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Volcanic eruptions disturb vegetation at a time it is needed for preventing mudflows.

A resilient indigenous non-legume nitrogen-fixing tree that is adapted to the ash and

spreads rapidly protects areas downstream in a volcanic landscape in Indonesia. Within

the volcanic ring of fire both the long-term benefits (including densely populated, fertile

agricultural soils) and short-term ecological disturbance of volcanic ash deposition are

clear. Mount Kelud in East Java has erupted on a 15–37-years cycle for the past

centuries, most recently in 2014, causing damage to settlements, agricultural land,

agroforestry, and watershed protection forests, as the ash deposits caused tree mortality,

restricted infiltration, and led to ash flows. Rapid “restoration” or recovery of tree-based

vegetation with planted Legume trees (such asCalliandra spp.) has been attempted but is

not very effective. However, the non-legume nitrogen-fixing Parasponia rigida, symbiotic

with rhizobium bacteria, contrasted to its non-symbiotic sibling (Trema orientalis) has

been studied in laboratory conditions, but not in its native environment. We mapped and

sampled P. rigida in various locations (upper, middle, and lower elevation positions in

ridge-slope-valley toposequences) on the Kelud complex starting 1 year after the latest

eruption, estimated biomass development, and quantified P. rigida root nodules in relation

to N availability in the ash/soil mixtures in these locations. P. rigidawas found as a pioneer

tree at elevations between 600 and 1,700m a.s.l. (above sea level) along ridges, in slope,

and valley positions. At lower elevations T. orientalis dominated. Within 3 years of the

eruption, stem diameters were 3–10 cm. Up to 93% of P. rigida root nodules were found

to be effective, based on the hemoglobin color on cross-sections. Rhizobium bacteria

were found in root nodule tissue at densities of two to a hundred times higher than in

rhizosphere soil. Between a total soil N content from 0.01 to 0.04% the density of effective

nodules decreased from 1,200 to 200 m−2. P. rigida stands in the area, especially at

ridges close to the crater deserve to be managed proactively as future seed sources,

given the high frequency of eruption episodes, while recovery after eruptions on similar

volcanoes can likely be facilitated by tactical assisted seed dispersal if effective seed

collection and storage methods can be established.

Keywords: disaster preparedness, Indonesia, Mount Kelud, N2-fixation, restoration, rhizobium, trema orientalis,

volcanic ash
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FIGURE 3 | P. rigida (dashed yellow lines) stands at various landscape locations: (A) Caldera, (B,C) high ridges, (D) Ash deposits in a river valley (Photo credits: first

author).

TABLE 2 | Tree biomass and necromass differentiated by stem diameter in stands

in three landscape positions (based on three replicates in each of three elevational

zones).

Landscape

position

Basal area Tree biomass (Mg ha−1) Tree necromass (Mg ha−1)

(m2 ha−1) 5<D<30 cm D >30 cm 5<D<30 cm D >30 cm

Upper 8.93 a 13.41 c 60.77 a 13.49 a 12.04 b

Middle 8.21 a 7.74 b 58.71 a 13.44 a 3.56 ab

Lower 37.03 b 0 a 381 b 0 a 0 a

s.e.d 3.40** 1.76** 35.2** 9.02NS 0.95**

Values followed by the same letter within a column were not statistically distinguishable;

s.e.d, standard error difference, *significant difference (P < 0.05), **highly significant

difference (P < 0.01), NS no significant difference.

byAgeratum conyzoides (babadotan, locally called “Tropos”) with
INP= 177% and INP= 116%, respectively, and the pole stage by
T. orientalis (INP= 61%). In the upper zone seedling and sapling,
stages were dominated by Begonia multangular (“Mencok”) with
INP = 100% and INP = 63%, respectively, while the pole stage
was dominated P. rigida and T. orientalis, both?? with INP
= 226%.

Biomass Production and Root Nodule
Density of P. rigida
Results for the second survey showed that for each of
the three elevational zones, the P. rigida population
density, as well as average stem diameter, varied with
position along the local toposequence (Figure 4). While
population density was highest (80–200 trees/ha) in the
valley positions in the upper and middle elevational zone,
respectively. Tree diameter was highest in the ridge.
Please note that in this second survey the lower zone
toposequence did not include the Mahogany plantation,
but P. rigida numbers were relatively low while other
vegetation dominated.

Plot-level biomass estimates (Figure 5A) show by far the
highest P. rigida biomass (164 kg plot−1) on the ridges in the
upper zone. The relative share of P. rigida and T. orientalis in
their combined tree population showed that T. orientalis was
absent at the highest elevation and dominated at the middle
elevation (Figure 5B).

Soil samples of the rhizosphere soil in existing P. rigida stands
(Table 4) showed domination by the sand-sized fraction (fresh
ash), with silt and clay at slope and ridge positions in the middle
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TABLE 3 | Tree populations in various growth stages and biodiversity indices in three landscape positions (based on three replicates in each of three elevational zones).

Landscape

position

Population Diversity Index (H’) Evenness Index (E)

(Indiv.ha−1) Seed-

ling

Sap-

ling

Pole Tree Seed-

ling

Sap-

Ling

Pole Tree

Upper 114 a 0.68 a 1.18 b 0.87 b 1.30 b 0.67 a 0.63 b 0.60 b 0.66 ab

Middle 119 a 0.97 a 1.58 b 1.64 c 2.36 c 0.65 a 0.72 b 0.80 c 0.95 b

Lower 394 b 0 a 0 a 0 a 0.19 a 0 a 0 a 0 a 0.27 a

s.e.d 39.6** 0.44NS 0.45* 0.17** 0.39* 0.28NS 0.19* 0.07** 0.22*

Seedling: H < 2m, Sapling: H > 2m, D < 5 cm, Pole: 5 < D < 10 cm, Tree: D > 10 cm, with D = stem diameter and H = height; values followed by the same letter within a column

were not statistically distinguishable; s.e.d, standard error difference, *significant difference (P < 0.05), **highly significant difference (P < 0.01), NS, no significant difference.

FIGURE 4 | P. rigida performance in various toposequence and elevational positions on the slopes of Mount Kelud (three sample plots per elevation * landscape

position). (A) Total population of P. rigida with standard error of differences, (B) Average stem diameter (DBH).

FIGURE 5 | (A) Total biomass production of P. rigida (per 20 × 20 m2 plot) in the various landscape positions and elevation zones, with standard error of differences;

(B) relative share of P. rigida and T. orientalis in their combined tree population.

and lower zone. Bulk density was high (1.2 g cm−3 to 1.6 g cm−3,
Ntot (0.012–0.040%), and Corg (0.13 to 0.26%) concentrations
very low in all stands.

Based on the hemoglobin color assessment 79–93% of nodules
were classified as “effective,” while nodule densities per m2 of
soil surface were highest in the valley positions at low and
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TABLE 4 | Characteristics of soil physico-chemical properties in the P. rigida

rhizosphere (three replicates).

Elevation Position Bulk

density

pH

H2O

Texture N-Tot C-Org C/N

g cm−3 %Sand %Silt %Clay ——–%——-

Upper Valley 1.6 5.1 95 5 0 0.029 0.15 5

Slope 1.28 5.6 93 6 1 0.023 0.18 8

Ridge 1.32 5.1 94 4 2 0.021 0.13 6

Middle Valley 1.55 5.2 93 5 2 0.018 0.14 8

Slope 1.41 5.4 87 10 3 0.023 0.21 9

Ridge 1.45 5.1 75 20 5 0.030 0.25 8

Lower Valley 1.32 5.0 90 10 0 0.012 0.16 13

Slope 1.2 5.3 85 10 5 0.027 0.19 7

Ridge 1.35 5.2 65 25 10 0.040 0.23 6

TABLE 5 | Root nodules of P. rigida in various locations, distinguished by

effectiveness (hemoglobin color) (averages for three replicates).

Elevation Position Root nodules, m−2 Effectiveness

Effective Non-effective Total %

Upper Ridge 472 d 61 e 533 e 89

Slope 348 c 50 d 398 d 87

Valley 127 a 34 bc 161 b 79

Middle Ridge 348 c 48 d 396 d 88

Slope 364 c 32 ab 396 d 92

Valley 526 e 62 e 588 f 89

Lower Ridge 112 a 22 a 134 a 84

Slope 314 b 44 cd 358 c 88

Valley 610 f 44 cd 654g 93

s.e.d. 8.71** 4.72* 8.93** -

Values followed by the same letter within a column were not statistically distinguishable;

s.e.d., standard error difference, *significant difference (P < 0.05), **highly significant

difference (P < 0.01).

middle zone, and in the ridge position in the upper zone
(Table 5).

Regression analysis of nodules on the three indicators of
soil nitrogen supply in P. rigida stands, Ntot, mineral NO−

3
and NH+

4 , was based on normalized parameters to allow direct
comparison between these indicators. The regression of the
density of effective nodules on soil nitrogen indicators accounted
for at least 85% of the observed variation (Figure 6). Nodulation
was most abundant and effective on the poorest sites.

DISCUSSION

We found P. rigida populations over a considerable elevational
range, from 600 to 1,700m a.s.l., on around Mount Kelud after
the recent eruption. A comparison of satellite imagery before
(2013) and after (2014) the eruption (Nuzulah, 2016) indicated
a decrease in vegetation density up to a radius of 10 km from
the caldera, with a vegetation density index decreasing from

0.64 to 0.34 in 2013 to 0.52–0.01 in 2014; despite a partial
recovery in 2016, vegetation was affected until a radius of 5 km.
The observations of dominance by P. rigida in the highest
zone (>1,000m a.s.l.) demonstrate the remarkable adaptation of
this species to the extreme environment of frequently erupting
volcanoes and abundant ash deposition. Similar observations in
2018 in about 2 km from the active crater of Mount Merapi
(Central Java) after an eruption in 2010 showed low levels of plant
diversity, but P. rigidawas observed in densemonospecific stands
with some patches of Acacia decurrens (Dr. Subekti Rahayu, pers.
comm. 2020). According to local informants on Mount Merapi
P. rigida only occurred on the ridge and along riverbanks before
the recent eruption, but it spread out throughout the landscape
after the eruption. The literature on the vegetation of Mount
Kelud in the past and the high frequency of eruptions match an
interpretation that the species combines the effective colonization
of T. orientalis (Mangopang, 2016) a pantropical pioneer species
with the ability to thrive on soils of very low nitrogen content.
The distribution of P. rigida observed suggests that its seeds may
be carried by overland and river flows from trees on higher ridges,
including the slopes of the caldera itself. P. rigida appeared to
develop well in nutrient-poor and open soil conditions where
the plants produce root nodules and the fresh green of leaves
(Figure 3).

Our observations suggest that the stands on ridges in the
highest zone (with populations of around 150 trees ha−1) had
the highest biomass and were the likely seed source for abundant
regeneration in the valley positions at the middle and lower
elevation. Seeds can be produced within 1 year of a regrowing
stand. The trees also contribute to soil formation, with a half-
life time of litter of around 20 weeks (Ishaq et al., 2020). The
sibling species T. orientalis and P. rigida co-occurred at lower
and middle elevation, while only P. rigida was found in the
highest zone. These findings suggest that the selective advantage
of the nodulated P. rigida over its non-nodulated sibling species
T. orientalis is most pronounced in the most extreme and N-
poor parts of the landscape. In the lusher vegetation at lower
elevations, T. orientalis can maintain a presence among grasses
and other trees, P. rigida is abundant as a pioneer on the
ash deposits in the valley but appears to lose out from other
vegetation later in the succession. From the absence, at this
stage of the recovery after the most recent eruption, of T.
orientalis in the highest zone we cannot distinguish between lack
of seed sources or lack of ability to grow as direct explanation,
while P. rigida clearly meets both requirements for restoration
success. Successful seed sources that can reach the rest of the
landscape, however, do depend on the ability of pioneer plants
to grow in the relatively harsh and nitrogen-poor soil conditions.
The reduced role of P. rigida beyond the pioneer zone may
suggest that the ability of Parasponia species to nodulate has
had negative consequences, relative to their Trema siblings, for
competitiveness under less extreme soil conditions. From these
observations, it appears that explanations of the distributions of
P. rigida and T. on the slopes of Mount Kelud will consist of
the position of seed sources that survive the eruption, supported
by the successful colonization of N-poor substrates by P. rigida.
In more sheltered and N-rich landscape positions, T. orientalis
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FIGURE 6 | Relationship of effective root nodules with total N-content of the soil, with both X and Y variates normalized and expressed relative to the mean; (A)

nodules per unit soil area vs. Ntot; (B) nodules per unit soil volume vs. Ntot, nitrate and ammonium levels in soil solution.

appears to have an edge in growth rates—but a direct test of
competitive ability across levels of soil N availability has yet to
be performed. Styger et al. (2009) reported from secondary forest
regeneration sites in Madagascar that 3-years old T. orientalis
had a biomass of 8.5Mg ha−1 and 5-years old stands 24.7Mg
ha−1. These biomass data, in a less extreme environment, are
higher thanwhatT. orientalis and P. rigida achieved onMt Kelud,
but effective soil cover was achieved and ash deposits along the
riverbed were stabilized by P. rigida seedlings.

Our findings of a negative response of nodule formation to
external nitrogen supply in the field match the laboratory results
reported recently by Dupin et al. (2020). The density of effective
nodules per unit soil surface area was associated with below-
average soil nitrogen indicators, with rhizobium populations in
the nodules (153 × 104 to 112 × 106 CFU g−1) up to a 100-fold
increase above their concentrations in rhizosphere soil (average
82× 104 CFU g−1). For comparison, Widawati (2015) reported a
rhizobium density in the legume kaliandra (Calliandra tetragona)
nodules of 2.2× 106 CFU g−1.

Current emergency management plans for active volcanoes
like Mount Kelud rely on nursery-produced legume trees as
planting material to stabilize ash and reduce downstream
mudflow risks. Three years after the eruption of Mount Kelud
other surveys in the restoration area (Tanjungsari et al.,
2018) found the introduced legume tree Calliandra [both
the red (C. tetragona calothyrsus) and white (C. tetragona)
species to have been planted, along with naturally dispersed
mahang (Macaranga hispida), and anggrung (T. orientalis)].
Relative to such plans and practice, our findings of a key
role for P. rigida stands on the ridges at high elevation

are highly relevant. These trees can recover rapidly after
an eruption and probably are the main seed source for
successful natural regeneration of tree-based vegetation in
the post-eruption landscape. P. rigida is not only a very
interesting biological object of study, suggesting the conditions
under which association between higher plants and rhizobium
bacteria can evolve, it also deserves a key role in emergency
preparedness plans for the area. Some investment in securing
local P. rigida seed sources for assisted seed rains could
likely speed up the recovery process in next steps of the
eruption cycle.

CONCLUSIONS

1. P. rigida populations survived the recent eruption of Mount
Kelud at an elevation of 600–1,700m a.s.l. The sibling species
T. orientalis and P. rigida (differing in their ability to nodulate)
co-occurred at lower andmiddle elevation, while only P. rigida
was found in the highest zone.

2. The rate of biomass recovery was related to landscape position:
Stands on ridges in the highest zone (around 150 trees ha−1)
had the highest biomass and were the likely seed source for
abundant regeneration in the valley positions at middle and
lower elevation.

3. The density of effective nodules per unit soil surface area was
associated with below-average soil nitrogen indicators.

4. A practical implication of these findings is that existing P.
rigida stands on the ridges at high elevation are key to the
successful natural regeneration of tree-based vegetation in the
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post-eruption landscape and deserve protection and a key role
in emergency preparedness plans for the area.
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