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a b s t r a c t 

Timing the introduction of new products to the market is an important strategic decision in the auto- 

motive industry. For several reasons, it is also a complex decision problem. First, the use of platforms 

creates many interactions between different vehicles via shared modules (e.g. engines). Second, new and 

existing products rely on various shared resources (e.g. development resources or production capacities). 

Furthermore, different conflicting objectives must be considered. In this paper, we develop a mathemati- 

cal linear programming model describing the decision problem based on the resource-constrained project 

scheduling problem. It simultaneously decides on the start of production date for vehicle models, vari- 

ants, and engines as well as on the assignment of engines to the given variants. Integrating a multi- 

criteria approach, the model helps to analyze trade-offs between important managerial objectives related 

to resource utilization and fleet emission metrics. Using realistic data from a major European automotive 

company, we demonstrate that our model enables the efficient evaluation of various courses of action. 

Such capabilities are especially relevant in times of rapid technological change, such as the current tran- 

sition towards electrified vehicle portfolios. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Since almost three decades, mass customization [1] is common 

ractice in many industries to efficiently serve customers with per- 

onalized products. The underlying challenge is to offer a wide 

ange of products while developing and producing them efficiently. 

 well-established approach to address this challenge, particularly 

n the automotive industry, is the use of modular, platform-based 

roducts [2] . Modules are defined as subsystems of products with 

tandardized interfaces such that they can be shared among vari- 

us products [3] . Extending this idea, platforms can be described 

s a set of subsystems and interfaces that allow to efficiently de- 

elop and produce a stream of derivative product variants [4] . 

As an illustration of modular product structures and corre- 

ponding life cycle decisions, we can for example look at the auto- 

otive industry. Here, manufacturers frequently offer various ve- 

icle models (referred to as models in the remainder of this pa- 

er), such as sedans and station wagons. These models can share 
� This manuscript was processed by Associate Editor Prof. Ben Lev. 
∗ Corresponding author. 

E-mail addresses: Christopher.Bersch@tum.de (C.V. Bersch), 

enzo.Akkerman@wur.nl (R. Akkerman), Rainer.Kolisch@tum.de (R. Kolisch). 

t

i

g

m

ttps://doi.org/10.1016/j.omega.2021.102515 

305-0483/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article
arious characteristics, e.g. the wheelbase, but differ with respect 

o other characteristics, e.g. the body style. When different mod- 

ls share characteristics as the wheelbase, they are considered part 

f a product family. Table 1 shows examples of this structure for 

ome of the large European automotive manufacturers. Here, a 

roduct family could be all E-class models by Mercedes or all 5 

eries models by BMW. A distinct model is then for instance the 

udi A6 Sedan. 

In addition to the model distinction, customers can usually 

hoose from a variety of different engines, such as combustion en- 

ines, electrical engines, as well as hybrid engine combinations. In 

rder to reduce the development and testing effort, engines are 

sually shared among various models. Models are used in a mod- 

lar product structure. This means that for instance Mercedes’ E- 

lass Sedan and their C-Class Estate could be sold with the same 

ngine. These combinations of models and engines are called vari- 

nts (e.g. an Audi A6 Sedan diesel), and they are the basic structure 

f product portfolios in this industry. 

Managing such a modular product portfolio does however lead 

o many product life cycle decisions, mainly related to (1) the tim- 

ng of models, variants, and engines, and (2) the assignment of en- 

ines to models. Although platforms generally consist of multiple 

odules, we focus in this paper on engines as the most relevant 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Planning problem (decisions in blue, goals in orange for a colored figure, the reader is referred to the web version of this article). 

Table 1 

Illustrative example of product families and corresponding models. 

Product Family Model Audi BMW Mercedes 

Large Sedan A6 Sedan 5 Series Sedan E-Class Sedan 

Wagon A6 Avant 5 Series Touring E-Class Estate 

Medium Sedan A4 Sedan 3 Series Sedan C-Class Sedan 

Wagon A4 Avant 3 Series Touring C-Class Estate 
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odule (while our approach could be extended to include multiple 

odules). The resulting decision problem is illustrated in Fig. 1 a. 

ased on the technology roadmap, planned models and engines 

ave to be combined into variants. Generally, each model is offered 

n multiple variants, i.e. a customer can order a model with one of 

arious engines. As the product life cycles of the models and en- 

ines is not always perfectly aligned, variants might also change to 

ewer engine generations at some point in the model’s life cycle. 

The relevant timing decisions are the start of production (SOP) 

nd end of production (EOP) for each model, each variant, and each 

ngine. These decisions need to respect time windows resulting 

rom the general platform structures outlined in the technology 

oadmap, e.g. the earliest availability due to technological evolu- 

ion. In Fig. 1 a, the SOPs and EOPs are depicted by triangles and

ars, respectively. The time span between SOP and EOP is typi- 

ally several years and within this time span thousands of units 

re manufactured. Between the SOP and EOP of models and vari- 

nts, it has to be decided which engines to assign in which period 

the arcs in Fig. 1 a). Here, the compatibility of engines and variants 

s well as the engine availability needs to be respected. Besides, 

ach engine assignment leads to additional development and test- 

ng effort. Theref ore, manufacturers are often not able to assign the 

atest engine generation to all model variants. As a consequence, 

ngine generations might overlap and at any given time, a set of 

ossible engines with their own SOPs and EOPs are available for 

ssignment to variants. 

Further complexity is introduced by the fact that timing and 

ssignment decisions have an impact on the utilization of various 

hared company resources. There are different resources to con- 

ider, which often ends up pointing the timing and assignment de- 

isions in different directions. In this paper, we consider five differ- 

nt performance indicators related to the planning of new product 

ntroductions, each of them having a goal that relates to the effi- 

ient use of one or more of the resources (illustrated in Fig. 1 b–d).
2 
The first goal (G1 in Fig. 1 b) relates to a desired temporal dis- 

ance between the SOPs of models within a product family. Cer- 

ain models should ideally be scheduled within a minimum and a 

aximum time span in order to be developed efficiently. For in- 

tance, when introducing a sedan and a station wagon for a mid- 

ize product family, the manufacturer usually focuses on one (lead) 

odel first and then transfers a mature solution concept to the 

ther model (derivative). In this case, there should be a minimum 

istance between lead model and derivative model to allow for the 

aturation, which decreases the overall demand for development 

esources. At the same time, there should be a maximum distance, 

o that the technology of the derivative is still state of the art at 

he market introduction. 

The second goal (G2 in Fig. 1 b) relates to a maximum number 

f simultaneous SOPs of different models. The rationale behind this 

estriction is that these SOPs bear considerable complexity and ex- 

ra work for development and production. Hence, the number of 

imultaneous SOPs should be limited to avoid peaks in resource 

tilization [see also 5 ]. Together, goals G1 and G2 help the com- 

any to indirectly steer the utilization of development resources u t 
nd minimize exceedance of available resources ū . A smoother re- 

ource utilization profile is known to reduce capital expenditures 

n temporary equipment and avoids overloaded staff. 

The third goal relates to the target sales quantity per period 

G3 in Fig. 1 c). Automotive manufacturers are generally large com- 

anies listed at the stock exchange, which aim to meet specific 

ales targets on a company level. These sales targets are, in part, 

ommunicated to shareholders and the public, and are based on 

nowledge from various domains such as past sales, the develop- 

ent of the market, the positioning of the company within the 

arket, etc. We try to minimize any negative deviation of the 

lanned portfolio sales q t from the sales target (hatched area be- 

ow G3) which is a first step towards a constant and reliable in- 

ome of the company. The portfolio sales q t is the sum of the sales

urves from the individual variants, which usually follow typical 

ales patterns [6] : After SOP, production is first ramped up [7] un- 

il a maximum production rate is reached while towards the EOP, 

ustomer demand for the product decreases. As will be explained 

n more detail at the beginning of Section 3 , these variant sales 

urves can be understood as a function of SOP and EOP and are 

he result of forecasts that are based on various factors, including 

istorical data and other domain knowledge. 
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Fig. 2. The allowed emission according EU-legislation (Data source: European Par- 

liament [8] ). 
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The general idea of the fourth goal (G4 in Fig. 1 c) is the effi-

ient utilization of production capacities by avoiding overload. As 

llustrated by the hatched area above G4, any exceedance of the 

roduction capacity is to be reduced for each plant in each period. 

The last goal (G5 in Fig. 1 d) is considering CO 2 limits, as e.g.

mposed by the European Parliament [8] . While many recent publi- 

ations have studied carbon emissions of the supply chain [e.g. 9 ], 

5 specifically focuses on the product use phase, which in many 

ndustries is responsible the majority of all life cycle emissions. In 

he European Union, automotive manufacturers have to ensure that 

he sales-weighted average of CO 2 emission e t is below a time- 

ependent limit, which is currently given as an average of 130 g 

O 2 per km based on an average model weight of 1,372 kg. Every 

dditional kg of model weight allows for an additional emission 

f 0.0457 g CO 2 , as illustrated in Fig. 2 . Both average CO 2 emis-

ion and average model weight are defined as sales-weighted av- 

rage per year. Thus, if a company is selling more heavier models 

n a specific year, the average model weight in that year goes up 

nd the limit allows for a higher average emission. In consequence, 

his goal is influenced by both the average emission and the av- 

rage weight of the product portfolio in any year. To provide an 

ncentive structure for the automotive sector to move to more en- 

ironmentally friendly technology, the European Union will lower 

he allowed CO 2 from 130 to 95 g per km in 2020. 

The above-mentioned 5 goals are clearly influenced by the tim- 

ng and assignment decisions made in the strategic planning of 

ew product introductions. Despite the complex interactions be- 

ween decisions and goals, automotive manufacturers address this 

trategic planning problem manually and iteratively in a planning 

rocess that spans across multiple departments and takes a long 

ime to finalize. In consequence, it can neither be guaranteed that 

he company identifies good trade-offs between the different goals 

or that planning mistakes are detected before the strategic deci- 

ions are locked in and more detailed planning starts. Especially in 

imes of rapid technological change, manufacturers need to be able 

o efficiently explore various courses of action. To appropriately ad- 

ress these questions, a sound methodological basis is required for 

he strategic planning of model introductions. 

In this paper, we therefore develop a multi-criteria optimization 

odel for platform-based product introduction. The key planning 

roblem, i.e. the timing of models, engines, and variants, as well 

s the engine assignment, resembles a project scheduling problem 

ith additional resource considerations. Our modeling approach, 

hich can be referred to as integrated life cycle and variant plan- 

ing, is therefore based on the resource leveling problem (RLP). 

e will show that by the use of multi-mode formulations, it is 
3 
ossible to link timing decisions with assignment decisions. To 

nalyze the interaction of the presented goals, our model builds 

n a combination of two established multi-criteria modeling ap- 

roaches. The resulting insights support practitioners in assessing 

ey trade-offs in their strategic planning process and hence enable 

trategic planning to provide the potentials for subsequent tactical 

nd operational planning. 

The remainder of this paper is organized as follows: In 

ection 2 , a brief review of methods to solve the RLP is pre-

ented. In Section 3 , we develop our modeling approach and de- 

cribe our multi-criteria solution approach in more detail. Based on 

ur numerical study in Section 4 , we present managerial insights 

n Section 5 . Finally, we discuss this paper and future research op- 

ortunities in Section 6 . 

. Literature review 

Three streams of literature are relevant for our research: 1) 

roduct portfolio planning, 2) sales and operations planning, and 

) resource leveling and scheduling. 

.1. Product portfolio planning 

Companies usually aim for a product portfolio that attracts 

any customers while production costs are minimal. The corre- 

ponding planning problem is also referred to as product portfolio 

lanning [10] . 

From a marketing perspective, this typically relates to extending 

he product line in such a way that additional consumer surplus is 

aptured. Even though product line extensions potentially canni- 

alize the sales of existing products, the forecasted sales increase 

an lead to improved profitability. Wilson and Norton [11] for in- 

tance show in which cases such an introduction is interesting at 

ll, and if it is, how this is affected by price differences and con- 

umer purchasing behavior. The literature also provides guidance 

n how sales develop over the lifetime of product generations [e.g. 

2,13 ]. 

From a production perspective, the question is rather how to 

evelop and produce a variety of products efficiently [14] . For this, 

he use of standardized product platforms [4] is common in the 

utomotive industry, frequently subdividing the product portfolio 

n several product families [1,15,16] . 

When linking these two perspectives, launch timings are pre- 

ominantly taken as a given and the focus of previous research is 

n the reduction of production cost [17,18] . Only few publications 

ddress the question of product platform renewal [e.g. 19–21 ]. Our 

ork aims to build on forecasted sales quantities and to determine 

ptimal introduction times of products and modules considering 

ultiple conflicting objectives. 

.2. Sales & operations planning 

As outlined by Thomé et al. [22] , sales and operations plan- 

ing (S&OP) fulfills two purposes: First, it aims to balance supply 

nd demand. Second, it helps to integrate cross-functional plans by 

upporting the coordination of various decision makers to better 

each business targets [23] . Thereby, S&OP is studied for various 

lanning levels reaching from the general determination of pro- 

uction capacities [e.g. 24 ] to more tactical ramp-up planning [e.g. 

,7 ]. 

Although timing decisions are at the intersection of Product 

ortfolio Planning and S&OP, research on the interface of both 

treams is lacking. In this paper, we integrate cross-functional 

lans via the consideration of conflicting, functional-dependent ob- 

ectives as generally done in S&OP. Moreover, we develop a model 

hat comprises both timing and assignment decisions and hence 
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llows to study cross-functional trade-offs, especially regarding the 

O 2 emission. 

.3. Resource leveling and scheduling 

To model our problem, we build on the literature on the re- 

ource leveling problem (RLP). The RLP is closely related to the 

esource-constrained project scheduling problem (RCPSP). While 

he RCPSP minimizes the makespan under the assumption of 

carce resources, the aim of the RLP is to use given resources effi- 

iently within a finite time horizon [25] . According to Gather et al. 

26] , this is done by scheduling activities in such a way, that re-

ources are used evenly. 

Rieck and Zimmermann [27] differentiate three different types 

f resource leveling. First, the classical resource leveling minimizes 

eaks in the resource utilization expressed as a quadratic func- 

ion. Second, the overload problem penalizes exceedance of a given 

hreshold. Finally, the adjustment cost problem minimizes fluctua- 

ions of the resource usage. The goals defined in our problem are 

losest to the overload problem. 

For both RLP and RCPSP, resource constraints as well as mini- 

um and maximum time lags between activities [28] can be con- 

idered. With respect to resource demand, multi-mode [29] and 

ime-varying formulations [30] have been studied before. However, 

o the best of our knowledge, variations in resource demand have 

nly been studied with respect to start times and not for the com- 

ination of start and finish as needed in our case. Only few exact 

olution approaches have been proposed to solve the RLP [31] . As 

hown by Rieck et al. [32] , considerable performance gains are pos- 

ible by linearizing resource demand with auxiliary variables for 

hich the domains are determined in preprocessing. 

. Modeling and solution approach 

.1. Modeling approach 

We consider models, variants, and engines as activities for 

hich we decide about start and end of production (SOP and EOP). 

s both start and finish have to be determined, each activity is 

odelled with two different nodes in an activity-on-the-node net- 

ork, which are connected by an arc from the start to the finish 

ode [33] . Start as well as finish times are at the beginning of a

eriod. To model the assignment of an engine to a variant, we use 

 multi-mode concept [29] , in which exactly one engine from a set 

f compatible engines needs to be assigned at a time. Our objec- 

ive is to minimize goal deviations. The notation we use is given in 

able 2 . 

As discussed in Section 1 and illustrated in Fig. 1 , five goals 

re considered, which are translated into individual objective func- 

ions (1) - (5) . Deviations from the target distance of derivatives 

re minimized by (1) . With (2) , we minimize the number of si-

ultaneous model starts per product line and period that exceed a 

iven threshold. While (3) minimizes any negative deviations from 

arget sales, objective (4) minimizes overtime of plants. Finally, ex- 

eedance of the CO 2 cap limit is minimized in (5) . Although the 

ost coefficients in the objectives might depend on the indices of 

he corresponding deltas, this information is usually not available 

or companies. To simplify the formulation of the objectives, we 

ssume constant cost coefficients. In case information is available 

o make the cost coefficients dependent on the indices of the cor- 

esponding deltas, it could be straightforwardly considered in the 

odel. Note that the objective functions are connected to the de- 

ision variables in different ways. While model SOPs clearly influ- 

nce the first two objectives, variant and engine SOPs as well as 

ngine assignments influence the objectives through e.g. the fore- 
4 
asted sales curves and the engine emission characteristics. 

in �dis = 

∑ 

(i, j) ∈ I d 

(
c dis − · �dis −

i, j 
+ c dis + · �dis + 

i, j 

)
(1) 

in �sim = 

∑ 

l∈ O l 

∑ 

t∈ T 

(
c sim + · �sim + 

l,t 

)
(2) 

in �sal = 

∑ 

t∈ T 

(
c sal− · �sal−

t 

)
(3) 

in �ov e = 

∑ 

t∈ T 

∑ 

p∈ O p 

(
c ov e + · �ov e + 

t,p 

)
(4) 

in �co2 = 

∑ 

a ∈ T a 

(
c co2+ · �co2+ 

a 

)
(5) 

The first sets of constraints describe the start and end of pro- 

uction (SOP and EOP). Using step variables, this formulation leads 

o strong LP relaxations and therefore to a favorable computational 

erformance [34] . The start variable x s 
i,t 

equals 1, if activity i starts 

t the beginning of period t or before. Consequently, start variables 

re monotonically increasing in time (6) . Combined with a similar 

ormulation of finish variables (8) , this allows for checking on the 

tatus of activity i as summarized in Table 3 . Also, this formulation 

llows to fix certain variables in preprocessing, e.g. due to time 

indows, and hence reduce the size of the model. All activities 

ave exactly one start time, hence at the latest possible start s̄ i , 

he start variable has to be equal to 1 (7) . The same holds true for

nish variables (9) . Both start and finish time windows are calcu- 

ated by preprocessing. In case there is an overlap of time windows 

or start and finish, an activity must not finish before its start (10) .

his constraint can also be adapted to model a minimum process- 

ng time for activity i , i.e. a minimum life cycle length. 

x s i,t − x s i,t−1 

)
≥ 0 ∀ i ∈ I, t ∈ T p 

i 
(6) 

 

s 
i,t ≥ 1 ∀ i ∈ I, t = s̄ i (7) 

x f 
i,t 

− x f 
i,t−1 

)
≥ 0 ∀ i ∈ I, t ∈ T p 

i 
(8) 

 

f 
i,t 

≥ 1 ∀ i ∈ I, t = f̄ i (9) 

x s i,t − x f 
i,t 

)
≥ 0 ∀ i ∈ I, t ∈ T | f 

i 
≤ t ≤ s̄ i (10) 

The next set of constraints deals with the ramp-up of variants. 

f a model is to be produced, it has to be offered in at least one

ariant (11) . Variants can only be produced if the corresponding 

odel is produced, i.e. between model start (12) and finish (13) . 

f a variant is to be produced, exactly one engine needs to be as- 

igned to it (14) . However, an engine can only be assigned if it is

eing produced (15) . 

x s v ,t − x f v ,t 
)

−
∑ 

r∈ I r v 

(
x s r,t − x f r,t 

)
≤ 0 ∀ v ∈ I v , t ∈ T p v (11) 

 

s 
r,t − x s v ,t ≤ 0 ∀ v ∈ I v , r ∈ I r v , t ∈ T s v (12) 

 

f 
r,t − x f v ,t ≥ 0 ∀ r ∈ I v , r ∈ I r v , t ∈ T f v (13) 

 

e ∈ I e r 

(
z s e,r,t − z f e,r,t 

)
−

(
x s r,t − x f r,t 

)
= 0 ∀ r ∈ I r , t ∈ T p r (14) 
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Table 2 

Notation. 

Type Notation Description 

Sets I activities i ∈ I
I e / I e r,t engines e ∈ I e , ⊂ I / I e assignable to variant r ∈ I r in t ∈ T , ⊂ I e 

I r / I r p / I 
r 
v / I r t variants r ∈ I r , ⊂ I / I r at to be produced at p ∈ O p / I r of model v ∈ I v , ⊂ I r / I r potentially produced in t ∈ T , ⊂ I r 

I v / I v 
l 

models, ⊂ I / I v of product line l ∈ L , ⊂ I v 

I d derivative pair (i, j) ∈ I d with i, j ∈ I v and j being a derivative of i 

I g generation pair (i, j) ∈ I g with i, j ∈ I v and j being the subsequent generation of i 

O all organizational units, o ∈ O 
O l product lines l ∈ O l , ⊂ O 

O p plants p ∈ O p , ⊂ O 

T planning horizon t ∈ T 
T a calendar years within the planning horizon a ∈ T a , ⊂ T 

T s 
i 

valid start periods T s 
i 

= { s i , . . . , ̄s i } , for project i ∈ I, ⊂ T 

T f 
i 

valid finish periods T f 
i 

= { f 
i 
, . . . , f̄ i } , for project i ∈ I, ⊂ T 

T p 
i 

valid processing period T p 
i 

= { s i , . . . , f̄ i } , for project i ∈ I, ⊂ T 

Parameters d i / d̄ i minimum / maximum duration of models i ∈ I v and engines i ∈ I e 
d 

t 
i, j / d̄ t 

i, j 
minimum / maximum target for time lag between model starts (i, j) ∈ I d 

f 
i 

/ f̄ i earliest / latest finish of i ∈ I
n̄ v 

l 
maximum number of simultaneous model starts per period in product line l ∈ O l 

n̄ r v ,τ maximum number of variant starts in τ = { 0 , . . . , t r v } periods after start of v ∈ I v 
c co2+ 

t cost of CO 2 cap exceedance 

c dis − / c dis + cost of negative / positive deviation from target time lag 

c sim + cost of positive deviation from target limit of simultaneous model starts 

c sal− cost of negative deviation from target sales 

c ov e + cost of overtime 

t r v time span after start of model v ∈ I v , in which the number of corresponding variant starts is restricted 

e r,t / ē r,t / e + e,r,t minimal emission of r ∈ I r in t ∈ T / maximal allowed emission of r ∈ I r in t ∈ T / additional emission of r ∈ I r , if e ∈ I e r is used in t ∈ T 
q 

t 
minimum desired sales in t ∈ T 

q̄ t,p maximum capacity in t ∈ T at p ∈ P
q p 

r,t,s, f 
preprocessed, forecasted sales of r ∈ I r in t ∈ T for start s ∈ T s r and finish f ∈ T f r 

s i / s̄ i earliest / latest start of i ∈ I
Variables q r,t sales of r ∈ I r in t ∈ T 

q e r,e,t sales of r ∈ I r in t ∈ T with engine e ∈ I e 
x s 

i,t 
= 1 if production of i ∈ I starts in t ∈ T p 

i 
or before, 0 otherwise 

x f 
i,t 

= 1 if production of i ∈ I finishes in t ∈ T p 
i 

or before, 0 otherwise 

x p 
r,t ,t ′ = 1 if production of r ∈ I r starts in t ∈ T p r and finishes in t ′ ∈ T p 

i 
, 0 otherwise 

z s e,r,t = 1 if assignment of e ∈ I e r to r ∈ I r starts in t ∈ T p e,r or before, 0 otherwise 

z f e,r,t = 1 if assignment of e ∈ I e r to r ∈ I r finishes in t ∈ T p e,r or before, 0 otherwise 

�dis −
i, j 

/ �dis + 
i, j 

negative or positive deviation from desired time lag for (i, j) ∈ I d 
�sim + 

l,t 
deviation from a desired limit of simultaneous model starts for l ∈ O l in t ∈ T 

�sal−
t negative deviation from target sales in t ∈ T 

�ov e + 
t,p overtime at p ∈ O p in t ∈ T 

�co2+ 
a exceedance of allowed emission in a ∈ T a 

Table 3 

Activity status as a function of the variables. 

Status Expression 

Activity i has not yet started in period t x s 
i,t 

! = 0 

Activity i starts in period t x s 
i,t 

− x s 
i,t−1 

! = 1 

Activity i is processed in period t x s 
i,t 

− x f 
i,t 

! = 1 

Activity i finishes in period t x f 
i,t 

− x f 
i,t−1 

! = 1 

Activity i has been finished before period t x f 
i,t−1 

! = 1 

(

s

m  

a

p  

l

v

t

d

i

a

v

r

r  

n

x

∑

t

∑

t

t

t

∑

z s e,r,t − z f e,r,t 

)
−

(
x s e,t − x f e,t 

)
≤ 0 ∀ r ∈ I r , t ∈ T p r , e ∈ I e r,t (15) 

In the following, we present various constraints that further re- 

trict start and finish times. For two successive generations of a 

odel, a time lag of 0 holds, i.e. the finish of the previous gener-

tion equals the start of the next generation (16) . Since our pre- 

rocessing ensures T 
f 

i 
= T s 

j 
for all (i, j) ∈ I g , we can simply formu-

ate multiple constraints that enforce equality of start and finish 

ariable for each period. Next, constraints (17) and (18) measure 

he deviation from the target distance between lead model and 

erivative. The length of model and engine lifecycles is restricted 

n (19) and (20) , i.e. we enforce a specific time span between start 

nd finish of corresponding activities. In (21) , we measure the de- 
v

5 
iation from the target limit of simultaneous model starts per pe- 

iod and product line. Constraint (22) ensures a gradual variant 

amp-up. If model v ∈ I v starts in period t ∈ T s v , we restrict the

umber of variant starts for periods τ ∈ [0 , t r v ] . 

 

f 
i,t 

− x s j,t = 0 ∀ (i, j) ∈ I g , t ∈ T f 
i 

(16) 

 

∈ T s 
j 

t ·
(
x s j,t − x s j,t−1 

)
−

∑ 

t∈ T s 
i 

t ·
(
x s i,t − x s i,t−1 

)
−�dis + 

i, j 
≤ d̄ t i, j ∀ (i, j) ∈ I d 

(17) 

 

∈ T s 
j 

t ·
(
x s j,t − x s j,t−1 

)
−

∑ 

t∈ T s 
i 

t ·
(
x s i,t − x s i,t−1 

)
+�dis −

i, j 
≥ d 

t 
i, j ∀ (i, j) ∈ I d 

(18) 

∑ 

∈ T f 
i 

t ·
(
x f 

i,t 
− x f 

i,t−1 

)
−

∑ 

t∈ T s 
i 

t ·
(
x s i,t − x s i,t−1 

)
≥ d i ∀ i ∈ { I v ∪ I e } (19) 

∑ 

∈ T f 
i 

t ·
(
x f 

i,t 
− x f 

i,t−1 

)
−

∑ 

t∈ T s 
i 

t ·
(
x s i,t − x s i,t−1 

)
≤ d̄ i ∀ i ∈ { I v ∪ I e } (20) 

 

 ∈ I v 
l 

(
x s i,t − x s i,t−1 

)
− �sim + 

l,t 
≤ n̄ 

v 
l ∀ l ∈ O 

l , t ∈ T (21) 
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Fig. 3. Illustration of two different sales forecasts depending on SOP and EOP. 
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∑ 

r∈ I r v 

(
x s r,t+ τ − x s r,t+ τ−1 

)
− M ·

(
1 − x s v ,t + x s v ,t−1 

)

≤ n̄ 

r 
v ,τ ∀ v ∈ I v , t ∈ T s v , τ ∈ [0 , t r v ] (22) 

Next, we describe sales q r,t as a function of SOP and EOP, i.e. 

 r,t is determined from a preprocessed, forecasted sales parameters 

 

p 

r,t,s, f 
. Neglecting cannibalization and uncertainty, q 

p 

r,t,s, f 
is the re- 

ult of forecasting in the company and based on the knowledge of 

arious domains [see e.g. 13 ]. As illustrated in Fig. 3 , there is one

orecasted sales curve for every valid combination of start s and 

nish f , captured in the parameter values for q 
p 

r,t,s, f 
. Depending 

n the chosen SOP and EOP for variant r, (27) assigns the corre- 

ponding vector of forecasted sales to q r,t . For this we make use 

f the binary variable x 
p 

r,t ,t ′ which equals 1, if variant r is planned 

o have SOP t and EOP t ′ . This is ensured by (23) and (24) , which

nly allow x 
p 

r,t ,t ′ > 0 for a start or finish in t respectively t ′ as well

s (25) , which forces x 
p 

r,t ,t ′ = 1 for the correct combination of t and

 

′ . While the combination of constraints (23) –(25) is sufficient to 

nsure a correct value of x 
p 

r,t ,t ′ , constraint (26) is included to im- 

rove performance. As a result of these constraints, q r,t is fully de- 

ned by summing up over all possible combinations of start and 

nish multiplied with the preprocessed, forecasted sales quantity 

 

p 

r,t,s, f 
(27) . Summing up over all variants that are potentially pro- 

uced in each period t , we can calculate the deviation from a de- 

ired target sales (28) as well as overtime at plants (29) . Both pa-

ameters q 
t 

and q̄ p,t typically are increasing in t . 

 

p 
r,t ,t ′ −

(
x s r,t − x s r,t−1 

)
≤ 0 ∀ r ∈ I r , t ∈ T s r , t 

′ ∈ T f r (23) 

 

p 
r,t ,t ′ −

(
x f 

r,t ′ − x f 
r,t ′ −1 

)
≤ 0 ∀ r ∈ I r , t ∈ T s r , t 

′ ∈ T f r (24) 

x s r,t − x s r,t−1 

)
+ 

(
x f 

r,t ′ − x f 
r,t ′ −1 

)
− x p 

r,t ,t ′ ≤ 1 ∀ r ∈ I r , t ∈ T s r , t 
′ ∈ T f r 

(25) 

 

∈ T s r 

∑ 

t ′ ∈ T f r 

x p 
r,t ,t ′ = 1 ∀ r ∈ I r (26) 

 r,t −
∑ 

t ′ ∈ T s r 

∑ 

t ′′ ∈ T f r 

(
q p 

r,t ,t ′ ,t ′′ · x p 
r,t ′ ,t ′′ 

)
= 0 ∀ r ∈ I r , t ∈ T p r (27) 

 

r∈ I r 
q r,t + �sal−

t ≥ q 
t 

∀ t ∈ T (28) 

 

r∈ I r p 
q r,t − �ov e + 

t,p ≤ q̄ t,p ∀ t ∈ T , p ∈ O 

p (29) 

Finally, in the last set of constraints, we measure the CO 2 cap 

xceedance as presented in the introduction, i.e. neglecting phase- 

n effects. The “allowed CO 2 emission” can be modelled as a re- 

ource overload constraint for which neither the demand nor the 

vailability is fixed in advance. Following EU legislation, resource 
6 
emand is the sales-weighted average of the portfolio emission 

hile resource availability depends on the sales-weighted aver- 

ge of the portfolio weight. Generally this leads to a non-linear 

esource overload constraint as stated in (30) . However, in pre- 

rocessing it is already possible to compute the allowed emis- 

ion of each individual variant as well as the emission resulting 

rom each engine assignment. Following a standard linearization 

pproach [e.g. 35 ], constraints (31) –(33) map the sales quantity of 

 variant in a period q r,t to the engine assigned in this period. Con- 

equently, only the assigned engine has q e e,r,t > 0 and we can calcu- 

ate the aggregated deviation from the emission target. To reduce 

he number of big-M constraints in our model, this linearization is 

nly done for those engine assignments that lead to higher emis- 

ions than e r,t . In consequence, constraint (34) calculates the actual 

mission of all variants as combination of the minimum emission 

er variant plus the additional emission of non-optimal engines. 

 

∈ T a 

∑ 

r∈ I r t 

∑ 

e ∈ I e r,t 

( e e,r − e r,t ) · q r,t ·
(
z s e,r,t − z f e,r,t 

)
− �co 2+ 

a ≤ 0 ∀ a ∈ T a (30) 

 

e 
r,e,t − M ·

(
z s e,r,t − z f e,r,t 

)
≤ 0 ∀ r ∈ I r , t ∈ T p r , e ∈ I e r,t (31) 

q r,t + q e e,r,t ≤ 0 ∀ r ∈ I r , t ∈ T p r , e ∈ I e r,t (32) 

 r,t − q e e,r,t + M ·
(
z s e,r,t − z f e,r,t 

)
≤ M ∀ r ∈ I r , t ∈ T p r , e ∈ I e r,t (33) 

 

∈ T a 

∑ 

r∈ I r t 

∑ 

e ∈ I e r,t 

[(
e r,t − e r,t 

)
· q r,t + e + e,r,t · q e e,r,t 

]
− �co 2+ 

a ≤ 0 ∀ a ∈ T a (34) 

.2. Solution approach 

Our model can be embedded in a rolling horizon. We differen- 

iate the planning horizon in three different parts as illustrated in 

ig. 4 . First, we use a frozen horizon that contains models which 

ad their SOP in the past or will have it in the very near future

typically less than five years). Even if models have their SOP in the 

rozen horizon, their EOP might still be an open decision. Second, 

e have a detailed planning part in which models, engines, and 

ariants are scheduled. Third, we have an initial planning part, in 

hich model introductions are scheduled, but engines and variants 

re not considered yet. Applying this model in a rolling horizon 

eads to regular updates of both input data and decisions. Modifi- 

ations in the input data could for instance relate to updates in the 

orecasted sales as well as changes of the portfolio or the product 

lant allocation. 

In general, our model can be considered as a goal programming 

pproach, where deviations from desired target levels are mini- 

ized. In order to focus on the goal deviations, constant cost co- 

fficients of one unit are assumed for all objectives. Thereby, we 

re only interested in pareto-optimal, i.e. non-dominated solutions. 

hese solutions are identified via lexicographic ordering and the ε- 

onstraint method, two well established multi-criteria optimization 

ethods as reviewed by Ehrgott [36] . 

When exploring the solution space, we differentiate between 

xternally given goals and managerial goals. As the CO 2 cap limit is 

iven externally and cannot be influenced, it has a higher priority 

han the remaining managerial goals �dis , �sim , �sal , and �ov e . In 

onsequence, we use lexicographic ordering to first minimize the 

O 2 cap exceedance and restrict the solution space to the mini- 

al CO 2 cap exceedance, before exploring trade-offs between the 

emaining goals. Note that we are still able to investigate the im- 

act of the CO cap by executing the subsequent steps twice, with 
2 
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Fig. 4. The current project schedule is to be extended in a rolling horizon scheme. 
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Table 4 

Data sets for the computational study (including baseline data set D2). 

Data Planning Horizon Variants Max size T s 
i 

Max size T f 
i 

D1 2015–2018 377 7 27 

D2 2015-2021 453 7 28 

D3 2015–2018 388 13 33 

D4 2015–2021 471 13 33 

D5 2015–2021 337 7 28 

D6 2015–2021 111 7 25 
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nd without restricting the feasible region to the minimal CO 2 cap 

xceedance. 

To efficiently explore trade-offs between the four remaining 

oals, we first determine the feasible region that may actually en- 

ail trade-offs. For this we determine all extreme solutions by solv- 

ng all permutations of the lexicographically ranked goals. 

In the model presented in the previous section, managerial 

oals are not restricted via additional hard constraints. Depending 

n the problem instance, it may however be necessary to restrict 

he time lag between derivatives or the resource consumption per 

eriod. Adding such constraints is straightforward and may be part 

f what-if analyses. 

. Numerical study 

In the following, we first characterize the baseline data set in- 

luding the definition of the goals. Starting from this baseline data 

et, we report the results of a computational study in which we 

nalyze the performance of our model for both the baseline data 

et and variations of this data set. 

.1. Test instance 

For our case study, a data set has been created in cooperation 

ith a major European automotive company. As a detailed plan- 

ing horizon, we consider the years from 2015 until 2021, i.e. the 

rozen horizon ends in 2015 and variants need to be planned until 

021. 

The portfolio considered consists of almost 150 models and 150 

ngines, from which 500 variants have to be created. Please note, 

he exact numbers of models and engines are not necessarily iden- 

ical. Not every engine can be used in every model, but variants 

an be build with multiple engines. As one of our aims is to ana-

yze the influence of the cap limit on CO 2 emission imposed by the 

uropean Union, we decided to only consider forecasted sales data 

or the European Market, which we received from our case com- 

any. This data covers the years 2015–2021 and was provided in 

015. Due to reasons of confidentiality, the portfolio structure used 

n this test instance is only based on products that are publicly 

nown until 2018. Hence, our data set does not contain any in- 

ormation about how the portfolio will change afterwards. In con- 

equence, we neither removed current products nor added new 

roducts. Instead, a next generation product has been defined for 

ach product available on the market until 2018, to ensure that the 

ataset has future product introductions to plan. For each model, 

ngine, and variant we defined realistic time windows as described 

n the previous section. 

Since we only consider forecasted sales data for the European 

arket while plants are shared for world-wide demand, we ad- 

usted plant capacities to the European share of the demand ac- 

ordingly. 
7 
While we were able to use real-world data for the portfolio 

tructure as well as corresponding forecasted sales data, we had 

o simplify the data for CO 2 emission of engines assigned to vari- 

nts due to two reasons. First, CO 2 emissions also depend on other 

actors than only on the engine assignment. Second, our model 

llows to assign engines to variants that have never been devel- 

ped and sold in that combination before. Hence, the company is 

ot able to provide data for all potential engine-variant combina- 

ions. However, we are able to use realistic data for our emissions. 

nstead of simply using average data, we created a linear regres- 

ion model from real-world data. Our regression model is build on 

ore than 120 observations and has an R 

2 of 88%. In a stepwise 

inear regression approach, we defined the following variables for 

ur regression model: variant weight, engine size, fuel type, chas- 

is type, sport’s edition, and year of the last update. Assuming that 

he company always assigned the latest engines, the year of last 

pdate serves as a proxy for the yearly efficiency improvement, i.e. 

educed emission due to technological progress. 

In general, our goals are defined as described by the objective 

unctions and corresponding constraints in the previous section. 

oal deviations on the model level, i.e. �dis and �sim , are mea- 

ured for the entire planning horizon excluding the frozen horizon. 

n contrast, goal deviations on the variant level, i.e. �sal , �ov e and 

co2 , are only measured for the detailed planning horizon. Further- 

ore we measure entire calendar years, i.e. if the frozen horizon 

r the detailed planning horizon ends in the middle of a calendar 

ear, we still measure the entire year. 

.2. Computational study 

To study the computational performance of our model, we solve 

he baseline data set and several variations as summarized in 

able 4 (in which the baseline data set is D2). The variations in- 

lude different sizes of time windows, different lengths of the 

lanning horizon, and number of variants. Due to the inherent 

ogic of our planning problem, it is not possible to fully isolate 

hese variations. For instance, the number of variants to be consid- 

red is indirectly influenced by both the size of the time windows 

nd the length of the planning horizon. Hence, instead of trying to 

solate individual modifications, we ensured that the general struc- 

ure of our data set is maintained. 
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Table 5 

Impact of the number of goals on the computation time. 

Data set Minimal �co2 Avg (and SD) Computation Time [s] 

1 Goal 2 Goals 3 Goals 4 Goals 

D1 yes 8 (5) 195 (482) 1,016 (1,496) 2,355 (1,626) 

no 2 (1) 81 (187) 812 (1,292) 1,830 (1,692) 

D2 yes 66 (46) 98 (54) 250 (385) 299 (299) 

no 28 (37) 351 (962) 921 (1,414) 1,072 (1,429) 

D3 yes 10 (3) 24 (17) 598 (1,073) 3,114 (946) 

no 4 (2) 14 (11) 258 (725) 2,545 (1,555) 

D4 yes 75 (26) 102 (33) 162 (66) 253 (174) 

no 47 (77) 553 (1,079) 1,109 (1,385) 2,297 (1,543) 

D5 yes 48 (28) 55 (33) 88 (51) 47 (28) 

no 3 (11) 41 (76) 602 (1,073) 805 (1,366) 

D6 yes 5 (1) 5 (1) 8 (5) 8 (6) 

no 1 (1) 4 (8) 4 (3) 6 (6) 

Table 6 

Impact of the number of goals on the optimality gap. 

Data set Minimal �co2 Avg (and SD) Optimality Gap [%] 

1 Goal 2 Goals 3 Goals 4 Goals 

D1 yes 0.0 (0.0) 0.0 (0.0) 1.7 (5.4) 9.1 (15.7) 

no 0.0 (0.0) 0.0 (0.0) 0.8 (4.0) 5.63 (10.7) 

D2 yes 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

no 0.0 (0.0) 0.0 (0.0) 0.6 (2.0) 1.6 (3.5) 

D3 yes 0.0 (0.0) 0.0 (0.0) 0.1 (0.5) 20.1 (26.4) 

no 0.0 (0.0) 0.0 (0.0) 0.1 (0.3) 3.4 (4.7) 

D4 yes 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

no 0.0 (0.0) 0.0 (0.1) 3.7 (11.8) 14.3 (23.7) 

D5 yes 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

no 0.0 (0.0) 0.0 (0.0) 0.8 (3.3) 0.9 (3.3) 

D6 yes 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

no 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 

Table 7 

The impact of the number of goals on the model size. 

# Goals ∅ Rows [%] ∅ Columns [%] ∅ Non-Zeros [%] 

1 100 100 100 

2 127 127 162 

3 130 130 205 

4 132 133 251 
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Fig. 5. Lexicographic trade-off between two goals (cell label = absolute, cell color 

= relative). 
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Tables 5 and 6 give the results of the determination of extreme 

oints as described in Section 3.2 . In each table, the second col- 

mn shows, if the CO 2 cap is considered or not. Columns 3 - 6

eport the computations times (in Table 5 ) and the optimality gap 

in Table 6 ), if one to four managerial goals are considered. For our 

umerical analysis, all models are solved with Gurobi 8.0 with a 

ime limit of 3,600 s and Gurobi’s default optimality gap of 0.01%. 

The more managerial goals are considered as either objective or 

onstraint, the higher the average computation time is ( Table 5 ). 

he average model size also increases with the number of goals 

s summarized in Table 7 . If the CO 2 cap exceedance is mini- 

ized for an instance including the years 2020 and 2021 for de- 

ailed planning, the computation time is lower than for instances 

n which emission is not considered. This is because for consider- 

ng the CO 2 cap first, the model minimizes sales of those variants 

hat would otherwise lead to a CO 2 cap exceedance and thereby 

educes the solution space considerably. Finally, our results show 

hat the computation is relatively robust against the length of the 

lanning horizon, but strongly affected by time window size and 

he number of variants. 

While most models can be solved to optimality, there are five 

odel executions with a high relative optimality gap > 30% . In four 

f these five executions, the objective was to minimize �sim as a 

ourth goal leading to absolute deviations ≤ 6. Generally, the size 
8 
f the optimality gap ( Table 6 ) correlates with the length the com- 

utation time, i.e., instance goal combinations with a large opti- 

ality gap tend to require long computation times and vice versa. 

. Managerial insights 

.1. Minimal goal deviations and goal trade-offs 

To begin with, we analyze minimum goal deviations for all 

oals individually. While we are able to obtain solutions with- 

ut any goal deviation for �sim and only a minor deviation of 
ov e = 5k units, we are not able to reach the target level for 
dis = 384 months, �sal = 238k units, and �co2 = 26 tons. The 

mplications of �co2 and necessary changes to achieve the required 

arget level for the CO 2 cap limit are discussed in the next subsec- 

ion. For illustrative purposes, the remainder of this subsection, is 

ocused on the interaction between managerial decisions, without 

onsidering CO 2 . 

Even though we find a solution with �sim = 0 , i.e. a schedule 

ithout any parallel model SOPs, the corresponding goal is still 

hallenging for the company. Once other goals are being consid- 

red and we are searching for pareto-optimal solutions, there is 

ypically a trade-off between corresponding goals. Fig. 5 illustrates 

he impact of each managerial goal on each other goal. More pre- 

isely, this matrix is to be interpreted as “row impacts column”. 

or instance, if we first minimize �dis (row), then �sim (column) 

ncreases by 9 simultaneous SOPs which translates into a relative 

ncrease ≥ 100% and is colored accordingly. 

After lexicographically optimizing all permutations of goal se- 

uences, we obtain the extreme points of the pareto-optimal so- 

utions ( Fig. 6 a). The interpretation of this parallel coordinates 

hart [37] is as follows: There is one axis per goal and one curve 

er pareto-optimal solution. The intersection of a solution curve 

nd an axis represents the goal deviation of this solution with re- 
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Fig. 6. Trade-offs need to be addressed in the interest of the overall company. 

Fig. 7. Impact of emission on the pareto surface (cell label = absolute, cell color = relative). 
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pect to the goal given on the axis. In general, we observe a wide

ange of optimal values for the individual goals. While less obvious 

or �dis and �sim , there is a clear trade-off between �sal and �ov e . 

To study the impact of �dis and �sim in more detail, the ε- 

onstraint method is applied. For illustrative purposes, the interac- 

ion between �dis , �sim and �sal is presented in Fig. 6 b. If �sim = 0 ,

e can observe that a change in �dis from 528 to 576 months (+9 

) leads to a reduction in �sal from 535k to 409k units (-24%). Al- 

hough still observable, this effect is much weaker for higher val- 

es of �sim . Furthermore, it can be seen that �sal generally de- 

reases with increasing �dis or �sim . 

.2. Impact of the CO 2 limit 

Without considering any other goal, the minimal exceedance of 

he CO 2 cap is 26 tons, whereby deviations only occur in 2020 and 

021. If the CO 2 cap exceedance is restricted to the minimal value 

f 26 tons before exploring managerial trade-offs, the changes to 

he pareto-optimal solutions are illustrated in Fig. 7 . For instance, 

hile �dis and �sim had no impact on �ov e in Fig. 7 a, �ov e is 

trongly influenced by all goals in Fig. 7 b. In contrast, �dis , �sim 

nd �sal are less sensitive to the other goals in Fig. 7 b. 

However, the pareto surface does not only change it’s shape, 

ut also the range of individual goal deviations. As illustrated in 

ig. 8 a to b, most goal deviations are higher and all goal deviation

anges become smaller. The smaller ranges imply a reduced degree 

f freedom for the decision maker. This observation is in line with 

ig. 8 c, where it is visible that the model tries to minimize sales
9 
rom 2020 onward, as the current yearly efficiency improvement is 

ot sufficient to compensate for the reduction of the CO 2 cap in 

020. Without further improvements of the efficiency, high penal- 

ies will occur from 2020 onward. Even if sales is reduced, such a 

enalty can amount to more than 1 billion for the baseline data 

et. 

As our case company is obviously not able to fulfill its goals 

ith the current trend in efficiency improvement per year, addi- 

ional measures have to be developed in order to comply with the 

educed cap limit from 2020 onwards. In general, various courses 

f action can be evaluated with our model. First, the company 

an determine the required yearly efficiency improvement rate, i.e. 

ow much the CO 2 emission of the model portfolio has to be re- 

uced each year. Based on our regression model, the current im- 

rovement rate is about 1 gram per year. Iteratively increasing 

he yearly efficiency improvement, it turns out that a total of 7 

ram per year is required to compensate for the reduced cap limit 

see dotted line in Fig. 8 ). Starting from an average emission of 

30 g/km, this increased efficiency improvement translates into a 

early CO 2 reduction of about 5 %. Second, the company can ana- 

yze the impact of technical changes on those models that are sold 

n a particular high quantity or have a particular high emission. 

hird, the company can reduce the emission of its model portfo- 

io by offering hybrid or fully electrical models. Within the scope 

f this paper, it is not possible to fully evaluate and compare these 

ourses of action since other types of emission, (e.g. NO x ), financial 

spects as well as cannibalization among different products would 

ave to be taken into account. However, in the following we dis- 
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Fig. 8. The impact of emission on other goals. 

Table 8 

Minimal �sal [k units] for yearly efficiency improvement and target growth rates (compared to the baseline data). 

Target Growth Rate [ % 
year 

] 

Efficiency 5 10 15 Avg 

Improvement [ g 
year 

] �sal (%) �sal (%) �sal (%) �sal (%) 

0.5 2,269 .3 ( + 10) 3,200 .0 ( + 56) 4,134.0 ( + 101) 3,201 .1 ( + 56) 

1.0 1,346 .0 ( - 35) 2,056 .1 (N/A) 2,823.3 ( + 37) 2,075 .1 ( + 1) 

1.5 0 .0 ( - 100) 238 .2 ( - 88) 1,021.7 ( - 50) 420 .0 ( - 80) 

Avg 1,205 .1 ( - 41) 1,831 .4 ( - 11) 2,659.7 ( + 29) 

c

m

m

w

g

1

1

a

t

t

y

t

l  

y

t

t

p

f

p

f

uss three different perspectives with respect to their impact on 

eeting the CO 2 cap limit. 

First, we study the interaction of the yearly efficiency improve- 

ent and the yearly target growth rate on �sal . To this end, 

e altered both the yearly efficiency improvement and the target 

rowth rate. Starting from our baseline data (1.0 gram per year and 

0 % per year), each parameter was multiplied with either 50 % or 

50 % leading to eight different modifications. The result of this 

nalysis is summarized in Table 8 . For each modification we report 

he resulting �sal as well as the relative change of �sal compared 

o the baseline with an efficiency improvement of 1.0 gram per 
Fig. 9. Total amount of emissions above the CO 2 cap as

10 
ear and a target growth rate of 10 % per year. Since averages in 

he last column range from −80 % to +56 % while averages in the 

ast row range from −41 % to +29 % , we can conclude that the

early efficiency improvement has a higher impact on �sal than 

he yearly target growth rate. Furthermore, we see that the sales 

arget can only be met with an increased efficiency of 1.5 gram 

er year and a reduced growth rate of 5 % per year. 

Second, we consider that in recent years, an increasing demand 

or sport utility models (SUVs) has been observed. To test the im- 

act of a continued increase in demand for SUVs, we double the 

orecasted sales parameter q r,t,s, f for all SUV-variants that are sold 
 a function of additional efficiency improvement. 
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fter the frozen horizon (after 2015). This modification not only 

hanges the sales of specific models that have a relatively high CO 2 

mission, but also changes the total sales in each period. As visible 

n Fig. 9 , the deviation from the allowed CO 2 emission is generally 

igher if the demand for SUVs is higher. However, with an addi- 

ional yearly efficiency improvement of 6 gram per year (similar 

o the baseline case), we are able to find a solution that does not 

xceed the limit of CO 2 emission while it completely fulfills target 

ales in each period. 

Third, inspired by the current trend to move away from diesel 

ngines, we tested the impact of all customers switching from 

iesel to gasoline. According to our regression model, the CO 2 

mission of diesel variants is nearly 20 g below the emission of 

asoline variants. To simulate a scenario, in which all customers 

witch from diesel to gasoline, we simply remove the efficiency ad- 

antage of diesel engines in our preprocessing, i.e. we still assign 

iesel engines but increase e r,t . In contrast to the previous modifi- 

ation, sales remains unchanged in this scenario. Again, the cap ex- 

eedance generally increases compared to our baseline data set as 

llustrated in Fig. 9 . However, the required efficiency improvement 

o compensate for the reduced cap limit on CO 2 emission increases 

rom 6 gram per year to 8 gram per year (+33%). Increasing effort s

n efficiency improvement would thus be required to stay within 

he CO 2 cap. 

. Conclusions 

In this paper, a new model for the strategic planning of 

latform-based product introductions has been presented. As a 

heoretical contribution, this model captures the planning prob- 

em as presented in Section 1 by integrating scheduling, platform- 

lanning, and resource leveling as a multi-objective optimization 

roblem. Unlike classical optimization models in the resource lev- 

ling problem, we treat start and finish as separate decisions. De- 

ending on the decision of start and finish, our model allows to 

oad different parameters for sales, i.e. resource demand. Like this, 

t allows to analyze key trade-offs in strategic planning of new 

roduct introductions. 

As a practical contribution, our model serves decision makers 

n various tasks of strategic planning as a sound methodological 

asis. It not only increases the awareness for pareto-optimal solu- 

ions and corresponding trade-offs, but also allows for the eval- 

ation of various courses of action. Instead of investing time in 

he design of solutions, decision makers can focus on the detailed 

valuation and comparison of promising solutions. In consequence 

ur model promises a significant increase in both effectiveness and 

fficiency of strategic planning. Effectiveness increases since our 

odel specifically searches for pareto-optimal solutions. Efficiency 

ncreases as more solutions can be evaluated in shorter time. The 

atter is of special importance in times of technological change, e.g. 

uring the current transition to an electrified model portfolio. 

Due to the characteristics of our modeling approach, some ef- 

ects such as sales cannibalization or phase-in effects in the CO 2 

egulation would require additional linearization and are hence not 

asy to integrate. However, our model allows the consideration of 

ome of the most relevant goals for strategic planning and enables 

ecision makers to analyze various modifications of the input data 

uch as different technology roadmaps or different sales forecasts. 

Future research could focus on both modeling aspects and con- 

iderations related to the solution procedure. In order to exploit 

he full potential of our model, an improved approach to incor- 

orating estimated sales figures could be studied. This approach 

ould address for instance cannibalization, but possibly also de- 

elop ways to deal with uncertainty and lead to robust solutions. 

ext, to analyze the impact of the distribution of costs over time, 

 relevant question is to what extent goal deviations in the far fu- 
11 
ure can be discounted in favor of reducing goal deviations in the 

ear future. Eventually the model can be extended in various ways. 

ased on improved sales data it seems promising to analyze finan- 

ial impacts in more detail. Useful applications are the influence 

f strategic schedules on the maximization of net present value 

s well as the minimization of fluctuations in the overall contri- 

ution margin. Furthermore, the integration of platform planning 

ould be extended by modeling more advanced product-module 

elationships such as mode identity [38] as well as the compatibil- 

ty of different module types. Finally, with respect to the solution 

rocedure, the development of a heuristic could also be consid- 

red. Even though our model is able to cope with reasonably-sized 

roblem instances, a heuristic solution procedure might allow for 

 more interactive, real-time use of the model. 
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