Opportunities to improve resilience and health traits in dairy breeding programs

Han Mulder, Marieke Poppe, Mathijs van Pelt, Roel Veerkamp

Acknowledgement

Importance of resilience and health

- Trouble-free cows
- Cows that need less labour
- Cows that need less antibiotics
- Cows that are adapted to disturbances
 - Climate change
 - More variation in feed quality

Requirements genetic improvement

Trait	Bull A	Bull B
EBV subclinical mastitis	108	88
Incidence subclinical mastitis	41	58
EBV somatic cell count	107	90
Average somatic cell count	77,000	139,000

Requirements genetic improvement

$$\Delta G = \frac{\sum (i * r * \sigma_a)}{\sum L}$$

• Trait has genetic variation (= σ_a)

- The trait can be recorded at large scale (accuracy = r)
 - Large reference population for genomic selection
- Trait is included in selection index (selection intensity = i)
- Genomic selection lowers generation interval (= L)

Genetic trend claw health The Netherlands

- A positive genetic trend for claw health
- Decrease in percentage of cows with claw disorders

Defining resilience indicators, genetic analysis and validation

Resilience in dairy cattle

The ability to be minimally affected by disturbances

AND/OR

to quickly recover

Project aim PhD Marieke Poppe

- To develop resilience indicator traits that can assist in genetic selection to improve resilience in dairy cattle
 - ... using daily milk yield records

Whv?

Developing resilience indicators

- Resilience theory Marten Scheffer
 - Longitudinal data series

Scheffer et al. 2018 Quantifying resilience of humans and other animals. PNAS. 115:11883-11890

• Systems with high variance and high autocorrelation are prone to a critical transition, e.g. from healthy to sick

Application to daily milk yield data

Steps:

1. Calculate variance and autocorrelation based on daily milk yield
2. Genetic analysis
3. Validation

Poppe et al. 2020; J. Dairy Sci. 103:1667-1684

Calculate resilience indicators

- 200,000 first lactation cows
- Automatic milking system
- Fit quantile regression curve
- Calculate In-transformed variance and autocorrelation of deviations

Resilience indicators examples

Low variance & low autocorrelation **Resilient (?)**

High variance & high autocorrelation *Not resilient (?)*

Genetic analysis:

are the resilience indicators heritable?

```
Resilience indicator = \mu + AFC + LL + HYS + animal + e

AFC = age at first calving

LL = lactation length

HYS = herd*year*season
```

	h² (SE)	r _g with milk yield (SE)
Variance	0.21 (0.009)	0.79 (0.02)
Autocorrelation	0.09 (0.006)	0.16 (0.04)

Poppe et al. 2020; J. Dairy Sci. 103:1667-1684

Validation:

do the indicators contain info about resilience?

- No golden standard
- 2 different validation methods

- Assumption: resilient cows are healthy and live long
- Genetic correlations with health traits and longevity
 - MACE method
 - Adjusted for mean milk yield

	Udder health	Claw health	Ketosis resistance	Longevity
Variance	-0.32	-0.04	-0.33	-0.34
Autocorrelation	-0.19	-0.01	-0.10	-0.03

Poppe et al. 2020; J. Dairy Sci. 103:1667-1684

- Health traits and longevity ≠ resilience
- Cows with good EBV for resilience indicators → low yield response to actual disturbances and quick recovery?
- Actual disturbance: Unknown disturbance affecting <u>herd</u> milk yield

~71,000 cows

WAGENINGEN UNIVERSITY & RESEARCH Poppe et al. 2021; J. Dairy Sci. 104:8094-8106

Results validation method 2

Genetic correlations between resilience indicators and 'response traits'

	Variance	Variance partial	Autocorrelation
Depth drop	0.93 (0.04)	0.82	-0.13 (0.12)
Length drop	-0.001 (0.29)	-0.18	0.97 (0.35)
Total yield loss	0.90 (0.05)	0.74	-0.01 (0.13)

Poppe et al. 2021; J. Dairy Sci. 104:8094-8106

Genetic improvement resilience

Economic value resilience

- Resilient cows need less labor
 - Less treatments
 - Less attentions either from sensors or human eye

- € 19 per genetic sd of In variance
 - (10 minutes per alert, 5% alerts/day, € 15/hour)

Dairy cattle breeding program

- Simplified breeding goal:
 - Milk yield (30%)
 - Udder health (20%),
 - Longevity (30%)
 - Lower variance (= higher resilience) (20%)

Genomic selection scheme

Dairy cattle breeding program

Trait	Change when including	
	resilience in index	
Milk production	-6.3%	
Longevity	1.4%	
Udder health	1.0%	
Resilience	102.6%	
Breeding goal	3.0%	
Alert probability	-8.4%	

Conclusion

Variance and autocorrelation can be used as resilience indicator:

- Good heritabilities and genetic variation
- Variance: related to milk loss, ketosis, udder health, longevity
- Autocorrelation: related to recovery, udder health, ketosis

Outlook: big data offer opportunities to breed for improved resilience

