water cannot
be generated, we will leave the stability of CC-MPC as future research.

In a previous of authors’ work (Sun, Svensen et al., 2020), we
obtained good results implementing a deterministic MPC in the Astlin-
gen network regarding minimizing the CSO volume of the system
and maximizing the amount of treated wastewater by the wastewater
treatment plant (WWTP), in comparison with other real-time control
strategies.

The Astlingen network is a benchmark urban drainage network
which has been designed by the German Water Association (DWA)
complementing the German DWA-M180 document on planning of RTC
(real-time control) systems (DWA, 2005). This benchmark model has
been used widely and proven sufficient enough to represent a real-
istic urban drainage network (Schütze, Lange, Pabst, & Haas, 2018).
Moreover, the Storm Water Management Model (SWMM), the sim-
ulation platform used for validating MPC control of Astlingen net-
work, is a high-fidelity simulation software, which can present detailed
hydrodynamics of the urban drainage network in a virtual reality
way (Rossman, 2015). So that, the benchmark Astlingen network based
on SWMM can work well as a realistic system.

1.2. Main contribution

Our contribution in this paper is the application and implemen-
tation of the stochastic CC-MPC method in a high-fidelity simulation
of the Astlingen system. In the research, the usage of CC-MPC in the
application of UDS is sparse at best, and to our knowledge a first
using high-fidelity simulations for validation. In our implementation,
we will consider the uncertainty to be in the rainfall forecast. We will
provide a comparison of the performance of the CC-MPC with that of an
deterministic MPC with a perfect forecast and under different scenarios
of the uncertainty. The key performance indexes considered are the
CSO volume, and the volume received by the WWTP.

The following sections of the paper are dedicated to the inter-
nal MPC model, the MPC design, and the results of the simulation

respectively.

2

1.3. Notation

In this paper, the following mathematical notations are used. 𝑓
indicates the maximum of a given function 𝑓 (𝑥), 𝛽 represents the
volume-flow coefficient (Singh, 1988), and bold font is used to indicate
vectors. The formulation ‖𝐱‖2𝐴 = 𝐱𝑇𝐴𝐱 is the weighted quadratic
norm of x. The superscript u indicates control variables, superscript w
indicates CSO elements, and the superscripts in and out indicate inflow
and outflow related flow, respectively. The letters V and q indicate
variables of volume and flow respectively, while the variables written
with w are inflows from catchments. The notation 𝛥𝑇 and the subscript
k represent the sampling time and the sample number.

2. Internal model of the Astlingen benchmark network

The Astlingen urban drainage network consists of six tanks and a
single outflow towards a WWTP (see Fig. 1). In between and upstream
of the tanks there are pipes of varying lengths, causing flow delays in
the system, between 5 and 20 min delays. The system also consists of
four pipes with CSO capabilities. The control variables of the system
are the outflow of tanks 2, 3, 4, and 6. The desired operation of the
system is to have the least amount of CSO as possible, and secondly
having the largest amount of wastewater being sent to the WWTP.
For designing an MPC controller for the system, an internal model
describing the dynamics and constraints of this system is required,
typically a simplified model of the system capturing the main dynamic
behaviors is used.

From Fig. 1, it is clear that the system can be deduced to be un-
controllable (passive) in the sections upstream the tanks; therefore, the
internal model will be limited to only covering the tanks of the system.
The internal model is constructed with the same modular approach
as used in previous works (Sun, Svensen et al., 2020), and using a
sampling time 𝛥𝑇 of 5 min. In the internal model, the CSO are treated as
optimization variables through a penalty approach (Halvgaard & Falk,
2017). The elements of the internal model consist of the following parts:
linear reservoir tanks and pipes with delays that are described below.

In CC-MPC, the internal model includes the uncertainties. The con-
straints are reformulated as either as the expectation of the constraints
or as a probabilistic constraints with a chosen probability of being true.
The prior is in general used for equality constraints, while the latter is
used for inequality constraints. The probabilistic constraints are intro-
duced to constrict the deterministic constraints, to statistically avoid
undesired behaviors such as the controller attempting to draw water
from en empty tank, due to the uncertain volume information. The
constriction is obtained by using quantiles to provide a deterministic
version of the probabilistic constraints.

In this work, the only sources of uncertainty considered is the run-
off inflows 𝑤 generated by forecasted rainfalls, covering runoff from
catchments and passive flows from upstream sections. We will assume
the uncertainty follows a truncated normal distribution, given that
rainfalls cant be negative and are upperbounded by physics, water
caring capacity of clouds. The normal distribution is commonly used to
interpret fluctuations in measured or forecasted variables (Karantonis
& Weber, 2016; Scott, 2003).

For linear models with uncertainties following a truncated normal
distribution, the uncertainties undergoes a linear transformations into
corresponding truncated normal distributions, see Appendix A, before
being summed. Unfortunately, the sum of truncated Normals are not
itself a truncated Normal (Horrace, 2005) Appendix B, but can be
approximated as a truncated normal distribution for the usage of
probabilistic constraints, see Appendix C. The probabilistic constraints
can then be written deterministically as shown in (1). The deterministic
part 𝑥 includes the optimizable variables and the stochastic part 𝑋 lies
in the interval [𝑎, 𝑏], with the expectation 𝐸{𝑋} and standard deviation
𝜎{𝑋}, and 𝛷−1(𝛤 ) is the quantile function of the standard normal
distribution

𝑃𝑟(𝑋 ≤ 𝑥) ≥ 𝛾 ⇔ 𝑥 ≥ 𝐸{𝑋} + 𝜎{𝑋}𝛷−1(𝛤 ) (1)
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Fig. 1. A scheme of the Astlingen Benchmark Network (Schütze et al., 2018) showing
he interconnections between tanks, pipes and the WWTP, with CSOs coming from the
ix tanks and the four pipes noted CSO7 to CSO10. The delay between tanks and/or
ipes are noted by 𝑥′ in minutes.

= 𝛾𝛷
{

𝑏 − 𝐸{𝑋}
𝜎{𝑋}

}

+ (1 − 𝛾)𝛷
{

𝑎 − 𝐸{𝑋}
𝜎{𝑋}

}

(2)

where 𝛤 is the truncated version of the desired probability confidence
level 𝛾.

The probabilistic constraints can therefore be described using pro-
cess equations of the expectations and variances of the dynamics of
each element. It is assumed that the different sources of uncertainties
are independently distributed, in both spatial and temporal sense.

For simplicity of notation, the following formulations of each mod-
ule is given for the non-truncated case 𝛤 = 𝛾. The formulation of the 𝛤
f each corresponding constraint can be obtain from the iterations of
he process equations; for the corresponding expectations and variances
f the constraint.

.1. Linear reservoir tank — passive outflow

The linear reservoir model has either a passive outflow or a con-
rolled outflow and is based on mass-balance to describe the dynamics
f tank volume. The volume of the tank 𝑉𝑘 is driven by the inflow 𝑞𝑖𝑛𝑘
nd the weir overflow 𝑞𝑤𝑘 . In the case of passive outflows, the outflow
s controlled by gravity, and is assumed linear with a volume-flow
oefficient (Singh, 1988) defined as 𝛽 = 𝑞𝑜𝑢𝑡∕𝑉 .

For the passive outflow case, the volume update and the outflow
re defined by:

𝑘+1 = (1 − 𝛥𝑇 𝛽)𝑉𝑘 + 𝛥𝑇 (𝑞𝑖𝑛𝑘 − 𝑞𝑤𝑘 ) (3)

𝑞𝑜𝑢𝑡𝑘 = 𝛽𝑉𝑘 (4)

The constraints of the reservoir are based on the physical constraints
with the tank limits given by

0 ≤ (1 − 𝛥𝑇 𝛽)𝑉𝑘 + 𝛥𝑇 (𝑞𝑖𝑛𝑘 − 𝑞𝑤𝑘 ) ≤ 𝑉 (5)

≤ 𝑞𝑤𝑘 (6)

.1.1. CC-MPC formulation — passive tank
Utilizing the revised CC-MPC formulation (Svensen et al., 2021)

entioned earlier, the passive reservoir model can be reformulated,
uch that the volume update and the outflow are defined by their
xpectation and variance given by

𝐸{𝑉 } = (1 − 𝛥𝑇 𝛽)𝐸{𝑉 } + 𝛥𝑇 (𝐸{𝑞𝑖𝑛} − 𝑞𝑤) (7)
𝑘+1 𝑘 𝑘 𝑘

3

𝐸{𝑞𝑜𝑢𝑡𝑘 } = 𝛽𝐸{𝑉𝑘} (8)

𝜎2{𝑉𝑘+1} = (1 − 𝛥𝑇 𝛽)2𝜎2{𝑉𝑘} + 𝛥𝑇 2𝜎2{𝑞𝑖𝑛𝑘 } (9)

𝜎2{𝑞𝑜𝑢𝑡𝑘 } = 𝛽2𝜎2{𝑉𝑘} (10)

The stochastic interpretation of the physical constraints is given by
11)–(15), utilizing slack variables for guaranteeing feasibility (Svensen
t al., 2021).

The stochastic constraint for the lower limit of the tank is given by
11), while the upper limit is given by (12) and (13). The first one is a
tochastic constraint for avoiding weir overflow 𝑞𝑤𝑘 , while the latter is
n expectation constraint defining the expected overflow

{(1 − 𝛥𝑇 𝛽)𝑉𝑘 + 𝛥𝑇 𝑞𝑖𝑛𝑘 }𝛷
−1(𝛾) − 𝑠𝑘 ≤

(1 − 𝛥𝑇 𝛽)𝐸{𝑉𝑘} + 𝛥𝑇 (𝐸{𝑞𝑖𝑛𝑘 } − 𝑞𝑤𝑘 )
(11)

1 − 𝛥𝑇 𝛽)𝐸{𝑉𝑘} + 𝛥𝑇𝐸{𝑞𝑖𝑛𝑘 } ≤
𝑉 − 𝜎{(1 − 𝛥𝑇 𝛽)𝑉𝑘 + 𝛥𝑇 𝑞𝑖𝑛𝑘 }𝛷

−1(𝛾) + 𝑐𝑘
(12)

(1 − 𝛥𝑇 𝛽)𝐸{𝑉𝑘} + 𝛥𝑇 (𝐸{𝑞𝑖𝑛𝑘 } − 𝑞𝑤𝑘 ) ≤ 𝑉 (13)

𝑠𝑘 ≤ 𝜎{(1 − 𝛥𝑇 𝛽)𝑉𝑘 + 𝛥𝑇 𝑞𝑖𝑛𝑘 }𝛷
−1(𝛾) (14)

≤ 𝑞𝑤𝑘 , 𝑠𝑘, 𝑐𝑘 (15)

he limits on the slack variables 𝑠𝑘, 𝑐𝑘 are given by (14) and (15). For
he control of the Astlingen model, Tank 1 and Tank 5 are considered
anks with passive outflow.

.2. Linear reservoir tank — Controlled outflow

For a linear reservoir tank with controlled outflow, the volume is
riven by the inflow 𝑞𝑖𝑛𝑘 , the control flow 𝑞𝑢𝑘 and the weir overflow 𝑞𝑤𝑘 .
he volume update and outflow are defined by

𝑘+1 = 𝑉𝑘 + 𝛥𝑇 (𝑞𝑖𝑛𝑘 − 𝑞𝑢𝑘 − 𝑞𝑤𝑘 ) (16)

𝑞𝑜𝑢𝑡𝑘 = 𝑞𝑢𝑘 (17)

nd the physical limits on the tanks are given by

≤ 𝑉𝑘 + 𝛥𝑇 (𝑞𝑖𝑛𝑘 − 𝑞𝑢𝑘 − 𝑞𝑤𝑘 ) ≤ 𝑉 (18)

The limits of the control including two upper limits of the control
flow are defined as

0 ≤ 𝑞𝑢𝑘 ≤ 𝑞𝑢 (19)

𝑞𝑢𝑘 ≤ 𝛽𝑉𝑘 (20)

≤ 𝑞𝑤𝑘 (21)

here the first one establishes the physical limit of the outflow pipe,
nd the other one a linear Bernoulli expression given by the volume-
low coefficient 𝛽.

.2.1. CC-MPC formulation — Controlled tank
The controlled reservoir model can be formulated for CC-MPC as

elow, considering that the volume update and outflow are defined by
he expectation and variance

𝐸{𝑉𝑘+1} = 𝐸{𝑉𝑘} + 𝛥𝑇 (𝐸{𝑞𝑖𝑛𝑘 } − 𝑞𝑢𝑘 − 𝑞𝑤𝑘 ) (22)

𝐸{𝑞𝑜𝑢𝑡𝑘 } = 𝑞𝑢𝑘 (23)
2{𝑉𝑘+1} = 𝜎2{𝑉𝑘} + 𝛥𝑇 2𝜎2{𝑞𝑖𝑛𝑘 } (24)

𝜎2{𝑞𝑜𝑢𝑡𝑘 } = 0 (25)

ote that the outflow variance is zero, due to the control.
According to the reformulation (Svensen et al., 2021), the stochastic

ersion of the physical constraints is given by

≤ 𝐸{𝑉𝑘} + 𝛥𝑇 (𝐸{𝑞𝑖𝑛𝑘 } − 𝑞𝑢𝑘 − 𝑞𝑤𝑘 ) (26)

{𝑉𝑘} + 𝛥𝑇 (𝐸{𝑞𝑖𝑛𝑘 } − 𝑞𝑢𝑘) ≤ 𝑉 − 𝜎{𝑉𝑘 + 𝛥𝑇 𝑞𝑖𝑛𝑘 }𝛷
−1(𝛾) + 𝑐𝑘 (27)

𝐸{𝑉 } + 𝛥𝑇 (𝐸{𝑞𝑖𝑛} − 𝑞𝑢 − 𝑞𝑤) ≤ 𝑉 (28)
𝑘 𝑘 𝑘 𝑘



J.L. Svensen, C. Sun, G. Cembrano et al. Control Engineering Practice 115 (2021) 104900
0 ≤ 𝑞𝑢𝑘 ≤ 𝑞𝑢 (29)

𝑞𝑢𝑘 ≤ 𝛽𝐸{𝑉𝑘} − 𝛽𝜎{𝑉𝑘}𝛷−1(𝛾) + 𝑠𝑘 (30)

𝑠𝑘 ≤ 𝛽𝜎{𝑉𝑘}𝛷−1(𝛾) (31)

0 ≤ 𝑞𝑤𝑘 , 𝑐𝑘, 𝑠𝑘 (32)

where the slack variables are limited by (31) and (32). The constraints
(26)–(28) define the upper and lower limits of the tank, in a similar
way as (11)–(13). The control limits are defined by (29) and (30).

2.2.2. Decoupling of slack variables
In (26), the lower limit of the tank is given as expectation constraint,

while in (11) it was expressed in a probabilistic manner. The change
is due to the interconnections of the slack variables of the upper and
lower constraints as follows

𝑠𝑘 ≤ 𝑐𝑘 + 𝑉 − 𝛥𝑇 𝑞𝑤𝑘 (33)

where the upper slack is forced to be active if the lower slack is too
large.

This can lead to an undesired trade-off during optimization when
the uncertainty term is too large. This can be solved by a rescaling of
the optimization weights or by reformulating the probability constraint.
The latter was used here. The probability of the tank volume being
above zero (34) can be rewritten

𝑃𝑟(0 ≤ 𝑉𝑘 + 𝛥𝑇 (𝑞𝑖𝑛𝑘 − 𝑞𝑢𝑘 − 𝑞𝑤𝑘 ))

= 𝑃𝑟(𝛥𝑇 𝑞𝑢𝑘 ≤ 𝑉𝑘 + 𝛥𝑇 (𝑞𝑖𝑛𝑘 − 𝑞𝑤𝑘 )) ≥ 𝛾
(34)

by considering that the tank volume 𝑉𝑘 is always below the upper
tank limit, given that any volume above it would have turned into an
overflow. This leads to the volume only decreases, when the control
flow is used, i.e.

𝑉𝑘 ≤ 𝑉𝑘 + 𝛥𝑇 (𝑞𝑖𝑛𝑘 − 𝑞𝑤𝑘 ) (35)

From here, we can replace (34) with a stricter and simpler probability
as follows

𝑃𝑟(0 ≤ 𝑉𝑘 + 𝛥𝑇 (𝑞𝑖𝑛𝑘 − 𝑞𝑢𝑘 − 𝑞𝑤𝑘 )) ≥ 𝑃𝑟(𝛥𝑇 𝑞𝑢𝑘 ≤ 𝑉𝑘) ≥ 𝛾 (36)

By multiplying with the volume-flow coefficient 𝛽 and assuming
that 𝛽𝛥𝑇 ≤ 1, the probability constraint can be rewritten even stricter.
The assumption is fair, given that if the opposite is true, then the
volume can become negative. The resulting probability constraint

𝑃𝑟(𝛽𝛥𝑇 𝑞𝑢𝑘 ≤ 𝛽𝑉𝑘) ≥ 𝑃𝑟(𝑞𝑢𝑘 ≤ 𝛽𝑉𝑘) ≥ 𝛾 (37)

can be recognized as (30), the stochastic version of one of the upper
control limits. This indicates that if (30) holds so does (37), and there-
fore (34) would be a duplicate. For this reason, (34) can be replaced
with the expectation constraint given in (26), for the inclusion of the
lower limit of the tank.

2.3. Pipe with delays

In the Astlingen network (Schütze et al., 2018), the tanks and
upstream catchments are connected through pipes. The presence of
these pipes introduces delays in the flows to the tanks from the up-
stream parts of the system. The importance of these delays depend on
the chosen sampling time. Delays 𝜂 of exactly one sampling can be
described by

𝜂𝑘+1,𝑖 = 𝑞𝑖𝑛𝑘,𝑖 (38)

𝑞𝑜𝑢𝑡𝑘,𝑖 = 𝜂𝑘,𝑖 (39)

Delays of multiple sampling times, can be constructed as a cascade of
single delays as seen in Table 1. The 𝜂1∶5, 𝜂1∶10 and 𝜂1∶15 delay states are

the delayed flows to Tank 1 for 5, 10 and 15 min delays respectively.
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Table 1
Inflows to the different elements of the systems.

Subpart Inflow Subpart Inflow

𝑇1 𝑞𝑜𝑢𝑡𝑘,𝜂1∶5
𝜂1∶5 𝑞𝑜𝑢𝑡𝑘,𝑇2

+ 𝑞𝑜𝑢𝑡𝑘,𝜂1∶10

𝑇2 𝑤𝑘,2 𝜂1∶10 𝑤𝑘,1 + 𝑞𝑜𝑢𝑡𝑘,𝑇2
+ 𝑞𝑜𝑢𝑡𝑘,𝑇4

+ 𝑞𝑜𝑢𝑡𝑘,𝜂1∶15

𝑇3 𝑤𝑘,3 + 𝑞𝑜𝑢𝑡𝑘,𝜂3∶5
𝜂1∶15 𝑞𝑜𝑢𝑡𝑘,𝑇5

𝑇4 𝑤𝑘,4 𝜂3∶5 𝑞𝑜𝑢𝑡𝑘,𝜂3∶10

𝑇5 𝑤𝑘,5 𝜂3∶10 𝑞𝑜𝑢𝑡𝑘,𝜂3∶15

𝑇6 𝑤𝑘,6 𝜂3∶15 𝑞𝑜𝑢𝑡𝑘,𝑇6

2.3.1. CC-MPC formulation — Delays
For the CC-MPC, the delay equations are replaced by their expecta-

tions

𝐸{𝜂𝑘+1,𝑖} = 𝐸{𝑞𝑖𝑛𝑘,𝑖} (40)

𝐸{𝑞𝑜𝑢𝑡𝑘,𝑖 } = 𝐸{𝜂𝑘,𝑖} (41)

In addition, the variance of the delay equations are given by

𝜎2{𝜂𝑘+1,𝑖} = 𝜎2{𝑞𝑖𝑛𝑘,𝑖} (42)

𝜎2{𝑞𝑜𝑢𝑡𝑘,𝑖 } = 𝜎2{𝜂𝑘,𝑖} (43)

2.4. Constructing the model

The MPC model of Astlingen network can now be constructed con-
sidering the interconnection of the tanks and delays presented in Fig. 1
and using the models discussed above. The inflow of each considered
subpart of the network are summarized in Table 1. The 𝑖th tank and
the delay flow to it are noted by 𝑇𝑖 and 𝜂𝑖∶𝑗 , respectively, with 𝑗 being
the remaining delay in minutes to the tank. The outflow of subpart 𝑧
is written as 𝑞𝑜𝑢𝑡𝑘,𝑧, and the 𝑖th run-off inflow to the system is given by
𝑤𝑘,𝑖.

3. MPC design

The design of controllers used in this work for both MPC and CC-
MPC are based on the models discussed above and the minimization
of a cost that considers the following operational objectives for the
network:

• Maximizing flow to the WWTP
• Minimizing flow to the river/creek
• Minimizing roughness of control

The first objective can be achieved by a linear negative cost on the
outflow of tank 1, while the second objective can be formulated as a
linear positive cost on the total overflow of the system; these objectives
are collectively written as 𝐳𝑘, with the weight 𝐐. The third objective can
be written as a quadratic cost on the change in control flow 𝛥𝑞𝑢𝑘, with
the diagonal weight 𝑅. Due to the overflow being modeled by a penalty
approach, a fourth objective of minimizing the accumulated overflow
volume 𝐕𝑤

𝑘 is introduced, with the weight 𝐖.

𝐽 = min
𝐪𝑢 ,𝐪𝑤

𝛴𝑁
𝑘=0‖𝛥𝐪

𝑢
𝑘‖

2
𝑅 +𝐐𝑇 𝐳𝑘 +𝐖𝑇𝐕𝑤

𝑘 (44)

subject to

𝐳 =𝛷𝐶𝑜𝑛𝐪𝑢 + 𝛹𝐕0 + 𝛩𝐰 + 𝛤𝐪𝑤 (45)

𝐕𝑤
𝑘 =𝛴𝑘

𝑖=0𝛥𝑇𝐪
𝑤
𝑖 (46)

By using the MPC model over the prediction horizon 𝑁 , the cost
function of the MPC can be written as in (44), while the predicted
objectives 𝐳 and accumulated overflow volumes, given by (45) and
(46), are derived by substitution of the predicted volumes and delays.
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Table 2
Cost function weighting of accumulated overflow volume W, showing a higher cost for
upstream elements.

T1 T2 T3 T4 T5 T6

1000 5000 5000 5000 5000 10 000

The constraints of the MPC model can similarly be collected into a
single matrix inequality given by

𝛺𝐶𝑜𝑛𝐪𝑢 +𝛺𝑣𝑜𝑙𝐕0 +𝛺𝑟𝑎𝑖𝑛𝐰 +𝛺𝑤𝑒𝑖𝑟𝐪𝑤 ≤ 𝜴 (47)

where the subscripts of the 𝛺 matrix terms relates to the corresponding
terms: 𝐶𝑜𝑛 for the control term, 𝑣𝑜𝑙 for the initial volume term, 𝑟𝑎𝑖𝑛 for
he external inflows term, and 𝑤𝑒𝑖𝑟 for the term describing the CSOs of
he system.

The design of the CC-MPC can similarly be derived using the corre-
ponding model presented above. The cost of the resulting optimization
rogram, appear as the expectation of (44) with the added linear cost
erm of the minimization of the slack variables c and s with weights
𝑐 and 𝐖𝑠

𝐽 = min
𝐪𝑢 ,𝐪𝑤 ,𝐜,𝐬

𝐸{𝛴𝑁
𝑘=0‖𝛥𝐪

𝑢
𝑘‖

2
𝑅 +𝐐𝑇 𝐳𝑘 +𝐖𝑇𝐕𝑤

𝑘 } +𝐖𝑇
𝑐 𝐜 +𝐖𝑇

𝑠 𝐬 (48)

The expected objectives are given by

𝐸{𝐳} = 𝛷𝐶𝑜𝑛𝐪𝑢 + 𝛹𝐸{𝐕0} + 𝛩𝐸{𝐰} + 𝛤𝐪𝑤 (49)

while the accumulated overflow volume is unchanged from (46).
The matrix inequality of the collected probabilistic constraints are

given by

𝛺𝐶𝑜𝑛𝐪𝑢 +𝛺𝑣𝑜𝑙𝐸{𝐕0} +𝛺𝑟𝑎𝑖𝑛𝐸{𝐰} +𝛺𝑤𝑒𝑖𝑟𝐪𝑤 ≤

𝜴 − 𝜎{𝛺𝑣𝑜𝑙𝐕0 +𝛺𝑟𝑎𝑖𝑛𝐰}𝛷−1(𝛾) +𝛺𝑠𝐬 +𝛺𝑐𝐜
(50)

and the variance term

𝜎2{𝛺𝑣𝑜𝑙𝐕0 +𝛺𝑟𝑎𝑖𝑛𝐰} = 𝛯𝑣𝑜𝑙𝜎
2{𝐕0} + 𝛯𝑟𝑎𝑖𝑛𝜎

2{𝐰} (51)

The weighting of the different objectives in the cost functions is done
in accordance with the penalty approach (Halvgaard & Falk, 2017;
Svensen et al., 2019). The priority of the different objectives is given
in the following order from highest to lowest priority:

1. Minimization of accumulated overflow volume 𝐕𝑤
𝑘

2. Minimization of flow to the river/creek
3. Maximizing flow to the WWTP
4. Minimizing roughness of control

The weightings used in this work are for the accumulated overflow
volume given in Table 2 for each tank weir. The weights of the
remaining objectives are 2 for the flow to the river/creek, −1 for the
flow to the WWTP, 0.01 for the roughness of the control, and in the CC-
MPC case 10 for the usage of the slack variables. The weights indicate
that the avoidance of the flow to the river is prioritized twice as high
as increasing flow to the WWTP. The weight on the roughness indicates
the desire for the control to be smooth, but not a general priority.
As seen from the table, the priority of the accumulated overflow is
significantly higher than the other objectives. With the cost for up-
stream tanks being higher than downstream tanks, to avoid nonphysical
overflow predictions (Halvgaard & Falk, 2017; Svensen et al., 2019).

4. Results

The CC-MPC discussed above has been applied to the SWMM model
of the Astlingen benchmark network (Sun, Svensen et al., 2020). In
order to evaluate the performance of the CC-MPC, and its response
to different types of uncertainties, we have ran simulation series with
four different scenarios. Each scenario were quantified by a parameter,
which were the only varied in its own simulation series; in order for

the effect of the given parameter to be clear.
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Table 3
Overflow results of the SWMM simulations with different controllers: MPC, and CC-MPC
with the probability guarantees of 100–60%.

Tank & MPC CC-MPC CC-MPC CC-MPC CC-MPC CC-MPC
Pipes 100% 90% 80% 70% 60%

T1 93 251 93 713 92 927 93 015 93 114 93 229
T2 15 484 15 683 15 544 15 543 15 543 15 543
T3 34 017 34 174 34 313 34 214 34 427 34 248
T4 4 814 4 823 4 814 4 814 4 814 4 815
T5 15 147 15 147 15 147 15 147 15 147 15 147
T6 37 950 37 723 37 946 37 939 37 980 37 870

P7 4 016 4 016 4 015 4 016 4 016 4 016
P8 16 207 16 207 16 191 16 203 16 203 16 199
P9 4 030 4 030 4 029 4 029 4 029 4 029
P10 4 838 4 838 4 842 4 839 4 839 4 840

River 183 754 184 585 183 778 183 774 184 086 184 020
Creek 45 996 45 769 45 990 45 984 46 025 45 915

Total 229 750 230 353 229 768 229 758 230 111 229 935

R. % −0.4522% −0.0131% −0.0109% −0.1807% −0.1448%
C. % 0.4935% 0.0130% 0.0261% −0.0630% 0.1761%

Tot. % −0.2625% −0.0078% −0.0035% −0.1571% −0.0805%

The first scenario were variations in the probability confidence level
𝛾, change from 60% to 100%. The second scenario considers the bound
on the uncertainty, while the third and fourth scenarios affects the
expectation of the inflow forecasts; deviating it from the actual inflow,
using scaled and offset biases respectively. The base value of each
parameter in the simulations were: a 90% probability confidence level,
a 50% uncertainty bound, 0% scaled bias and zero offset bias.

In all the simulations, the uncertainty has been assumed that it
follows a truncated normal distribution, where the lower bound is zero
and the upper bound is three standard deviations above the expected
disturbance.

For the evaluation of the results, we compare with the results
of simulations with the deterministic MPC with perfect forecasts, in
order to provide an indication of the expected performance if one
knows the exact future within the prediction horizon. A 100 min
prediction horizon were chosen, so that the delays of the systems were
covered, and the computation of MPC would not have numerical issues.
For the actual rainfall in simulations, a continuous historic long-term
rainfall series of 1 year with a time resolution of 5 min provided by
the Erftverband Water Association are used. Together with spatially
distributed rainfall input and realistic boundary conditions, the rainfall
data can represent a benchmark simulation and control example. The
use of historic data can avoid uncertainties incurred by synthetically
generated rainfall data (Müller, Schütze, & Bárdossy, 2007).

4.1. CC-MPC with various probability confidence levels 𝛾

The results in terms of CSO volume from varying the probability
confidence level can be observed in Table 3, and in Table 4 for the
volume of treated water in WWTP. From these tables, we can see
the distribution of CSO through the system. Both the CSO and WWTP
volume of the CC-MPCs are comparatively close to the results of the
deterministic MPC, regardless of the chosen probability guarantee.
Similar conclusions can be obtained from Fig. 2, which presents volume
dynamics for the tanks with controllable orifices (Tank 2, Tank 3, Tank
4, Tank 6) under CC-MPCs with probability confidence levels in the
range from 60% to 100%. In Fig. 2, there are small deviations for
the tank volumes resulting from CC-MPCs with different probability
confidence levels. However, a slightly trend can be observed such that
the smaller the probability confidence levels, the larger volumes at
the peak points, which may reach the maximal storage more easily
and generate more CSOs for the corresponding tanks. This figure only
presents simulation results for day 10 and day 11 in order to provide a
clearer view.



J.L. Svensen, C. Sun, G. Cembrano et al. Control Engineering Practice 115 (2021) 104900
Table 4
Treated wastewater results of the SWMM simulations with different controllers: MPC, and CC-MPC with the probability guarantees of
100–60%.

MPC CC-MPC CC-MPC CC-MPC CC-MPC CC-MPC
100% 90% 80% 70% 60%

WWTP Vol. 3 772 057 3 771 560 3 772 159 3 772 088 3 771 889 3 771 795

Imp. % −0.0132% 0.0027% 0.0008% −0.0045% −0.0069%
Fig. 2. The volumes for the tanks with controllable orifices (Tank 2, Tank 3, Tank 4,
Tank 6) for the CC-MPCs with probability confidence levels 𝛾 of 100%–60%.

4.2. CC-MPC with various uncertainty bounds

The uncertainty bound describes the interval the uncertainty can
take. For these simulations, a constant lower bound of zero is used;
while the upper bound is defined as a percentage 𝑝 of the actual inflow
above the expected rain inflow, see (52). The standard deviation of
the uncertainty is assumed a third of the actual rain inflow times the
percentage 𝑝. For normal distributions, this leads to the bound to be
defined as

𝑏𝑜𝑢𝑛𝑑 = [0, 𝐸{𝑞} + 𝑝𝑞𝑎𝑐𝑡𝑢𝑎𝑙] (52)

corresponding to the 99.7% confidence interval of a corresponding
unbounded distribution, if expectation matches the actual inflow. The
CC-MPC is tested with percentage 𝑝 bounds of 25%, 50% and 75%.
From Tables 5 and 6, we can observe the resulting CSO volume and
WWTP volume, respectively. It can be observed that the deviations
from the results of the deterministic MPC are negligible of up to a few
hundred cubic meters. Fig. 3 provides detailed dynamic evolution for
the tank volumes of CC-MPC with uncertainty bounds of 25%, 50%
and 75%, confirming conclusions obtained from Table 5 showing that
the deviations brought by CC-MPCs are negligible. On the other hand,
it can be observed from Fig. 3 that, the larger the uncertainty bound
is, the smaller the tank volume is, which may cause less CSOs to the
corresponding tank. This is because the larger uncertainty bounds make
the CC-MPC generate more conservative orifice operations with the
function of preventing CSOs. This conclusion is also in agreement with
the basic deviations trends for the tanks CSO comparisons in Table 5.
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Table 5
Overflow results of the SWMM simulations with different controllers: MPC and CC-MPC
with the uncertainty bound of 25%–75%.

Tank & MPC CC-MPC CC-MPC CC-MPC
Pipes 25% 50% 75%

T1 93 251 93 067 92 927 92 795
T2 15 484 15 543 15 544 15 544
T3 34 017 34 267 34 313 34 067
T4 4 814 4 814 4 814 4 814
T5 15 147 15 147 15 147 15 147
T6 37 950 37 939 37 946 37 673

P7 4 016 4 016 4 015 4 016
P8 16 207 16 203 16 191 16 207
P9 4 030 4 029 4 029 4 030
P10 4 838 4 839 4 842 4 838

River 183 754 183 879 183 778 183 412
Creek 45 996 45 984 45 990 45 718

Total 229 750 229 864 229 768 229 130

R. % −0.0680% −0.0131% 0.1861%
C. % 0.0261% 0.0130% 0.6044%

Tot. % −0.0496% −0.0078% 0.2699%

Table 6
Treated wastewater results of the SWMM simulations with different controllers: MPC,
and CC-MPC with the uncertainty bound of 25%–75%.

MPC CC-MPC CC-MPC CC-MPC
25% 50% 75%

WWTP Vol. 3 772 057 3 772 086 3 772 159 3 772 676

Imp. % 0.0008% 0.0027% 0.0164%

Fig. 3. The volumes for the tanks with controllable orifices (Tank 2, Tank 3, Tank 4,
Tank 6) for the CC-MPC with the uncertainty bound of 25–75%.
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Fig. 4. The volumes for the controllable tanks under CC-MPC with different scaled
bias.

4.3. CC-MPC with various scaled biases

In this section, the percentage bound on the uncertainty are kept
constant, 50%, instead the expected inflow is introduced as a scaled
version of the actual rain inflow, given by

𝐸{𝑞} = 𝑎𝑞𝑎𝑐𝑡𝑢𝑎𝑙 (53)

Both the CC-MPC and the MPC are tested with 20% and 10% underesti-
mated inflow, perfect forecast, and 10% and 20% overestimated inflow.
The results can be seen in Tables 7 and 8, for the CSO volume and the
WWTP volume, respectively. We can observe that if the expected inflow
is overestimated then both types of MPC perform relatively worse as
the overestimation increases with respect to CSO volume, and slight
improvement of WWTP volume. When the inflow is underestimated,
then the MPC performs significantly worse than the MPC with perfect
forecast, when regarding CSO but only slightly better for the WWTP
volume. For the CC-MPC, both the total CSO and WWTP results are
relatively close to the MPC with perfect forecast, but with the drawback
of the distribution of the CSOs being significantly worse for the creek.
Fig. 4 gives detailed volume comparisons for the controllable tanks
under CC-MPC with different scaled bias through a two-day simulation
(day 10 and day 11). The dynamics of Fig. 4 confirm that CC-MPC with
an underestimated inflow performs significantly worse than that the
CC-MPC with overestimated inflows. The explanation for this conclu-
sion is also due to less conservative generated by the underestimated
inflows. Moreover, the larger scales tend to have more differences in
terms of tank volumes.

4.4. CC-MPC with various with offset biases

In this section, the bias is changed from a scaling to an offset,
see (54). Both the CC-MPC and the MPC are tested with zero offset
and three positive offsets. The sizes of the offsets are the annual
mean inflow (0.02) times the factors of 1 and 0.25, and 10 times the
dry-weather inflow (0.1)

𝐸{𝑞} = 𝑞𝑎𝑐𝑡𝑢𝑎𝑙 + 𝑏 (54)
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Fig. 5. The volumes for the controllable tanks under CC-MPC using different offsets.

The results of both MPC types can be seen in Tables 9 and 10 for the
CSO and WWTP volume, respectively. We can observe that for both
non-zero offsets, the CSO is significantly worse, with the offset of 0.1
being even worse. The results of the WWTP volume are also worse than
the MPC with perfect forecast. Fig. 5 gives more information about the
performance of CC-MPC under different offsets. The differences in tank
volume among CC-MPC using different offsets are compared. As always,
the more volume in the tank indicates an increased chance of having
more CSOs. From Fig. 5, we can conclude that CC-MPC with 0.1 offset
have more tank volume than that the offsets, which means, CC-MPC
with 0.1 offset behaves worse than that of MPC. However, the CC-MPC
with 0.005 and 0.02 did not show a clear trend.

From the above results, we can infer that the CC-MPC is capable of
handling different type of uncertainties, and for those type of uncertain-
ties, it performs similarly to the deterministic MPC. We can further see
that the CC-MPC, while not performing that well with constant offset
biases, these biases were also outside the uncertainty bound, practically
making the CC-MPC as blind as the deterministic MPC. In real-world
scenarios, the uncertainty of the inflow is not exactly as the one used
here. Instead the uncertainty bound would vary across the prediction
horizon, as would do the biases of the expected inflow.

5. Conclusion

A stochastic MPC has been applied to a hydrodynamic SWMM
model of the Astlingen urban drainage benchmark network, using a
chance-constraint formulation of MPC.

A comparison study of the application of both CC-MPC and MPC has
been done for several scenarios and types of uncertainties in forecasts,
involving both biases in the forecast to different sizes of the uncertainty.
Based on the simulations, we can conclude that only the uncertainty
regarding biases has an effect on the performance of CC-MPC. Fur-
thermore, it could be observed that the performance of both type
of MPC considered deteriorate similarly with respect to CSO volume,
when the forecast overestimates the rain inflow. However, when the
forecast underestimates the rain inflow, then the CC-MPC performs
similarly to the ideal case, while the performances of deterministic MPC
deteriorates.
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Table 7
Overflow results of the SWMM simulations with different controllers: MPC and CC-MPC under different scaled bias.

Tank & MPC CC-MPC MPC CC-MPC MPC CC-MPC MPC CC-MPC MPC CC-MPC
Pipes −20% −20% −10% −10% 0% 0% 10% 10% 20% 20%

T1 96 776 90 004 95 187 91 355 93 251 92 927 94 419 94 728 96 383 96 615
T2 16 727 16 801 15 957 16 023 15 484 15 544 15 384 15 383 15 317 15 316
T3 33 182 33 298 33 842 33 857 34 017 34 313 34 239 34 065 33 928 34 304
T4 5 938 5 960 5 191 5 206 4 814 4 814 4 730 4 729 4 714 4 713
T5 15 147 15 147 15 147 15 147 15 147 15 147 15 147 15 147 15 147 15 147
T6 39 252 39 082 38 341 38 296 37 950 37 946 37 790 37 770 37 908 37 836

P7 4 015 4 015 4 016 4 015 4 016 4 015 4 015 4 016 4 015 4 015
P8 16 195 16 190 16 208 16 195 16 207 16 191 16 188 16 203 16 188 16 191
P9 4 029 4 029 4 030 4 029 4 030 4 029 4 028 4 029 4 028 4 029
P10 4 841 4 843 4 837 4 841 4 838 4 842 4 843 4 839 4 843 4 842

River 188 805 182 242 186 369 182 623 183 754 183 778 184 949 185 094 186 519 187 129
Creek 47 297 47 126 46 387 46 341 45 996 45 990 45 834 45 815 45 952 45 880

Total 236 102 229 368 232 756 228 964 229 750 229 768 230 782 230 909 23 2470 233 008

R. % −2.7488 0.8228 −1.4231 0.6155 −0.0131 −0.6503 −0.7292 −1.5047 −1.8367
C. % −2.8285 −2.4567 −0.8501 −0.7501 0.0130 0.3522 0.3935 0.0957 0.2522

Tot. % −2.7647 0.1663 −1.3084 0.3421 −0.0078 −0.4492 −0.5045 −1.1839 −1.4181
Table 8
Treated wastewater results of the SWMM simulations with different controllers: MPC, and CC-MPC under different scaled bias.

MPC CC-MPC MPC CC-MPC MPC CC-MPC MPC CC-MPC MPC CC-MPC
−20% −20% −10% −10% 0% 0% 10% 10% 20% 20%

WWTP Vol. 3 765 554 3 772 166 3 769 365 3 772 992 3 772 057 3 772 159 3 771 015 3 770 672 3 769 214 3 768 942
Imp. % −0.1724 0.0029 −0.0714 0.0248 0.0027 −0.0276 −0.0367 −0.0754 −0.0826
Table 9
Overflow results of the SWMM simulations with different controllers: MPC and CC-MPC under different off-set biases.

Tank & MPC CC-MPC MPC CC-MPC MPC CC-MPC MPC CC-MPC
Pipes 0 0.005 0.005 0.02 0.02 0.1 0.1

T1 93 251 92 927 93 655 93 856 96 472 96 590 131 407 130 211
T2 15 484 15 544 15 387 15 450 15 453 15 452 15 847 15 511
T3 34 017 34 313 33 975 34 322 34 086 34 485 36 811 36 548
T4 4 814 4 814 4 728 4 728 4 639 4 644 4 465 4 465
T5 15 147 15 147 15 147 15 147 15 147 15 147 15 147 15 147
T6 37 950 37 946 37 916 37 961 37 877 37 780 37 907 37 763

P7 4 016 4 015 4 015 4 015 4 015 4 016 4 016 4 016
P8 16 207 16 191 16 188 16 193 16 188 16 203 16 203 16 203
P9 4 030 4 029 4 028 4 029 4 028 4 029 4 029 4 029
P10 4 838 4 842 4 843 4 842 4 843 4 839 4 839 4 839

River 183 754 183 778 183 922 184 536 186 828 187 360 224 718 222 925
Creek 45 996 45 990 45 959 46 005 45 920 45 825 45 952 45 808

Total 229 750 229 768 229 881 230 541 232 748 233 185 270 670 268 733

R. % −0.0131 −0.0914 −0.4256 −1.6729 −1.9624 −22.2928 −21.3171
C. % 0.0130 0.0804 −0.0196 0.1652 0.3718 0.0957 0.4087

Tot. % −0.0078 −0.0570 −0.3443 −1.3049 −1.4951 −17.8107 −16.9676
Table 10
Treated wastewater results of the SWMM simulations with different controllers: MPC, and CC-MPC under different off-set biases.

MPC CC-MPC MPC CC-MPC MPC CC-MPC MPC CC-MPC
0 0.005 0.005 0.02 0.02 0.1 0.1

WWTP Vol. 3 772 057 3 772 159 3 771 978 3 771 575 3 768 823 3 768 643 3 731 689 3 733 651

Imp. % 0.0027 −0.0021 0.0001 −0.0857 −0.0905 −1.0702 −1.0182
t

𝑋

F
a

𝑃

The analysis presented here can in the future, be extended from us-
ng historical resembling rain fall, to also include historical resembling
ncertainty; with the uncertainty nature varying across the simulation.
he future work on CC-MPC, can include easing the computation of
he constraint distribution for nonlinear and/or non-normal distributed
ncertainties.
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Appendix A. Linear transformation of truncated distributions

For our discussion of linear transformations of truncated distribu-
tions, consider the stochastic scalar variable 𝑋𝑇 to be 𝑋 truncated in
he interval [𝑎, 𝑏], with 𝑋 following some distribution 𝐹 .

𝑇 ∼ 𝐹 𝑏
𝑎 (𝜃𝑥) ∶ 𝑎 ≤ 𝑋 ≤ 𝑏, 𝑋 ∼ 𝐹 (𝜃𝑥)

or truncated distributions (Nadarajah & Kotz, 2006), the probability
re given by

𝑟{𝑋𝑇 ≤ 𝑥} =
𝑃𝑟{𝑋 ≤ 𝑥} − 𝑃𝑟{𝑋 ≤ 𝑎}

𝑃𝑟{𝑋 ≤ 𝑏} − 𝑃𝑟{𝑋 ≤ 𝑎}
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Under the assumption that linear transformations are plausible for
𝑋, let us define 𝑌 = 𝑐𝑋 + 𝑑. For the linear transformation of 𝑋𝑇 where
𝑐 > 0, we consider the probability:

𝑃𝑟{𝑐𝑋𝑇 + 𝑑 ≤ 𝑧} = 𝑃𝑟{𝑋𝑇 ≤ 𝑧 − 𝑑
𝑐

}

=
𝑃𝑟{𝑋 ≤ 𝑧−𝑑

𝑐 } − 𝑃𝑟{𝑋 ≤ 𝑎}

𝑃𝑟{𝑋 ≤ 𝑏} − 𝑃𝑟{𝑋 ≤ 𝑎}

=
𝑃𝑟{𝑌 ≤ 𝑧} − 𝑃𝑟{𝑌 ≤ 𝑐𝑎 + 𝑑}

𝑃𝑟{𝑌 ≤ 𝑐𝑏 + 𝑑} − 𝑃𝑟{𝑌 ≤ 𝑐𝑎 + 𝑑}

here it can be seen that the resulting probability corresponds to a
runcated version of 𝑌 .

If we consider the case of 𝑐 < 0:

𝑟{𝑐𝑋𝑇 + 𝑑 ≤ 𝑧} = 1 − 𝑃𝑟{𝑋𝑇 ≤ 𝑧 − 𝑑
𝑐

}

= 1 −
𝑃𝑟{𝑋 ≤ 𝑧−𝑑

𝑐 } − 𝑃𝑟{𝑋 ≤ 𝑎}

𝑃𝑟{𝑋 ≤ 𝑏} − 𝑃𝑟{𝑋 ≤ 𝑎}

=
𝑃𝑟{𝑌 ≤ 𝑧} − 𝑃𝑟{𝑌 ≤ 𝑐𝑏 + 𝑑}

𝑃𝑟{𝑌 ≤ 𝑐𝑎 + 𝑑} − 𝑃𝑟{𝑌 ≤ 𝑐𝑏 + 𝑑}

where the truncated version of 𝑌 , has an inverted truncation interval.
From here, we can see that the linear transformation 𝑌𝑇 = 𝑐𝑋𝑇 + 𝑑

is itself a truncated distribution of the same distribution type as 𝑋𝑇 ,
with the truncation interval also been linearly transformed:

𝑌𝑇 ∼ 𝐹
𝑏𝑦
𝑎𝑦 (𝜃𝑦) ∶ 𝑎𝑦 ≤ 𝑌 ≤ 𝑏𝑦, 𝑌 ∼ 𝐹 (𝜃𝑦)

𝑎𝑦 =

{

𝑐𝑎 + 𝑑 𝑐 > 0
𝑐𝑏 + 𝑑 𝑐 < 0,

𝑏𝑦 =

{

𝑐𝑏 + 𝑑 𝑐 > 0
𝑐𝑎 + 𝑑 𝑐 < 0

Appendix B. Sum of truncated Gaussians

In a truncated distribution (Nadarajah & Kotz, 2006), the probabil-
ity density function (PDF) is given by

𝑓𝑋𝑇
(𝑥) =

𝑓𝑋 (𝑥)
𝛹𝑋 (𝑎, 𝑏)

(B.1)

𝛹𝑋 (𝑎, 𝑏) = 𝑃𝑟{𝑋 ≤ 𝑏} − 𝑃𝑟{𝑋 ≤ 𝑎} (B.2)

where 𝑓𝑋 (𝑥) is the PDF of the underlying distribution, and 𝛹𝑋 (𝑎, 𝑏) is
the probability span of the truncation.

Let us now consider the sum of two independent truncated Gaussian
distributions:

𝑋𝑇 ∼ 𝑁𝑏𝑥
𝑎𝑥 (𝜇𝑥, 𝜎

2
𝑥), 𝑌𝑇 ∼ 𝑁

𝑏𝑦
𝑎𝑦 (𝜇𝑦, 𝜎

2
𝑦 ) (B.3)

It is clear that sum 𝑋𝑇 +𝑌𝑇 is restricted to the interval [𝑎𝑧, 𝑏𝑧], as given
below

𝑎𝑧 = 𝑎𝑥 + 𝑎𝑦 ≤ 𝑋𝑇 + 𝑌𝑇 ≤ 𝑏𝑥 + 𝑏𝑦 = 𝑏𝑧 (B.4)

If we define the sum of the underlying distributions as 𝑍 = 𝑋 + 𝑌 ,
then by using convolution (Hogg, McKean, & Craig, 2019) and the fact
that 𝑋, 𝑌 is independent, we can rewrite the probability in terms of the
underlying sum 𝑍:

𝑃𝑟{𝑋𝑇 + 𝑌𝑇 ≤ 𝑧} = ∫

𝑧

𝑎𝑧
𝑓𝑋𝑇 +𝑌𝑇 (𝜏)𝑑𝜏

= ∫

𝑧

𝑎𝑧
∫

∞

−∞
𝑓𝑋𝑇 ,𝑌𝑇 (𝑥, 𝜏 − 𝑥)𝑑𝑥𝑑𝜏

= ∫

𝑧

𝑎𝑧
∫

∞

−∞
𝑓𝑋𝑇

(𝑥)𝑓𝑌𝑇 (𝜏 − 𝑥)𝑑𝑥𝑑𝜏

= ∫

𝑧

𝑎𝑧

∫ ∞
−∞ 𝑓𝑋 (𝑥)𝑓𝑌 (𝜏 − 𝑥)𝑑𝑥
𝛹𝑋 (𝑎𝑥, 𝑏𝑥)𝛹𝑌 (𝑎𝑦, 𝑏𝑦)

𝑑𝜏

=
∫ 𝑧
𝑎𝑧
𝑓𝑋+𝑌 (𝜏)𝑑𝜏

𝛹𝑋 (𝑎𝑥, 𝑏𝑥)𝛹𝑌 (𝑎𝑦, 𝑏𝑦)
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Given that the sum of Gaussian distributions is also Gaussian, we
can conclude that the sum of truncated Gaussian distributions has
an underlying Gaussian distribution, but is not defined as a scalar
truncated distribution. We can write the probability of the sum in terms
of probabilities:

𝑃𝑟{𝑋𝑇 + 𝑌𝑇 ≤ 𝑧} =
𝑃𝑟{𝑍 ≤ 𝑧} − 𝑃𝑟{𝑍 ≤ 𝑎𝑧}

𝛹𝑋 (𝑎𝑥, 𝑏𝑥)𝛹𝑌 (𝑎𝑦, 𝑏𝑦)

A scaled probability with similar shape to the probability of the scalar
truncated distribution.

Appendix C. Assumption of conservative truncated sums

Given the interval in (B.4), the sum of 𝑋𝑇 + 𝑌𝑇 can in some sense
be seen as a truncation of the underlying sum 𝑍 = 𝑋 + 𝑌 . In CC-
MPC, we want to consider the probability 𝑃𝑟{𝑋𝑇 + 𝑌𝑇 ≤ 𝑧} ≥ 𝛾, by
considering the sum as a truncated Gaussian distribution 𝑍𝑇 , we can
ease the computation, by assuming the following relation

𝑃𝑟{𝑋𝑇 + 𝑌𝑇 ≤ 𝑧} ≥ 𝑃𝑟{𝑍𝑇 ≤ 𝑧} ≥ 𝛾 (C.1)

meaning 𝑍𝑇 is less likely to be below a certain value 𝑧 than the true
sum, and if it holds so does the probability of the true sum. Writing
each probability out, the probability of each sum takes the forms

𝑃𝑟{𝑍 ≤ 𝑧} ≥ 𝑃𝑟{𝑍 ≤ 𝑎𝑧} + 𝛾𝛹𝑋 (𝑎𝑥, 𝑏𝑥)𝛹𝑌 (𝑎𝑦, 𝑏𝑦) (C.2)

𝑃𝑟{𝑍 ≤ 𝑧} ≥ 𝑃𝑟{𝑍 ≤ 𝑎𝑧} + 𝛾𝛹𝑍 (𝑎𝑧, 𝑏𝑧) (C.3)

The relation can be seen to hold if and only if the probability spans is
related by

𝛹𝑍 (𝑎𝑧, 𝑏𝑧) ≥ 𝛹𝑋 (𝑎𝑥, 𝑏𝑥)𝛹𝑌 (𝑎𝑦, 𝑏𝑦) (C.4)

The relation in (C.4), means that using the truncated sum pro-
vides a more conservative solution than using the true sum; given the
right-hand side becomes larger.

In order to show the relation given in (C.4) is a fair assumption,
let us rewrite the relation in terms of standard Gaussians, assuming
the mean to be included in the intervals. The standard interval of a
distribution 𝑖 is then given by

𝛼𝑖 =
𝑎𝑖 − 𝜇𝑖
𝜎𝑖

, 𝛽𝑖 =
𝑏𝑖 − 𝜇𝑖
𝜎𝑖

(C.5)

nd the relation by

(𝛼𝑧, 𝛽𝑧) ≥ 𝛹 (𝛼𝑥, 𝛽𝑥)𝛹 (𝛼𝑦, 𝛽𝑦) (C.6)

ealizing that a probability span is bounded by 0 ≤ 𝛹𝑖(𝑎𝑖, 𝑏𝑖) ≤ 1, then
e have that the relation also holds if just one of the relations below
olds

(𝛼𝑧, 𝛽𝑧) ≥ 𝛹 (𝛼𝑥, 𝛽𝑥) (C.7)

(𝛼𝑧, 𝛽𝑧) ≥ 𝛹 (𝛼𝑦, 𝛽𝑦) (C.8)

iven they are all given in the same distribution, this means that 𝛼𝑧, 𝛽𝑧
as to fulfill

𝑧 ≤ 𝛼𝑥 and 𝛽𝑧 ≥ 𝛽𝑥 (C.9)

r

𝑧 ≤ 𝛼𝑦 and 𝛽𝑧 ≥ 𝛽𝑦 (C.10)

o ensure the relation.
From the definition in (C.5), we get that the interval of 𝑍𝑇 is given

y

𝑧 = 𝛿𝑥𝛼𝑥 + 𝛿𝑦𝛼𝑦, 𝛿𝑥 =
𝜎𝑥

√

𝜎2𝑥 + 𝜎2𝑦
(C.11)

𝛽𝑧 = 𝛿𝑥𝛽𝑥 + 𝛿𝑦𝛽𝑦, 𝛿𝑦 =
𝜎𝑦

√

𝜎2𝑥 + 𝜎2𝑦
(C.12)
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By using contradiction we can now prove that 𝛽𝑧 is larger than at least
one of 𝛼𝑥, 𝛽𝑥. Consider

𝛽𝑥 ≥ 𝛿𝑥𝛽𝑥 + 𝛿𝑦𝛽𝑦 (C.13)

𝛽𝑦 ≥ 𝛿𝑥𝛽𝑥 + 𝛿𝑦𝛽𝑦 (C.14)

by isolating 𝛽𝑦, and combining the inequalities we get

(1 − 𝛿𝑥)𝛽𝑥 ≥
𝛿𝑦𝛿𝑥
1 − 𝛽𝑦

𝛽𝑥 (C.15)

y rewriting in terms of the variances we get

≥ 𝜎𝑥𝜎𝑦 (C.16)

hich is infeasible, given variances are positive by default. Similarly,
e can use the same approach, to prove that

𝑧 ≥ 𝛼𝑥 and 𝛼𝑧 ≥ 𝛼𝑦 (C.17)

annot simultaneous be true.
In the case of symmetry 𝛼𝑖 = −𝛽𝑖, these contradictions becomes

ufficiently to determine the relation in (C.4) holds, given

(−𝛽𝑧, 𝛽𝑧) ≥ 𝛹 (−𝛽𝑥, 𝛽𝑥)𝛹 (−𝛽𝑦, 𝛽𝑦) (C.18)

he relation does not seem to have a simple prove, for the more general
ntervals. But based on the contradictions, then if 𝑋𝑇 has the larger
nterval, 𝛽𝑥 ≥ 𝛽𝑦 and 𝛼𝑥 ≤ 𝛼𝑦, then 𝑍𝑇 has larger interval than 𝑌𝑇 ,

fulfilling the relation.
A final comment, given the uncertainties of each constraints in

model in Section 2 is scaled by the same factors; only the size of
the initial intervals in the uncertainties determines the size relations
between the different 𝛼, 𝛽 values. Furthermore, during the simulations
in Section 4, the intervals where chosen such that in terms of the
standard Gaussian, they were all [−3∕𝑝, 3]. Therefore, the intervals are
identical and the relations holds.

Appendix D. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.conengprac.2021.104900.
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