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ABSTRACT

A dairy cow’s lifetime resilience and her ability to
recalve gain importance on dairy farms, as they affect
all aspects of the sustainability of the dairy industry.
Many modern farms today have milk meters and ac-
tivity sensors that accurately measure yield and activ-
ity at a high frequency for monitoring purposes. We
hypothesized that these same sensors can be used for
precision phenotyping of complex traits such as lifetime
resilience or productive life span. The objective of this
study was to investigate whether lifetime resilience and
productive life span of dairy cows can be predicted us-
ing sensor-derived proxies of first-parity sensor data.
We used a data set from 27 Belgian and British dairy
farms with an automated milking system containing
at least 5 yr of successive measurements. All of these
farms had milk meter data available, and 13 of these
farms were also equipped with activity sensors. This
subset was used to investigate the added value of activ-
ity meters to improve the model’s prediction accuracy.
To rank cows for lifetime resilience, a score was attrib-
uted to each cow based on her number of calvings, her
305-d milk yield, her age at first calving, her calving
intervals, and the DIM at the moment of culling, tak-
ing her entire lifetime into account. Next, this lifetime
resilience score was used to rank the cows within their
herd, resulting in a lifetime resilience ranking. Based on
this ranking, cows were classified in a low (last third),
moderate (middle third), or high (first third) resilience
category within farm. In total, 45 biologically sound
sensor features were defined from the time series data,
including measures of variability, lactation curve shape,
milk yield perturbations, activity spikes indicating es-
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trous events, and activity dynamics representing health
events (e.g., drops in daily activity). These features,
calculated on first-lactation data, were used to predict
the lifetime resilience rank and, thus, to predict the
classification within the herd (low, moderate, or high).
Using a specific linear regression model progressively
including features stepwise selected at farm level (cut-
off P-value of 0.2), classification performances were
between 35.9 and 70.0% (46.7 £+ 8.0, mean + SD) for
milk yield features only, and between 46.7 and 84.0%
(55.5 £ 12.1, mean + SD) for lactation and activity
features together. This is, respectively, 13.7 and 22.2%
higher than what random classification would give.
Moreover, using these individual farm models, only 3.5
and 2.3% of cows were classified high when they were
actually low, or vice versa, whereas respectively 91.8
and 94.1% of wrongly classified animals were predicted
in an adjacent category. The sensor features retained
in the prediction equation of the individual farms dif-
fered across farms, which demonstrates the variability
in culling and management strategies across farms and
within farms over time. This lack of a common model
structure across farms suggests the need to consider
local (and evidence-based) culling management rules
when developing decision support tools for dairy farms.
With this study we showed the potential of precision
phenotyping of complex traits based on biologically
meaningful features derived from readily available sen-
sor data. We conclude that first-lactation milk and
activity sensor data have the potential to predict cows’
lifetime resilience rankings within farms but that con-
sistency between farms is currently lacking.

Key words: resilience, precision phenotyping,
prediction model, longevity, precision livestock farming

INTRODUCTION

Increasing the longevity of dairy cows is key for the
dairy sector’s sustainability in the 3 dimensions put

7155


https://orcid.org/0000-0001-9768-2308
https://orcid.org/0000-0001-5455-0110
https://orcid.org/0000-0001-6266-3019
https://orcid.org/0000-0002-2808-8660
mailto:ines.adriaens@kuleuven.be

Adriaens et al.: PREDICTION OF RESILIENCE USING SENSOR DATA

forward by the United Nations during the World Sum-
mit on Societal Development in 2005. Cows with a long
productive life span typically exhibit good reproductive
performance, few health problems, and efficient and
consistent milk production. A dairy cow typically only
starts to make profit for the farmer during her second
lactation, and she reaches her full production potential
as late as in her third lactation (Cabrera, 2018). Early
culling and short longevity thus clearly have a negative
influence on the economic efficiency of the herd. More
importantly, longevity, along with optimizing the ratio
between the productive and non-productive life, is also
crucial for the fulfillment of societal demands and to
reduce the environmental impacts of the sector (van
Knegsel et al., 2014).

One step toward optimization of farm management
with respect to longevity would be the identification of
animals that have a high probability of completing sev-
eral lactations, or, more specifically, that are “resilient.”
Resilient animals can be considered as animals that
avoid early culling by coping well with the farm’s man-
agement conditions. These animals reproduce easily,
produce consistently, and react well to imposed chal-
lenges and (physiological) stress (Ahlman et al., 2011).
Correct and timely identification of resilient animals
would allow for optimization of breeding, treatment,
and culling decisions, selecting cows that thrive in their
specific farm environments. Today, many breeding deci-
sions are still made based on emotion and habit, with
a significant lack of evidence about how the animals
perform on farm. For example, for breeding new re-
placement heifers, it might be valuable to use more
expensive advanced breeding techniques (sexed semen,
embryo transfer). In this context, the performance, ex-
pected longevity, and resilience of the dam may be key
to justifying these techniques and making them profit-
able. Also, culling and treatment decisions are often
made in a similar emotional fashion. Intelligent use of
antimicrobials in the livestock sector is critical, and an-
timicrobial budgets are restricted (de Jong et al., 2018).
Proper prediction of longevity and resilience can help
improve culling and treatment decisions, as this would
allow for the objective substantiation of decisions on
which animals are worth treating with antimicrobials
and which animals are better culled than treated. This
can contribute to the herd efficiency and sustainable
production metrics on farm.

Optimized efficiency on farm would require that the
lifetime resilience of an animal be predicted as soon as
possible. Genetic indicators for lifetime resilience are
not yet available, as phenotypic information on this
complex trait is lacking. Nevertheless, recent techno-
logical developments have led to increased implemen-

Journal of Dairy Science Vol. 103 No. 8, 2020

7156

tation of sensor systems and automation to improve
the herd management and reduce labor requirements
(Steeneveld and Hogeveen, 2015). In addition to the
detection of health problems and fertility events, many
of these sensor systems also have the potential to pro-
vide targeted information about other, more complex
traits (Friggens and Thorup, 2015). In this study, we
hypothesized that common sensor data, such as milk
production and activity time series, can be used to
predict a complex trait such as lifetime resilience.
Simultaneously, additional benefits of these technolo-
gies will be generated from the calculation of precision
phenotypes and their use for the characterization of
overall and relative performance of animals within the
farm context and compared with herdmates (Royal
et al., 2000; Tenghe et al., 2015; Sorg et al., 2017).
Accordingly, when sensor data can be used to this
purpose, selection of animals on these more complex
traits becomes possible, which, when combined with
the genetic merit of each animal, can boost future
breeding efforts at farm and population levels (Konig
and May, 2019).

To use sensor data for the prediction of lifetime
resilience, such that it can be used for both decision
support and precision phenotyping, we propose to
derive biologically meaningful proxies for the cow’s
physiological status from the high-frequency milk yield
and activity dynamics provided by commercially avail-
able sensor systems. It has previously been shown that
each change in feed intake or energy allocation (e.g.,
for an immune response) may result in yield perturba-
tions (Ben Abdelkrim et al., 2019), and, thus, the milk
yield dynamics mirror the animal’s physiological status.
Similarly, activity dynamics reflect potential estrus and
the more general behavioral responses of the cows to
physiological and environmental stress (Rutten et al.,
2013). Because of the link between health and fertility
performance and longevity and culling, the proposed
concept is that, through characterization of these
dynamics, it will be possible to predict their lifetime
resilience.

This study aimed at developing meaningful milk
yield and activity features from first-lactation sensor
time series and combining these features into a model
capable of predicting the lifetime resilience of the cows
on each farm. This model could be used to help farmers
identify animals that cope well with their specific farm
contexts—for example, to aid breeding (e.g., dam selec-
tion for sexed semen, embryo transfer, or the use of a
beef sire) or culling decisions as early as after the first
lactation. This would allow time to make decisions that
directly contribute to the farm’s efficiency by selecting
animals that perform well on that particular farm.
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MATERIALS AND METHODS
Data Collection and Selection

Awailable Data. Software backups of the farm man-
agement system were collected on, respectively, 34 and
42 Belgian and British farms that use an automated
milking system (AMS). From this database, 27 farms
were selected based on (1) the accessibility and reliabil-
ity of at least 5 yr of contiguous data and (2) the avail-
ability of daily milk yield at individual cow level. The
time period covered by these data varied between 2005
and 2019. All 27 farms had AMS either from Lely (Lely
Industries N.V., Maasluis, the Netherlands; n = 16) or
from DeLaval (DeLaval International, Tumba, Sweden;
n = 11). On average, 2.4 lactations were recorded per
cow’s life. All farms had intensive production systems,
with cows kept indoors and fed with both forage and
concentrates. Other management practices differed
among herds but were not further documented in the
software backup files of the farm management system.

All data tables were extracted from the restored
backup files of the AMS software system using SQL
Server Management Studio (Microsoft Corp., Red-
mond, WA). The further data mining, pre-processing,
and merging of these data tables and the rest of the
analyses described below were performed in Matlab
R2017a (The MathWorks Inc., Natick, MA). Both the
full data set of 27 farms all having daily milk records
(data set 1, DS1) and a subset of 13 farms also hav-
ing daily activity data available (data set 2, DS2, all
milked by a Lely AMS) were used for this study. An
overview of the characteristics of both data sets is given
in Table 1.

Cow Selection. After extraction of data tables,
individual cows on each farm were selected based on
the availability of sensor data for their entire lifetime
production. Because exact culling dates were not al-
ways available, we elected to apply a criterion to dis-
criminate between cows that likely had been dried off
toward the end of the time span covered by the data set
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available for that farm (not to be included in the analy-
sis) or removed from the herd (to be included in the
analysis). For each farm, the 95% confidence interval
(CI) of the average dry period length was calculated.
If the last milk record was before the end of the data
set minus the upper 95% CI boundary, that cow had a
97.5% chance of having been removed from the herd,
and she was included. Accordingly, only cows that met
this criterion and for which the date of first calving was
within the time span of the available data for that farm
were selected. An overview of the characteristics of this
selection is provided in Table 1. Data set 1 consisted of
3,754 unique cows and 9,395 unique lactations, and DS2
included 2,075 cows with 5,286 lactations. Per farm,
respectively, 24 to 308 cows (139 + 82, mean + SD)
with, in total, 44 to 799 lactations (348 + 229), and 57
to 308 cows (160 £ 84) with 113 to 799 lactations (407
+ 264) were selected for DS1 and DS2.

Sensor Data. The milk yield sensor data were re-
corded by the AMS using ICAR~approved milk meters
as integrated in the Lely and DeLaval robots. The avail-
able activity sensor data were recorded by Lely neck-
mounted activity sensors and consisted of raw 2-hourly
measures of acceleration, but no further details of the
individual sensor systems were available. For this study,
the 2-hourly measures were summed up per day (mid-
night to midnight) to obtain time series of single daily
activity records. Although in this study the raw data
were all similar, with 2-hourly values varying between
0 and 300, the presented methodology is independent
of the actual raw values and can be applied on all mea-
sures of activity for which daily records are available
as long as they represent the behavioral changes of the
cows linked with estrous and health events.

Calculation of Lifetime Resilience Ranking

This study aimed at developing a model for predicting
lifetime longevity and resilience using high-frequency
sensor data. To this end, we considered the “lifetime

Table 1. Overview of the available data sets; data set 2 (DS2) is a subset of data set 1 (DS1) for which daily activity data were available in

addition to milk meter data

Descriptor

Average £+ SD [range]

DS1 DS2

Average £+ SD [range]

No. of days data per farm

3,001 £ 828 [1,830-4977]

3,020 £ 815 [1,837-4,101]

No. of cows in total 3,754 2,075
No. of cows per farm 139 + 82 [24-308] 160 + 94 [57-308]
No. of lactations in total 9,395 5,286

No. of lactations per farm

Age at first calving per farm (yr)
Average 305-d milk yield per farm (kg)
Average calving interval per farm (d)
Average dry period length per farm (d)

348 + 229 [44-799)]
2.2+ 0.1 [2.0-2.4]
9,557 + 1007 [7,931-11,739)]
407 + 16 [377-433]
56 + 13 [35-91]

407 + 264 [113-799]
2.2+ 0.1 [2.0-2.3)
9,691 + 1,061 [8,244-11,739)
403 + 15 [377-432)
59 + 16 [35-91]
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resilience of a cow” as “the cumulative result of her abil-
ity to recalve (and thus, to extend her productive life
span) supplemented with secondary corrections for age
at first calving, calving intervals, 305-day milk yield,
health events and number of inseminations” (Friggens
and De Haas, 2019). This definition was agreed upon in
the EU Horizon 2020 GenTORE Consortium, consist-
ing of researchers, animal experts, veterinarians, tech-
nology suppliers, and geneticists, and is further detailed
in Friggens and De Haas (2019). Because the number of
inseminations and health events were not consistently
available for all herds over the entire time period, the
final equation for calculating lifetime resilience scores
(RS) excluded these variables and was as shown in
Equation [1]:

L1

RS, = CI + 300 L, +(730 — AFC,)+ Y (CI,; — 1,

J=1

Zmax(?y[)fl, DIM, ;) MY,
L = 1% 100

=1
ax(305,DIM; .
SRy

L;
+>
j=1

+min[0, (DIMi,Li - 100)}’

1]

where RS, = lifetime resilience score for cow i; CI =

average calving interval of the herd; L; = lactation
number in which cow ¢ exited the herd (last lactation
number of a cow); AFC; = age at first calving of cow i
(in d); CI;; = calving interval of cow i between the start

of lactation j and (j + 1); C_]j = average calving inter-

val between the start of lactation j and (j + 1) of all
cows in the herd; MY, ;; = milk production (in kg) of
cow 7 at day k of lactation j; MY, = average milk

production (in kg) at day k of all cows in the herd in
lactation j; DIM;; = DIM of cow ¢ at the end of lacta-
tion j; and DIM;, = DIM of cow i at the end of her

last lactation L,

Thus, each RS is composed of (1) a baseline equal to
the average calving interval of that herd, to avoid nega-
tive lifetime resilience scores (this does not contribute
to the ranking); (2) a bonus of 300 points given for each
recalving (newly started lactation); (3) a penalty or
bonus score given to cows respectively older or younger
than 24 mo at their first calving, equal to 1 point per
day longer or shorter than 730 d (i.e., 24 mo); (4) a
penalty or bonus score equal to the number of days the
calving interval is respectively shorter or longer than
the average calving interval of the same parity in the
herd; (5) a penalty or bonus score equal to the percent-
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age by which the 305-d milk production is respectively
lower or higher than the average 305-d production of
the corresponding parity for all lactations in the herd,
reflecting production performance in the most relevant
part of the lactation; and (6) a penalty score equal to
100-DIM.,,;; for cows exiting the herd before d 100 in
lactation, assuming that these cows are involuntarily
removed from the herd. The weights of the variables
in Equation [1] were arbitrarily chosen using expert
knowledge and ensured that the number of lactations
started (i.e., L; in Eq. [1]) had the greatest effect on
the RS. This way, cows with a high ability to recalve
(thus, cows that stay in the herd for several lactations)
had high resilience scores, whereas other variables gave
only secondary corrections that allowed discrimination
between all cows reaching a certain parity. The RS was
used to rank the cows within farms, resulting in an
on-farm lifetime resilience rank (RR) reflecting the
lifetime resilience performance of each animal within
the herd. Using this lifetime RR in the rest of the study
permitted us to distinguish the least from the most
resilient animals on a certain farm, without the exact
weights or points assigned to each variable in Equa-
tion [1] having an important influence on the results.
In the lifetime RR, high-ranked cows (“highly resilient
animals”) represent animals recalving many times, hav-
ing the (theoretically) optimal age at first calving, hav-
ing short calving intervals (and thus good reproductive
performance), and producing proportionally more milk
(i.e., taking lactation length into account) compared
with their herdmates. The number of lactations affects
this ranking the most, because of the 300 points added
for each new lactation started. For example, if the av-
erage CI of a herd is 400 d, the average CI between
the start of first and second parity is 380 d, and the
average 305-d milk production in first lactation is 8,000
kg. Consider a cow in this herd that calved twice, first
at the age of 775 d and second after a 420-d calving
interval, producing 5% more milk than herd average in
the first 305 d of the first lactation and 20% less than
her herd peers in the first 90 d of the second lactation.
After being culled at d 90 in the second lactation, this
cow would receive a lifetime resilience score of RS =
400 + 300 x 2 + (730 — 775) + (380 — 420) + 5 — 20
+ (90 — 100) = 890 points.

Before entering the lifetime RR in the models, it was
scaled for each farm using RR,..q = (RR — RR,.,)/
(RRTTL(lZIJ - RRT’I,iTL)? With RR’”LZ‘VL = 17 and RRTVLUJ/' = the
maximum rank (equivalent to the number of cows
included in the ranking for that farm). The resulting
RR,.4eq varied between 0 (i.e., the highest-ranked cow)
and 1 (i.e., the lowest-ranked cow), and, thus, no scale
effects caused by the varying number of animals in-
cluded per farm would influence the prediction models.
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In the rest of this manuscript, “RR” refers to the scaled
RR.

Sensor Features

The time series data of 2 sensors were included in this
study: (1) milk meter sensors from which daily milk
yields were calculated and (2) activity sensors from
which the 2-hourly raw data were aggregated into daily
activity records. Sensor features were calculated for
each of the cows for which the first lactation was longer
than 200 d, because 200 d is enough to grasp a good
image of the time series dynamics, as the second part
of the lactation curve after the peak can be estimated
by a linear function (Wood, 1967). Only the data of the
first 305 d of the first lactation were included for the
calculations.

Milk Yield. As explained in greater detail in Ap-
pendix A, in total 30 milk yield sensor features (SF)
were calculated based on the daily milk yield dynamics.
Moreover, a methodology was developed to calculate
SF from the dynamics of the lactation curves using
both the theoretical shape and the deviations from this
theoretical shape as proxies for the cow’s physiological
status. Accordingly, SF were defined in the following
categories: (1) lactation shape characteristics, includ-
ing peak yield, consistency, DIM of peak, and others;
(2) goodness-of-fit and variability measures, including
the characteristics of lactation model residuals; and (3)
perturbation features characterizing the disturbances in
the lactation dynamics and including the development
and recovery rates, the number of perturbations, and so
on. To determine the theoretical shape of the lactation

7159

curve (i.e., potential production when no perturbations
are present), a simple lactation model was iteratively
fitted such that perturbations were excluded and, thus,
did not influence the lactation model’s coefficients
(Adriaens et al., 2018). The chosen model was the non-
linear Wood model: TMY = A x ¢ 2> PM » DIM®
with A, B, and C being the model’s coefficients, TMY
the total daily milk yield in kg, and DIM the days in
milk expressed in days (Wood, 1967). The Wood model
(gamma function) describes the lactation curve with
an increasing phase, a peak, and an almost linear de-
creasing phase, describing the overall lactation dynam-
ics with only 3 coefficients. Its simplicity reduces the
computational power needed when repeatedly fitting
the nonlinear model, and therefore we preferred this
equation over more complex lactation models. In each
iteration, the residuals were calculated by subtracting
the fitted Wood model from the milk yield data. Next,
all the residuals smaller than 85% of the theoretical
curve (i.e., Wood’s model) were removed, and the
model was refitted in a next iteration. This procedure
was repeated for each lactation curve individually, until
the difference of the average root mean squared error
(RMSE) between 2 iterations was smaller than 0.10
kg for that curve, or for at most 20 iterations. The
final model coefficients represent the lactation shape
when no perturbations would have been present, and
the model’s residuals reflect the perturbations and
“unexpected” milk yield dynamics. An example of the
daily milk yield data, the iterated Wood model, and the
corresponding residuals is shown in Figure 1.

Next, the milk yield SF were calculated from (a) the
final coefficients of Wood’s model (A, B, and C), (b)

n
o
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) =~
(=] (=3
I I

Daily milk yield (kg)
[
(==}

Observations excluded to

—
o

0 | |

Daily milk yield

calculate Iterated Wood model

Iterated Wood model

Initial Wood meodel
fitted on all data

1 | |

100
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Days in milk

Figure 1. Example of a lactation curve with daily milk yields, the corresponding initial Wood model fitted on all daily milk yield data, and
the final Wood model fitted iteratively by excluding daily milk yields lower than 85% of the estimated curve. The residuals of the latter curve

are used to characterize perturbations (e.g., representing health events).
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the residuals of all daily milk yield records, and (c) the
periods identified as perturbations. For the latter, ma-
jor events (i.e., periods of at least 10 d of successively
negative residuals with at least 1 d of milk production
lower than 80% of the theoretical production) were dis-
criminated from minor events (i.e., periods of at least 5
d of successively negative residuals with at least 1 d of
milk production between 90% and 80% of the expected
production). It was expected that large perturbations
(major events) represent severe health problems, and
smaller (minor) perturbations are probably linked to
chronic or subclinical infections. Based on our expert
knowledge, we assumed that these major or minor per-
turbations might affect culling and re-breeding decisions
and, thus, resilience and longevity differently (Mulder
and Rashidi, 2017). Therefore, they were entered in the
models separately. A detailed description of the milk
yield SF and how they were calculated can be found in
Appendix A.

Activity. In addition to the lactation SF, for DS2
activity SF were also calculated from the daily aggre-
gated raw activity measures. Fifteen different SF were
defined in the following categories: (1) features related
to the absolute (within-herd) levels (i.e., variability and
autocorrelation); (2) fertility-related characteristics
based on short spikes representing estrous behavior;
and (3) overall activity-related characteristics based
on changes in average activity during longer periods of
time that possibly relate to, for instance, health events.
To identify the short spikes of the second category, a
median smoother using a window of 4 d was used and
subtracted from the raw daily activity data to obtain
residual activity levels. A short spike was identified as
an increase above 40% of the maximal residual. For
the identification of the longer-term patterns in the
data, a 20-d window median smoother was applied and
subtracted from the daily activity data to obtain the
residuals. A threshold of 20% of these minimal and
maximal activity residuals was set to identify changes
in activity of several days compared with the previous
period. The details for the activity SF calculations are
given in Appendix B. Although all the raw values in
DS2 had similar variability and magnitude (i.e., with
2-hourly measures between 0 and 300 and similar lon-
gitudinal patterns), the developed procedure can be
applied on all sorts of activity data, including those
originating from other types of sensors independently of
the exact activity levels, as long as daily measurements
are available. In that case, the decision criteria for de-
tecting changes in the residuals might be reconsidered.

Standardization. The mean and SD differed across
SF. For example, DIM of peak varied between 10 and
150 d, whereas lactation persistency comprised values
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between 0.001 and 1. When using the SF as variables
in a prediction model, this can cause an imbalance in
the fitting and selection procedure, and it limits the in-
terpretation of the model regression coefficients. There-
fore, standardization of the SF was needed. Before en-
tering the SF in the models, each SF was standardized
within herd using mean centering (i.e., subtracting the
within-herd mean of that SF) and by dividing them by
the within-herd SD. Accordingly, the standardized SF
within a herd have a mean of 0 and an SD of 1, which
thus corrects for differences in their order of magnitude
and solves interpretability issues. This standardization
step ensures that a higher absolute value of a model
coefficient indicates a larger effect on the model out-
come (i.e., the lifetime RR). Standardized SF (both
milk yield and activity) with values smaller than —3
or higher than 3 (mean + 3 x SD) were considered as
outliers and replaced by 0 (i.e., the average value) to
avoid missing and unbalanced data. The objective was
to develop a tool to evaluate and forecast the (phe-
notypic) performance of an animal in the herd early
in her productive life, to leave time to make breeding
decisions that would directly contribute to the farm’s
performance, and so that “high-risk” animals can be
monitored more closely. Therefore, in this study, only
the first-parity SF were taken into account as proxies
for performance, health, and fertility, to predict cows’
lifetime resilience and recalving ability on farm.

Exploratory Analysis

In this study, a model was sought to predict the life-
time RR of all the animals on a specific farm. Ideally,
a common model structure that is valid for all farms
would be obtained, as this would allow the calculation
of a limited and universal number of SF indicative of
animals’ lifetime resilience. As a first step to evaluate
the consistency between the SF and the lifetime RR
across farms, the Pearson linear correlation coefficient
between each SF and the lifetime RR at individual
farm level was calculated. High positive and negative
correlations would indicate a strong effect of that SF
on the lifetime RR, and thus a potential candidate for
inclusion in further prediction models.

In a second step, mutual correlations between the SF
were explored for all farms together. This initial data
exploration, using data of all farms together, pointed
out some significant (but small) linear correlations be-
tween the SF. However, at individual farm level, these
correlations were often inconsistent, and the sign of
the correlations differed between farms. To investigate
whether an underlying latent structure existed in the
SF and avoid future multicollinearity in the prediction
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models, a principal component analysis was carried
out on the SF of both DS1 and DS2. These principal
component analyses showed that respectively 8 and 24
principal components with eigenvalues higher than 1
(Kaiser criterion) explained only 71% and 74% of the
variance, suggesting that a latent structure for data
reduction over all farms did not exist.

Individual Farm Model Development

Several multivariate modeling techniques, including
partial least squares and general linear mixed models,
were tested, but all had poor prediction performance
(with classification results equal to or worse than what
random classification would have given; i.e., less than
one-third correctly classified) or showed significant
overfitting of the data. Ultimately, a separate multi-
variate linear regression model relating the SF to the
lifetime RR within farm was constructed, as follows

(Eq. [2]):
RR,a = BX + ¢, 2]

with RR,..q being the scaled lifetime RR between 0
and 1, as defined above. The 3 vector contains the
regression coefficients for the standardized SF in the
design matrix X, and ¢ is the residual errors. A back-
ward stepwise regression procedure was used to identify
redundant SF in X, applying a P-value of 0.2 as the
inclusion threshold. This means that if there were a
probability of more than 20% that removing the SF
had a significant deteriorating effect on the prediction
model, it was included. The chosen threshold might
seem uncommonly high, but given the high variability
in the SF both between and within farms, we deemed
it relevant to include any feature having a tendency
toward significance.

Ten-fold cross-validation (CV) was performed to
evaluate the prediction performance of the obtained
models and identify overfitting. To this end, 10 times
all the cows of each farm were assigned to either the
calibration set (90% of the animals) or the validation
set (10% of the animals), using random sampling from
a uniform distribution but applying the additional
criterion that both the calibration and the validation
set contained at least 1 animal ranked in the highest
third, 1 in the middle third, and 1 in the lowest third
of the ranked cows. In each CV cycle, the cows in the
calibration set were used to estimate the regression
coefficients 3, and the obtained model was used to pre-
dict the RR,.,.q of the cows in the validation set. The
average prediction results over all 10 CV cycles were
considered to represent the final model performance.
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Model Evaluation

The initial model fit at farm level was evaluated us-
ing the RMSE (i.e., the RMSEr, RMSE_training,
calculated on the training set) and the adjusted R?,

Rde, calculated as shown in Equation [3]:

s

ol 1—(k-1) ’

3]

with SSF the residual sum of squares of the regression,
SSTO the total sum of squares (i.e., the mean value of
the outcome RR,..), n the number of data points of
each farm, and £ the number of SF retained in the final
model for that farm.

To evaluate classification performance and discrimi-
nate between high- and low-resilience cows (which is
of practical relevance), the cows of each farm were di-
vided into 3 different categories based on their ranking:
high- (H, top third), moderate- (M, middle third), and
low- (L, bottom third) resilience animals. When the
predicted RR,.,.q, did not cover the full range of 0 to 1,
and to be able to calculate these high-, medium-, and
low-ranked categories for each farm, a farm-individual
correction factor (corr) was applied on the predicted
RR, . scores, as follows (Eq. [4]):

ﬁscaled,i —A

RRscaledA(:orri =
' B-—A

, [4]

with ﬁ%mzed,i being the predicted RR,..; of the ith

cow and A and B farm-specific coefficients represent-
ing, respectively, the minimum and maximum of all the
predicted RR,,.; for that farm in the calibration set of
each CV cycle. The RR,.,. of the cows in the valida-
tion set of each CV cycle were predicted using each in-
dividual farm model (Eq. [2]), and their category (H,
M, L) was determined after applying the correction
using the farm-specific coefficients (Eq. [4]). Both the
RMSE of cross-validation (RMSECV, Eq. [5]) and the
classification accuracy were evaluated in this CV to
assess the models’ prediction performance:

1 N
RMSECYV = \/Nzl (R

scaled,i

- RRueai] - 19

To evaluate whether a common model structure across
farms could be identified or whether specific features
are highly correlated with lifetime resilience in all
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farms, we evaluated the overlap in retained features for
each farm, in terms of both their inclusion or exclusion
in each farm-specific model and the sign of their regres-
sion coefficients.

Prediction performance improvement of the models,
including and excluding activity features, was assessed
using a one-sided paired t-test on the percentage cor-
rectly classified using the null hypothesis “activity
features do not improve (i.e., increase) the percentage
of correctly classified animals” and on the proportion
oppositely classified using the null hypothesis “activity
features do not improve (i.e., decrease) the percentage
of oppositely classified animals.”

RESULTS AND DISCUSSION
Lifetime Resilience

This study investigates the possibility of predicting
“lifetime resilience” from SF of the first lactation. Cur-
rently, no consensus exists on what “resilience” exactly
is, and definitions found in literature include the “abil-
ity to maintain performance regardless of pathogen
burden” (Mulder and Rashidi, 2017) and “the adapta-
tion ability to a broad range of environmental condi-
tions” (Konig and May, 2018). Our approach differs
from these definitions and considers lifetime resilience
as the cumulative effect of good health and fertility,
and a high adaptability to challenges, resulting in a
long productive life span.

Figure 2 shows the lifetime resilience score plotted
against the lactation in which the cows were culled, for
one farm as an example. Each circle represents 1 animal
on the farm, and a higher resilience score also means a
higher lifetime resilience ranking. The animals on this
example farm exited the farm between their first and
seventh lactation. This figure confirms that, in general,
for our definition of resilience, the total number of lac-
tations each cow has started has the greatest influence
on the final lifetime RR. The cows ranked lower than
their herdmates with higher last lactation numbers are
seen as spikes. These are mainly cows that are removed
from the herd immediately after calving and, thus, for
which the penalty given for exiting before d 100 in lac-
tation has a large effect (DIM; ; in Eq. [1]).

The inclusion of the 305-d yield originates from the
idea that, to differentiate 2 animals exiting the herd
after the same number of lactations, the one with the
higher production in the first 305 d (thus, probably not
having encountered severe health events) is probably
the more resilient. Ideally, penalties or bonus points for
health events and the number of inseminations would
also be included, but health and insemination records
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were not sufficiently complete over the whole time
period for all farms. Consistent and correct registra-
tion, collection, mining, and storage of data remains a
challenge in the development of on-farm applications
(Hudson et al., 2018).

Sensor Feature Definition and Overview

The present study shows an example of how real-
farm high-frequency sensor data can be used beyond
monitoring and detection applications (Boichard and
Brochard, 2012). We used the longitudinal, high-gran-
ularity milk yield and activity data of respectively 27
and 13 commercial dairy operations with an AMS to
calculate biologically meaningful features of the cows.
This is a unique data set, not only because of its com-
mercial nature (as opposed to research farm data) but
also because these high-frequency time series allowed
for the inclusion of the dynamics of milk yield and daily
activity. The availability of at least 5 years of successive
measurements per farm uniquely permitted us to study
the accumulated effect of health and fertility traits of
many animals over their entire lifetime.

Today, cows exit herds for many different reasons,
of which the most common are poor reproduction per-
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Figure 2. Example of the relation between the lifetime resilience
scores of all the animals on an example farm (110 cows) against the
parity number in which each animal exits the herd. Higher resilience
scores generally correspond to higher final lactation numbers.



Adriaens et al.: PREDICTION OF RESILIENCE USING SENSOR DATA

7163

Table 2. Overview of a selection of lactation and activity sensor features calculated on first-parity data for data set 1 (DS1) and data set 2
(DS2); detailed overviews of all the included features are given in Appendices A and B

Ttem

DS1
Average + SD [range]

DS2
Average + SD [range]

No. of cows included

Theoretical 305-d yield

RMSE' (kg/d)

Peak yield (kg)

DIM of peak lactation (d)

Rate increasing part of the lactation curve (kg/d)
Persistency of the lactation curve (kg/d)
No. of perturbations per lactation

Losses in perturbations per lactation (kg)
Activity skewness

No. of sharp and short activity peaks
DIM of first activity peak (d)

No. of general activity changes

3,754
8,261 + 1,772 [2,688 13,755]

0.64 + 0.28 [0.08-6.7]
—0.05 + 0.03 [~0.15-0.12]

148 + 124 [0-1137]

2,075
8,317 + 1,874 [2,689-13,755]

3.4+ 1.4 [1-28) 3.8 + 1.5 [1.2-28]
34 + 6 [15-61] 34 + 6 [14-61]
59 + 25 [1-248] 63 + 27 [1-207]

0.62 + 0.31 [0.086.7]
~0.04 + 0.03 [—0.15-0.12]
6.3+ 3.2 0-17]
154 + 132 [0-1,129)]
—0.05 + 1.64 [—5.19-8.77]
3.9 + 2.7 [0-18]
56 + 64 [1-305]
24 + 16 [2-94]

6.0 + 3.1 [0-17)

'RMSE = root mean squared error of the Wood model fitted on each lactation curve.

formance, udder health problems, metabolic disorders
in early lactation, and claw health and locomotion dis-
orders (Ahlman et al., 2011; Santos et al., 2016). The
SF were calculated starting with expert knowledge and
biological hypotheses on the supposed effects of these
culling reasons on the sensor time series, and included
features characterizing the perturbations and dynam-
ics of the lactation and activity curves. For example,
Elgersma et al. (2018) showed that fluctuations in milk
yield can reflect the cow’s health status. Table 2 gives
a summary of the most important SF over all farms
for DS1 and DS2. As can be seen from the minimum
and maximum value of each SF, some of these SF have
extreme values, which, upon further investigation, ap-
pear to result from erroneous calculations rather than
from real deviating curves. These outliers were set to 0
for the analysis.

Both milk yield and activity features were defined
using biological knowledge of how these time series
typically respond to changes in health and nutritional
status (Hgjsgaard and Friggens, 2010; Codrea et al.,
2011; Bjerre-Harpgth et al., 2012). We therefore al-
ways started from the data-own baseline, which was
identified using a median smoother that is insensitive
to sudden changes or differences in absolute value or
baselines. Through characterization of the residuals
from this median smoother, and the correction and
standardization at herd level, we were able to correct
for group changes and differences in the intensity of the
responses between herds.

Predicting Lifetime Resilience Ranking from Milk
Yield Features

Pearson Linear Correlations. The Pearson linear
correlation coefficients between the lactation SF and
RR are shown in Figure 3. A high (positive or negative)
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correlation between an SF and the RR suggests a large
effect of the SF on the RR. The average correlations (p)
per SF over all farms varied between p = —0.134 and p
= 0.1492, and for some of the farms individual features
showed correlations of more than +0.4. Visual explora-
tion of the correlation scatter plots (results not shown)
did not show nonlinear relationships either. Although
consistency would have been expected, Figure 3 already
suggests only little consistency across farms in which
SF can be predictive for the lifetime RR of the cows
of a particular farm. For example, some of the features
represent the effect of health events on the milk yield
data through the characterization of perturbations. Be-
cause we can imagine that severe health events and the
associated losses negatively affect longevity on all the
farms, we supposed that a consistently high correlation
would exist between perturbation-related SF and RR.
However, this consistency is lacking, especially in terms
of the correlations’ sign (negative vs. positive). The
highest and most consistent correlations are obtained
for SF representing model fit and size of the residuals
[RMSE of the Wood model (SF2), number of residuals
below 85% of the predicted value (SF23), and average
size of the 3 largest negative residuals (SF24)].

Model Calibration. In the stepwise procedure for
selecting the SF that are included in the multilinear
regression model, the best possible combination of SF
to fit the RR on each farm is determined, and SF are
included or excluded depending on whether they im-
prove the model fit. The CV step reveals whether the
final model structure overfitted the training data and
whether the selected SF are indeed meaningful for pre-
dicting the RR. If an SF is included in the multilinear
regression model, the absolute value of its regression
coefficient is directly related to its effect because of the
standardization procedure of the SF (mean centering
and equalizing the variance).
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Figure 3. Pearson linear correlation coefficients between the lifetime resilience rank at farm level and the 30 lactation sensor features (SF)
calculated on first-parity data. Each individual thin line represents the correlations for a particular farm (n = 27). The shading represents the
95% CT of the correlation coefficients (p) over all farms. The details of SF are described in Appendix A. The lack of consistency in the correla-
tions’ signs and the magnitude demonstrate the large variability in the relation between the lifetime resilience and the lactation SF.

The Rfdj of the individual multivariate linear regres-

sion models of each farm varied between 0.03 and 0.61
(0.22 £ 0.16, mean + SD) and the RMSErr was be-
tween 0.17 and 0.27 (0.23 & 0.03, mean + SD). Between
2 and 12 milk yield features were retained, and all SF
were included at least once in one of the models of the
individual farms (Table 3). The SF most often retained
in the models were associated with the goodness of fit
of the estimated Wood curves (SF21, 22, 25, 27, 28, 29),
the size and number of perturbations (SF13, 14, 15),
and their associated milk losses (SF11, 12, 18). This
suggests that the SF that are proxies for subclinical or
chronic health events are most informative over the
RR, and, thus, these health events influence the cow’s
longevity. It appears that farmers do take the health of
the cows into account when making culling and rein-
semination decisions, although not consistently and not
on all farms. Moreover, the effects found in this study
are rather weak, and in some cases, it can be assumed
that only the combined result of different features or
only the extreme values might influence productive life
span and RR. For example, a cow with severe clinical
mastitis is likely to show a large and sudden drop in
milk yield (Rajala-Schultz et al., 1999; Grohn et al.,
2004; Andersen et al., 2011), whereas a cow with sub-
clinical mastitis may have a lactation curve that can be
well modeled with a lactation model and that appears
to be normal. Both can influence reproduction perfor-
mance and the probability of culling (Lavon et al.,
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2010; Wathes, 2012; Wolfenson et al., 2015), but math-
ematically capturing the differences without additional
health or treatment information is not possible. Gen-
eral lactation curve characteristics, such as peak height
and peak DIM, slopes, rate of the increasing phase of
the lactation, and persistency of the lactation after the
peak, were included in the models of only 12 out of 27
farms, suggesting that, for example, having a high milk
production in the first lactation compared with herd-
mates barely affects the RR (and thus the ability to
recalve and longevity). The variability between farms is
demonstrated again by the fact that the regression co-
efficients were consistently above or below 0 for only
two out of the 30 SF, and so only two SF had a consis-
tently positive or negative effect on the RR.
Cross-Validation. With the CV, the repeatability,
generality, and overfitting of the models was tested.
Within-farm CV showed similar performances (RM-
SEC = 0.24 4+ 0.03) compared with the RMSEg of
the initial models with all animals included, indicating
that models were not overfitted. On average 46.7 +
8.0% of the animals were classified in the correct H, M,
or L category, and on average 4.4 + 3.5% of the cows
were classified high when they should have been low
or vice versa. Also here the large differences in model
performance between the different farms stands out,
with a range of correctly classified cows between 35.8
and 70.0% and the range of oppositely classified cows
between 0.0 and 16.5%. When looking more deeply into
which cows are predicted in the correct category, it was
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Figure 4. Pearson linear correlation coefficients between the lifetime resilience rank at farm level and the 15 activity sensor features (SF)
calculated on first-parity data. Each individual thin line represents the correlations of a particular farm (n = 13). The shading represents the
95% CI of the correlation coefficients (p) over all farms. The details of the activity SF are described in Appendix B. The lack of consistency in
the signs and magnitudes of correlations demonstrates the large variability in the relation between the lifetime resilience and the activity SF.
Only SF34 (number of sharp activity peaks corresponding to estrus) have a consistently positive correlation with the lifetime resilience rank.

found that the models do not correctly predict only
animals exiting the herd after the first lactation but
also cows exiting the herd in a later lactation. For cows
culled already in the first lactation, health issues are
expected to be the major reason (Pinedo et al., 2010).
For cows culled at a later stage, it might not be expect-
ed that first-lactation features are predictive for the RR
unless these characteristics are highly repeatable over
time or represent chronic or repeating conditions that
fail to cure. However, information on the exact reason
and timing of culling of the cows could not be taken
into account in the model, as this information was not
available in the data sets. Because it is expected that
this information can contribute to the model, future re-
search should focus on solving this multidimensionality
issue and developing new ways to take these complex
interactions into account.

Predicting Lifetime Resilience Ranking from Both
Yield and Activity Features

Pearson Linear Correlations. Data set 2 consist-
ed of 13 farms for which, besides milk yield features (n
= 30 features), activity features (n = 15 features) could
also be calculated. These features included both general
characteristics of daily activity (skewness, variability,
absolute daily level) and specific features associated
with short-term and longer-period activity changes.
Farm-individual Pearson correlation coefficients (Fig-
ure 4) between the activity features and the RR varied
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between p = —0.41 and p = 0.44, and only the number
of short activity peaks in SF34 was consistently as-
sociated with a higher ranking [lower number of peaks
is associated with a higher resilience, p = 0.29 + 0.10
(range: 0.16 to 0.44)]. Several other activity features
also had correlations nearly consistently above or below
0, but these correlations stayed relatively low on aver-
age.

Model Calibration. The stepwise linear regression
models included 6 to 24 SF (both activity and milk

yield features) and had Rfdj values between 0.2 and

0.76 and RMSEr values between 0.128 and 0.24. The
number of activity features retained in the final models
was between 2 and 10, so the activity sensors seemed to
be of added value for all of the farms in predicting their

RR. Including activity features gave a higher Rfdj and

a lower RMSEqg in the calibration, whereas the num-
ber of features retained was sometimes higher and
sometimes lower. Again, very little consistency existed
over the different farms in which features were included
in the final models. None of the SF were kept in the
models of all farms. The number of activity peaks and
DIM of the first peak were retained most often (respec-
tively 8 and 11 out of 13 times) and with a consistently
positive regression coefficient (respectively 0.036 to
0.122 and 0.042 to 0.134). Three of the SF (6.6%) were
never retained in any of the individual farm models.
Cross-Validation. The CV, using the same CV sets
for these farms as in DS1 (i.e., the same animals were
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included in each set), showed reasonable performance,
with an RMSECV of 0.22 £+ 0.03 (range 0.15 to 0.26).
On average 55.5 + 12.1% (range 43.5 to 84.0%) of cows
were predicted in the correct category (H, M, or L),
and 2.3 + 2.1% (range 0.0 to 6.7%) of them were pre-
dicted high where they were actually low, or vice versa.
This means that, from the wrongly classified animals,
respectively 91.8% and 94.1% were predicted in an ad-
jacent category. Over all the farms, including activity
features improved the correct classification with 9.3 +
7.9% (P < 0.01). The classification worsened in only
2 farms compared with when only milk yield features
were included. The proportion classified in the opposite
category decreased with on average 3.5 + 4.5%, ranging
from 5.9 to 2.3% (significant difference, P < 0.01).

Despite the variability between and within farms and
the fact that we could not find SF that were commonly
informative to predict RR over all farms, the prediction
and classification performance of the individual farm
models was in many cases significantly higher than the
product of a random classification (i.e., one-third cor-
rectly classified). Furthermore, including the activity
features demonstrated a significant added value com-
pared with using the daily milk yield features alone (P
< 0.01). A correct classification of up to 84% of the
animals suggests that at least part of the variability in
the RR is correctly captured by the SF.

One way to explain the lack of a common model
structure and the observed differences in prediction
performance is the variability in culling, reproduction,
and health management between farms and even within
farms. For example, management practices might have
differed over the considered time span because of
changing motivations and preferences of the farm staff,
economic context, animals’ genotypes and phenotypes,
farm facilities, feed, and more. Besides the time-varying
component, the following factors can also explain part
of the limited prediction performance on some farms:
(1) for this study, only features of the first lactation
were included, to ensure applicability of the model for
decision support; (2) the lifetime resilience ranking is
based on the limited data available in the commercial
situation and was defined by experts; (3) a large differ-
ence exists in the number of animals included per farm,
possibly affecting the results.

Model Use and Implications

Predicting Lifetime Resilience Ranking Sup-
ports Breeding and Culling Decisions. Reliable
prediction of lifetime resilience within a farm would al-
low for a more consistent approach to the management
actions concerning advanced breeding (e.g., sexed se-
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men, embryo transfer, ovum pick-up, use of beef semen,
or selection of animals not to breed the replacement
heifers from) or culling decisions after the first lactation
(Mapletoft and Hasler, 2002; Vandeweerd et al., 2012;
Boichard et al., 2015). In this way, breeding decisions
for cows in the second parity and higher could be made
using both the genetic or genomic (available once the
animal is born) and the phenotypic sensor-derived in-
formation (once an animal has completed her first lac-
tation). The latter would provide information on how
well the animal performs in her specific farm environ-
ment, which optimizes sustainable productivity from
the available animals on farm. In practice, discrimina-
tion between cows with high and low lifetime resilience
would benefit a farmer even when the exact rankings
remain unknown, because the farmer’s decision would
not generally be different for, for example, the fifth or
the tenth ranked cow in the herd. Moreover, prediction
of lifetime resilience also allows for the identification
of animals with a low expected RR. These cows can
be targeted for more detailed monitoring in higher
lactations. In practice, the resilience ranking offers a
transformative opportunity to evaluate herd health
performance based on automated data collection and
analysis. This analysis can be presented to the herd ad-
visor or veterinarian during, for instance, regular herd
health visits. The cows in the herd that are expected to
have a low resilience based on this analysis can be sub-
mitted to preventive checkups, and upon detection of a
problem (e.g., reproduction or health issues), targeted
management actions can be undertaken (e.g., more fre-
quent milking, milking these cows separately, putting
them in a different production group, submitting them
to adapted reproduction protocols).

This study also advocates for evidence-based decision
making on modern dairy farms, supporting more eco-
nomically sound and sustainable management actions.
Despite the high prediction performance on some of the
farms, the lack of a common model structure and the
low performance on other farms suggest that further
data-based rationalization of decisions is needed. To do
so, dedicated data processing, in which the biology of
the cows within their farm contexts is taken into ac-
count, is essential, and ideally other key farm context
indicators should also be included in the resulting tools
(e.g., herd demographics, robot or parlor capacity, eco-
nomic environment).

Model Use Beyond Decision Support. With the
collection and re-evaluation of this sensor-based infor-
mation over many years, general phenotypic informa-
tion on complex traits for future breeding goals is also
collected at herd level. From this, sires that perform
well under many different environmental conditions can
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be identified. In this way, the proposed tool can be used
in the context of precision phenotyping of traits that
are the combined results of physiological well-being
and performance, and future genetic selection based on
these new traits becomes possible.

CONCLUSIONS

In this study, we demonstrated that resilience rank-
ing and productive life span of modern dairy cows on
AMS farms in Belgium and the UK could be predicted
using farm-individual models based on first-lactation
sensor data. With the milk yield and activity SF select-
ed at farm level, we reached classification performances
(low, moderate, or high resilience) of up to 84%, and
only 2.3 £ 2.1% (mean £ SD) of cows were predicted
in the opposite category. This shows the potential of
high-frequency milk yield and activity sensor data to
rationalize evidence-based breeding and culling deci-
sions. However, a common model structure across all
farms could not be found, which shows the variability
between farms and highlights the need for biologically
sound and context-dependent data processing tools.
Once a lifetime resilience-predicting tool is established,
the farmer and the livestock sector could benefit from
it not only for management and decision support but
also at genetic level in the context of new precision
phenotyping proxies for complex traits.
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APPENDICES

Appendix A: Definition and Calculation of Milk Yield
Sensor Features

Table A1 gives the details of the different SF calcu-
lated from daily milk yield data included in the predic-
tion models. The iterated theoretical Wood model is
the result of the iterative fitting and refitting procedure
excluding perturbations to estimate the shape of the
theoretical lactation curve. All SF' are standardized at
herd level before entering them in the models, by

SF —SF
SFstandardized = SD (SF) )

SF the average of each SF for a herd, and SD(SF) the
standard deviation for that SF for a herd.

with SF each sensor feature,

Appendix B: Definition and Calculation of Activity
Sensor Features

First, the 2-hourly activity data were aggregated in
daily sums. Next, a moving median, using a window
of 4 d, was calculated on these daily data time series
to identify short spikes associated with estrous behav-
ior (level 1; all spikes >0.4 x the maximal residual of
the time series minus the moving median). A moving
median of 20 d was calculated to identify periods with
generally lower or higher activity, possibly associated
with health events. A threshold of 20% of the minimal
or maximal activity residuals was set to identify these
deviating activity periods. Table A2 explains calculated
SF based on the deviations from these median windows.
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Table A1. Lactation sensor features (SF) and their calculation included in the prediction models for lifetime resilience ranking

No. of times (%) retained

SF lactation SF or activity
no. Name and lactation SF' How calculated?
SF1 305-d yield 6 (22.2) Total milk yield in the first 305 d of lactation
4 (30.8)

SF2 RMSE ITW?* 5 (18.5) RMSE of ITW model
2 (15.4)

SF3 Peak yield ITW 5 (18.5) Maximal value of ITW model
3(23.1)

SF4 DIM peak yield ITW 4 (14.8) DIM of the peak milk yield (SF3)
0 (0.0)

SF5 Rate increase ITW 5 (18.5) Peak yield (SF3) divided by DIM of peak milk yield
4 (30.8) (SF4)

SF6 Persistency ITW 10 (37.0) Persistency, slope of the linear decreasing phase of the
5 (38.5) ITW model

SF7 Sum of strong negative residuals of ITW 2 (7.4) Sum of the residuals smaller than 85% of the ITW
4 (30.8) model

SF8 Ratio of positive vs. negative residuals of ITW 5 (18.5) Ratio of the number of positive vs. negative residuals
4 (30.8) calculated from the ITW model

SF9 Number of major perturbations® 5 (18.5) Number of perturbations with milk production at least
2 (15.4) 1 d below 80% of the ITW model and lasting at least

10 d

SF10 Average number of days needed for recovery 5 (18.5) Number of days needed for recovery from a major
from major perturbations 3(23.1) perturbation

SF11 Average milk loss during recovery phase of 7(25.9) Average milk losses during recovery phase of a major
major perturbations 2 (15.4) perturbation

SF12 Average milk loss during development phase of 6 (22.2) Average milk losses during development phase of a
major perturbations 3(23.1) major perturbation

SF13 Average number of days needed for 6 (22.2) Number of days needed to reach the minimum of a
development of major perturbations 5 (38.5) major perturbation

SF14 Average minimum milk yield of the major 7 (25.9) Average minimal milk yield of the major perturbations
perturbations 3 (23.1)

SF15 Number of minor perturbations* 6 (22.2) Number of perturbations with milk production at least

1(7.7) 1 d between 90 and 80% of the ITW model and lasting
at least 5 d

SF16 Average number of days needed for recovery 5 (18.5) Number of days needed for recovery from a minor
from minor perturbations 1(7.7) perturbation

SF17 Average milk loss during recovery phase of 4 (14.8) Average milk losses during recovery phase of a minor
minor perturbations 0 (0.0) perturbation

SF18 Average milk loss during development phase of 6 (22.2) Average milk losses during development phase of a
minor perturbations 2 (15.4) minor perturbation

SF19 Average number of days needed for 3 (11.1) Number of days needed to reach the minimum of a
development of minor perturbations 4 (30.8) minor perturbation

SEF20 Average minimum milk yield of the minor 5 (18.5) Average minimal milk yield of the minor perturbations
perturbations 5 (38.5)

SF21 Number of periods in which milk yield drops 6 (22.2) Number of periods in which milk yield drops below
below 85% of the expected yield (ITW) and 5 (38.5) 85% of the expected yield (ITW model) and that last
that last >5 d >5d

SF22 Number of periods in which milk yield drops 6 (22.2) Number of periods in which milk yield drops below
below 85% of the expected yield and that last 3(23.1) 85% of the expected yield (ITW model) and that last
>10d >5d

SF23 Percentage of days in which milk yield drops 5 (18.5) Number of periods in which milk yield drops below
below 85% of the expected yield (ITW) 2 (15.4) 85% of the expected yield (ITW model)

SF24 Average milk loss of the 3 largest perturbations 4 (14.8) Average milk loss of the 3 largest perturbations

1(7.7)
SF25 Largest negative residual 6 (22.2) Largest negative residual
1(7.7)

SF26 Number of sign changes of the residuals 6 (22.2) Number of sign changes of the residuals of the ITW
throughout the lactation 2 (15.4) model throughout the lactation

SF27 Average residual 9 (33.3) Average of the residuals

7 (53.8)
SF28 Average absolute value of the residuals 7(25.9) Average of the absolute values of the residuals
5 (38.5)

SF29 Variance of the residuals of the initial Wood 6 (22.2) Variance of the residuals
model 5 (38.5)

SF30 Ratio of the initial Wood curve fitted on all 3 (11.1) Ratio of the initial Wood curve fitted on all the data
data and the ITW 4 (30.8) and the ITW curve

"For each SF, we evaluated how often it was retained in the individual farm models of data set 1, using the stepwise selection procedure. The more often a
certain SF was retained, the more informative it was for predicting the lifetime resilience ranking of the cows. Data set 1 included 27 farms in total.

*RMSE = root mean squared error; ITW = iterated Wood model.
*Major perturbations = periods of at least 10 d of successively negative residuals with at least 1 d of milk production lower than 80% of the theoretical pro-

duction.

‘Minor perturbations = periods of at least 5 d of successively negative residuals with at least 1 d of milk production between 90% and 80% of the expected

production.

Journal of Dairy Science Vol. 103 No. 8, 2020



Adriaens et al.: PREDICTION OF RESILIENCE USING SENSOR DATA 7171

Table A2. Activity sensor features (SF) and their calculation included in the prediction models for lifetime resilience ranking

SF No. of times

no. Activity feature (%) retained' How calculated?

SF31 Daily mean 6 (46.2) Daily mean activity value

SF32 Daily overall skewness 1(7.7) Skewness of the daily activity time series

SF33 Daily overall variance 9 (69.2) Overall variance of the daily activity time series

SE34 Number of first-level peaks 11 (84.6) Number of sharp peaks, larger than 0.4 times the maximal peak

height after correction for 4-d median activity level

SE35 Average peak height of first-level 5 (38.5) Average peak height of peaks larger than 0.4 times the maximal
peaks peak height after correction for 4-d median activity level

SF36 Maximal peak height of first-level 5 (38.5) Maximal peak height of peaks larger than 0.4 times the maximal
peaks peak height after correction for 4-d median activity level

SE37 DIM of first peak 8 (61.5) DIM of first peak larger than 0.4 times the maximal peak height

after correction for 4-d median activity level

SEF38 Number of periods with higher 3(23.1) Number of periods with activity level higher than 0.2 times the
activity compared with long-term maximal level compared with long-term 20-d median activity level
median activity

SF39 Average activity level of periods 3(23.1) Average activity level of periods with activity level higher than
with higher activity compared with 0.2 times the maximal level compared with long-term 20-d median
long-term median activity activity level

SF40 Maximal activity level in periods 2 (15.4) Maximal activity level of periods with activity level higher than
with higher activity compared with 0.2 times the maximal level compared with long-term 20-d median
long-term median activity activity level

SF41 Duration of periods with higher 4 (30.8) Duration of periods with activity level higher than 0.2 times the
activity compared with long-term maximal level compared with long-term 20-d median activity level
median activity

SF42 Number of periods with lower 2 (15.4) Number of periods with activity level lower than 1.2 times the
activity compared with long-term minimal level compared with long-term 20-d median activity level
median activity

SF43 Average activity level of periods 3(23.1) Average activity level of periods with activity level lower than 1.2
with lower activity compared with times the minimal level compared with long-term 20-d median
long-term median activity activity level

SF44 Minimal activity level in periods 0 (0.0) Minimal activity level of periods with activity level lower than 1.2
with lower activity compared with times the minimal level compared with long-term 20-d median
long-term median activity activity level

SF45 Duration of periods with lower 2 (15.4) Duration of periods with activity level lower than 1.2 times minimal

activity compared with long-term
median activity

level compared with long-term 20-d median activity level

'For each SF, we evaluated how often it was retained in the individual farm models of data set 2, using the stepwise selection procedure. The
more often a certain SF was retained, the more informative it was for predicting the lifetime resilience ranking of the cows. Data set 2 included
13 farms in total.
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