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Abstract: Like many other tropical countries, the Philippines has suffered from decades of defor-
estation and forest degradation during and even after the logging era. Several open access Earth
Observation (EO) products are increasingly being used for deforestation analysis in support of
national and international initiatives and policymaking on forest conservation and management.
Using a combination of annual forest loss and near-real time forest disturbance products, we provide
a comprehensive analysis of the deforestation events in three forest frontiers of the Philippines. A
space-time pattern mining approach was used to map quarterly deforestation hotspots at 1 km pixel
size (100 hectares), where hotspots are classified according to the spatial and temporal variability of
the 2000–2020 deforestation in the study area. Our results revealed that 79–81% of the hotspots over-
lap with primary forests and 27–29% are inside the state-declared protected areas. The intra-annual
analysis of deforestation in 2020 revealed an alarming trend, where most deforestation occurred
between the 1st and 2nd quarter (92–94% in hotspot forests; 87–89% in non-hotspot forests), highly
overlapping within the slash-and-burn farming season. We also found “new” hotspots (2020) formed
mostly from landslide scars and partly from selective logging, the latter is believed to be underesti-
mated. Our study paves the way for rapid and regular assessment of the country’s deforestation,
useful for the respective environmental institutions who convene several times a year. Moreover, our
findings assert the imperative of alternative livelihoods to upland farmers, efficient forest protection
activities, and even the mitigation of landslide risks.

Keywords: deforestation; hotspots; tropical forests; Emerging Hotspot Analysis; Earth Observation;
Philippines

1. Introduction

Forests provide a broad range of ecosystem services including the mitigation of
climate warming and its adverse consequences [1] and the regulation of water to sustain
croplands and even mitigate potential floods [2]. Forests also provide aesthetic, cultural
and recreational services for the wellness of humans and are home to diverse groups
of flora and fauna. The tangible benefits from forests are obviously timber and also
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non-timber forest products; however, unabated timber harvesting has led to forest loss
in most tropical regions [3,4]. Although timber cutting has been found to be on the
decline compared with the situation half a century ago, analysis of deforestation trends
in recent times pinpoints to “commodity-driven” deforestation as the main driver, owing
to the growing local and international demands of agricultural products such as meat,
soya and oil [5,6]. Deforestation is blamed for directly causing forest fragmentation and
abandoned landscapes, indirectly leading to the decline of forests’ ecosystem services
including biodiversity [7,8].

Like many other tropical countries, the Philippines has experienced historical and
persistent forest loss, where the peak of deforestation happened from 1977 to 1988, driven by
25-years long logging concessions [9]. Contributing factors including poor and inefficient
government oversight and abusive logging companies, some of which operated beyond
the legal duration of their permits, resulted in wanton destruction of the countries’ primary
dipterocarp forests. Years later, due to the much-diminished forest area, public outcry and
log bans, massive logging was slowly put to a halt, although the other root causes driving
deforestation had not been addressed [9]. The deforestation after the logging era has been
driven mainly by slash-and-burn agriculture, charcoal making, agricultural encroachment,
mining, and selective logging [9,10]. Apan et al. (2017) [11] reported that deforestation has
continued in recent decades, even in the declared protected areas. Estoque et al. (2018) [12]
investigated forest fragmentation and biodiversity loss in the last forested protected area in
mainland Philippines and found that these perils were deforestation-driven. More recently,
Perez et al. (2020) [13] pointed out that the continuous deforestation activities outweigh
the massive reforestation of the government that started in 2011.

These recent studies employed products derived from Earth Observation (EO) satellite
data as inputs for deforestation analysis. Using EO and remote sensing (RS), it is possible to
capture distinct signals of the land, particularly forestlands before and after a deforestation
event i.e., from forest to bare land [14,15]. Optical RS can detect and interpret the emitted
solar energy from the vegetation e.g., as surface reflectances after several pre-processing
steps. The widely used EO mission is the optical Landsat satellite, with global image
collection for at least three decades. However, optical satellites cannot see beneath the
clouds which are perennial in tropical regions. Radar RS can transmit and receive signals in
the form of backscatter intensity that not only can pass through clouds, but are also sensitive
to changes in forest structure. Such advantages of radar were found ideal for monitoring
deforestation-driven changes [16,17]. The Sentinel 1 (radar) mission has provided data
since 2014 with a spatial resolution of at least 10 m pixel size and temporal resolution
of 1–2 weeks. These EO data are inputs to RS technology in producing EO products of
forest variables.

The most common and widely used EO product on forest and its dynamics is the
Landsat-derived Global Forest Change (GFC) dataset, where tree cover or forest loss (2000–
2020) and gain (2000–2012) data are globally available at 30 m pixel size [18]. The GFC
dataset has been helpful in both local to global scale analysis of deforestation and its
implications. Hansen et al. (2020) [8] applied this dataset to assess forest fragmentation in
the tropics and found that smaller fragments have been increasing as a sign of high-rate
forest disturbances and increasing land pressure to forestlands. Similarly, Vieilledent et al.
(2018) [19] used the loss data in conjunction with a historical baseline forest map to assess
the development of fragmented forests in Madagascar and reported not only the increasing
fragments, but also the apparent shift of the remaining forest areas towards forest edges.

Some other recent EO products are near-real time forest disturbance alerts: the Global
Land Analysis and Discovery alert system (GLAD, 2015–present), which uses terrain and
atmospherically corrected Landsat 7 and 8 data to create weekly alerts of tree cover loss in
Amazon, Congo and insular Southeast Asia [20]; and the Radar for Detecting Deforestation
(RADD) alerts where Sentinel 1 is used to classify forest disturbances for a minimum
of 0.1 ha within African (since 2019) and Asian (since 2020) countries. A recent study
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showed that alert systems could trigger immediate interventions in forest management
and conservation by environmental stakeholders [21].

These EO products play a role as inputs to spatially identify hotspots of deforestation.
One goal of identifying these hotspots is to prioritize forest areas that need immediate
interventions i.e., forest protection. Mapping hotspots can either be through a subjective
judgment by experts or using geospatial models [22,23]. Gandhi and Jones et al. (2019) [24]
subjectively used the rate of mangrove changes from a set of country data to determine
which among Southeast Asian countries are mangrove deforestation hotspots. Mapping
hotspots using models may require spatial and temporal (spatio-temporal) data to identify
hotspots based on the rate and extent of deforestation over time. Jardeleza et al. (2019) [25]
used zonal statistics to identify 2010–2015 hotspots in Philippine forests based on tree cover
from different forest covers including a geo-simulated version. Harris et al. (2017) [23]
used a space-time pattern mining called Emerging Hotspot Analysis (EHA) to define
statistically significant hotspots as a byproduct of the GFC forest loss data. Reddy et al.
(2016) [22] did a similar hotspot mapping where each hotspot pixel has a confidence interval
while considering the trends in deforestation since 1930, while Sanchez-Cuervo and Aide
(2013) [26] applied EHA to assess hotspots in protected areas in relation to hotspot drivers.

No intra-annual deforestation hotspot products have yet been developed and in this
sense, the forest disturbance alert products can be useful. The current available EO product
for deforestation hotspots is the global EHA-based map [23], being updated every 1–2 years
depending on the release of the annual forest loss data [27]. Hotspots can be seasonal,
driven by illegal activities usually implemented when the weather is favorable in certain
months. This seasonal activity cannot be easily revealed when looking at annual hotspot
maps and forest loss per se. Regular hotspot mapping can also help evaluate any progress
of interventions such as forest protection. This evaluation can take place during the regular
assembly of environmental bodies several times a year.

Here we examine how annual and near-real time EO products can be used to regu-
larly identify deforestation hotspots in the Philippine forests and understand their spatio-
temporal trends in relation to the deforestation drivers towards an updated, efficient and
practical forest protection and management.

2. Materials and Methods
2.1. Study Area

Our study sites are three forest frontiers in the country that encompass eleven provinces.
The first is in the Sierra Madre, one of Southeast Asia’s longest mountain ranges that ex-
tend within nine provinces. This mountain range is home to the last remaining primary
forests in the Philippines, with very high biodiversity and the most number of protected
areas. In these mountains, selective logging and agricultural expansion have persisted
with alarming rates [28]. The second study site is Palawan province, an elongated island
and the largest province in the country. Palawan is known to have primary forests with
high endemism of flora and fauna, which are threatened by an increase in active mining
operations, slash-and-burn farming, oil palm expansion and timber poaching [29]. The last
study site is Apayao province, known to have high endemism of fauna including the rare
Philippine eagle, roaming within three highly forested mountains in the province. See
Figure 1 for the study area map.
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Figure 1. Study area map showing the Philippines as inset and the provincial boundaries of Palawan,
Apayao, and several provinces within the Sierra Madre mountain range. The overview of the
country’s primary forest in 2019 (derived from the method of [30]) and the state-declared protected
areas are also shown.

2.2. Method Overview

We used Global Forest Watch (GFW) [27] as a starting point to gain an overview of
deforestation in the Philippines over time. After gathering the needed deforestation data,
we converted them to space-time data cubes as inputs to the Emerging Hotspot Analysis
(EHA) to identify local hotspots and their classes, which were then interpreted spatially
and temporally. See Figure 2 for the overview of the main steps of this study.

Figure 2. Four main steps of the study.

2.3. Deforestation Data Sources

We used EO products that are widely used to analyze deforestation in the local [11–13]
and global context [31,32]. First, the GFC forest loss data from the years 2000 to 2019
were accessed from the GFC data portal. This dataset labels a 30 m pixel as “loss” if the
pixel before the loss is a vegetated pixel greater than 5 m tall followed by a “removal”,
which can be caused by man-made and natural factors [18]. It is cautioned though by
the data producers that forest loss is not always equivalent to deforestation. Second, we
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used GLAD forest disturbance alerts which were accessed using Google Earth Engine
(GEE). The GLAD alert system is also a Landsat-derived product (30 m) and can detect
disturbances with at least 50% tree canopy removal [20]. The main caveat for this product
pertains to the confirmation of the alerts. Each alert pixel should be “confirmed” (detected
again after the first detection) and the date of alert would be recorded as the date of said
confirmation. Such confirmation can be delayed due to cloud interference. While the next
alert product we used, the RADD system, is unaffected by the cloud-induced confirmation
delay, the RADD system labels pixels slightly different than the GLAD system as RADD
uses the first detection date as the alert date while retracting alert pixels if they are not
confirmed within 90 days. Its producers have cautioned of possible undetected small-area
disturbances (<0.1 ha). RADD alerts were also accessed via GEE. See Table 1 for additional
details about these three deforestation data sources.

Table 1. Deforestation datasets we used and their key details including their spatial and temporal properties, brief
methodology, references and data download link.

EO Product Spatial
Resolution (m)

Temporal
Coverage

Frequency of
Update Description Reference Access Link

GFC forest
loss 30 2001–2019 1–2 years

Uses a collection of Landsat 7 and 8
images and a supervised

classification algorithm to detect
possible forest cover loss when a
previously tree cover (5 m tall) is
disturbed by anthropogenic and

natural factors

[20]

http:
//earthenginepartners.

appspot.com/science-2013
-global-forest (accessed on

1 March 2021)

GLAD alerts 30 2020–2021 7 days

Deforestation alert in near-real time
that uses pre-processed and

quality-checked Landsat 7 and 8
bands and their vegetation indices
to determine whether changes in
new images are >50% probable in

comparison with the previous
three years

[18]
http://glad-forest-alert.

appspot.com/ (accessed on
1 April 2021)

RADD alerts 10 2020–2021 6–12 days

Near-real time deforestation alerts
produced using a probability-based
detection method applied to a time

series of Sentinel 1 images in the
humid tropics every 6–12 days

[33]

http://radd-alert.wur.nl;
https://nrtwur.users.

earthengine.app/view/
raddalert (accessed on 1

April 2021)

2.4. Hotspot Mapping and Assessment

To assess the 2020 deforestation scenario spatially and temporally, we generated
quarterly hotspot maps that account for the potential deforestation events from 2000 to
2020 using the annual forest loss data (2000–2019) in combination with each alert product
(2020), resulting in two hotspots map versions. We included areas with >30% of the GFC’s
tree cover density (TCD) product. This threshold is slightly above the forest mask of
the global hotspot data (25% TCD, [23]) and the maximum threshold stipulated in the
United Nations Framework Convention on Climate Change [34]. Such forest mask would
likely capture disturbances from upland agriculture encroachment. We then resampled the
RADD pixels using nearest neighbour method from 10 m to 30 m for consistency in spatial
scale i.e., to avoid having three times more pixels than the other products because of the
pixel size difference. We also used the same forest mask for the deforestation alerts so we
masked out GLAD alerts outside the primary forest baseline year 2019 [30] included in
the RADD product. Herein, we call the pixels from the annual forest loss and disturbance
alerts as deforestation pixels.

For hotspot mapping, we used EHA (via ArcGIS) being the widely used method from
local to global hotspot mapping using EO products. The spatial scale of the EHA matters
and we aimed for 1 km × 1 km hotspot bins to preserve small potential hotspots (despite a
long computation time), deemed useful for forest protection at local jurisdictional scales.
For each bin, we assigned a 3 × 3 window as neighboring bins. The consistency of these
hotspots is routinely tested at regular time intervals and we aimed for a 1-year period
while updating the 2020 deforestation pixels quarterly (as sufficed by the alert products),
hence producing four hotspot maps in 2020.

http://earthenginepartners.appspot.com/science-2013-global-forest
http://earthenginepartners.appspot.com/science-2013-global-forest
http://earthenginepartners.appspot.com/science-2013-global-forest
http://earthenginepartners.appspot.com/science-2013-global-forest
http://glad-forest-alert.appspot.com/
http://glad-forest-alert.appspot.com/
http://radd-alert.wur.nl
https://nrtwur.users.earthengine.app/view/raddalert
https://nrtwur.users.earthengine.app/view/raddalert
https://nrtwur.users.earthengine.app/view/raddalert
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The technical steps of EHA first involve a clustering method based on the density
of deforestation pixels inside the 1-km bins and among neighboring bins, followed by a
comparison of such density for each bin relative to all deforestation pixels in the study area.
If a bin is found to be relatively dense, a high standard deviation (Z-score) is expected for
that bin as evaluated by the Getis-Ord Gi statistic [35]. The second EHA step is a temporal
assessment of the deforestation trend for each bin and is performed using the Mann-Kendall
trend test to determine whether the trend among bins is increasing or decreasing. Statistical
significance (p < 0.05) from these spatial and temporal evaluations would assign a 1-km bin
as a hotspot with corresponding classifications described in Table 2. Hotspots are hereby
defined as local areas with “statistically significant deforestation”.

Table 2. Hotspot classes and their description. The time step represents 2001–2020 years (2001–2019 = GFC loss data;
2020 = alert products). The x rows depict “statistical significance of deforestation” per year or simply those classified by
EHA as a “hotspot”.

Class Description Time Step (Years)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

New
1-km hotspot bins that are

statistically significant (>95%)
only in 2020

x

Consecutive
1-km hotspot bin that are

statistically significant (>95%)
only in recent years

x x x

Sporadic

1-km hotspot bins with
discontinuity in statistical
significance over the years

(on-and-off hotspot)

x x x x x x x x

Persistent 1-km bins with statistical
significance in 18 out of 20 years x x x x x x x x x x x x x x x x x x

Intensifying
Same with persistent but recent

years have increasing
deforestation

x x x x x x x x x x x x x x x x x x

Non-hotspot
1-km hotspot bin without

statistical significance in the
past 2 decades

Hotspot classes were mapped, counted and analyzed for the year 2020. Hotspots
that overlap with the primary forest in 2019 and the government-declared protected areas
were also tallied per hotspot class and province. Including these three boundaries would
enable joint assessment and interventions by both the national and local governments.
The provincial boundaries were obtained from Global Administrative Areas (GADM)
while the protected areas were provided by the Biodiversity Management Bureau of the
Department of Environment and Natural Resources (BMB-DENR). The primary forest
boundary used in the RADD alerts was adapted.

Temporal assessment of the hotspot and deforestation areas was also initiated to
investigate deforestation peaks in 2020. Using the 30 m alert pixels (GLAD and resampled
RADD), we graphed the accumulated and per month deforested areas. This analysis was
extended until April 2021 to assess whether there is a seasonal trend every 1st quarter.
We then assessed the deforested areas per hotspot class and outside hotspots (forest non-
hotspots), from one quarter to another in 2020.

We finally related the hotspot classes to their main drivers using Sentinel 2 and
Planet satellite imageries viewed at GFW, and Google Earth Pro particularly its terrain
functionality. Both platforms are useful to easily navigate the landscape and distinguish
between two drivers based on spatial patterns i.e., landslide (upslopes) and slash-and-burn
(foot slopes). Further validity of the drivers was confirmed by multiple local experts based
on their familiarization and access to on-site reports. Lastly, local and international news
were collated and summarized in Table A1 as proof that deforestation existed in 2020.
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3. Results
3.1. Hotspot Maps and Analysis

Hotspots that account for the deforestation from 2000 to 2020 were found to exist in
the whole study area for both maps that use the RADD and GLAD alerts. These hotspots
shown in Figure 3 are a mix of the three hotspot classes located within the remaining
primary forests of the country. The detailed breakdown of these hotspots is shown in
Table 3 where 1978–2246 hotspots within nine provinces were classified as hotspot areas.
Alarmingly, 79–81% of the hotspots overlap with the primary forests in 2020; while 27–29%
of them overlap with protected areas. A higher number of hotspots was identified when
using RADD alerts (12% higher than GLAD alerts). Results from the two hotspot versions
were particularly close for hotspot classes with on-and-off deforestation (sporadic hotspot)
and those hotspots formed in recent years (consecutive hotspot). For the hotspots in 2020
(new hotspot), the hotspot map with RADD alerts was found to be higher by 69% than the
map with its counterpart alert product. We found one persistent and one historical hotspot
and we just merged them to the sporadic class.

The hotspot maps show the regions with the highest number of hotspots such as
Southern Palawan, the mountains of Apayao province, and foot slopes of Sierra Madre
mountains. The very dense red pixels in Southern Palawan are a combination of sporadic
and consecutive hotspots. Notable also are new hotspots forming in the mid-part of the
Sierra Madre mountain range and in the northernmost part of Apayao. Visible also in most
provinces are scattered hotspots that are either sporadic or consecutive.

Figure 3. Hotspot maps that consider the 2000–2020 deforestation events derived from the deforesta-
tion data. Both maps use 2000–2019 forest loss data. (a) map uses RADD alerts as the 2020 input,
while (b) substitutes the former with GLAD alerts. The base map is the primary forest extent in 2019
used to mask the alert products and the protected areas.
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Table 3. The number of hotspot classes and their % overlap in 2019 primary forests and protected
areas (PAs) for both hotspot maps that use RADD and GLAD alerts.

Hotspot Class Count % Inside Primary Forest % Inside PAs
GLAD RADD GLAD RADD GLAD RADD

New 57 189 100 100 72 40
Consecutive 765 802 72 73 25 26

Sporadic 1156 1255 82 83 27 29
Total 1978 2246 79 81 27 29

The highest number of hotspots that overlap with PAs were found in the provinces
of Palawan followed by Isabela and Quirino. These PAs are Mt. Matalingahan and
Malamplaya Protected Landscapes in Palawan, and Quirino Protected Landscape and
Northern Sierra Madre Natural Park in Sierra Madre. Relatively, the provinces with the
highest % hotspot in PAs (almost proportional hotspot count in both PA and non-PA) were
ranked and enumerated as follows: Quirino, Isabela, Rizal and Palawan. See Figure 4 for
the provincial-level results.

Figure 4. Hotspots in protected areas (PAs) and outside PAs (non-PAs) per province for both hotspot
maps using GLAD and RADD alerts in 2020.

3.2. Deforestation in the Year 2020

The deforestation analysis in 2020 is shown in Figure 5a as cumulative deforested
areas per week (default temporal resolution of the alert products) together with its monthly
aggregates in Figure 5b. Overall, the highest deforestation was recorded in dry months from
February to May (peak in April) resulting in a sharp increase in cumulative deforestation.
This trend gradually decreased afterward and hit the lowest alerts around October only to
increase again until March 2021, hence suggesting a seasonal trend.

There was a slight difference in the trend between the two alert products. While both
had their highest detection in February and April, the RADD alerts were relatively higher
at the beginning of the year. These alert pixels can be the forest loss pixels in the late months
of 2019 that were not accounted for when the forest mask used for RADD was created.
The GLAD alerts fluctuated from August to October, which can be late confirmations of
earlier disturbances i.e., in June as the start of the wet (and cloudy) season. In May and
July, the GLAD alerts were slightly higher than the RADD alerts.

For the quarterly summary of deforested areas (Figure 6), aside from the higher
detection by RADD, we found two key observations. First is the highest deforestation
between the 1st and 2nd quarter of 2020 both in forest areas identified as hotspots (92–94%)
and forests that are non-hotspots (87–89%), with the exception of the GLAD alerts inside
new hotspots. Second is the relatively higher alerts outside hotspots (53–76% of all alerts),
which are likely those small deforested areas scattered all over the study area.
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Figure 5. The summary of the alert products for both RADD and GLAD products in 2020 and early
2021. (a) shows the cumulative deforested area at least every week, while (b) shows the monthly sum.
Large gap in the accumulated deforestation is driven by the relatively high RADD alerts in the first
few months.

Figure 6. Quarterly summary of the deforested areas in 2020 for pixels inside and outside the hotspots.
(a–c) pertain to those alerts inside new, consecutive and sporadic hotspots while (d) are those alerts
outside hotspots (non-hotspots).

Spatial patterns were also observed in the development of hotspots within the year.
The example shown in Figure 7 shows that sporadic hotspots increased by 400 ha from
1st to 2nd quarter in 2020, going uplands and within the borders of the primary forests,
see Figure 7a,b. This is also depicted in Figure 7c,d where the actual conversion indicates
that these hotspots are likely to be driven by slash-and-burn farming judging by the soil
color. Another example of hotspot development (500-ha increase from 1st to 3rd quarter) is
shown in Figure 8 where landslides are the main driver of deforestation in the mountainous
and forested parts of northern Sierra Madre. Strong typhoons also passed through the
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area in the 2nd and 3rd quarters of 2020. The example hotspots were found to overlap in
different municipalities.

Figure 7. A sample hotspot development using the GLAD alerts in 2020 driven by slash-and-burn
and overlapping several municipalities in Apayao province. The 1st and 2nd quarter hotspot maps
are shown in (a,b) while (c,d) show the actual landscape in mid-2019 and mid-2020, respectively
(images from Google Earth Pro).

Figure 8. Another sample hotspot development this time using RADD alerts in 2020 within Sierra
Madre (Ilagan, Isabela). After three quarters in (a,b), two typhoons have passed through this land
area: May (typhoon Ambo) and August (typhoon Helen). See (c,d) for before (2017) and after (July
2020) actual images of the landscape to emphasize the deforestation from landslides (images from
Google Earth Pro).

4. Discussion
4.1. Hotspot Mapping and Deforestation Detection

Our hotspot maps revealed that 79–81% of the hotspots overlap with the primary
forests and around 27–29% are inside the declared protected areas. These hotspots are
formed in clusters while some are scattered within the provinces’ forests. These numbers
are alarming and relatively higher than the global hotspot map mainly due to the smaller
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spatial scale (hotspot pixel size) in this study, which is suited for local to regional analysis.
Nevertheless, there is still a high overlap between our hotspot maps and the global hotspot
particularly in the dense hotspots within Southern Palawan and Apayao mountains mainly
driven by the same forest loss input (2000–2019) and hotspot mapping approach (EHA).
The map producers of the global hotspot also advised adjusting the spatial scale of hotspot
bins to preserve small hotspot patches for local-scale forest protection i.e., from 10 km to
1 km spatial bins [23]. Another study also used the same annual forest loss data and they
revealed that protected areas inside Sierra Madre and Palawan experienced the highest
forest loss rate from 2010 to 2012 [11]. Using again the loss data and a time series vegetation
index, the continuity and severity of deforestation in Sierra Madre were reported to cause
a net forest loss even if the potential forest gains from the national reforestation program in
2011 are accounted [13].

Because of the alert products, 57–189 new hotspots (in 2020) and 765–802 consecutive
(recent years) hotspots were revealed; while the rest are sporadic hotspots (on-and-off from
2000 to 2020), which would be unidentified without the annual loss data. Though forest
loss was reported to be increasing from 2017 to 2019 [13], the relatively high number of new
(and consecutive) hotspots could also be linked to the higher deforestation pixels provided
by alert products compared to the annual loss pixels. It was reported that the 2000–2019
GFC forest loss may underestimate the actual forest loss in a given year, particularly in
the tropics [36]. This potential omission error (missed detection) is mainly caused by
the limitation of optical satellites to secure cloud-free images over large scales within the
year as well as the inability of the product to detect small-scale disturbances [36]. This
limitation can also be the reason for the higher number of hotspots detected when using
RADD (radar) compared to GLAD (optical). Such comparison was demonstrated in Congo
where higher detection was reported using the radar-based system in comparison with
GLAD and the GFC loss data [33] and in Peru when also considering forest edges to detect
deforestation [37]. Though it was reported also that the early 2020 RADD alerts in Asia
may be overestimated due to the forest baselining of the RADD product [33]. On the other
hand, there can still be potential commission errors (false positives) for an alert product
since they detect losses based on single-date images instead of image composites [21].
Nevertheless, both (high-confidence) alert products would be useful for future hotspot
mapping i.e., GLAD alerts in areas outside primary forests, where radar signals decrease
in sensitivity e.g., flooded forest, mangroves and peatlands. The complementation of
the two alerts can be further explored using their average for a conservative estimate of
deforestation and hotspots.

Those deforested areas unclassified as hotspots (53–76% in 2020) are likely deforesta-
tion events that are small and less intensive within a 100 ha spatial scale (the hotspot bin
size). A prominent example is selective logging in selected small forest areas to supply
domestic needs of lumber. Moreover, upland farmers routinely practice slash-and-burn
(locally known as Kaingin) and charcoal making in several small areas, often practiced as
a household effort and have been increasing due to upland migration [38]. Technically,
the classification of the deforestation pixels as non-hotspot is also due to the EHA itself.
The hotspot mapping algorithm only looks for statistically significant hotspots relative to
the whole forest area, where most are still naturally protected because of inaccessibility at
the very least. The local statistics in a highly disturbed area with a size of 100 ha would be
very different from the global statistic (study area), e.g., dense deforested pixels from large
landslides were classified as new hotspots while Kaingin areas by households belonged to
non-hotspots. Many deforested pixels would be unclassified as hotspots once the hotspot
bin size increases. See Figure A1 for omitted hotspots when increasing the hotspot size
to 1000 ha instead of 100 ha. The hotspot algorithm also considers the longevity of forest
disturbance and those areas with dense disturbances in limited time, e.g., 1–3 years (except
recent years) would likely be statistically insignificant and hence non-hotspot. Potential
examples of this case would be the conversion of forests to oil palms and surface mining
in Palawan.
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4.2. Deforestation in the Year 2020

A clear seasonal trend of deforestation was observed in 2020, highest from February
to May of the year (peak in April). That period is also the time of slash-and-burn season as
verified by the key informants from environmental task force members at the sub-municipal
(barangay) level. They further shared that aside from Kaingin and charcoal making, timber
poaching still exists. Although the informants also mentioned that loss of jobs during the
COVID-19 lockdown has driven the increase of deforestation i.e., halt of eco-tourism in
the case of Palawan, and since most people (including forest rangers) were prohibited
outside their houses, attributing the increase of deforestation due to the lockdown would
need a separate analysis. Once GLAD alerts from 2015 are made publicly available, we
would assess whether the spike from 1st to 2nd quarter in 2020 is statistically significant.
Nevertheless, we summarized online reports that deforestation existed in 2020 in Table A1.
Six published news online reported illegal activities from different parts of the study area,
consistent with the information from local experts.

The deforestation in 2020 hints that previously deforested areas in recent years have
been expanding as evident in the high number of consecutive hotspots. A recent study
used GLAD alerts to conduct an inter-country comparison of deforestation in 2020 and it
was concluded that the continuation of deforestation from 2019 to 2020 is a more reasonable
root cause of the 2020 deforestation statistics than the pandemic lockdown effect [39].

4.3. The Usefulness of the Hotspot Maps

The quarterly maps of hotspots can be helpful to guide the necessary interventions,
depending on the kind of hotspot and their drivers since each driver can have different
spatial and temporal patterns [40]. While the sporadic hotspots reasonably consist of mostly
Kaingin areas due to the cyclic nature of such practice, the consecutive hotspots, as recently
mentioned, can be signs that these cultivated lands are encroaching, likely a consequence
of upland migration and high crop yield demands [38]. Similarly, those new hotspots that
would exist as a single 1-km pixel (without neighboring pixels) would likely appear in
places nearby the first single pixel as an indication of selective logging. This kind of illegal
logging is an organized mission by poachers that extends from weeks to months until
the target quota of logs is reached and would result in forest degradation [28]. The new
hotspots found mostly in Sierra Madre and Apayao (see Figure 3) are formed mostly from
landslide scars, reasonably because these regions are mountainous and within typhoon
belts. The hotspots in Southern Palawan are mainly sporadic and consecutive, suggesting
that deforestation is mainly Kaingin-related as such practice has been a persistent livelihood
source in the province for decades [41].

Consider these hotspots an early warning so authorities would know where and when
to intervene—which saves time and resources—instead of considering all deforestation
pixels. First, the new hotspots mostly from landslides during typhoon months are valuable
to the government in the context of disaster risk reduction and management (DRRM)
and landslide rehabilitation. Here we provide the first provincial-scale information about
the severity of landslides after typhoons. Secondly, potential new hotspots attributed to
illegal selective logging should be given priority in forest protection. Several teams can be
deployed to monitor strategic checkpoints and other potential transport routes of the logs
with regard to the hotspot location. Hotspots sometimes extend over two municipalities
so local coordination is of utmost importance for mobility and security reasons. The use
of high-technology forest protection tools such as the Lawin app and flying of Unmanned
Aerial Vehicles (UAV) for surveillance are additional options given the inaccessibility of
these timber poaching zones. Thirdly, the slash-and-burn practice has been a challenge for
the past three decades and is still very far from its ideal transition to sustainable farming.
Those kaingeros responsible for any identified large and expanding kaingin areas should
be the priority recepients of any upland livelihood programs. Lastly, any new hotspots
related to mining should be closely monitored now more than ever because of the recent
Executive Order 130 of the government that would allow new mining explorations and
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permits. The impact of any interventions can be evaluated during the quarterly assembly of
multi-stakeholder environmental bodies. Evaluations should be in line with the anticipated
forest gains from the existing national reforestation program to determine whether such
program would indeed result into a net forest gain [13].

The number of hotspots inside protected areas and primary forests are key inputs to
Forest Land Use Plans of municipalities. A similar spatial analysis of hotspots with and
without tenurial instruments can also be initiated, particularly those under the management
of upland communities.

4.4. Updating of the Hotspot Maps

Since our mapping workflow is mostly automated and reproducible, we can efficiently
update and modify hotspot maps if the need arises, i.e., adjust time intervals per wet and
dry season or modify the 2000 forest baseline. The same routine where alert products are
used only in the latest year (e.g., 2021) will be applied for future hotspot maps. We can
also produce mangrove deforestation hotspots given a time series mangrove extent input.
Similarly, forest degradation hotspots would need to be further integrated into our current
hotspot mapping by preserving the RADD alerts’ spatial resolution while resampling the
GFC and GLAD data to 10 m, and further adjusting the hotspot size from 1 km to 250–500
m. This, however, would still not account for the disturbances undetected at 10 m pixel
size (e.g., small trees for charcoal making) not unless an EO product of degradation alerts
comes out or we use time series above-ground biomass as input to EHA instead.

Lastly, the validation of deforestation drivers by local experts especially for timber
poaching zones can also be complemented by platforms such as GFW and Google Earth Pro
to be more certain on the hotspot drivers (see Figure A2). This method of validation is even
more promising now that Planet images with very high spatial and temporal resolution are
reported to be available openly.

5. Conclusions

Quarterly deforestation hotspot maps in 2020 were created at 1 km pixel size using
the Emerging Hotspot Analysis (EHA) and a time series input of deforestation data from
Earth Observation products. The annual forest loss time series is useful to identify spo-
radic hotspots, likely slash-and-burn farming areas, while the forest disturbance alerts are
helpful to reveal consecutive hotspots that indicate encroachment of these cultivated lands,
and new hotspots formed mostly from landslide scars. Relating the hotspot classes to the
deforestation drivers is best attained with the help of local experts e.g., validation of timber
poaching zones. Hotspots solely driven by timber poaching (forest degradation) would be
integrated into the next hotspot versions. Succeeding work for this may include the use
of the EHA inputs with 10 m pixel size (instead of 30 m), creating smaller hotspot bins,
and substituting the forest loss inputs with time series above-ground biomass. Regular
updating and assessment of hotspot maps are expected to happen prior to or during the
quarterly assembly of environmental institutions, with close attention to any potential
hotspot caused by the anticipated new mining areas. Once local hotspots are identified, in-
terventions can be more proactive in order to prohibit hotspot expansions, both preserving
forest ecosystem services and government resources.
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Appendix A

Figure A1. The comparison between 1 km (left) and 10 km (right) spatial sizes of hotspots. Spatial
detail and local hotspots are preserved in the former which is suited for local enforcement of forest
protection activities.

Appendix B

Table A1. List of news of reported illegal forest activities in the study area last year.

Headline Main Driver Scale News Date Source Link

Illegal logging continues in
MIMAROPA despite Luzon

lockdown

Slash-and-burn;
charcoal making;

illegal logging
Local, study area 3 April 2020 Inquirer

https://www.rappler.com/nation/
illegal-logging-continues-

mimaropa-despite-luzon-lockdown

DENR seizes illegal logs in Central
Luzon operations Illegal logging Local, study area 18 June 2020 SunStar

https://www.sunstar.com.ph/
article/1860555/Pampanga/Local-
News/DENR-seizes-illegal-logs-in-

Central-Luzon-operations

Illegal logging in ‘protected areas’
persists during ECQ Illegal logging Local, study area 29 May 2020 Business Mirror

https:
//businessmirror.com.ph/2020/05/

29/illegal-logging-in-protected-
areas-persists-during-ecq/

Authorities seize illegally cut logs in
Cagayan Illegal logging Local, study area 10 September

2020 Manila Bulletin
https://mb.com.ph/2020/09/10

/authorities-seize-illegally-cut-logs-
in-cagayan/

PENRO names illegal logging
hotspots in Cagayan Illegal logging Local, study area 12 October 2020

Philippine
Information

Agency

https://pia.gov.ph/news/articles/
1055748

Illegal mining in Cagayan due to
lapses in law enforcement – Palace Mining Local, study area 17 November

2020 PressOne
https://pressone.ph/illegal-mining-

in-cagayan-due-to-lapses-in-law-
enforcement-palace/

Bald strips on Cagayan Valley
mountains show traces of illegal

logging, says police
Illegal logging Local, study area 20 November

2020 MSN

https://www.msn.com/en-ph/
news/national/bald-strips-on-

cagayan-valley-mountains-show-
traces-of-illegal-logging-says-

police/ar-BB1bcZLu

https://www.rappler.com/nation/illegal-logging-continues-mimaropa-despite-luzon-lockdown
https://www.rappler.com/nation/illegal-logging-continues-mimaropa-despite-luzon-lockdown
https://www.rappler.com/nation/illegal-logging-continues-mimaropa-despite-luzon-lockdown
https://www.sunstar.com.ph/article/1860555/Pampanga/Local-News/DENR-seizes-illegal-logs-in-Central-Luzon-operations
https://www.sunstar.com.ph/article/1860555/Pampanga/Local-News/DENR-seizes-illegal-logs-in-Central-Luzon-operations
https://www.sunstar.com.ph/article/1860555/Pampanga/Local-News/DENR-seizes-illegal-logs-in-Central-Luzon-operations
https://www.sunstar.com.ph/article/1860555/Pampanga/Local-News/DENR-seizes-illegal-logs-in-Central-Luzon-operations
https://businessmirror.com.ph/2020/05/29/illegal-logging-in-protected-areas-persists-during-ecq/
https://businessmirror.com.ph/2020/05/29/illegal-logging-in-protected-areas-persists-during-ecq/
https://businessmirror.com.ph/2020/05/29/illegal-logging-in-protected-areas-persists-during-ecq/
https://businessmirror.com.ph/2020/05/29/illegal-logging-in-protected-areas-persists-during-ecq/
https://mb.com.ph/2020/09/10/authorities-seize-illegally-cut-logs-in-cagayan/
https://mb.com.ph/2020/09/10/authorities-seize-illegally-cut-logs-in-cagayan/
https://mb.com.ph/2020/09/10/authorities-seize-illegally-cut-logs-in-cagayan/
https://pia.gov.ph/news/articles/1055748
https://pia.gov.ph/news/articles/1055748
https://pressone.ph/illegal-mining-in-cagayan-due-to-lapses-in-law-enforcement-palace/
https://pressone.ph/illegal-mining-in-cagayan-due-to-lapses-in-law-enforcement-palace/
https://pressone.ph/illegal-mining-in-cagayan-due-to-lapses-in-law-enforcement-palace/
https://www.msn.com/en-ph/news/national/bald-strips-on-cagayan-valley-mountains-show-traces-of-illegal-logging-says-police/ar-BB1bcZLu
https://www.msn.com/en-ph/news/national/bald-strips-on-cagayan-valley-mountains-show-traces-of-illegal-logging-says-police/ar-BB1bcZLu
https://www.msn.com/en-ph/news/national/bald-strips-on-cagayan-valley-mountains-show-traces-of-illegal-logging-says-police/ar-BB1bcZLu
https://www.msn.com/en-ph/news/national/bald-strips-on-cagayan-valley-mountains-show-traces-of-illegal-logging-says-police/ar-BB1bcZLu
https://www.msn.com/en-ph/news/national/bald-strips-on-cagayan-valley-mountains-show-traces-of-illegal-logging-says-police/ar-BB1bcZLu
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Table A1. Cont.

Headline Main Driver Scale News Date Source Link

Global forest losses accelerated
despite the pandemic, threatening

world’s climate goals

Illegal logging,
agricultural
expansion

Global 30 March 2021 Washington post
https://www.washingtonpost.com/
climate-environment/2021/03/31
/climate-change-deforestation/

llegal logging in ‘protected areas’
persists during ECQ Illegal logging Global 19 May 2020 BBC

https://www.bbc.com/future/
article/20200518-why-lockdown-is-

harming-the-amazon-rainforest

Appendix C

Figure A2. An example landscape in Southern Palawan where the forests are lost due to a landslide
event and slash-and-burn areas. The latter is more situated in foot slopes of mountain areas. The
image comes from Google Earth Pro and its terrain functionality.
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