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1.1 The aromatic world of plants

1.1.1 Plant specialized metabolites

Plants have existed on this earth for over 400 million years and along the way have
diversified into the incredibly vast kingdom we observe today. Needless to say, humans
rely on plants for nutrition, their carbon dioxide storage potential, and as a source of
raw material for numerous products. In addition, with over 400,000 vascular plant
species1 collectively producing between 200,000 and 1 million chemical compounds2,
the plant kingdom’s dazzling chemical diversity is also of great value and potential
to humankind. For millennia, humans have been finding new uses for plants and
plant compounds far beyond their value as nourishment - as pharmaceutical agents,
preservatives3, flavouring compounds4 and dietary supplements5, pesticides6 and
insecticides7, cosmetics and perfumes8, and even as a way to alleviate the ever-
growing and unsustainable demand for plastics9 (see Osbourn & Lanzotti 10 for a
more comprehensive review of these applications).

Medicinal plant usage is thought to date as far back as 60,000 BC11, with the oldest
written evidence of drug preparation from plants, a Sumerian clay slab, believed to be
around 5000 years old12. With the isolation of morphine from opium poppy in 1817
and quinine to treat malaria from the bark of the cinchona tree in 1820, the field of
natural product chemistry bloomed and prospered. Now, 25%-50% of marketed drugs
are of natural origin13,14, derived from over 10,000 plant species15. Pyrethrins derived
from Chrysanthemum cinerariifolium 16, azadirachtin from neem plants17 and, prior
to its numerous negative side effects being discovered, nicotine from nightshades18

have been used to varying degrees as sources of insecticides, with the current demand
worldwide for the pyrethrum flowers in excess of 25,000 tons annually, satisfied by
the estimated 150 million flowers still hand-harvested daily in Kenya, Tanzania, and
Ecuador19. Vanillin and caffeine are two popular examples of plant-derived molecules
used in food additives and flavouring agents. Various molecules associated with floral
scents have found their way in to the growing fragrance and aromatherapy industries,
either individually or as part of volatile (essential) oils. Given that a vast majority of
plant species have never even been described, much less surveyed for their chemical
constituents, it is plausible and likely that many new sources of valuable plant-derived
materials remain to be discovered.

A large percentage of this chemical diversity in plants consists of specialized metabo-
lites (SMs, previously secondary metabolites), compounds not required for the pri-
mary biochemical pathways underlying cell growth and reproduction. Plants have
been in an intense and ongoing evolutionary battle with their environment, and thus
have evolved to produce a vast number of SMs specifically involved in environmental
adaptation, such as phenolics, terpenes, alkaloids etc. To compensate for the rela-
tively stationary nature of plants, these compounds often make up plant odour and
colour, allowing them to be sensed from far and wide. SMs typically make up less
than 1% of the total carbon in a plant species13 and arise from a limited number of
simple chemical scaffolds which are then chemically modified by an array of diverse
enzyme families to produce the vast and intricate language of natural products on
display.
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SMs help defend against invading herbivores and pathogens, either directly20 or by
recruiting their natural enemies as allies21; control seed germination in unfavourable
conditions22; regulate symbiosis23; impede competing plant species24; attract polli-
nators to ensure successful propagation25; and even act as UV absorbing compounds
to prevent leaf damage by light26. From a human perspective, SMs have found uses
in antibacterial, antiviral, and anti-fungal drugs, chemotherapeutic agents, agents
against inflammation, diabetes and heart diseases, in crop protection and in con-
sumer fragrances, to name just a few.

Despite the fact that we have evidence of the function of quite a few SMs as dis-
cussed above, such evidence has not yet been found - or perhaps does not exist - for a
majority of these compounds. One explanation of the staggering SM diversity comes
from the Screening Hypothesis27, which recognizes that potent biological activity is
a rare property for any molecule, and hypothesizes that organisms are compelled to
generate as much chemical variability as possible to increase the probability of finding
a molecule with a certain function. Thus, the appearance of specialized metabolism
may have originated from the interplay of creating large numbers of chemical struc-
tures and screening these compounds in their environment for new useful functions.
Other explanations consider synergistic effects between compounds28, complex ge-
netic correlations between defence traits29, multi-functional roles for metabolites30,
diversity in the numbers and types of enemies, and plant-herbivore co-evolution31 as
possible contributors to the immense assortment of plant SMs.

1.1.2 Terpenes and terpenoids

Terpenes and their modified derivatives, terpenoids, form one of the largest families
of SMs, with many roles in plants as toxins, attractants, and signalling agents32,
all derived from the same five-carbon isoprenoid units coupled together into 10-
carbon (derived from the geranyl diphosphate substrate), 15-carbon (from the farnesyl
diphosphate FPP substrate), and even 2000-500,000-carbon chains, as is the case for
rubber. These chains are produced and modified by different SM enzyme families, the
most prominent of which are the terpene synthases (TPSs). Many terpene volatiles
are direct products of TPSs, but others are formed through transformation of the
initial products by oxidation, dehydrogenation, acylation, and other reaction types,
each of which is catalysed by a group (or several groups) of related SM enzymes
families.

The terpenoid-related SM producing enzyme families that we know of are quite dis-
tinct from each other in terms of sequence, structure, general organization, and
distribution across plant species33. However, they all seem to serve the same aim,
namely to provide the potential to produce many different chemical structures by
means of limited genetic resources. This compels these families to share certain
properties that set them apart from enzymes involved in primary metabolism. This
includes their proclivity to act on multiple substrates, catalyse multiple reactions, or
produce multiple products34. In addition, these enzymes tend to have little correla-
tion between their levels of sequence similarity and the chemical similarity of their
respective substrates, intermediates and products33. The high levels of sequence di-
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versity in SM enzymes is intrinsically linked with the inbuilt flexibility with regard to
the chemical scaffolds they can modify or produce35. Orthologous genes may encode
enzymes for different SMs36 and repeated independent evolution of SM enzymes
has been observed from homologous genes which are not necessarily orthologous35.
Many of these enzyme families work in an assembly line fashion, to produce terpenes
and further modify these into more complex terpenoids with altered properties37.

The name terpene originates from turpentine, derived from terpenoid resins found in
coniferous trees38. Since then humans have found numerous industrial uses for this
metabolite class, ranging from the manufacture of biopolymers and inks39, flavours
and fragrances40,41, pharmaceuticals and cosmetic products42–44, biofuels45, and nat-
ural rubber46. Traditionally, terpenoid compounds are derived from harvested plant
parts via steam distillation, solvent extraction, and cold pressing. However, the
amount of terpenes produced by a given plant species is typically minute, requir-
ing large-scale unsustainable plant harvesting to extract industrial levels of product.
This is compounded by an ever-increasing demand for these compounds, and dras-
tically shrinking natural resources due to over-exploitation47, modern agricultural
practices48, climate change and natural disasters49. On the other hand, the com-
plexity of these molecules makes chemical synthesis inherently difficult and expensive,
even disregarding the environmentally unfriendly production processes involved. To
counter these issues, bioproduction of terpenoids via microbial fermentation or via
biocatalysis of isolated enzymes and natural precursors provides an excellent alterna-
tive.

Development of such bioproduction routes involves the isolation and characterization
of plant TPSs and other enzymes involved in the biosynthetic pathway to identify
those producing the desired terpene products, followed by optimization of these en-
zymes to allow them to perform favourably in their new environment. In this thesis I
mainly focus on the plant sesquiterpene synthase (STS) enzyme family, consisting of
TPSs which utilize the C15 FPP as substrate to collectively produce over 300 known
monocyclic, bicyclic, and tricyclic sesquiterpenes50.

1.1.3 A history of sequence-structure-function relationships in sesquiter-
pene synthases

A variety of isoprenoids and terpenoids were successfully isolated from crude plant
extracts many decades ago with DerMarderosian et al. 51 providing a comprehensive
overview. Research over many years has also established common carbocationic reac-
tion mechanisms for plant STSs50, describing the formation of seven parent cations
that determine the overall structure of the final sesquiterpenes. However, despite
our detailed knowledge of these mechanisms, relatively little is known about their
structural basis - i.e. how do various residues and structural features of these diverse
proteins mediate substrate binding and the numerous cyclization, rearrangement, and
modification reactions that follow?

The amino acid sequences of these enzymes provide some answers to this question.
Plant STSs are generally 550-580 amino acids long and lack the characteristic N-
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Figure 1.1: Schematic view of the
TEAS-farnesyl hydroxy-phosphonate
(FHP) complex. Blue rods repre-
sent α-helices in the N-terminal do-
main; orange rods represent α-helices
in the C-terminal domain. Loop re-
gions shown in green are disordered
in the native TEAS structure. Motifs
and the helix kink discussed in the text
are labelled.
Image adapted from Starks et al. 52

terminal transit peptide found in mono-TPSs. This causes the translation products
of STS genes to localize within the cytosol where they come into contact with vary-
ing concentrations of their preferred substrate, FPP. The diphosphate moiety of this
substrate is captured by a conserved RXR motif and divalent metal ions like Mg2+ or
Mn2+ which are themselves bound by motifs DDXXD and NSE/DTE, at the entrance
of the active site52 (Figure 1.1). This allows the hydrophobic moiety to enter the
active site cavity and undergo cyclizations and rearrangements to produce sesquiter-
pene products. Plant STSs share between 30-99% sequence identity but much of
this corresponds to phylogenetic or taxonomic relationships between plant species
rather than the types of sesquiterpenes produced50. Examples exist on both ends of
the spectrum, with nearly identical enzymes producing chemically dissimilar products
and enzymes sharing less than 30% sequence identity producing the exact same prod-
ucts. Thus, protein structural information was needed to understand the mechanisms
behind these enzymes. The first experimentally solved plant terpene synthase struc-
ture was 5-epi-aristolochene synthase from Nicotiana benthamiana (TEAS), released
in 199752. This was eventually followed by numerous plant STS structures, plant
mono-TPS structures (which sometimes share very high degrees of sequence identity
and structural similarity with plant STSs), and bacterial and fungal STS structures
which share little sequence identity but have the same structural fold and are capable
of producing a number of the same sesquiterpenes. Mutational studies swapping
residues or stretches of sequence between two closely related STSs also provided
valuable knowledge on areas in the protein connected with catalytic activity. In this
thesis we focus on plant STSs, which have a tertiary structure as shown in Figure
1.1, consisting entirely of α-helices connected by short loops and turns, organized
into two structural domains. The active site is a hydrophobic pocket formed by six
α-helices with two loops on the surface closing it off.
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The determination of the TEAS structure both alone and in complex with two FPP
substrate analogs helped elucidate the function of the highly conserved DDXXD motif
in coordinating two of the Mg2+ ions required for diphosphate binding52. The third
Mg2+ ion is ligated by residues in the more variable NSE/DTE motif. Inspection of
changes in folding upon binding the substrate analog indicated that the C-terminal
J-K loop becomes ordered on substrate binding to seal the active-site pocket from
surrounding solvent, positioning the residues in another conserved STS motif, RXR,
in close proximity to the C1 hydroxyl group of the substrate. The combined positive
charges of the Mg2+ ions and the two Arginines from the motif direct the diphosphate
away from the hydrophobic pocket. Similarly, two residues in the so-called ”kink”
of helix G direct the cationic end of the farnesyl chain into the hydrophobic active
site, poised for modification and further carbocationic rearrangements52. Modelling a
related vetispiradiene synthase from Hyoscyamus muticus (HVS) with TEAS as tem-
plate indicated highly similar active site residue positioning, with chimeric constructs
of TEAS and HVS producing a mixture of 5-epi-artistolochene and vetispiradiene53.
From this it was hypothesized that specificity depends on the determination of the
active site conformation by the surrounding layers of residues. This was followed up
with the identification of nine residues responsible for the conversion of specificity
from TEAS to HVS, via mutational analysis53,54. Over the years, the structures
of multiple TEAS mutants with different substrate analogs have been solved, each
leading to novel insights into the underlying mechanisms involved. The Y520F mu-
tant demonstrated the presence of a neutral intermediate, germacrene A, which is
re-protonated and modified again to produce the final product55. Solving TEAS with
cis and trans substrate analogs shed light on the similarities in catalytic mechanisms
for producing cisoid and transoid sesquiterpenes56. Another seminal study57 solved
multiple crystal structures of TEAS and a four-residue mutant in complex with two
substrate analogs and three sesquiterpene molecules, substantiating the role of the J-
K loop in shielding the active site to allow for multiple reactions to occur before final
product release. Product profiles of these proteins were compared across a variety
of pH and temperature conditions, demonstrating that minor product concentrations
can depend on extrinsic environmental conditions.

The structure of δ-cadinene synthase (DCS) from Gossypium arboreum (tree cotton)
was solved in 2009, containing a second DDXXD motif instead of the more common
NSE/DTE motif found in 90% of characterized plant STSs58. A number of studies
on cadinene synthases from different species offer evidence for different reaction
schemes59–61, demonstrating that some sesquiterpenes, such as those derived from
the cadalane skeleton, can arise from multiple different reaction paths.

2011 saw the release of the structure of a three-domain bisabolene synthase from
a coniferous species, Abies grandis 62, establishing the evolutionary link between di-
and sesqui-TPSs. This species contains the famed 52 product γ-humulene synthase
and 34 product δ-selinene synthase63, both of which were also the target of extensive
mutational and directed evolution studies to determine residues connected to STS
promiscuity64,65.
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In 2013, the crystal structures of an Artemisia annua α-bisabolol synthase and a
mutant producing γ-humulene were solved66, pinpointing five residues involved in
this product shift that spans across quite distinct parent carbocations. Mutational
studies across other synthases from A. annua67,68 helped discover more residues and
their involvement in modifying products.

Over the years, more plant STS structures have been solved69,70 and more mutant
studies have been performed71,72. Similar timelines of sequence-structure-function
relationships can be identified for other SM enzyme families involved in terpenoid
production, such as the upstream isoprenoid synthases and prenyltransferases that
produce TPS substrates, and the downstream families, such as the cytochrome P450s,
dehydrogenases etc. involved in post-modification of TPS-produced terpenes into
more complex terpenoids37. However, while such approaches have been successful in
finding residues influencing specificity for a single enzyme, the small scale of studies
in the light of the large diversity of SM enzymes makes it impossible to say if these
studies find aspects shared across all enzymes in these families. In order to pinpoint
residues and patterns important to overall SM specificity, larger scale techniques
are needed. Therefore, researchers have increasingly been turning to computational
methods to take SM enzymes across species and specificities into account.

1.1.4 The need for bioinformatics

While the floral aroma profiles of various plant species have been generated with
relative ease, the identification and characterization of the enzymes responsible for
these emissions is a more difficult task. Functional characterization of the product
profiles of TPS enzymes typically consists of sequence similarity-based identification
and cloning of putative TPS genes from next-generation sequencing results, followed
by heterologous expression of recombinant genes in expression systems such as Es-
cherichia coli with TPS substrates introduced, and finally detection and identification
of mass spectra from a GC-MS assay. The product peaks can be reliably identified
by comparison to internal standards. However, often such standards are not available
and identification is done by comparison to spectra and retention times from liter-
ature, which is not as accurate. Further verification and determination of chirality
can be done using the more expensive NMR technique, but this is rarely performed.
In addition, SM enzymes are widely influenced by various environmental factors73.
Unfortunately, this variability is also observed in the lab - experimental conditions can
play a major role in the outcome of characterization studies57. For example, issues
with cloning or unfavourable experimental conditions could result in nonfunctional
enzymes or enzymes producing undetectable level of products. Rearrangements of
enzyme products due to pH, temperature, or other compounds present in the exper-
imental setting is also possible and can lead to misidentification of the actual prod-
ucts57. Large-scale screening experiments depend on the design of high-throughput
assays which often are not available or, if they are, cannot sufficiently differentiate
between the different terpenes. Hence, functional characterization of SM enzymes
is a time-consuming, laborious process containing an unavoidable level of noise. In
addition, many enzymes of interest produce very low amounts of terpenes, in their
native plant species but especially so in microbial fermentation settings. Here they are
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incorporated into organisms for which they are not optimized with respect to codon
distributions, specificity and efficiency of the pathways involved in generating the re-
quired substrates and cofactors, pH and temperature conditions, and more74. While
improved screening systems may help in this regard to select more active enzymes,
this depends on the availability of such enzymes and the transfer of their favourable
properties to different production strains and systems. This illustrates the need for
actually understanding the residues and regions involved in the various biosynthetic
reactions producing terpenoids, such that each of the players can be engineered to
produce desired levels of desired products.

The rapid growth of next-generation sequencing and initiatives such as the 1000
plants transcriptome project75 have greatly increased the data available on plant
protein sequences. Many thousands of these sequences are uncharacterised putative
TPSs. Functional characterization of all these proteins would be impossible in a
reasonable time frame, especially as these numbers will continue growing as more
plants are sequenced. Thus, narrowing down interesting and relevant enzymes us-
ing computational techniques for product specificity prediction is necessary. These
techniques will have to take into account the above-mentioned aspects of sparse
and noisy characterized data. They will also have to pinpoint motifs and residues
responsible for biosynthetic pathway determination - insights which can help design
mutants and engineer enzymes with desired properties such as higher activity, speci-
ficity, thermostability and more. Due to the high sequence diversity shown by STSs,
this thesis posits that protein structures and structural bioinformatics techniques are
necessary to obtain higher performance and deeper biological insights.

1.2 Computational approaches to explore proteins

1.2.1 Representation

Protein bioinformatics is a fast-growing and thriving field dealing with algorithms
and data structures to explore, compare and contrast (groups of) proteins. The first
step in this exploration typically consists of choosing a format to represent proteins
that can be understood by computers, sometimes referred to as an embedding. This
is followed by the usage of algorithms that take the embedding as input and return
various results and insights for user interpretation.

Proteins consist of multiple levels of information, stored in the primary, secondary,
and tertiary structures leading to multiple different representation techniques. The
most common of these is the primary structure, i.e. the one-dimensional amino
acid sequence. This by itself forms the input for various algorithms based on k-mer
counting, hidden Markov models76 or multiple sequence alignment77 to transform
the sequence into an embedding. These embeddings can be further used to find
remote homologs78, inspect conserved and variable residue positions linked to bio-
logical mechanisms79, generate phylogenetic trees describing evolutionary relation-
ships80, extract motifs specific to certain groups and subgroups useful for delineating
catalytic sites81, and categorize novel protein sequences found while mining genomes
and transcriptomes82. Multiple sequence alignments can also be used to perform
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correlated mutation analysis83, based on the theory of residue co-evolution which
postulates that a mutation in one residue involved in an interaction leads to prefer-
ential evolutionary selection of interaction partners with complementary mutations
maintaining the interaction. This technique can be used to predict within-protein in-
teracting residues in families with scant structural information84, interactions across
protein-protein complexes85, and catalytic interactions such as between residues con-
tacting a ligand86. Many of these embeddings and algorithms are explored in this
thesis for the plant STS enzyme family.

Numerous protein families have divergent protein sequences and yet share highly
similar structures, topologies, and folds, since structure tends to evolve slower than
sequence87. Furthermore, protein tertiary structure typically leads to a wealth of
information not found in sequence - three-dimensional atom coordinates, spatial in-
teractions, solvent accessibility, residue dynamics and electrostatics, and more. How-
ever, protein structures are often studied on an individual basis or at most across a
couple of highly similar proteins. This is due to a combination of factors - hitherto
relative scarcity of structural data compared to sequence, the multitude of inter-
connected high-dimensional information that is challenging to embed, explore and
interpret across multiple proteins, and the lack of availability of accessible and fast
computational tools to ease this embedding and exploration process. The scarcity
aspect is being alleviated with an accelerating increase in the number of experimen-
tally determined structures88 and rapid progress in computational structure prediction
techniques89. This further drives the demand for better tools and algorithms to ex-
plore and utilize this rich data source to extract mechanistic insights and predictions.
For example, algorithms to embed structures for similarity search across a database
of protein structures are required to be very fast, as researchers typically expect in-
stant results on search90–92. Typical disadvantages of these techniques are their lack
of adaptation to proteins from within the same family, as they are usually designed
to distinguish between diverse proteins, and their lack of interpretability in terms of
which regions of structure are comparable between two proteins. For proteins from
the same family or sharing a high degree of structural similarity, multiple structure
alignment provides a more accurate means of comparison and allows for the use of
techniques analogous to those using sequence representations, such as structural mo-
tif detection, identification of conserved and variable residues etc. These alignments
can then be used to represent various structural features such as residue dynamics,
electrostatics, depths, and accessibility, along with sequence-derived physicochemical
properties. For tasks involving protein interaction or interfaces, another common
technique is to use descriptors of the molecular surface93–95, and even joint repre-
sentations of binding partners, be they other proteins96, small molecule ligands97, or
nucleic acids98.

Until recently, the main in silico approach to determine molecular function of pro-
teins, for instance as described by the Gene Ontology (GO) classification scheme99,
was through homology-based functional annotation transfer - i.e. for a new query
protein, a search is made for similar sequences or structures (using the embeddings
described above) to find candidates likely to share a common evolutionary origin, and
functional annotations of these candidates are transferred to the query protein. This
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approach is often hindered by the lack of homologs in existing public databases for
a variety of query proteins, and, more critically, the fact that high conservation does
not always equal function conservation100, and that proteins with low similarity may
still share the same function101. This becomes particularly relevant as the level of
detail of the function being annotated increases, i.e. as we move down the hierarchy
from general molecular function to the specific catalytic reactions and specificities
involved. Hence, it is not straightforward to transfer function globally without taking
into account information specific to residues and regions of the protein relevant to the
function being considered. These challenges make homology-based annotation trans-
fer problematic102, especially as annotation errors can propagate and be amplified as
more and more proteins are annotated by transfer103. Furthermore, global similarity
to a small set of similar proteins does not further understanding of the inner workings
of proteins sharing a function, an aspect that becomes increasingly important in fields
such as drug discovery and biotechnology where such understanding opens doors for
specialized protein engineering.

Thus, to further link proteins and their embeddings with specific functional char-
acteristics of the proteins under consideration, and to find more intricate patterns
within distinct and relevant residues, it has become increasingly common to reach
for the set of algorithms and techniques collectively referred to as machine learning.

1.2.2 Machine learning

Machine learning (ML) is defined as “the study of computer algorithms that improve
automatically through experience and by the use of data”104. Typically, these algo-
rithms make use of statistics to find patterns in datasets and are often used to link
these patterns to specific outcomes or groupings105. In the context of proteins, ML
approaches can broadly be divided into protein family based and protein universe
based techniques. These two categories differ in the kinds of prediction problems
they are applied to, the kinds of algorithms used, and the kinds of representations
and embedding used as input.

Protein family based ML is used to predict properties of the members of individual
protein families consisting of hundreds to thousands of experimentally characterized
proteins, such as each of the above-mentioned SM enzyme families. There are wide
range of algorithms at our disposal for these tasks, including but not limited to
k-nearest neighbours algorithms (k-NNs)106, support vector machines (SVMs)107,
Gaussian processes108, and ensemble methods such as Random Forests109 and gradi-
ent boosting trees110. These have been successfully applied to a variety of questions
ranging from predicting catalytic activity111, the effect of mutations112 and vari-
ants113, interactions with other proteins114, nucleic acids115,116, and peptides117,
thermostability118, drug-target binding affinity119, and ligand specificity120. Since
the proteins under consideration are close from an evolutionary perspective, multiple
protein alignment is commonly used as a starting point to generate the input em-
beddings for these tasks. While sequence alignment has generally been much more
popular than structure alignment, the existence of SM enzyme-like families which
share the same structural fold despite having little primary sequence similarity neces-
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sitates the use of structure-based alignment methods. Protein family ML often has
to deal with sparse datasets and rely on algorithms which can handle a large num-
ber of features measured across a small number of data points. In addition, many
approaches in this field aim to interpret prediction results to derive insights about
underlying mechanisms and residues which may be important for function. Such pre-
dictions and insights further drive experimental research to explore novel and relevant
protein family space.

The larger-scale protein universe based ML typically uses tens of thousands of proteins
from diverse superfamilies to learn global properties of proteins, such as secondary
and tertiary structure and folding, interactions, broad function classes etc. Deep
learning (DL) is a common choice for such problems, as it is known to drastically
outperform other techniques in the presence of large amounts of data. Much work in
this area has been done using protein sequences as input since the growth of protein
structure and modelling data is relatively recent. Unlike protein family ML, alignment
is generally not an option in such techniques since most proteins in the dataset are
evolutionarily remote, thus most described embedding techniques for large-scale ML
depend on learning alignment-free patterns across diverse protein sequences or on
generating on-the-fly alignments of sub-groups of data during the learning process.
Recent examples of global sequence embeddings have been shown to capture amino
acid characteristics and other physiological properties of proteins as a whole121–124.
Structure-guided sequence embeddings have also started to appear125, providing a
compromise between scarce structure data and abundant sequence data. Global
unsupervised embeddings can also be adapted and applied to protein family ML
successfully but currently suffer from a lack of interpretability.

1.2.3 Successes of machine learning on proteins

Over the past decade, protein ML has moved far beyond theoretical studies into
numerous real-world applications, some of which are described in this section with
special emphasis on approaches related to protein structures. In protein structure
prediction, be it secondary structure, backbone angles, contacts, folds, or full-atom
structure, ML has become indispensable and forms the backbone of a number of
popular tools and algorithms. A majority of the more recent predictors in this field
use deep learning, as is common in such protein universe problems.

Secondary structure prediction has come a long way since its start in 1951126, with
recent methods127,128 achieving prediction accuracies over 80%, a steady increase
from the 70% accuracy reported in 1993129. The driving force behind the increase in
prediction performance in many cases is attributed to better features in the represen-
tations used126 - while early methods used amino acid features derived from single
residues130,131, gains were seen by incorporating sequence profiles132 that implic-
itly include conserved structural information across homologous sequences129,133,134,
known secondary structure information from homologous proteins135–138, and pre-
dicted solvent accessibility and backbone torsion angles127,139,140 (also areas where
ML and DL have become the norm141–143). Residue-residue contact prediction, based
on the underlying biological theory of co-evolution144, also saw a shift from more
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traditional statistical approaches83,145 to more accurate deep learning based tech-
niques146–150, which even go as far as distance matrix prediction147,151.

All-atom structure prediction is typically divided into template-based and template-
free approaches. Template-based modelling or homology modelling uses previously
determined structures of related proteins as the reference upon which to model the
target. This includes methods for the 1) detection of, and 2) alignment to, a re-
lated protein of known structure, followed by 3) modelling of the backbone, loops
and side chains and 4) subsequent evaluation of these models to return the most
reasonable ones152. Though still relatively uncommon, ML has been used in each of
these steps153–156. Template-free modelling, on the other hand, which does not rely
on global similarity to a known structure and hence can be applied to proteins with
novel folds, now makes heavy use of ML and DL, with the recent release of AlphaFold2
making headlines for its breakthrough results in the Critical Assessment of Structure
Prediction (CASP14) competition. In fact, all the top-performing CASP13157 struc-
ture prediction methods rely on deep convolutional neural networks for predicting
residue contacts or distances, predicting backbone torsion angles and/or ranking the
final models; for a recent review on the underlying techniques used, see Kuhlman &
Bradley 89 .

Some significant applications of protein universe ML are in the field of drug discovery,
where such techniques have become integral158. Their contributions start from the
computational modelling of putative receptor targets, which often involves secondary
structure prediction, solvent accessibility prediction, and/or residue contact map pre-
diction, as discussed above. Subsequently, binding sites in the target structure and
putative drug candidates are identified using cavity/pocket prediction techniques,
prediction of “druggable” regions, and protein-ligand binding site120 prediction. This
is typically followed by molecular docking to evaluate protein-ligand interaction and
affinity between the target and a variety of drug candidates. In the case of unknown
target proteins or to identify off-target binding candidates, reverse/inverse dock-
ing159,160 is used to create embeddings of drugs and search across protein structure
databases for good docking solutions. In these contexts, ML approaches are used
to improve scoring functions of binding affinity and plausible docking poses161–164.
Unsupervised clustering techniques are used to organize and prioritize large databases
of receptors.

Other areas in which structure-based protein universe ML has taken over include pre-
diction of general function165, protein-protein166 and protein-ligand interactions167,
interfaces168 and hot spots169, stability changes in protein mutants112,170, catalytic
turnover rates111, post-translational modifications, protein dynamics171, and amino
acid sequences for de novo protein design89.

Protein family ML has mostly been sequence-based so far, both due to a lack of solved
crystal structures and high degree of diversity in sequence-based approaches. In drug
discovery settings, the superfamily of G-protein coupled receptors (GPCRs) has been
a very important target due to the role these proteins play in physiological processes
covering vision, olfaction, neuronal signal transmission, cell differentiation, pain, mus-
cle contraction, and hormone secretion, to name a few. Sequence-based ML models
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have been designed for predicting interactions with ligands172 and drugs173, predicting
N-linked glycosylation sites174, and distinguishing GPCRs from non-GPCRs175. Since
GPCRs are membrane proteins and typical protein universe techniques for structure
and interface prediction are usually trained on soluble proteins176, more specialized
approaches have been developed for predicting GPCR structure177 and oligomeriza-
tion178. Arguably, the second most important drug targets after GPCRs are the
kinases179. With over 7,000 structures solved covering 308 kinases across 8 groups
and complexed with over 3000 unique ligands and inhibitors, structure-based ML
approaches are more prevalent for addressing challenges within this all-important
superfamily. These include methods to predict inhibition180, binding affinity181 in
specific kinase families, and conformational change between the so-called active and
inactive conformations182,183.

In the field of natural products and specialized metabolism in plants, bacteria, and
fungi, ML has slowly been gaining popularity over more traditional approaches involv-
ing similarity search or analysis of a few, closely related proteins. ML has been used
for successful identification of SM genes across a plant genome, while also identifying
genomic features relevant to individual SM enzyme families184. Unsupervised ML can
help identify clusters of co-expressed SM genes185. ML is also being incorporated to
understand and engineer specific SM enzymes, with an early example where principal
component analysis (PCA) was performed on enzyme mutants to identify quantita-
tive structure-function relationships186. Codexis’ ProSAR187 attempts to determine
the contribution of each residue to activity based on a training library of mutants,
and iteratively designs the next library step for directed evolution using the influen-
tial positions found. In 2013, a Gaussian process model to predict thermostability
was used to engineer highly thermostable cytochrome p450s188. Companies make
use of ML for prioritizing strain candidates that perform well in their specific fer-
mentation setups189, and researchers have described efforts using ML for pathway
optimization190.

Predicting product specificity in SM enzyme families such as the STSs presents a num-
ber of challenges due to factors discussed throughout the previous sections. These
include the complex nature of the relation between sequence similarity and functional
similarity, their individual promiscuity and collective capability to produce hundreds of
different molecules, and the sparsity of available experimental characterization data
combined with the unavoidable noise in this data. Thus, we explore the design of a
number of structural bioinformatics and ML techniques in this thesis and use these
on STSs in an attempt to reveal novel insights in these elusive enzymes and to select
new STSs for use in fragrance and flavour applications.
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1.3 Thesis overview

This thesis brings protein structure bioinformatics and machine learning to enzymes
involved in plant specialized metabolism, with a focus on sesquiterpene synthases
(STSs).

In Chapter 2 we collect and review experimentally characterized STSs from litera-
ture and analyse them from a sequence perspective. We conclude that phylogeny
plays a larger role in sequence similarity than product specificity, necessitating the
use of structural information to go further with predicting function. This is explored
in Chapter 3, where we combine structural modelling, sequence co-evolution, and
machine learning to predict the first step in STS product formation and pinpoint
various structural regions involved in determining this step. To make better use of
structure-derived features in a machine learning context, we create a novel multi-
ple structure alignment algorithm, Caretta, in Chapter 4 which is aimed at protein
families with diverse sequences sharing a structural fold. Caretta combines align-
ment with automatic structure feature extraction in a visual and interactive tool that
enables easy exploration of protein structures from different perspectives. In Chap-
ter 5 we delve into topological differences between proteins with Geometricus, a
k-mer counting alternative for structures that uses the concept of rotation-invariant
moments to define “shape-mers”. Chapter 6 combines the Geometricus algorithm
with Caretta to greatly speed up multiple structure alignment, allowing for analyses
involving many thousands of proteins. We demonstrate the use of both algorithms
across different levels of protein hierarchy, and for pinpointing relevant residues and
structural regions. All of these advances culminate in Chapter 7, where we develop
a novel framework combining aligned structural features from proteins with chem-
ical compound descriptors, to predict product specificity in STSs, and Chapter 8,
where we develop an interactive data visualization portal allowing protein biologists
to explore the interconnected properties of their protein family of interest from both
a sequence and structure perspective.

I conclude this thesis in Chapter 9, with a discussion of the challenges and obstacles
in understanding natural product enzymes and how a feedback loop between compu-
tational approaches and experimental design can help solve some of these challenges.
I welcome the new era of large structure-rich datasets brought about by recent ad-
vances in structural bioinformatics, and discuss the wide range of opportunities this
opens up in the field.
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[60] Bülow, N., & König, W. A. (2000). The role of germacrene D as a precursor in sesquiter-
pene biosynthesis: Investigations of acid catalyzed, photochemically and thermally induced
rearrangements. Phytochemistry , 55 , 141–168.
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Luxburg, & G. Rätsch (Eds.), Advanced Lectures on Machine Learning: ML Summer Schools
2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16,
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[180] Miljković, F., Rodŕıguez-Pérez, R., & Bajorath, J. (2019). Machine learning models for
accurate prediction of kinase inhibitors with different binding modes. Journal of Medicinal
Chemistry , 63 , 8738–8748.
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Abstract

Plants exhibit a vast array of sesquiterpenes, C15 hydrocarbons which often function
as herbivore-repellents or pollinator-attractants. These in turn are produced by a
diverse range of sesquiterpene synthases. A comprehensive analysis of these enzymes
in terms of product specificity has been hampered by the lack of a centralized re-
source of sufficient functionally annotated sequence data. To address this, we have
gathered 262 plant sesquiterpene synthase sequences with experimentally character-
ized products. The annotated enzyme sequences allowed for an analysis of terpene
synthase motifs, leading to the extension of one motif and recognition of a variant of
another. In addition, putative terpene synthase sequences were obtained from various
resources and compared with the annotated sesquiterpene synthases. This analysis
indicated regions of terpene synthase sequence space which so far are unexplored
experimentally. Finally, we present a case describing mutational studies on residues
altering product specificity, for which we analysed conservation in our database. This
demonstrates an application of our database in choosing likely-functional residues
for mutagenesis studies aimed at understanding or changing sesquiterpene synthase
product specificity.

2.1 Introduction

The terpenome represents a huge, ancient and diverse family of natural products.
In addition to terpenes, it also encompasses steroids and carotenoids, comprising
more than 60,000 members1. These compounds all derive from the same 5-carbon
precursor units, coupled together linearly and then cyclized, rearranged, and modified
in various ways. Terpenes serve many roles in plants, for example as toxins against
herbivores or pathogens, or as attractants for pollinators2. In turn, terpenes extracted
from plants are used by mankind for a range of applications - as pharmaceutical
agents, insecticides, preservatives, fragrances, and flavours3.

Terpenes are built from 5-carbon isoprenoid units, and they mainly exist as monoter-
penes (C10), sesquiterpenes (C15) or diterpenes (C20), based on the number of such
units used. In each case, a linear substrate loses a diphosphate group, usually cyclizes
and then undergoes a variety of carbocation rearrangements. Though the exact num-
ber of sesquiterpenes found in nature is hard to determine, Tian et al. 4 estimated
computationally that the number of sesquiterpene intermediates far outnumber those
of monoterpenes, due to the increase in chain length.

Interestingly, sesquiterpenes found in nature can be divided into seven groups based
on their parent cation and the first cyclization step in their formation5. Hence the
extreme diversity of chemical compounds with desirable fragrances or medicinal prop-
erties is based on just seven initial carbocations. This makes the enzymes catalysing
their formation both interesting and difficult to characterize functionally.

Each plant species is capable of synthesizing a number of sesquiterpenes using a
specialized class of enzymes called sesquiterpene synthases (STSs). First, a farnesyl
diphosphate synthase, produces the C15 substrate for STSs, farnesyl diphosphate
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(FPP), from the C5-unit isopentenyl diphosphate (IPP) and its isomer dimethylallyl
diphosphate (DMAPP)6. STSs then create the myriad of sesquiterpenes found in
nature by catalysing carbocation formation from the linear FPP followed by a series of
cyclizations and rearrangements (Figure 2.1). Products are formed from intermediate
carbocations after deprotonation, phosphorylation, or hydration4.

The STSs themselves represent a very diverse set of enzymes with a wide range of
sequence similarities, despite having a common structural fold shared by plant, ani-
mal, fungal, and bacterial terpene synthases (TPSs)7. Hence, prediction of enzyme
function from sequence is highly challenging in the case of STSs. Moreover, sequence
diversity in STSs is not dependent on the products formed. This problem has been
addressed so far by inspection of TPS structures7 and by mutational analyses that
attempt to change the product of a synthase with the smallest number of residue
changes8. The former, though an attractive approach, is limited especially in plants
due to the sparsity of experimentally determined structures, while the latter often
leads to unnatural enzymes with lower catalytic activity than their wild-type parents.
Characterization of multiple TPSs from the same species by the same study has al-
lowed for some small-scale sequence comparison of those synthases9,10. However, no
previous attempts have been made to compare all experimentally characterized plant
STS sequences according to the products that they form. We have collated a curated
database of plant STSs with characterized products from literature. This database
can be accessed at www.bioinformatics.nl/sesquiterpene/synthasedb.

With this database and aforementioned product grouping scheme, the active domain
sequences of 262 plant STSs were analysed in terms of the precursor carbocations of
their products. These were also compared with the many yet-uncharacterized puta-
tive TPS enzymes. Residues from previous product-changing mutational studies were
mapped on our database of enzymes, indicating conservation of the corresponding
positions across groups of sequences forming different product cations. This demon-
strates the usefulness of our database in finding residues involved in STS product
specificity.

2.2 Results and Discussion

2.2.1 Database of characterized STSs

To obtain a comprehensive set of annotated STSs, our starting point was the Swis-
sProt database, a subset of UniProt11 in which a curated and annotated set of
proteins is available. This provided a set of 104 STSs. In addition, we manually
reviewed literature linked to enzymes with the characteristic TPS domain in TremBl,
the uncurated subset of UniProt. In this way, the number of curated plant STS
sequences with experimentally characterized product data in the database was more
than doubled.

We present a database of 262 manually curated characterized plant STSs, shown
in Table 2.1. The enzymes originate from a hundred different plant species and
collectively account for the production of 117 different sesquiterpenes. Such a large
number of possible products makes it difficult to find enough enzymes with the same
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product for a meaningful analysis of product specificity. To solve this, the sequences
were divided into seven groups, making use of the sesquiterpene precursor carbocation
scheme as specified by Degenhardt et al. 5 , described in Figure 2.1. The reaction
cascade of an STS is initiated by metal-mediated removal of the diphosphate anion
in the FPP substrate, leading to the formation of a transoid (2E,6E )-farnesyl cation
(farnesyl cation) which can undergo cyclization either via 10-exo-trig or 11-endo-trig
cyclizations on the C10-C11 double bond to the resulting cations 1 or 2 respectively
However, the farnesyl cation can also isomerize to form a cisoid (2Z,6E )-farnesyl
cation (nerolidyl cation). The nerolidyl cation, in addition to a C1-attack (either via
10-exo-trig or 11-endo-trig) on the C10-C11 double bond to form cations 3 or 4, can
also undergo cyclization at its C6-C7 double bond either via 6-exo-trig or 7-endo-
trig, forming cations 5 or 6. These carbocations undergo multiple further skeletal
rearrangements, cyclizations, hydride or methyl shifts, and other modifications to
form the end products of the enzyme5. Along with this myriad of cyclic products,
acyclic sesquiterpenes can also be formed from either the farnesyl or the nerolidyl
cation through proton loss or addition of water5,12,13. This schematic of carbocations
derived from FPP can be used to divide sesquiterpenes produced by plants into
seven groups - both based on their parent cation (farnesyl or nerolidyl) and the first
cyclization that occurs (by attack of the carbocation on the 10,1-; 11,1-; 6,1-; or 7,1-
double bond; or acyclic). For an STS enzyme, the carbocation of its major product
is then used to determine its group in Table 2.1.

This division of STSs is in general straightforward even when multiple products are
formed by one enzyme. Specifically, of the 98 sequences which also have minor prod-
ucts (Supp. Table 2.1), only 17 have minor products whose precursor carbocation
differs from the major product’s. Nine of these produce acyclic products in addition
to their major product. This could be the result of incomplete cyclization caused
by premature termination of intermediates14. Eight enzymes in the database either
produce (-)-germacrene D or they produce germacrene D and the chirality was not
determined during the enzyme’s characterization. (-)-germacrene D can be formed
via a 10,1- or a 11,1- cyclization of the farnesyl cation (cation 1 or 2). Though each
enzyme is likely to only follow one cyclization route to form its product, this route
has so far not been determined, so these sequences are shown separately in Table 2.1
and in the remainder of the text. The existence of other sesquiterpenes which can
be formed via different cyclization routes cannot be ruled out, however in our anal-
ysis we stick to the cyclization routes provided by IUBMB’s Enzyme Nomenclature
Supplement 24 (2018)15 in order to determine the precursor carbocation for a given
sesquiterpene.

The database contains 233 angiosperm STSs, 16 gymnosperm enzymes from conif-
erous species and 13 enzymes from nonseed plants such as mosses and ferns. As de-
scribed by Jia et al. 16 , the latter species have TPSs which are more related to micro-
bial TPSs than those from spermatophytes. Information on each of the 262 enzymes,
including the sequence, species, UniProt ID, products (major and minor), product
type, and PubMed ID of the paper detailing its experimental characterization, is avail-
able as a web service at www.bioinformatics.nl/sesquiterpene/synthasedb.
The service supports searching, sorting and downloading of all or subsets of the data.

www.bioinformatics.nl/sesquiterpene/synthasedb
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Figure 2.1: The reaction mechanism of sesquiterpene production starts with far-
nesyl diphosphate (FPP). Loss of the diphosphate moiety (OPP) leads to farnesyl
cation formation. The farnesyl cation can subsequently be converted to the nerolidyl
cation. Possible cyclizations for both cations are indicated in the figure. The sub-
sequently formed cyclic cations undergo further modifications and rearrangements
to form sesquiterpenes. An alternative route is to form acyclic sesquiterpenes from
either the farnesyl or the nerolidyl cation as indicated in the box. These different
product-precursors are used to classify the different sesquiterpenes and their syn-
thases.
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Major Product Cation/Cyclization No. of No. of No. of
Group sequences species products

A G N Total A G N Total
1 10,1 / farnesyl 77 1 3 81 44 1 3 48 43
2 11,1 / farnesyl 42 3 3 48 32 3 3 38 11
3 10,1 / nerolidyl 19 1 1 21 16 1 1 18 20
4 11,1 / nerolidyl 0 4 0 4 0 4 0 4 3
5 6,1 / nerolidyl 44 3 2 49 23 3 2 28 32
6 7,1 / nerolidyl 0 0 1 1 0 0 1 1 1
7 acyclic 43 4 3 50 23 4 3 30 6
- (-)-germacrene D 8 0 0 8 6 0 0 6 1
Total 233 16 13 262 84 8 9 101 117

Table 2.1: Number of characterized plant STS sequences, species, and products
covered in each product group. (-)-germacrene D synthases are shown separately as
discussed in the text. A=Angiosperms, G=Gymnosperms, N=Nonseed

On average, the enzymes comprise 553± 56 residues. The tertiary structure of STS
enzymes usually consists of two alpha-helical domains17. The N-terminal domain is
considered relictual in plant STSs and is not present at all in nonseed plant STSs16,
while the C-terminal domain, consisting of an α-helical bundle, is catalytically ac-
tive7,18. The hydrophobic active site pocket in this domain is formed by six α-helices,
closed by two loops. Supp. Table 2.2 gives a list of plant STS structures from the
Protein Data Bank (PDB)19. The C-terminal sub-sequences containing the active
site are obtained from each enzyme in the database using information from Pfam20,
and consist of 266± 7 residues. N-terminal sub-sequences were extracted only from
the spermatophyte enzymes in the database, again using information from Pfam, and
consist of 173 ± 12 residues. In spermatophyte STSs, residues distal to the active
site have been shown to contribute to product specificity potentially by influencing
active site geometry21. These residues may reside in the extremities of the C-terminal
domain, or in the N-terminal domain.

Supp. Figure 2.1 shows the pairwise sequence identity scores for each pair of C-
terminal domain sub-sequences for the enzymes in the database, hierarchically clus-
tered and coloured by product cation type. It can be seen that many pairs of se-
quences have less than 40% sequence identity. Similarly, Supp. Figure 2.2 shows the
hierarchical clustering of concatenated N-terminal and C-terminal sub-sequences for
spermatophyte enzymes. Both clusterings appear very comparable.

The phylogenetic tree of C-terminal sub-sequences of all 262 enzymes (Figure 2.2)
shows some grouping of spermatophyte enzymes based on their product precursor.
In general, the neighbour of an enzyme is from the same or related species, and if
there are enough examples from the same species then some product-based grouping
is seen. For example, the clades containing mostly enzymes from Zea mays on
the right are separated based on the product carbocation of the enzyme even while
being grouped by the species. However, this is not a consistent trend - enzymes
from Vitis and Santalum at the top of the tree group mainly by species and not
by product type. In fact, the three Santalum synthase sequences marked in Figure
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2.2, making products derived from three different cyclic carbocations, have more
than 90% in common. In any case, the product group of an enzyme from a species
not present in the tree is nearly impossible to predict, while enzymes from species
which are less represented in the tree can also be difficult to classify. In addition,
clades forming predominantly one product carbocation are seen in many different
parts of the tree, showing that strongly varying sequences can catalyse the same
cyclization reaction and even produce the same product, such as the two marked
β-caryophyllene synthases from Arabidposis lyrata and Zea perennis which have a
sequence identity less than 30%. Hence, phylogenetic analysis is biased and cannot
be an accurate predictor of TPS product specificity. Supp. Figure 2.3, shows a
similar tree considering both N-terminal and C-terminal sub-sequences concatenated
together, for spermatophyte STS sequences only. N-terminal domain information
again does not seem to affect the structure of the tree. Even though this does not rule
out the possibility that residues in the N-terminal domain influence product specificity,
it indicates that including the N-terminal domain in the large scale sequence analysis
that we perform does not add information compared to using only the C-terminal
domain. Since product and intermediate formation occur in the active site pocket,
it may be easier to find sequence-function determinants in the C-terminal domain.
Hence, from this point on we concentrate on the C-terminal sub-sequences of TPSs.

The clade containing all the nonseed plant STSs in Figure 2.2 is clearly separate from
the spermatophyte sequences. The enzyme from Anthoceros punctatus, a bryophyte,
is the only sequence in the database producing a 7,1/nerolidyl-derived product (β-
acoradiene) and is hence an out-group both in terms of species as well as product
carbocation. Comparing nonseed plant sequences to the more typical plant TPS
sequences would be futile, both due to their homology with microbial enzymes and
their low numbers in the database, hence they are excluded from the remainder of
the analysis.

2.2.2 Chemical similarities between sesquiterpenes

Each of the seven possible sesquiterpene precursors (Figure 2.1) usually undergoes a
wide range of further rearrangements, cyclizations, and modifications, catalysed by
the STS enzyme, to finally result in a sesquiterpene product. To start exploring the
enzyme grouping scheme, we initially investigated whether similarities between the
final sesquiterpene chemical structures would reflect the parent carbocations involved
in their production. To this end, chemical similarities between sesquiterpenes with the
same parent cation were compared to similarities between those without. Chemical
similarities were measured using Dice similarity22 between extended connectivity fin-
gerprints, as described by Rogers & Hahn 23 . Similarities between 165 sesquiterpenes
are plotted using multi-dimensional scaling (MDS), in Figure 2.3A, with the colour
representative of the precursor cation. These 165 compounds collectively represent
every enantiomer of the 117 sesquiterpenes produced by the enzymes in our database,
since many of the experimental characterization studies used to build the database
did not resolve the chirality of the STS’s product. MDS is a technique used to visu-
alize the level of similarity of individual objects in a dataset using a distance matrix,
such that the between-object distances are preserved as well as possible. Therefore,
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Figure 2.2: Phylogenetic tree of C-terminal sub-sequences for characterized plant
STSs, coloured according to the major product’s initial carbocation (see Figure 2.1).
Nonseed and gymnosperm clades are indicated separately. Red and brown asterisks
mark cases discussed in the text: red - two β-caryophyllene synthases from Arabidop-
sis lyrata and Zea perennis which have less than 30% pairwise sequence identity;
brown - three synthases from Santalum with higher than 90% sequence identity.
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two objects appearing close to each other in the MDS plot represent sesquiterpenes
which likely have a high chemical similarity, while those further away have lower sim-
ilarity. Acyclic sesquiterpenes are clearly distinguishable in the plot, as they are linear
in nature. Interestingly, many products derived from the 6,1-cyclized cation (cation
5) are also distinct from those derived from 10,1- or 11,1-cyclized cations despite
further cyclizations and rearrangements after this first step. They cluster midway
between the acyclic and other cyclic products, which makes sense given the presence
of an acyclic tail portion in cation 5. The sesquiterpenes formed from the other cyclic
cations seem less distinguishable.

2.2.3 Characterized sequence space

Though a manual literature search gave us access to more functionally characterized
TPS sequences, there is a large and steadily growing number of protein sequences
present in various databases which have not been characterized at all. Many of these
proteins are potential TPSs which contain the characteristic, catalytic site contain-
ing, C-terminal domain. Comparing uncharacterized and characterized enzymes may
give indications of the nature of an uncharacterized enzyme, in particular about the
cyclization route it is likely to take, thereby assisting in the setup of experiments for
functional characterization.

To explore this, an MDS plot was made of C-terminal sub-sequences of the 249
spermatophyte enzymes in our database with those of 6278 other spermatophyte
TPS-like sequences, obtained from sequenced genomes and transcriptomes. These
6278 sequences are, to the best of our knowledge, uncharacterized. Figure 2.3B
shows this plot where the colours represent the product precursor carbocation of
characterized STSs and the uncharacterized sequences are shown in grey. Similar
sequences are depicted closer together in the plot.

Figure 2.3B has a few commonalities with the MDS plot of chemical similarities
between sesquiterpenes, Figure 2.3A. Many sequences catalysing acyclic products as
well as those derived from cation 5 cluster separately from the others. In fact, the
enzymes making nerolidol, an acyclic sesquiterpene, cluster separately at the bottom
right of the plot (light blue), leading us to hypothesize that perhaps many of the
other uncharacterized STSs in this area also catalyse the formation of nerolidol. A
second similarity is that enzymes forming products derived from 10,1- and 11,1-
cyclized cations are difficult to distinguish. This again confirms, as was seen in the
phylogenetic tree (Figure 2.2), that overall sequence similarity by itself cannot be an
accurate guide to product specificity.

The uncharacterized sequences depicted in Figure 2.3B could be mono-, di-, or
sesquiterpene synthases. Supp. Figure 2.4 shows 57 monoterpene synthases and
20 diterpene synthases from SwissProt, along with the 249 STSs in our database.
Despite the skewed numbers, a separation between mono- and sesquiterpene syn-
thases can be seen, indicating areas of the sequence space where more STSs are
likely to be found.
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Product specificity is even harder to identify in the case of gymnosperm synthases,
as insufficient data is available to separate enzymes with different product cations. It
has been noted before that gymnosperm TPSs resemble each other more than they
do their angiosperm counterparts, regardless of catalytic activity24,25. The enzymes
from these species may be more informative if analysed separately, but this would
require more gymnosperm sequences to be functionally annotated.

2.2.4 Comparing known TPS motifs across sequences

A database such as ours allows for a comparison of residues in previously studied
structural elements across many STS sequences. A thorough study of TPS structures
has led to the identification of several motifs important for catalytic activity7. In the
case of STSs, the hydrophobic moiety of the STS substrate, FPP, is directed into
the active site cavity, to undergo the cyclizations and rearrangements described in
Figure 2.1. Research on STS structures has proposed that the diphosphate moiety is
captured by the motif RXR and divalent metal ions like Mg2+ or Mn2+, which are
themselves bound by motifs DDXXD and NSE/DTE, at the entrance of the active
site26. Here, we compare these three motifs across the sequences in our database.
Figure 2.4A shows the motifs discussed below on a tobacco aristolochene synthase
structure26. Figure 2.4B shows each motif on a schematic representation of the
alignment of all C-terminal sub-sequences in the database.

Aspartate-rich DDXXD motif conserved in plant STSs

The most conserved motif of TPSs is the metal binding aspartate-rich motif found
both in plant and microbial TPSs as well as in isoprenyl diphosphate synthases.
Numerous studies performed on this motif, both site-directed mutagenesis and X-ray
crystallography analysis, show that it is involved in binding the divalent metal ions
in the active site entrance27. The canonical form of the motif, DDXX(D,E), where
bold-faced residues indicate those proposed to bind Mg2+ or Mn2+, is found in 247
of the 249 spermatophyte enzymes. Of the remaining two, one is a (+)-germacrene-D
synthase from Solidago canadensis with an Asn replacing the first Asp28. The other
is a bicyclogermacrene synthase from Matricaria chamomilla with an Asn replacing
the second Asp29. These examples indicate that either one of the first two Aspartates
may be sufficient for maintaining catalytic activity.

Expanded NSE/DTE motif found in most sequences

The opposite site of the active site entry is also involved in metal-binding, due to the
presence of a second, less-defined motif, termed the NSE/DTE motif30. An early form
of this motif, as detailed by Christianson 30 had a consensus of (L,V)(V,L,A)(N,D)D(L
,I,V)X(S,T)XXXE, where the residues in bold coordinate Mg2+ ions. However,
searching for a motif with this consensus only captured 38 of the 249 spermatophyte
sequences in our database, indicating that it may be too restrictive given the cur-
rent knowledge of sequences. When only the metal-binding portion of the motif is
considered, the consensus sequence (N,D)DXX(S,T,G)XXXE covers 219 spermato-
phyte sequences in the database. The possibility of Gly in the second metal-binding
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Figure 2.4: A. Known TPS motifs - RXR (red), DDXXD (purple) and NSE/DTE
(green) shown on the structure of tobacco 5-epi-aristolochene synthase (PDB ID:
5EAT). The C-terminal domain is in grey while the N-terminal domain is in brown.
Pink spheres represent Mg2+ ions. A substrate analog, farnesyl hydroxyphosphonate
(FHP) is in blue. The A-C loop is coloured in orange. The two conserved Arginines in
the RXR motif, the metal-binding residues in the DDXXD and NSE/DTE motifs, and
the Arginine in the expanded NSE/DTE motif discussed in the text are shown in stick
representation. B. The same motifs shown on a schematic of the alignment of all
spermatophyte C-terminal sub-sequences from the database. Each bar represents the
percentage conservation of the consensus amino acid in the corresponding position of
the alignment. Lighter coloured bars represent positions where the consensus amino
acid is <50% conserved.
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Motif No. of Sequences
DDXXTXXXE 57
DDXXSXXXE 55
NDXXSXXXE 44
DDXXGXXXE 25
NDXXTXXXE 22
NDXXGXXXE 16
DDXX(D, E) 20
Other 11

Table 2.2: Division of the different versions of the second metal-binding motif among
characterized spermatophyte STS sequences. Sequences with motifs not covered
by either motif consensus sequence (N,D)DXX(S,T,G)XXXE or DDXX(D,E) are
classified as “Other”.

position is justified by Zhou & Peters 31 , with the proposal that Gly may allow a wa-
ter molecule to substitute for the hydroxyl group of Ser/Thr. Some TPSs however,
are known to have a second, catalytically active, aspartate rich motif instead of the
NSE/DTE motif32–34 with the same consensus as the first, DDXX(D,E). This occurs
in 20 sequences. Table 2.2 shows the distribution of the sequences over the different
versions of the second motif.

A highly conserved Arg is found 3 residues upstream of all versions of the NSE/DTE
motif or second aspartate-rich motif, in all of the spermatophyte sequences in the
database. All 6278 uncharacterized spermatophyte TPS sequences also have an
arginine in this position. Hence, an extended form of the motif may be more rele-
vant for spermatophyte STSs, with the consensus RXX(N,D)DXX(S,T,G)XXXE or
RXXDDXX(D,E).

RXR motif not conserved in nerolidol synthases

The RXR motif is found about 35 amino acids upstream of the DDXXD motif,
located on a flexible loop in the structure, termed the A-C loop. This loop has been
shown to become ordered upon FPP binding26. The two Arg residues in the motif
were proposed to be involved in the complexation of diphosphate after ionization
of the substrate, thereby preventing nucleophilic attack on any of the carbocationic
intermediates26. 215 of the 249 spermatophyte plant sequences have the canonical
RXR motif, while 18 of the remaining have an altered RXQ motif in the same region.
Interestingly, these 18 enzymes all catalyse the formation of nerolidol, an acyclic
sesquiterpene. This indicates that RXQ may be unable to capture diphosphate to the
same extent as RXR, causing a premature quenching of an intermediate carbocation
by water before cyclization has occurred5.
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2.2.5 Comparing residues involved in product specificity across sequences

Many studies have addressed the importance of specific residues located in the active
site of TPSs via mutational analyses. Some of the best characterized TPSs derive
from Artemisia annua, which is the source of many medicinal terpenes. Some of
the STSs from A. annua have served as examples to identify residues involved in
critical steps in the cyclization cascade. In this section three examples of A. annua
STSs are described, for which residues involved in product specificity were experi-
mentally investigated. We use these as a case-study to illustrate how the large set
of characterized STSs that we make available can potentially be used to guide such
experimental investigations. These examples are:

1. Salmon et al. 35 tested a wide library of mutants for the (E )-β-farnesene synthase
(UniProt: Q9FXY7) from A. annua, an STS catalysing the formation of an acyclic
product. They discovered that a single substitution, Tyr402Leu, confers to the
synthase a cyclase activity, resulting in zingiberene and β-bisabolene as the most
abundant products. Both these sesquiterpenes derive from cation 5.

In sequences catalysing the formation of 10,1 and 11,1 cyclized products (cations
1, 2, 3 and 4), this position is highly conserved (88-100%) in the database as a Tyr,
and Leu does not occur. However, STSs producing cation 5 and those producing
acyclic products have relatively lower conservation in this position (70% Tyr and
53% Phe respectively) and Leu is found 14% of the time in cation 5. Thus,
conservation patterns in this position are indicative of the corresponding residue’s
contribution to product specificity.

2. In another study, Li et al. 36 studied the effect of mutations on the cyclization
reaction of the bisabolol synthase from A. annua (UniProt: M4HZ33). A possi-
ble reaction mechanism involves formation of a nerolidyl cation, followed by the
formation of cation 5 by a 1,6 ring closure, and deprotonation to produce the
final product bisabolol37. The authors identified a mutation that interfered with
this 1,6 ring closure and showed that the substitution Leu399Thr changed the
product specificity, to γ-humulene, derived from cation 2, a 11,1 cyclization of
the farnesyl cation36.

Interestingly, a Leu at this position is quite rare; it is present in only four sequences
in the database, all four of which belong to the group of sequences producing
cation 5. Instead, this position is highly conserved (>95%) as either a Ser or a
Thr in the database.

3. Amorpha-4,11-diene is a bicyclic sesquiterpene produced from the 6,1-cyclized
bisabolyl cation, cation 5 in Table 2.1. Li et al. 38 did a mutational analysis of the
amorpha-4,11-diene synthase from A. annua (UniProt: Q9AR04), and showed
that the residue Thr296 can cause a loss of cyclization activity when mutated.

This residue is 82% conserved as either a Ser or a Thr in cyclic STSs. Importantly,
in acyclic STSs the most common amino acid is a Tyr, with a conservation of
38%. Acyclic STSs even have amino acids such as Gln, Gly and Ile in this position,
never seen in the cyclic STSs in the database. The variability and low conservation
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score indicates that changing this position in cyclic STSs away from a Ser or Thr
could result in the formation of acyclic products, as shown by Li et al. 38 .

In summary, analysis of these A. annua examples of residues involved in the first
cyclization step in STSs indicates that conservation patterns across all the annotated
enzymes are consistent with the functional roles of these residues. This suggests it
would be possible to obtain residues potentially involved in product specificity from
this database. Such a data-driven approach is in contrast to how these mutational
studies have traditionally been guided, i.e. by comparison of two or three sequences
from the same or related species. Therefore, a potential application of our database
is in guiding site-directed mutagenesis studies in a way which avoids species bias
and hence may reveal additional residues involved in product specificity. One such
residue position obtained by studying conservation patterns has been discussed above
in Section 2.2.4, namely the second arginine in the RXR motif. This position was
found to be glutamine in most nerolidol synthases, something not seen in any of
the cyclic synthases. Mutating this residue in cyclic synthases and monitoring for
acyclic products, and vice versa, could confirm the residue’s role in the cyclization of
sesquiterpene products.

2.3 Conclusion

We compiled a manually curated set of experimentally characterized plant STSs
along with their major products. This database is the largest centralized resource
of annotated plant STSs to date and allows for thorough sequence-based analysis
of these diverse enzymes. The enzymes in the database are grouped according to
the carbocationic origin and cyclization of their major product. Such a division
alleviates the task of functional analysis and comparison between the enzymes. Using
the database we were able to extend and find variants of existing STS motifs. In
addition, residues from previous mutational studies, when mapped onto the enzymes
in the database, were found to have detectable conservation patterns that differed
from group to group. Such properties of residues can be extrapolated and used to
guide further mutational studies. The database as a whole helps to understand the
current state of STS sequence space characterization, and provides a starting point
for future efforts to predict product specificity.

2.4 Methods

2.4.1 Literature search for characterized STSs

To find potentially characterized STSs, an HMM search was performed using hmmer
(version 3.1b2)39 on the UniProt database40 using the HMM of the C-terminal do-
main of TPSs from Pfam20 (Pfam ID: PF03936). Protein sequences with a hit having
an E-value < 10−10 and a total protein length between 350 and 650 residues were
selected. The UniProt IDs of these sequences were then linked to PubMed IDs, either
directly through programmatic access of UniProt if the PubMed ID was present, or
through a programmatic text search of the title and authors given in UniProt, using
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the PubMed API41. The PubMed articles thus obtained were searched manually for
evidence of experimental characterization of sesquiterpenes through in-vivo or in-vitro
GC-MS studies, and the corresponding UniProt IDs were collected.

For each UniProt ID found, the major product described in the corresponding paper
was stored. Minor products with GC-MS peaks at least quarter the height of the
major product peak were stored as well.

2.4.2 Measuring chemical similarities

The diagram of the sesquiterpene grouping scheme was made using ChemDoodle
(version 9)42. The InChI strings for 165 sesquiterpenes were obtained from Pub-
Chem43 using the Python wrapper for the PubChem REST API44, PubChemPy
(version 1.0.4). To measure the similarity between different sesquiterpenes, rdkit
(Release 2017.09.3) was used45. A circular chemical fingerprint, called the Morgan
fingerprint, with a radius of 2 angstroms, as explained by Rogers & Hahn 23 , was ob-
tained for each sesquiterpene. The similarity between every pair of fingerprints was
then calculated using Dice similarity22. The distance was given as 1 − similarity.
The distance matrix of all sesquiterpenes was then used to create a multi-dimensional
scaling (MDS) plot using the Python scikit-learn library (version 0.19.1)46, and then
plotted using matplotlib (version 2.1.2)47.

2.4.3 Aligning sequences

For characterized spermatophyte plant STS sequences, the C-terminal catalytically
active portion and the N-terminal portion of the enzyme were found with hmmer
HMM searches (version 3.1b2)39 using the TPS C-terminal Pfam domain (Pfam ID:
PF03936) and the TPS N-terminal Pfam domain (Pfam ID: PF01397) respectively.
These were then separately aligned using Clustal Omega (version 1.2.4)48, with all
heuristic features off and the respective Pfam domains as a guide for alignment. From
these separate alignments, a concatenated N+C alignment was formed, covering both
domains.

For some of the nonseed plant STS sequences however, a C-terminal Pfam domain
search returned <200 residues instead of the usual 250-270. Aligning the full nonseed
sequences using the spermatophyte C-terminal sub-sequence alignment as a profile
showed the position of the C-terminal portion for these sequences, so this was used
to extract the required C-terminal sub-sequences for nonseed plants. An alignment
consisting of both seed and nonseed characterized C-terminal sub-sequences was
constructed using Clustal Omega with the same parameters as above.

2.4.4 Phylogenetic tree construction

A phylogenetic tree was built and visualized for the characterized spermatophyte
and nonseed plant enzymes in the database using the ETE toolkit (version 3.1.1)49.
The previously explained alignment of all C-terminal sub-sequences was used, with
columns having >50% gaps removed using trimAL50. The best protein model from
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JTT, WAG, VT, LG and MtREV was chosen using ProtTest51, and finally a RaxML
maximum likelihood tree was built52. Similarly, a phylogenetic tree for the spermato-
phyte sequences was built with the same approach using the concatenated N+C
alignment.

2.4.5 Finding mono-, di-, and uncharacterized TPSs

Characterized plant mono- and diterpene synthases were obtained from SwissProt11

using a C-terminal TPS Pfam domain hmmer (verson 3.1b2)39 HMM search followed
by collecting the sequences from plant species for which the catalytic activity was
mentioned. These were not manually checked.

Uncharacterized TPS C-terminal sub-sequences were then obtained from plant species
in TremBl11, Ensembl Plants (release 38)53, and the 1000 Plants Transcriptome
Project54 again using a Pfam domain search. Only those sequences where the search
returned a sub-sequence having both DDXX(D,E) and (N,D)DXX(S,T,G)XXXE or
two DDXX(D,E) motifs within it, and whose sub-sequence length was within two
standard deviations of the mean C-terminal sub-sequence length of characterized
STS enzymes were retained. In both sets, sequences from nonseed plant species
were discarded.

2.4.6 Measuring sequence similarities

A distance matrix of all spermatophyte TPS C-terminal sub-sequences: character-
ized mono-, di- and sesquiterpene synthases as well as uncharacterized enzymes, was
constructed using the pairwise sequence k-tuple measure described by Wilbur & Lip-
man 55 , implemented in Clustal Omega (version 1.2.4)48. This distance matrix was
then used to construct an MDS plot using scikit-learn (version 0.19.1)46 and plot-
ted using matplotlib (version 2.1.2)47. A cluster-map of sequence identities between
characterized STS enzymes was made using the distance matrix of just these en-
zymes and complete hierarchical clustering using scipy (version 1.0.0)56 and seaborn
(version 0.8.1)57.

2.4.7 Visualizing an STS structure

The tobacco 5-epi-aristolochene synthase structure from the Protein Data Bank
(PDB)58 with PDB ID 5EAT was used to visualize known TPS motifs, along with
Mg2+ ions and farnesyl hydroxyphosphonate (FHP) substrate analog. Visualization
was done using PyMOL 2.159.
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Abstract

Sesquiterpene synthases (STSs) catalyse the formation of a large class of plant
volatiles called sesquiterpenes. While thousands of putative STS sequences from
diverse plant species are available, only a small number of them have been function-
ally characterized. Sequence identity-based screening for desired enzymes, often used
in biotechnological applications, is difficult to apply here as STS sequence similarity is
strongly affected by species. This calls for more sophisticated computational methods
for functionality prediction. We investigate the specificity of precursor cation forma-
tion in these elusive enzymes. By inspecting multi-product STSs, we demonstrate
that STSs have a strong selectivity towards one precursor cation. We use a ma-
chine learning approach combining sequence and structure information to accurately
predict precursor cation specificity for STSs across all plant species. We combine
this with a co-evolutionary analysis on the wealth of uncharacterized putative STS
sequences, to pinpoint residues and distant functional contacts influencing cation
formation and reaction pathway selection. These structural factors can be used to
predict and engineer enzymes with specific functions, as we demonstrate by predicting
and characterizing two novel STSs from Citrus bergamia.

3.1 Introduction

One of the largest and most structurally diverse family of plant-derived natural prod-
ucts is the isoprenoid or terpenoid family, with over 60,000 members comprising
mono-, sesqui-, di-, tri-, and sesterterpenes, along with steroids and carotenoids1.
These phytochemicals serve plants in defence against pathogens or herbivores and
as attractants of pollinators2. They are also of high economic value to humankind
due to their widespread use in pharmaceutical agents, insecticides, preservatives, fra-
grances, and flavoring3. The immense diversity of the terpenoid family derives from
the polymerization and rearrangement of a varying number of simple 5-carbon iso-
prenoid units. Monoterpenes are 10-carbon (C10) compounds built up of two such
units, sesquiterpenes are composed of three and hence are C15 compounds, diterpenes
(C20) are composed of four, and so on. Sesquiterpenes are especially interesting due
to their high diversity. Their formation is catalysed from the C15 substrate, farnesyl
pyrophosphate (FPP), by sesquiterpene synthases (STSs), a class of enzymes found
in plants, fungi and bacteria4.

Recently, we published a database of over 250 experimentally characterized STSs
from over one hundred plant species, collectively responsible for the formation of
over a hundred different sesquiterpenes5. These compounds all derive from the same
substrate, FPP, through a branching tree of reactions such as cyclizations, hydride
shifts, methyl shifts, rearrangements, re- and de-protonations to give rise to the
immense existing variety in sesquiterpene structures. Apart from the functionally
characterized STSs in the database, there are thousands of putative STSs in se-
quenced plant genomes and transcriptomes whose product specificity is unknown.
In addition, many STSs in our database are multi-product enzymes, further com-
plicating the matter of product specificity prediction. As a first contribution, we
show that multi-product STSs usually catalyse products specific to a single path-
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way, indicating selectivity towards one precursor cation. Finding residue positions
related to this cation choice across all STSs can reveal important aspects of the
underlying mechanisms. However, our previous sequence-based analysis showed that
these enzymes are very diverse, and sequence similarity is heavily influenced by phy-
logeny5. While an approach using hidden Markov models derived from sequences
is available to predict what kind of terpene synthase (mono-, di-, tri-, sesqui- etc.)
a particular enzyme may be6, this kind of sequence-based grouping was not seen
within STSs making products derived from a particular cation or cyclization5. As a
result, previous studies directed at identifying determinants of catalytic specificity in
STSs mainly used mutational approaches between and within a few enzymes from
the same or closely related species7–10. While such approaches have been successful
in finding residues influencing product specificity, their small scale in light of the large
diversity of STSs makes it likely that they miss aspects shared across all plant STSs.
However, terpene synthases across plants, animals, fungi, and bacteria all share a
common structural fold11. Protein structures typically evolve at a slower pace than
sequences, which means they can contain a wealth of information not easily retrieved
from the corresponding sequences.

Here, we combine homology modelling to incorporate STS structural information
and machine learning to tease out contributions of different residues to cation speci-
ficity. We show that structure-based prediction performs well across all plant species,
including on STS enzymes that were published recently and were not used for the
construction of the predictor. Such structure- or model-based machine learning has
been explored before in other enzyme families and prediction tasks12–15, and is chal-
lenging. One major challenge is the immense number of features produced, as each
protein has many hundreds of residues, each of which has its own set of structural
features. This poses a problem in cases like the current one, where labelled, experi-
mentally characterized data is sparse. Here we used a novel hierarchical classification
approach where many classifiers are first trained on each feature across all residues,
after which the most predictive residues are selected. The final classifier is only
trained on the feature values of these predictive residues. Thus, we are able to prune
noisy and irrelevant features in order to pinpoint residue positions correlating with
cation specificity. These selected residues are likely intrinsically linked to the catalytic
mechanism of an STS and contribute to the enzymatic formation of the precursor
cation. Many of these residues are also not found when relying on sequence-derived
features alone, emphasizing the importance of structure in understanding catalytic
activity.

In addition, while the current characterized sequence space may be small, there are
many thousands of uncharacterized putative terpene synthases whose sequences can
provide valuable information about evolution and conservation, especially in regions
where reliable structural information is not available. A correlated mutations analysis
on all putative terpene synthases indicates co-evolving residue partners for our set
of cation-specific residues which are implicated in shared functional activity (such as
intermediate binding or coordination), favouring their co-evolution. Examining these
residues and pairs in the context of each other and co-crystallized substrate analogs
reveals important aspects of the STS reaction mechanism.
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Apart from the independent test set of recently characterized enzymes, we also present
a use-case of our predictor for STS specificity screening by predicting and character-
izing bisabolyl cation synthases from Citrus bergamia, which further demonstrated
the accuracy of the predictor. As the number of experimentally characterized STSs
grows, this accuracy will further increase, potentially allowing for more fine-grained
product specificity prediction.

The three-pronged approach presented here combines a modest amount of labelled se-
quence data, a very small amount of experimental structure data, and large amounts
of unlabelled sequence data using homology modelling, interpretable machine learn-
ing, and co-evolutionary analysis to predict and investigate the underlying mechanisms
of cation specificity in STSs. This approach can also be useful for exploring specificity
in other enzyme families with characteristics similar to the STSs.

3.2 Results and Discussion

3.2.1 Sesquiterpene synthases follow a single branch of the reaction
tree

The reaction cascade of an STS can take two directions. As is depicted in Figure 3.1,
all reactions are initiated by a metal-mediated removal of the diphosphate anion in the
(E,E )-FPP substrate, leading to the formation of a transoid (2E,6E )-farnesyl cation
(farnesyl cation). The farnesyl cation may then isomerize to form a cisoid (2Z,6E )-
farnesyl cation (nerolidyl cation). These two cations may be quenched by water or
undergo a proton loss to form acyclic products (acyclic-F and acyclic-N). However,
both farnesyl and nerolidyl cations can undergo cyclization at the C10-C11 bond,
while the nerolidyl cation can also cyclize at the C6-C7 bond. The resulting cyclic
cations can undergo further hydride shifts, methyl shifts, cyclizations, rearrangements,
re- and de-protonations to form the final products of the enzyme16. Thus, the
farnesyl and nerolidyl cations form the roots of a branching tree of hundreds of
diverse intermediates and end products.

Many STSs are multi-product enzymes, with two of the more extreme examples
being δ-selinene and γ-humulene synthases from Abies grandis, which produce 52
and 34 sesquiterpenes respectively. In order to determine whether cation specificity
is maintained across minor products, we looked at the reaction pathways of the
sesquiterpenes produced by the multi-product enzymes in our previously assembled
database5. In their review, Vattekkatte et al. 17 looked into multi-product mono-,
sesqui-, and triterpene synthases with respect to factors affecting their promiscuity,
such as substrate isomers, metal cofactors and pH. However, they did not specifically
address the similarity of an enzyme’s minor products to the major product. The
collation of characterized STSs in our database provides us with 96 multi-product
STSs across a wide variety of species, to better analyse and address this question.

For each sesquiterpene, the route taken in the reaction tree, up to the depth shown
in Figure 3.1 was determined as explained in Materials and Methods. Out of the
96 enzymes with more than one product, 79 (82%) had products from the same
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Figure 3.1: The reaction mechanism of sesquiterpene production starts with farnesyl
diphosphate ((E,E )-FPP). Loss of the diphosphate moiety (OPP) leads to farnesyl
cation formation. The farnesyl cation can subsequently be converted to the nerolidyl
cation. Acyclic sesquiterpenes (acyclic-F and acyclic-N) are formed from these two
cations by proton loss or reaction with water molecules. Possible cyclizations for
both cations are indicated in the figure. The subsequently formed cyclic cations
undergo modifications and rearrangements to form cyclic sesquiterpenes. Some of
these sesquiterpenes (g-A and bcg) themselves act as neutral intermediates which can
be re-protonated and undergo further reactions to form more products. Products are
also formed from specific charged intermediates such as a 1,2- or 1,3-hydride shift of
the 10,1-cyclized farnesyl cation (1,2H, 1,3H) and the cadalane skeleton (cadalanes),
which can be formed via either of the two precursor cations, or via acid-induced
rearrangement of germacrene D. The 7,1-cyclization of the nerolidyl cation, shown
in grey, is not found in plant-derived sesquiterpenes. g-A = germacrene A, g-D =
germacrene D, bcg = bicyclogermacrene
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branch of the tree, three were 10,1-farnesyl synthases with products from different
sub-branches, seven had products from the same cation but a different initial cy-
clization, and twelve synthases had products from different cations, including the
aforementioned multi-product Abies grandis γ-humulene synthase. Of these twelve
multi-cation STSs, however, eight had an acyclic farnesyl product in addition to
nerolidyl-derived compounds. The ease of formation of acyclic farnesyl products
(a single step from the farnesyl cation) indicates that they can be formed even by a
nerolidyl synthase as the farnesyl cation is the precursor of the nerolidyl cation. Thus,
there are only four examples of true multi-cation STSs (<5% of the experimentally
characterized multi-product enzymes).

This analysis indicates that STSs are, in the vast majority of cases, optimized for
the production of sesquiterpenes from a single, well-defined reaction route, by careful
control of intermediates right from the commencement of the reaction, at the precur-
sor cation formation step. This insight can be helpful in STS engineering: changing
the reaction specificity of an existing STS to products in the same reaction pathway
may be easier to accomplish, with fewer mutations, than the introduction of a new
reaction pathway. For instance, the 412 active mutants made by O’Maille et al. 18 , ex-
ploring the mutation space of tobacco 5-epi-aristolochene synthase and Hyoscyamus
muticus vetispiradiene synthase, in many cases resulted in an increased production
of germacrene A along with the original product 5-epi-aristolochene, which is de-
rived from germacrene A. Given that even multi-product STSs make sesquiterpenes
from the same cation, understanding and predicting this cation specificity can greatly
narrow down the possible products of a given enzyme.

3.2.2 Structure-based cation prediction helps overcomes species bias

STS enzymes all have similar tertiary structures consisting entirely of α-helices and
short connecting loops and turns. Each structure is typically organized into two
domains, with the C-terminal domain containing the active site. The conserved
nature of STS enzyme structures across the plant kingdom indicates that applying
machine learning on attributes derived from these structures may explain more about
cation and product specificity in STSs than sequence-derived attributes, which are
more phylogeny-specific. However, due to the lack of available crystal structures
for all the characterized enzymes, we turn to homology modelling to make up the
deficit. Six crystal structures of STS enzymes were used for multi-template homology
modelling of the C-terminal domains of 247 characterized plant STSs. Table 3.1
describes these six structures, three of which are farnesyl synthases, two nerolidyl
synthases, and one is a cadalane-type synthase. Supp. Section 3.1 provides more
detail on the modelling results, by comparing multi-template models to those created
using the single closest template, and by comparing models of the six experimental
structures to themselves. Models of the full enzyme sequences were also made but
found to be sub-optimal due to the lack of a defined sequence alignment in regions
surrounding the C-terminal domain. These results indicate that the final C-terminal
domain models are accurate and capture the characteristics of the true structures in
this region.
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Table 3.1: The six structures used for multi-template modelling

Name PDB ID Resolution Species Product Cation

GACS 3G4F 2.65�A Gossypium arboreum (+)-δ-cadinene cadalane
AGBS 3SDU 1.89�A Abies grandis α-bisabolene nerolidyl
AABS 4FJQ 2.00�A Artemisia annua α-bisabolol nerolidyl
AAHS 4GAX 1.99�A Artemisia annua γ-humulene farnesyl
HMVS 5JO7 2.15�A Hyoscyamus muticus vetispiradiene farnesyl
TEAS 5EAU 2.15�A Nicotiana tabacum 5-epi-aristolochene farnesyl

In order to assess the effect of using features derived from modelled structures com-
pared to purely sequence-based approaches we compared results across three classi-
fiers. One is a simple rule-based classifier, Clf-id, that assigns a test sequence the
same class as its closest training sequence based on sequence identity. While this
approach is a good baseline and often used in biotechnological applications, machine
learning-based models have two advantages over this simple model. Firstly, they are
capable of incorporating more complex features, such as the sequence and structure
features described in Section 3.4.4, as well as recognizing more complex patterns
in these features, allowing for more accurate predictions that generalize across pro-
teins. Secondly, trained machine learning models can be inspected to understand the
patterns used for prediction19. In this case, this can help gain insight into the contri-
butions of different residues to cation specificity. Therefore, the other two classifiers
use the hierarchical machine learning framework described in Materials and Methods
with only sequence features (Clf-seq) and with sequence and structure features (Clf-
str) respectively. Our classification frameworks make use of gradient boosting trees
due to their good out-of-box performance and capability of handling missing feature
values caused by deletions in some enzymes.

The dataset consists of 176 farnesyl cation-specific STSs and 72 nerolidyl cation-
specific STSs. The remaining 25 STSs are not used for training as they either
form products from both cations or only cadalane-type compounds. The cadalane
skeleton (Figure 3.1) can be formed by either of the two precursor cations20 or in
acidic conditions of in vitro assays from rearrangements of germacrene D21. These
two alternatives make it difficult to judge whether a cadalane STS goes through the
farnesyl or the nerolidyl pathway.



58 Chapter 3

S
ch

em
e

R
a

n
d

o
m

S
p

lit
G

en
u

s
S

p
lit

C
la

d
e

S
p

lit
C

lf
-

b
A

cc
A

U
C

A
U

P
R

C
b

A
cc

A
U

C
A

U
P

R
C

b
A

cc
A

U
C

A
U

P
R

C
id

0.
88
±

0.
05

0
.8

8
±

0
.0

6
0.

88
±

0.
05

0.
72
±

0.
11

0.
72
±

0.
11

0.
69
±

0.
16

0.
51

0.
51

0.
46

se
q

0.
88
±

0.
04

0.
83
±

0.
05

0.
94
±

0.
02

0.
69
±

0.
07

0.
88
±

0.
07

0.
75
±

0.
16

0.
51

0.
62

0.
54

st
r

0
.9

0
±

0
.0

4
0.

86
±

0.
03

0
.9

4
±

0
.0

2
0

.7
3
±

0
.0

7
0

.8
9
±

0
.0

7
0

.7
7
±

0
.1

3
0

.6
4

0
.7

5
0

.5
9

T
ab

le
3.

2:
1.

C
lf

-i
d

-
se

q
u

en
ce

-i
d

en
ti

ty
ru

le
-b

as
ed

cl
as

si
fi

er
,

2.
C

lf
-s

eq
-

cl
as

si
fi

ca
ti

on
fr

am
ew

or
k

u
si

n
g

se
q

u
en

ce
fe

at
u

re
s,

3.
C

lf
-s

tr
-

cl
as

si
fi

ca
ti

on
fr

am
ew

or
k

u
si

n
g

se
q

u
en

ce
an

d
st

ru
ct

u
re

fe
at

u
re

s.
E

ac
h

co
lu

m
n

se
ct

io
n

sh
ow

s
th

e
re

su
lt

s
of

a
d

iff
er

en
t

va
lid

at
io

n
sc

h
em

e:
ra

n
d

om
iz

ed
5-

fo
ld

cr
os

s
va

lid
at

io
n

(R
an

d
om

S
p

lit
),

ge
n

u
s-

b
as

ed
cr

os
s

va
lid

at
io

n
(G

en
u

s
S

p
lit

),
an

d
tr

ai
n

in
g

on
17

7
d

ic
ot

S
T

S
s

an
d

te
st

in
g

on
48

m
on

o
co

t
an

d
co

n
if

er
S

T
S

s
(C

la
d

e
S

p
lit

).
F

or
ea

ch
sc

h
em

e,
b

al
an

ce
d

ac
cu

ra
cy

(b
A

cc
),

ar
ea

u
n

d
er

th
e

R
O

C
cu

rv
e

(A
U

C
),

an
d

ar
ea

u
n

d
er

th
e

pr
ec

is
io

n
-r

ec
al

l
cu

rv
e

(A
U

P
R

C
)

ar
e

pr
es

en
te

d
.

T
h

e
R

an
d

om
S

p
lit

an
d

G
en

u
s

S
p

lit
ar

e
re

p
ea

te
d

5
an

d
10

ti
m

es
re

sp
ec

ti
ve

ly
,

le
ad

in
g

to
th

e
re

p
or

te
d

st
an

d
ar

d
d

ev
ia

ti
on

va
lu

es
.



Techniques to investigate specificity 59

Table 3.2 shows the performance of these three classifiers using increasingly difficult
validation schemes: a random five-fold cross-validation (Random Split), a leave-10-
genera-out based scheme (Genus Split), and, finally, training on 177 dicot STSs
(124 farnesyl, 53 nerolidyl) with 48 monocot and coniferous STSs (29 farnesyl, 19
nerolidyl) in the test set (Clade Split). Due to the imbalanced nature of the dataset,
we use a variety of different metrics to measure performance. These are further de-
scribed in the Materials and Methods. While Clf-str outperforms the sequence-based
approaches by a small margin in the random cross-validation results, the improve-
ment is much more striking in the phylogenetic validation schemes. As STS sequence
similarity is biased more towards phylogeny than functional activity, Clf-id and Clf-seq
make more errors when testing on species far away from those in the training set.
Since Clf-str uses structure-derived information, it is less affected by this bias. This
indicates that the structure-based classification framework is more suited to be ap-
plied across all plant species, including under-explored species, without losing out on
predictive performance. Supp. Figure 3.1 shows the predicted nerolidyl percentages
for each enzyme with Clf-str (using the probabilities returned by the genus-based
split for each enzyme in the dataset). A clear separation is seen between farnesyl and
nerolidyl-cation specific enzymes. However, because of the much lower number of
nerolidyl-cation specific enzymes in our dataset, the nerolidyl predicted probabilities
for nerolidyl-cation specific enzymes (average 53% ± 30%) are generally lower than
the farnesyl predicted probabilities of farnesyl-cation specific enzymes (average 88%
± 19%, calculated as 100 - nerolidyl predicted probability percentage).

As a consequence of its superior performance, the structure-based classifier likely
finds features and residues that are important for cation specificity across all plant
species - something we can look into to understand generic STS cation determinants.

Thirty cation-specific residues were selected from Clf-str, as described in Materials
and Methods. Figure 3.2 visualizes the characterized STS enzymes with respect to
the features values of the cation-specific residues, coloured by cation and cyclization
specificity. Though imperfect, a separation of farnesyl and nerolidyl cation-specific
STSs can be seen. Most cadalane STSs lie on the farnesyl side, with only two
being predicted as nerolidyl cation-specific STSs in the Genus Split results. This
can indicate that many cadalane synthases in fact make their products through a
germacrene D intermediate, or, if the measurements were conducted in vitro, then
perhaps acidic assay conditions led to spontaneous product rearrangements, thus
the interpretation of Figure 3.2 in terms of STSs producing only cadalane products is
unclear. While nerolidol synthases (N-acyclic in Figures 3.1 and 3.2) cluster separately
from the rest, farnesene and farnesol synthases (F-acyclic in Figures 3.1 and 3.2) are
found all across the reduced space. Due to the ease of formation of these acyclic
farnesyl products, it is possible that ancestral versions of these enzymes did indeed
produce nerolidyl-derived compounds, but this capability was later lost.

A further test of Clf-str was performed on 42 STS enzymes characterized from Au-
gust 2017-January 2020, not included in the first release of the characterized STS
database5, 31 of which come from species not present in the current set. This new
set consists of 24 farnesyl cation-specific STSs, 16 nerolidyl cation-specific STSs,
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Figure 3.2: Characterized STSs visualized using the feature values of the cation-
specific residues followed by dimensionality reduction using UMAP22, which positions
STSs with similar feature values closer to each other. Squares represent farnesyl
cation-specific STSs and diamonds represent nerolidyl cation-specific STSs. Each
STS is also coloured by its cyclization specificity. Enzymes catalysing products from
different precursor cations are marked as triangles.



Techniques to investigate specificity 61

three STSs producing only cadalane compounds, and one STS which produces both
farnesol and nerolidol. Clf-str correctly predicted all the nerolidyl cation-specific STSs
and all but two of the farnesyl cation-specific STSs. Both the cadalane and the acyclic
STSs were predicted as farnesyl cation-specific STSs. These enzymes are listed in
Supp. Table 3.1 and have been added to the second version of the characterized STS
database, found at www.bioinformatics.nl/sesquiterpene/synthasedb.

3.2.3 Residues in five structural regions contribute to cation specificity

The cation-specific residues according to our structure-based predictor are indicated
in Figure 3.3A on the tobacco epi-aristolochene synthase (TEAS) structure. They
are roughly found in five different structural regions, labelled A-E. Also shown are
the residues in the three known terpene synthase motifs, namely RXR, DDXXD, and
NSE/DTE, as well as the magnesium ions and substrate analog. Figure 3.3B shows
the sequence composition of these thirty residues across farnesyl and nerolidyl cation-
specific STSs. While the sequence logos (Figure 3.3B) show significant differences
in some predictive positions, others have very similar amino acid distributions across
the two cations, indicating that their differences lie solely in some combination of
their structural features likely due to their structural interaction with neighbouring
residues. Thus, these residues would not have been identifiable from sequence-based
analysis alone, further demonstrating the power of the integrative approach presented
here. Supp. Figure 3.2 shows residue scores across the 10 folds in the genus-based
split. The scoring is consistent irrespective of the training set used, indicating that
these residues are indeed catalytically important across all plant species.

To obtain more information about these thirty residues, we turned to the wealth of
uncharacterized putative terpene synthase enzymes in sequenced plant genomes and
transcriptomes. The products of these putative enzymes are unknown, so they cannot
be used to train a classifier; however, the sequences themselves still carry valuable
information about conservation and divergence. We used co-evolutionary analysis to
inspect these sequences in the context of the cation-specific residues. Co-evolutionary
analysis is a statistical technique applied on protein sequence alignments based on the
underlying biological theory of residue co-evolution23. This theory postulates that if
there is a mutation in one residue involved in an interaction, then proteins in which
its interaction partner is mutated as well, in a way that maintains their interaction,
are preferentially selected by evolution. While this technique is most often used to
find potentially interacting residues within a protein in protein families with scant
structural information, an alternative scenario of co-evolution can play out in the
case of functionally related residues24. For instance, two residues which contact a
substrate or an intermediate, while not interacting directly, may still co-evolve to
maintain their shared interactions with the substrate.

www.bioinformatics.nl/sesquiterpene/synthasedb
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We used 8344 putative terpene synthase N- and C-terminal domains obtained from
sequenced plant genomes and transcriptomes to perform a co-evolutionary analysis
as described in Materials and Methods. Supp. Figure 3.3B and Supp. Figure 3.3C
show the predicted contact map from this analysis compared to the pairwise minimum
β-carbon Euclidean distance matrix across the six structures in Table 3.1. When
looking at the top 1500 predicted contacts (Supp. Figure 3.3A), 328 have residues
at least 7 positions apart in the sequence, indicating long range interactions across
different structural regions. Only 78 (24%) of these are not capable of physical
interaction (>11 �A apart) in all of the six STS crystal structures. 10 of these predicted
pairs, shown in Figure 3.4, have at least one residue among the thirty cation-specific
residues. Below, we discuss specific examples of these residues and pairs in context
of the five regions predicted to be involved in cation specificity.

Residues in region A (coloured dark green in Figures 3.3 and 3.4) lie in the A-C loop,
close to the conserved RXR motif, with one residue forming the second Arg in the
motif itself. This motif has been implicated in the complexation of the diphosphate
moiety, preventing nucleophilic attacks on any of the intermediate carbocations25.
As this is one of the first steps to occur in order for the resulting charged intermediate
to undergo cyclization and further reactions, it can play a crucial role in determining
how the newly formed cation is positioned, thereby determining whether a farnesyl
cation is formed or a nerolidyl cation. In previous work we showed that many nerolidol
(N-acyclic) synthases have a mutation in this motif, from RXR to RXQ (as can be
seen in the sequence logo; Figure 3.3B, position 266), indicating that changes in and
around this motif can indeed affect the products formed.

The six residues in region B (coloured red in Figures 3.3 and 3.4) all lie right in the
centre of the active site cavity, in helix D (G276, T293, S298, in TEAS), around the
kink region in helix G2 (T402, Y404, L407) and in helix H2 (C440), enveloping the
descending substrate from all sides. The residues in this region are very close to both
the substrate analog co-crystallized with TEAS as well as the analog co-crystallised
with Abies grandis α-bisabolene synthase, as depicted in Figure 3.4C. This proximity
has led to a more thorough exploration of these residues in the context of product
specificity, than in other regions of the structure. For instance, Yoshikuni et al. 8 ,
2006 explored plasticity residues in the active site of the promiscuous Abies grandis
γ-humulene synthase. Among the many mutants they made, those that converted
the major product from the farnesyl-derived γ-humulene to nerolidyl-derived products
such as β-bisabolene, α-longipinene, longifolene, and sibirene, contained mutations in
the residues corresponding to T402, Y404 and C440 in TEAS - three cation-specific
residues according to our predictor. Two of these residues (Y404 and C440) have also
been explored by Salmon et al. 26 when mutating the acyclic β-farnesene synthase
from Artemisia annua to a cyclic nerolidyl cation-derived enzyme.

Similarly, Li et al. 27 , 2013 demonstrated that a single mutation in the kink in the G2
helix can change the product specificity of an Artemisia annua STS from α-bisabolol,
a nerolidyl-derived sesquiterpene, to the farnesyl-derived γ-humulene. T402 from this
kink has co-evolved with S298 in the parallel helix D. As depicted in Figure 3.4B (col-
umn 1), while these two positions are very often both Serine in farnesyl cation-specific
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Figure 3.4: A. Tobacco epi-aristolochene synthase (TEAS) secondary structure with
distal cation-specific co-evolutionary contacts (green arcs), motif residues (purple),
and cation-specific residues (coloured by region). Helix naming as in Starks et al. 25

B. Sequence-pair conservation of four cation-specific contacts discussed in the text,
across farnesyl and nerolidyl cation-specific STSs, and all putative terpene synthases.
The height of a pair of letters represents the frequency of the pair appearing in those
two positions, with ’X’ representing gaps. C. Diagrams indicating the proximity of
residues labelled B in Figure 3.3B, as well as the residues that they co-evolve with, to
substrate analogs trifluorofarnesyl diphosphate (FFF) co-crystallized with TEAS (left)
and farnesyl thiodiphosphate (FPS) co-crystallized with Abies grandis α-bisabolene
synthase (AgBIS) (right). Carbon atoms are numbered (white boxes) as in the FFF
subtrate analog moeity in PDB ID 5EAU. The closest distance (in �A) between each
residue’s β-carbon and a substrate atom is labelled in gray. Two co-evolving contacts
(labelled 1 and 2 in A) are colored in green.
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STSs, in nerolidyl cation-specific STSs the commonly occurring pairs are Thr-Ile or
Tyr-Ser. The dipole of T402 has been implicated along with T401 in directing the
cationic end of the farnesyl chain into the active site, preparing it for a C10 attack25.
Isoleucine, which is not often found to be a catalytic residue due to its inert nature,
cannot perform this task in nerolidyl cation-specific STSs. Another contact is be-
tween the cation-specific residue C440 and Y376 (numbered 2 in Figure 3.4B). A
mutational analysis on a multi-product maize STS by Köllner et al. 28 demonstrated
the importance of Y376 in the formation of bicyclic products such as sesquithujene
and bergamotene, derived from the nerolidyl cation. The residue positioned three
residues downstream of Y376 was identified by Köllner et al. 29 in 2009 to be in-
volved in controlling the ratio of α-bergamotene to the acyclic β-farnesene in maize
STS orthologs. Therefore, the combined effects of position 376 and 440 are likely
required for the formation of the nerolidyl cation followed by a second cyclization to
bicyclic nerolidyl sesquiterpenes. An alignment of TEAS with the examples discussed
here is depicted in Supp. Figure 3.4. These examples demonstrate that residues
found important by our structure-based predictor are indeed involved in catalytic and
functional activity. They also establish the power of an integrative machine learning
approach to pinpoint residue positions important across a variety of species, a com-
bination of what one would find from each of the individual studies referenced above.
A Fisher’s exact test for the significance of the number of residues found both by our
predictor and in literature returned a p-value of 9.8e−07.

The 12 residues in region C (coloured orange in Figures 3.3 and 3.4) encompass the
entire E-F loop and parts of the G2-H1 loop at the very bottom of the active site
cavity. An interesting residue here is H360, the last residue in the E-F loop. Sequence
conservation shows that this position is very often deleted in nerolidyl cation-specific
synthases, while farnesyl cation-specific synthases usually have bulky residues such as
Tyrosine and Histidine (Figure 3.3B, position 360). Two of its co-evolving partners
(numbered 3 and 4 in Figure 3.4B), one from the parallel helix G2 and one from
the 4-5 loop in the N-terminal region, are also primarily deleted in nerolidyl cation-
specific STSs but present in farnesyl cation-specific STSs, albeit usually as Glycine
in helix G2. While the connection with the N-terminal domain is surprising, the
parallel residue in the C-terminal domain, when present, may physically interact at
some point during the reaction or in other plant STSs, not captured in the six crystal
structures currently available30. A deletion can break this interaction, which in turn
can have an effect on the positioning of helix G2 in the active site and thereby the
positioning of the cation-specific residues that lie within it. These subtle alterations
in cavity shape may in turn affect which kinds of intermediates fit comfortably inside
the cavity.

Two consecutive high scoring residues (region D, coloured blue in Figures 3.3 and
3.4), lie in the H3-α1 loop, close to the catalytic NSE/DTE motif. This motif is
involved in coordinating Mg2+ ions along with the DDXXD motif on the opposite
side31. This region lies at the entrance of the active site cavity and is in an optimum
position to contact the substrate as it enters the cavity. In addition, the inability to
crystallize this region in three of the six crystal structures indicates that this loop is
very flexible32.
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Residues in region E (coloured light green in Figures 3.3 and 3.4) lie in helix I, near
the end of the C-terminal domain and close to helix 7 and helix 8 in the N-terminal
domain.

Overall, these results show that cation-specific residues in regions labelled A, B, and D
lie within areas known to participate directly in the catalytic reaction. These residues
were predicted by our machine learning approach without using any knowledge on
their functional properties. Some of these residues have been mutated before and
were shown to be important for cation specificity. This indicates that the other
residues are also likely to perform similarly crucial roles, perhaps also in STSs that
have not been used so far in mutagenesis experiments. Residues labelled C and E
lie quite far from the active site and could be involved in subtle alterations of the
cavity shape or in stabilising contacts with the N-terminal domain. Though this
domain is known to be important for plant STS reactions, its exact function has not
been fully explored. However, just as O’Maille et al. 18 showed that residues distant
from the active site can still be functionally crucial, these distal residues are likely to
have multifaceted and interdependent roles in cation specificity that only such large-
scale computational approaches can recognize. Further experiments and mutational
studies in these regions are required to confirm and elaborate their involvement in
the STS reaction mechanism. Meanwhile, the structure-based predictor, as well as
the cation-specific sequence and contact conservation information described can be
used to screen through the many thousands of uncharacterized putative STSs with
a particular cation specificity in mind as demonstrated in the next section.

3.2.4 Bisabolyl cation synthases from Citrus bergamia ’Femminello’

One potential application of the cation-specificity predictor presented here is to screen
for enzymes with a desired specificity. We demonstrate this application to find STSs
catalysing the formation of products derived from the bisabolyl cation from 23 ter-
pene synthase-like sequences extracted from the transcriptome of Citrus bergamia
’Femminello’ (described in Materials and Methods). Using the hidden Markov model
approach detailed by Priya et al. 6 , 11 sequences out of these 23 were predicted to
be STSs (as opposed to mono- or diterpene synthases). We used the cation speci-
ficity predictor on these 11 and sorted by decreasing order of predicted nerolidyl cation
specificity, selecting enzymes with predicted probability percentage above 10%, based
on the predicted percentages of the characterized database (Supp. Figure 3.1).

Two enzymes clustered close to the nerolidol cluster in Figure 3.2 and were thus
excluded, resulting in four enzymes with >10% predicted nerolidyl cation speci-
ficity. Three of these could be experimentally characterized, submitted to GenBank
with identifiers MT636927, MT636928 and MW384854 respectively. MT636927 and
MT636928 produced bisabolyl cation-derived products. MT636927 has 55% pre-
dicted nerolidyl specificity and produced trans-α-bergamotene, β bisabolene, and α
bisabolol. MT636928 has 11% predicted nerolidyl specificity, and produced zin-
giberene. MW384854 has 26% predicted nerolidyl specificity but produced the
farnesyl-cation derived caryophyllene. The chromatograms and the fragmentation
patterns of the identified peaks and the reference compounds can be found in Supp.
Figure 3.5 and Supp. Section 3.2.
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Sequence identity based screening, on the other hand, predicts all 11 enzymes as
farnesyl cation specific showing that based on only sequence identity, we cannot pri-
oritize candidate genes for production of bisabolyl cation-derived products. Thus,
the cation specificity predictor can be used for effective screening of STSs with de-
sired intermediate specificity, saving time, labour and costs required for extensive
experimental characterization. Considering that the bisabolyl cation is one of the
least represented intermediates in our dataset, expanding the number of experimen-
tally characterized enzymes used for training can further increase the accuracy of our
results, and even allow for more fine-grained product specificity prediction.

3.3 Conclusion

The availability of growing numbers of characterized and putative sesquiterpene syn-
thases opens doors for the application of computational analyses in order to obtain
insights about this large and amazingly diverse family of enzymes. While STSs col-
lectively produce many hundreds of compounds, these are all rearrangements of two
precursor carbocations deriving from a single substrate. We show that multiproduct
STS enzymes catalyse the formation of products deriving from the same cation, in-
dicating that cation specificity is determined early in the reaction. A combination
of structure-based supervised machine learning and unsupervised co-evolution gives
us a set of structural regions implicated in cation specificity determination as well
as possible functional relationships between residues in these regions and other parts
of the STS structure. The predictor itself can be used for cation-specificity screen-
ing, while the residues and corresponding linkages discussed here can be used to
design mutational studies with a higher likelihood of maintaining catalytic activity
while changing cation specificity. Such an integrative approach can also be applied
to other diverse enzyme families in order to uncover large-scale interdependent rela-
tionships between catalytic residues influencing product specificity. As the number of
characterized STSs from across the plant kingdom increases, more specific predictors
can be designed, in order to screen STSs at the cyclization or even product level.

3.4 Materials and methods

3.4.1 Reaction pathway determination

The reaction pathway for each sesquiterpene in the database was determined using the
scheme detailed in IUBMB’s Enzyme Nomenclature Supplement 24 (2018)33 up to
the depth specified in Figure 3.1. For example, the sesquiterpene viridiflorene would
be labelled F112 as it derives from bicyclogermacrene which itself is labelled F11.
Sesquiterpenes derived from the cadalane skeleton, namely cadinanes, cubebenes,
copaenes, amorphenes, sativenes, muurolenes, ylangenes, and their alcoholic variants,
are marked as cadalanes as they can form from multiple reaction pathways.

Two sesquiterpenes share a reaction path if the pathway annotation of one is a
non-strict prefix of the other’s. For example, sesquiterpenes labelled F1, F11, and
F113 belong on the same reaction path while those labelled F111, F112, and F12
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do not. If multiple cadalane-type compounds are produced by one enzyme, they are
assumed to come from the same path. These rules are used to calculate the number
of multi-product enzymes with products following the same reaction path.

STSs were labelled as farnesyl or nerolidyl according to the group that their prod-
ucts belong to. STSs making cadalane products along with additional non-cadalane
products are labelled with the cation of these other products. Multi-product STSs
producing compounds from different cations, as well as cadalane STSs without any
non-cadalane product are considered separately and are not used for training.

3.4.2 Sequence extraction and alignment

N-terminal and C-terminal domain sequences were extracted from all spermatophyte
plant STSs from the database using HMMER34 and the Pfam35 domains PF01397
and PF03936 respectively. All N-terminal and C-terminal sequence alignments were
made using Clustal Omega36, using the corresponding Pfam domain HMM to guide
the alignment. A combined N- and C-terminal domain HMM was built by aligning
each half of the common seed sequences from both respective Pfam domains, stacking
the resulting alignments together, and using the hmmbuild tool in HMMER34. This
HMM is referred to as Terpene synth N C.

3.4.3 Homology modelling

For each STS, 500 multi-template homology models were created of the C-terminal
domain region using MODELLER37, with six STS structures from the PDB38 as
templates, as listed in Table 3.1. These were aligned to each sequence using the
C-terminal PF03936 Pfam domain35 as a guide, using Clustal Omega36. The top
three models were selected based on their N-DOPE score for feature extraction.

For comparison, 500 models were also made using a single template for each enzyme;
the template chosen was the one having the maximum sequence identity to the
enzyme being modelled. Similarly, models were made for each of the six template
structures using the other five structures as templates. Models of full STS sequences
(including the N-terminal domain) were also made using a similar multi-template
approach with the custom Terpene synth N C HMM to guide the alignment to the
templates. Results for these three additional approaches are presented in Supp.
Section 3.1.

3.4.4 Feature extraction

Sequence and structure features were extracted from each STS as described below
and aligned according to the C-terminal domain alignment. Gaps in the alignment
were represented as NaNs for continuous features and as a separate category for
categorical features.
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Sequence features

For each STS sequence, PSIBLAST39 was run on the non-redundant protein database
(nr)40 and used to calculate a position-specific scoring matrix (PSSM) and a position-
specific frequency matrix (PSFM). The information content of each column in the
PSSM was also calculated. SCRATCH41 was used to predict the secondary structure
and surface accessibility of each residue. Finally, the raw amino acid sequence was
also used as a feature source. Categorical features were one-hot encoded.

Structure features

Structural features were extracted for each of the top three homology models for
each STS. All atom-level features were converted into α-carbon, β-carbon, and mean
residue features. For Gly, the α-carbon was used for the β-carbon features as well.
ProDy42 was used to calculate the 50-mode Gaussian Network Model (GNM) and
Anisotropic Network Model (ANM) atom fluctuations using the calcGNM/calcANM
functions followed by the calcSqFlucts function. APBS43 was used to calculate the
Coulomb and Born electrostatics of a modelled structure. PDB2PQR43 was first used
to generate a PQR file from each PDB file, followed by running the born command
with an epsilon (solvent dielectric constant) of 80 and the coulomb command
with the -e option. DSSP features are calculated using ProDy42 to give hydrogen
bond energies, surface accessibility, dihedral angles (α), bend angles (κ), φ, and ψ
backbone torsion angles, and tco angles (cosine angle between the C=O of residue
i and the C=O of residue i− 1). Residue depths were extracted using BioPython44

from the PDB files of the top three models.

3.4.5 Classification framework

A classification framework using Gradient boosting trees (as depicted in Supp. Figure
3.6) was built for different sets of features. The framework is trained in three steps:

1. A separate gradient boosting tree is trained for each kind of feature for all residues.
XGBoost45 was used with default parameter settings for these intermediate clas-
sifiers (n trees = 100, learning rate = 0.1, gamma = 0, subsample = 1,
colsample bytree = 1, colsample bylevel = 1). These simple settings are
sufficient as these classifiers are only used to find predictive residues, as described
in the next step.

2. The sum of normalized weights for each residue across all the trained feature
models from Step 1 is used as a scoring measure to select the top thirty residues.

3. A final gradient boosting forest with much stricter parameter settings (n trees

= 2000, learning rate = 0.005, gamma = 0.01, subsample = 0.7, cols-
ample bytree = 0.1, colsample bylevel = 0.1) is trained using XGBoost45

on all the feature values of the top residues picked in Step 2. These parameter
settings are chosen to make a more conservative classifier that avoids overfitting
in three ways: reduced model complexity by regularization (using the gamma

parameter), robustness to noise by random selection in each intermediate tree
of both data points (the subsample parameter) and features (the colsample
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parameters), and a slow learning rate combined with a large number of trees to
increase the power of the ensemble.

For testing, the features of the selected thirty residue positions in the test enzymes
are fed into the trained classifier.

Clf-seq and Clf-str are two classifiers built using this framework utilizing only sequence
features and both sequence and structure features, respectively. Clf-id is a simple
rule-based classifier that does not use this framework and instead returns the class
of the closest training set sequence based on sequence identity.

3.4.6 Validation and testing

Three validation schemes are used to test a classifier.

1. Random Split: A random five-fold cross-validation with 80%-20% train-test split.

2. Genus Split: A scheme in which cases from 65 genera are used for training and
the rest for testing, repeated 10 times with different sets.

3. Clade Split: All dicot STSs are used for training and monocot and conifer STSs
for testing.

Three different metrics are used to measure the performance of each classifier, using
the definitions of TP and TN as the number of nerolidyl cation-specific synthases and
number of farnesyl cation-specific synthases predicted correctly at a certain threshold
of predicted probability, and FP and FN as the number of nerolidyl cation-specific
synthases and number of farnesyl cation-specific synthases predicted incorrectly at a
certain threshold. All metrics are calculated using the scikit-learn Python library46.

1. Balanced accuracy (bAcc): 1
2

(
TP

TP+FN + TN
TN+FP

)
at a threshold of 0.5.

2. Area Under the Receiver Operating Characteristic Curve (AUC): Calculated as
the area under the plot of the fraction of TP out of the total number of nerolidyl
cation-specific synthases vs. the fraction of FP out of the total number of
farnesyl cation-specific synthases, at various threshold settings.

3. Area Under the Precision-Recall Curve (AUPRC): Calculated as the area under
the plot of the precision (TP/(TP + FP )) vs. the recall (TP/(TP + FN) at
various threshold settings.

42 newly characterized synthases from literature (listed in Supp. Table 3.1) are used
as the final independent test set.

3.4.7 Selecting cation-specific residues

The normalized weights across all feature classifiers were summed across all the folds
of the Genus Split and the resulting thirty highest scoring positions represent the set
of cation-specific residues. The sequence and structural features of these residues
were used to visualize the set of characterized STSs. This was done by applying
UMAP22 to reduce the dimensionality to 2.
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3.4.8 Co-evolution analysis on plant terpene synthase-like proteins

An HMM search was performed using HMMER34 and the custom Terpene synth N C
HMM across all plant UniProt proteins47 and all plant transcriptome sequences from
the OneKP transcriptome dataset48. Only those with sequence length at least one
standard deviation away from the mean sequence length of the characterized STSs
from the database5 were retained. The resulting set of uncharacterized sequences
were aligned with Clustal Omega36 using the same HMM and 10 guide-tree/HMM
iterations (iter = 10). Alignment positions not present in any of the six structures
in Table 3.1 were discarded.

CCMPred49 was used to perform co-evolution analysis on this alignment. The top
1500 predicted contacts were selected based on their confidence scores (Supp. Figure
3.3A). Contacts containing one residue from the cation-specific positions, at least 11
�A apart in any of the six structures in Table 3.1 and seven residues apart in sequence
were retained.

3.4.9 Visualization of cation-specific residues and contacts

Cation-specific residues and contacts were visualized in multiple ways.

• 3D Structure - PyMOL50 was used to visualize the three-dimensional structure of
tobacco 5-epi-aristolochene synthase (TEAS, PDB ID: 5EAU) and label terpene
synthase motif residues and cation specific residues.

• Sequence and Co-evolution Conservation Logos - The positions of predictive
residues in farnesyl and nerolidyl cation-specific STSs were used to generate two
sequence conservation logos based on the percentage of appearance of each amino
acid at each position. The sequence conservation of four co-evolving residue pairs
was also visualized across farnesyl and nerolidyl cation-specific STSs and the set
of putative terpene synthases. These figures were made with matplotlib51.

• Co-evolutionary Links - The cation-specific residues and contacts as well as
terpene synthase motif residues were visualized on the secondary structure of
the N-terminal and C-terminal domain portions of the tobacco aristolochene syn-
thase (TEAS) structure found by the two respective Pfam domains (PF01397
and PF03936), using matplotlib51. Helices are labelled as described by Starks
et al. 25 .

• Substrate Analog Proximity - Substrate analogs trifluorofarnesyl diphosphate
(FFF) and farnesyl thiodiphosphate (FPS) were extracted from tobacco epi-
aristolochene synthase PDB ID: 5EAU, and Abies grandis α-bisabolene synthase
PDB ID: 3SAE respectively. Their positions in both structures were obtained
by superposing the two structures to each other using the align command in
PyMOL50. Distances between a subset of the cation-specific residues and the
atoms of the substrate analogs were visualized using matplotlib51. The atoms in
both analogs are numbered according to the numbering of FFF.
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3.4.10 Citrus bergamia ’Femminello’ STSs

The cation specificity predictor was employed to select four STSs among the putative
terpenes synthases from C. bergamia with the highest nerolidyl cation specificity.
The sequences were codon optimised, synthesised and expressed in Rhodobacter
sphaeroides, as described earlier in Beekwilder et al. 52 . The analysis of the products
coming from the engineered strains was performed on the GC Agilent 7890B coupled
to the MS Agilent 5977B. The used column is an HP-5MS 30m x 250um x 0.25um.
The resulting chromatograms and the fragmentation patterns of the identified peaks
and the reference compounds can be found in Supp. Figure 3.5 and Supp. Section
3.2.

3.4.11 Data and code availability

The characterized STS sequence, product, and species data used can be found at
https://www.bioinformatics.nl/sesquiterpene/synthasedb/

Code used for modelling, feature extraction, and building the various cation prediction
classifiers presented here can be found at https://git.wur.nl/durai001/sts_

cation_prediction, along with data for:

1. homology models of the C-terminal domains of characterized STSs using a single,
closest template from the template structures in Table 3.1.

2. multi-template homology models of the C-terminal domain, built using all six
templates.

3. multi-template homology models of the full (N- and C-terminal domain) struc-
tures using the same six templates.

4. an alignment of 8344 putative terpene synthases

5. the predicted contact matrix returned by CCMPred on the above alignment

Protein visualization code, for displaying sequence logos, co-evolution logos, and
secondary structure elements, can be found at https://git.wur.nl/durai001/

clemmys.

Acknowledgments

We thank Miguel Correa Marrero for valuable feedback on early drafts and stimulating
discussions on the approaches discussed in the text. We also thank Kenneth Paul
Rivadeneira Guadamud for collecting 21 of the recently characterized sequences used
in the test set.

Supplementary information

All supplementary sections, figures, and tables are available online at https://doi.
org/10.1371/journal.pcbi.1008197

https://www.bioinformatics.nl/sesquiterpene/synthasedb/
https://git.wur.nl/durai001/sts_cation_prediction
https://git.wur.nl/durai001/sts_cation_prediction
https://git.wur.nl/durai001/clemmys
https://git.wur.nl/durai001/clemmys
https://doi.org/10.1371/journal.pcbi.1008197
https://doi.org/10.1371/journal.pcbi.1008197


REFERENCES 73

References
[1] Buckingham, J. (1997). Dictionary of Natural Products, Supplement 4 volume 11. CRC Press.
[2] Gershenzon, J., & Dudareva, N. (2007). The function of terpene natural products in the

natural world. Nature Chemical Biology , 3 , 408–414.
[3] Schempp, F. M., Drummond, L., Buchhaupt, M., & Schrader, J. (2017). Microbial cell factories

for the production of terpenoid flavor and fragrance compounds. Journal of Agricultural and
Food chemistry , 66 , 2247–2258.

[4] Chen, F., Tholl, D., Bohlmann, J., & Pichersky, E. (2011). The family of terpene synthases
in plants: A mid-size family of genes for specialized metabolism that is highly diversified
throughout the kingdom. The Plant Journal , 66 , 212–229.

[5] Durairaj, J., Di Girolamo, A., Bouwmeester, H. J., de Ridder, D., Beekwilder, J., & van Dijk,
A. D. J. (2019). An analysis of characterized plant sesquiterpene synthases. Phytochemistry ,
158 , 157–165.

[6] Priya, P., Yadav, A., Chand, J., & Yadav, G. (2018). Terzyme: A tool for identification and
analysis of the plant terpenome. Plant Methods, 14 , 4.

[7] Greenhagen, B. T., O’Maille, P. E., Noel, J. P., & Chappell, J. (2006). Identifying and manip-
ulating structural determinates linking catalytic specificities in terpene synthases. Proceedings
of the National Academy of Sciences, 103 , 9826–9831.

[8] Yoshikuni, Y., Ferrin, T. E., & Keasling, J. D. (2006). Designed divergent evolution of enzyme
function. Nature, 440 , 1078–1082.

[9] Kampranis, S. C., Ioannidis, D., Purvis, A., Mahrez, W., Ninga, E., Katerelos, N. A., Anssour,
S., Dunwell, J. M., Degenhardt, J., Makris, A. M. et al. (2007). Rational conversion of
substrate and product specificity in a Salvia monoterpene synthase: Structural insights into
the evolution of terpene synthase function. The Plant Cell , 19 , 1994–2005.

[10] Segura, M. J., Jackson, B. E., & Matsuda, S. P. (2003). Mutagenesis approaches to deduce
structure–function relationships in terpene synthases. Natural Product Reports, 20 , 304–317.

[11] Gao, Y., Honzatko, R. B., & Peters, R. J. (2012). Terpenoid synthase structures: A so far
incomplete view of complex catalysis. Natural Product Reports, 29 , 1153–1175.
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[49] Seemayer, S., Gruber, M., & Söding, J. (2014). CCMpred—fast and precise prediction of

protein residue–residue contacts from correlated mutations. Bioinformatics, 30 , 3128–3130.
[50] DeLano, W. L. et al. (2002). PyMOL: An open-source molecular graphics tool. CCP4 Newslet-

ter on Protein Crystallography , 40 , 82–92.
[51] Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science &

Engineering , 9 , 90–95.
[52] Beekwilder, J., van Houwelingen, A., Cankar, K., van Dijk, A. D., de Jong, R. M., Stoopen,

G., Bouwmeester, H., Achkar, J., Sonke, T., & Bosch, D. (2014). Valencene synthase from
the heartwood of Nootka cypress (Callitropsis nootkatensis) for biotechnological production of
valencene. Plant Biotechnology Journal , 12 , 174–182.





CHAPTER 4
Caretta - A multiple protein structure
alignment and feature extraction suite

Mehmet Akdel*, Janani Durairaj*, Dick de Ridder, and Aalt D.J. van
Dijk

∗ authors contributed equally

This chapter has been published as

Akdel, Mehmet, et al. “Caretta–A multiple protein structure alignment and feature
extraction suite.” Computational and Structural Biotechnology Journal 18 (2020):
981-992.



78 Chapter 4

Abstract

The vast number of protein structures currently available opens exciting opportunities
for machine learning on proteins, aimed at predicting and understanding functional
properties. In particular, in combination with homology modelling, it is now possible
to not only use sequence features as input for machine learning, but also structure
features. However, in order to do so, robust multiple structure alignments are imper-
ative.

Here we present Caretta, a multiple structure alignment suite meant for homologous
but sequentially divergent protein families which consistently returns accurate align-
ments with a higher coverage than current state-of-the-art tools. Caretta is available
as a GUI and command-line application and additionally outputs an aligned structure
feature matrix for a given set of input structures, which can readily be used in down-
stream steps for supervised or unsupervised machine learning. We show Caretta’s
performance on two benchmark datasets, and present an example application of
Caretta in predicting the conformational state of cyclin-dependent kinases.

Python code available at https://git.wur.nl/durai001/caretta

4.1 Introduction

Protein structure alignment has recently been gaining attention in the bioinformatics
field, becoming almost as popular as its cousin, protein sequence alignment. While
sequence alignment aims to use amino acid substitution patterns and physicochemi-
cal properties to make a residue-residue correspondence between sequences of related
proteins, structure alignment instead usually focuses on making an optimal superpo-
sition of the 3D coordinates of backbone atoms to establish such a correspondence.
In many cases these two approaches agree with each other, especially in cases where
the proteins under consideration share a high sequence homology. However, it has
been repeatedly observed1,2 that some protein families have divergent protein se-
quences and yet share a high structure, topology, and/or fold similarity, mostly due
to the fact that structure tends to evolve slower than sequence3. For example, the
ubiquitous TIM barrel structural fold is found in over 70 protein families all across
nature, and even the most accurate sequence-based techniques cannot find rela-
tionships between these diverse sequences with the same structure4. In such cases,
while sequence alignment may not be successful, structure alignment can still find
meaningful residue correspondences.

Structure alignment has had applications in understanding evolutionary conservation
and divergence patterns between proteins across different species5, identifying con-
served active site residues involved in catalytic reactions, creating structure-aware
sequence profiles6, structural similarity search against a database7 and even as a
method to design gold standard datasets for evaluating sequence alignment pro-
grams8,9. One area in which comparing multiple protein structures is only recently
becoming popular is machine learning.

https://git.wur.nl/durai001/caretta
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Though machine learning is not a new field, its popularity and applicability in bioin-
formatics has recently grown at a tremendous pace. In the protein and enzyme
world, machine learning has successfully been applied to predict protein function,
protein-protein interactions, drug-target binding, enzyme substrate specificity, ther-
mostability, catalytic rates, binding affinity, and so on10–12. In many of these cases,
protein sequences are used due to their widespread availability. However, the increase
in both the number of experimentally solved structures, as well as the improvement
in structure prediction using homology modelling and co-evolution based approaches,
has led to the possibility of incorporating predicted or actual protein structure in-
formation (such as residue depth, electrostatic potentials etc.) in such algorithms
to better predict and understand outcomes and properties associated with protein
families13,14.

The typical input for a machine learning algorithm has a tabular format, with each
row representing an input protein and each column representing a particular feature or
attribute extracted across all the proteins considered. Naturally, the construction of
such an input table is often performed by means of a multiple protein alignment. Each
column then consists of a particular feature value measured across all the residues
in a particular alignment position. This then allows the prediction algorithm to look
for patterns in these columns which are correlated with the desired response. For
example, in an alignment of ten proteins, if one position is a Trp in the five proteins
with a high catalytic rate and a Gly in the five with a lower catalytic rate then this
residue position may be implicated in the reduction of catalytic activity. The power
of machine learning algorithms lies in finding much more complex and interconnected
patterns such as this one. Regions in the alignment with many insertions and dele-
tions, however, can be more difficult to handle, as functionally equivalent residues
may be split across multiple columns. This makes it harder for a predictor to spot
patterns in a single column or link them together. Often, columns with too many
gaps without feature information have to be discarded completely from the analysis,
with the risk of losing out on predictive and catalytically important residues simply
due to an alignment not fit for the task at hand.

Although there are a number of multiple structure alignment tools, different tools
excel in different settings. Many existing multiple structure alignment algorithms,
such as Matt15,16, MUSTANG17 and MultiProt18, focus on and are optimized for
aligning evolutionarily distant proteins, which may be from the same superfamily but
only share short stretches of structurally conserved “core” regions. Concentrating
on these core regions, typically by aligning short fragments of proteins and then as-
sembling these intermediate alignments, leads to these methods overestimating the
number of gaps in the alignment, as observed by Carpentier & Chomilier 19 in their
multiple structure alignment benchmark. This is especially a hindrance in evolution-
arily conserved families as one would expect long stretches of residue correspondences
with only a small number of gaps. Therefore, there is a need for a multiple struc-
ture alignment tool aimed at returning accurate alignments with a high coverage
for homologous protein families with divergent sequences and conserved structures.
Machine learning methods which make use of these high-coverage alignments would
then have a larger number of extracted residue features at their disposal, allowing for
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the pinpointing of under-explored residue positions related to an outcome of interest.

Here we present Caretta, a multiple structure alignment tool that additionally out-
puts aligned structural feature matrices. Caretta uses a combination of dynamic time
warping20 and progressive pairwise alignment21 to align structures. The pairwise
alignment algorithm makes an initial superposition of the two structures using either
a signal-based rotation-invariant approach or secondary structure, and further refines
the alignment using a scoring system based on the Euclidean distance between corre-
sponding coordinates. The algorithmic novelty of Caretta is that information about
the multiple structure alignment is fed into each progressive pairwise alignment in
order to maintain and extend existing aligned blocks without disturbing them with
insertions unlikely to be found within the same protein family.

We demonstrate that Caretta covers more residues in its alignments than competing
tools while still maintaining accuracy. Testing on the widely used Homstrad dataset22

shows that Caretta often performs on par with manual curation. Caretta is capable
of outputting a matrix of features, such as bond angles and residue fluctuations,
extracted from the input structures and aligned according to the multiple structure
alignment. We use these feature matrices to demonstrate an example workflow of
Caretta in machine learning, for classifying cyclin-dependent kinases (CDK) into ac-
tive or inactive states23. Feature selection allows for pinpointing residues involved
in state switching, some of which are confirmed by previous studies. A Caretta GUI
application allowing for easy access and visualization of aligned structures and fea-
tures is provided as well. Taken together, Caretta is a full-featured multiple structure
alignment suite which provides tools for creating and exploring accurate structural
alignments and for calculating structural features extracted from the proteins aligned,
in order to successfully apply machine learning to identify distinguishing characteris-
tics of a family of homologous proteins

4.2 Methods

Figure 4.1A depicts the workflow of Caretta for multiple structure alignment: an
all vs. all pairwise alignment step followed by the construction of a guide tree for
progressive alignment, to finally output a multiple alignment. Each intermediate
pairwise alignment step uses the dynamic programming approach detailed in Section
4.2.1. These pairwise alignments use a combination of two different approaches
(labelled B1 and B2 in Figure 4.1) to construct an initial superposition of structures,
described in Section 4.2.2. The progressive alignment step, explained in Section
4.2.3 and Figure 4.1C, combines aligned structures into an alignment intermediate
and boosts the weight of well-aligned residue positions, an approach which reduces
the chances of unlikely insertions and deletions.



Caretta 81

Figure 4.1: A. Caretta’s multiple structure alignment workflow: an all vs. all pairwise
alignment step, followed by construction of a guide tree and progressive alignment.
B. The two approaches for initial rotation and superposition of two structures used in
pairwise alignment: 1) aligning secondary structure codes and 2) dynamic time warp-
ing on one-dimensional signals of distances from all residues to the first or last residue
in a segment. C. The guide tree specifies the two neighbours to combine at each
progressive alignment step. These two neighbours can either be protein structures
or previously combined intermediate nodes. A new intermediate node is created at
each step by aligning and combining the two neighbours. The alignment step takes
into account the number of times each position has been aligned in each of the
two neighbours weighted by the number of structures in each neighbour (consensus
row, shown in red). This ensures that when the difference of the two is taken in
calculating ScoreC (Equation 4.3), positions with fewer gaps get higher scores. Af-
ter alignment, the consensus row of the new intermediate node keeps track of the
number of residues aligned at each position.
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4.2.1 Dynamic programming based alignment

The algorithm underlying Caretta is dynamic programming alignment with affine gap
costs as described by Altschul & Erickson 24 . This algorithm is used in different parts
of Caretta with different scoring schemes and different gap open and gap extension
penalties, described in the next sections. Supp. Section 4.1 contains pseudocode
for all the remaining sections with the dynamic programming alignment algorithm
represented as DPAlign.

4.2.2 Pairwise alignment

Pairwise alignment of two structures depends on the residue-to-residue distance be-
tween them. The underlying assumption of a similarity scoring scheme based on
residue distance is that the proteins in question are already rotated and centred such
that equivalent residues are close to each other. Such a superposition requires a corre-
spondence between residues, i.e. an alignment, leading to a chicken and egg problem
for pairwise alignment. Caretta solves this by making an initial superposition of two
structures using the best out of two coarse alignments: the first based on secondary
structure (SecondarySuperpose in Supp. Section 4.1), and the second based on
the alignment of one-dimensional rotation-invariant signals derived from overlapping
contiguous segments of the two structures (SignalSuperpose in Supp. Section 4.1).
These two approaches are represented in Figure 4.1B1 and Figure 4.1B2 respectively,
and described below:

1. The first method aligns the residues between two proteins according to their
secondary structure elements. The secondary structure score or ScoreS is defined
as below, where si represents the DSSP secondary structure code (Supplementary
Table 1) for residue i:

ScoreS(i, j) =


0 if si = ’-’ ∨ sj = ’-’

1 if si = sj

−1 if si 6= sj

(4.1)

This scoring system is used with gap open and gap extend penalties σS = 1
and εS = 0 (since this scoring scheme works in increments or decrements of 1)
to make an initial alignment. The two proteins are then superposed using the
Kabsch algorithm25 to find the rotation and translation matrix that optimally
matches the aligning pairs of residues.

2. The second method performs dynamic time warping on rotation-invariant over-
lapping segments of two structures. Each segment represents each residue r in a
thirty-residue stretch of the structure by the Euclidean distances of its α-carbon
to the α-carbon of the first residue in the segment (~P = [d0, d1, ..., dn]). The
score between two such segments is given as:

ScoreP (i, j) = mediand

(
exp

(
− (~Pi,d − ~Pj,d)

2

10

))
(4.2)
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After determining the alignment of these segments (by using Scorep with zero
gap penalties to allow for more leniency as the proteins are not yet in their
correct orientation), the optimal rotation and translation of the α-carbons of the
first residues in each aligning pair of segments are calculated using the Kabsch
algorithm25 and used to superpose the two structures.

This approach is repeated, taking the distances to the last α-carbon in each
segment instead of the first, to obtain a different superposition.

The superposition from the above two approaches giving the best-scoring alignment
is chosen. The scoring method used by Caretta uses an RBF (Gaussian) kernel
derived from the Euclidean distance between two (superposed) α-carbon coordinates
(~α = [αx, αy, αz]), defined below:

ScoreC(i, j) = exp
(
−γ
∑

( ~αi − ~αj)
2
)

(4.3)

Supp. Figure 4.1 shows the distribution of this score for different values of γ as a
function of Euclidean distance. We chose a γ value of 0.03 as this causes a sharp drop
to near-zero values at 8 �A while still yielding a score of around 0.6 at the commonly
used structural equivalence cutoff of 4 �A, reflecting the belief that residues further
away than 8 �A are not likely to be structurally or functionally equivalent.

This score is summed across all paired residues to derive the score of an alignment
between two proteins x and y:

PairwiseAlignmentScoreC(x, y) =
∑

(i,j)∈aligned residue pairs

ScoreC(xi, yi) (4.4)

Caretta uses the scoring scheme ScoreC and σC and εC as gap open and gap extend
penalties (set to 1 and 0.01 for the alignments presented here) on the newly super-
posed coordinates to find the optimal correspondence between them
(PairwiseAlignment in Supp. Section 4.1).

When more than two structures are required to be aligned, pairwise alignments are
made for all input structures. This step is essential for the guide tree construction
described in the next section.

4.2.3 Multiple alignment

The idea behind a progressive alignment approach is to perform step-wise alignments
of two stacks of previously aligned structures (or single structures) to result in a
final stack of all aligned structures. The order of addition of structures is a crucial
factor in the performance of this method. Aligning similar structures first, with a
smoother progression towards distantly related structures, increases the chances of a
good alignment. We construct a guide tree for determining the order of progression
using maximum linkage neighbour joining26 on the pairwise alignments constructed
in Section 4.2.2. The pairwise tree score for two proteins is given by their pairwise
alignment score (Equation 4.4) divided by the number of aligning pairs.
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With the guide tree in place, the progressive alignment steps start, as illustrated in
Figure 4.1C and Supp. Section 4.1 MultipleAlignment. While progressive align-
ment typically consists of independent pairwise alignment steps, the algorithmic nov-
elty of Caretta lies in the introduction of a feedback loop between the state of the
multiple structure alignment and each pairwise alignment, explained in detail below.
For this purpose, an additional consensus row, of length equal to the protein length,
is maintained for each structure, initiated with a consensus weight parameter (cw,
default=1). This row is concatenated to the coordinates ~α of a protein before ScoreC
in Equation 4.3 is calculated.

Before two neighbours in the guide tree are aligned, the consensus row of each
neighbour is multiplied by half the number of structures represented by the other
neighbour. This ensures that when their difference is taken during the calculation
of ScoreC in Equation 4.3 (with the consensus row attached), the positions with
equal consensus values in both receive high scores (as the difference is close to
zero), increasing their chances of being aligned. An intermediate node is created
with a length equal to the length of the resulting pairwise alignment, representing
the aligned stack of structures from the two neighbours. The x, y, and z coordinates
of this intermediate node are calculated by averaging the coordinates of the two
initial structures after superposition, across the alignment. At each position in the
alignment, the secondary structure code in the intermediate node is taken as the
code of the input which does not have a gap, or the code of the first input if both are
aligned. The consensus term for each alignment position is the number of aligned
residues at that position times the cw, i.e. well-aligned positions with fewer gaps have
a higher consensus value. This way, Caretta tends to maintain fully aligned core
regions by avoiding the insertion of gaps at these locations as progressive alignment
proceeds as such gaps are unlikely to happen in conserved protein families.

4.2.4 Benchmarking

Data

Caretta takes as input a list of PDB files, along with optional chain identifiers and
start and end residue indices. All PDB file parsing is done using ProDy27 and the
secondary structure for each protein is derived using ProDy’s execDSSP28 function.

Caretta was tested on two benchmark datasets, Homstrad22 and SABmark-Sup9.
The PDB files for these two datasets were obtained from mTM-align’s website29

and Matt benchmark results15,30 respectively, in order to directly compare results
to the output of these two tools. To this end, the alignments for the Homstrad22

and SABmark-Sup9 datasets for Matt15 and mTM-align31 were obtained from Mat-
tbench30 and mTM-align’s website29 respectively. For 35 cases in the SABmark-Sup
dataset, mTM-align returned alignments where at least one sequence did not match
the corresponding PDB sequence. These cases are not shown in Figure 4.4A. Two
protein families, labelled seatoxin and kringle in the Homstrad benchmark set are
used to demonstrate and contrast the alignments returned by Caretta, Matt and
mTM-align. The structures in these groups are superposed according to the gap-less
positions in each alignment and visualized using PyMOL32.
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Metrics

To measure the quality of multiple structure alignments we make use of various
metrics. The last two are defined for pairwise alignments, and are calculated for
every pair of structures in the multiple structure alignment after superposing all
structures to one reference structure, the longest protein. These are then averaged
over all pairs to give the final score for a multiple alignment.

• Gap-less positions - Positions in an alignment that do not contain any gaps.

• Homstrad equivalence score - Percentage of gap-less positions which are present
in the corresponding Homstrad reference alignment.

• RMSD - The root mean square deviation between two superposed structures in
a pairwise alignment is given by:√∑

(i,j)∈aligned residue pairs ( ~αi − ~αj)
2

|aligned residue pairs|

• Structurally equivalent residues - Residues in the same alignment position of
a pairwise alignment within 4 �A of each other after superposition.

Measuring Runtime

To estimate Caretta running times, we randomly chose 25 protein structures from
the Homstrad dataset with differing lengths as “seeds”. Each seed was used to
form multiple groups of proteins to be aligned by Caretta. Forming each of these
groups involved introducing noise to the seed coordinates to create a given number
of members, from 13 to 93 in increments of 30. Caretta was then used to align these
groups on a Linux workstation using 20 threads.

4.2.5 Feature extraction

In addition to multiple structure alignment, Caretta was designed specifically in order
to enable feature extraction for downstream machine learning.

Structural features are extracted for each input protein, aligned according to Caretta’s
multiple structure alignment. All atom-level features are converted into α-carbon,
β-carbon, and mean residue features. For Gly, the α-carbon is used for the β-carbon
features as well.

ProDy27 is used to calculate the 50-mode Gaussian Network Model (GNM) and
Anisotropic Network Model (ANM) atom fluctuations using the calcGNM/calcANM
functions followed by the calcSqFlucts function.

DSSP features are calculated using ProDy27 to give hydrogen bond energies, surface
accessibility, dihedral angles (α), bend angles (κ), φ, and ψ backbone torsion angles,
and tco angles (cosine angle between the C=O of residue i and the C=O of residue
i− 1).

Residue depths are extracted using BioPython33.
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4.2.6 Cyclin-dependent kinase classification

Caretta’s alignment and feature extraction capabilities are further demonstrated on
the task of predicting the functional state of cyclin-dependent kinases (CDKs). PDB
IDs of these proteins, along with the corresponding active/inactive labels, were ob-
tained from McSkimming et al. 23 . These proteins were clustered by sequence simi-
larity using an LZW kernel34, and a single cluster containing 80 CDKs was chosen.
A multiple structure alignment was made for these 80 CDKs followed by feature ex-
traction of DSSP features, GNM and ANM fluctuations and residue depths. These
features were aligned after discarding positions in the alignment which contained
gaps. A logistic regression model with L1 penalty was trained for binary classification
of CDK active/inactive state, and tested on 50 random splits of the data, each with
60 training points and 20 test points, using the scikit-learn Python library35. The
importance of an alignment position was taken to be the sum of the absolute values
of the feature coefficients for that position, averaged across all train/test splits. This
scoring scheme was used to select the top 15 most informative residue positions,
which were visualized on the proline-rich tyrosine kinase 2 (PYK2) CDK structure
(PDB ID: 3FZP, chain A) using PyMOL32.

4.2.7 GUI application

The Caretta GUI was built using Dash and Dash-Bio36. It takes as input a list of
PDB IDs, either from a user-specified folder or from a list of structures associated
with a user-inputted Pfam domain, and performs multiple structure alignment on
these structures. The results are displayed in three different panels:

• Structure alignment - displays the superposed 3D structures of the input proteins;

• Sequence alignment - displays the multiple sequence alignment, coloured by hy-
drophobicity;

• Feature alignment - displays aligned structural features. The feature name under
consideration can be changed using a drop-down box.

These three panels are interlinked via interactive capabilities. Clicking a protein or
a residue position in any of the three panels highlights the corresponding protein
or position in the other two. All three panels can also be exported to different file
formats for downstream use.

4.3 Results

4.3.1 Caretta returns accurate alignments with higher coverage

We compare Caretta with two popular multiple structure alignment methods, Matt
and mTM-align. Matt is a fragment-based approach, which allows for local flexibility
between fragment pairs from two input structures and then uses a dynamic pro-
gramming algorithm to assemble these intermediate pairs15. mTM-align31 instead
performs global alignment and builds upon the pairwise structure alignment algorithm
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TM-align37, which uses the length-independent TM-score as a measure of similarity
between two proteins in a dynamic programming approach. mTM-align then pro-
gressively assembles these pairwise alignments into a multiple structure alignment.

These two MSA tools were tested along with Caretta on the popular Homstrad and
SABmark-Sup datasets. Assessing the quality of multiple structure alignments is a
difficult task and, depending on the metric used, different aspects of the alignment
come under consideration. While RMSD (root mean square deviation) is often used,
it has been observed that fewer aligned residues can easily lead to smaller RMSDs at
the expense of a very gap-filled alignment31, which can easily happen in the case of
proteins with conserved cores but flexible regions that are not often aligned. While
the conserved core can be responsible for the overall stability and function of the
protein, the flexible regions can occur in and around active sites or interaction sites
and lead to differences in enzyme specificity towards substrates, products, or inter-
action partners38 - making them immensely important for machine learning aimed
at predicting determinants of such specificities. Thus, gap-filled alignments focusing
on low RMSDs, while accurate and useful for superposition of structures, are sub-
optimal for machine learning as the features of many potentially relevant residues are
discarded due to a lack of data in those positions. In most cases, positions with over
a certain percentage of aligned residues are considered, with gaps replaced by zeros
or by the average of the feature values in that position23. Therefore, when bench-
marking Caretta we emphasize the coverage of the alignment along with structural
equivalence measures such as RMSD.

The Homstrad dataset is unique in that it provides manually curated and annotated
alignments, representing a ground truth. This dataset has examples from various ho-
mologous protein families, typical of the kinds of applications where machine learning
would be applied. Since these proteins are homologous, a high alignment coverage is
expected as many of the residues are functionally equivalent, with few insertions and
deletions. In Figure 4.2 we show the percentage of gap-less columns found by each
aligner that are the same as the corresponding column in the Homstrad reference
(Homstrad equivalence score), against the percentage of all gap-less columns in the
alignment. Caretta clearly outperforms the other aligners by regularly finding near-
optimal alignments with a high coverage. In the majority of cases (65% for Matt,
and 82% for mTM-align), Caretta also finds the same or more structurally equivalent
residues within gap-less positions. Taken together, this indicates that the increase in
gap-less positions is warranted in that Caretta still finds accurate residue pairings.

Figure 4.3 shows two examples where Caretta does a better job of multiple structure
alignment in terms of Homstrad equivalence. The first case shows a family of small,
loop-filled structures where the pitfalls of optimizing for RMSD become clear. Matt,
in this case, only gap-lessly aligns 8 residues and has a Homstrad equivalence of 3%,
while Caretta achieves a Homstrad equivalence score of 58% by correctly aligning
areas where structural flexibility makes it difficult to accurately pinpoint equivalent
residue pairs. The second case demonstrates a family in which some members struc-
turally deviate from the others in a small region. Such regions are especially relevant
for machine learning as they may be responsible for a change in a response variable
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Figure 4.2: Plots showing the percentage of gap-less positions in an alignment which
are identical to the corresponding Homstrad reference alignment vs. the percentage
of all gap-less positions. A, B, and C show the results for alignments generated by
mTM-align, Matt, and Caretta respectively.
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Figure 4.3: Two examples of protein families in which Caretta finds a better alignment
than Matt and mTM-align. A. structures from the “seatoxin” family (a collection of
toxins released by sea anemones), superposed according to alignments made by Matt
(top) and Caretta (bottom) respectively, with the alignments shown on the right.
B. structures from the “Kringle” family (PFAM ID: PF00051) superposed according
to Caretta’s alignment. Two structurally divergent proteins are highlighted in blue
and the region of divergence is highlighted in red, both in the structure superposition
and in the corresponding alignments on the right. These two groups of proteins are
obtained from the Homstrad benchmark dataset22.



90 Chapter 4

such as substrate specificity, catalytic rate etc. Both Caretta and mTM-align lead
to the same superposition of structures for this family, but mTM-align inserts gaps
in the highlighted region such that the two divergent proteins cannot be compared
here.

The SABmark-Sup benchmark dataset consists of proteins from the same superfamily
with distant homology9. These proteins are much harder to align as usually only small
fragments have any meaningful correspondence. Though Caretta has adjustable gap
penalties that can be useful in such cases to allow for substructure alignment, these
are still not the optimal conditions for the algorithm. While Matt is known to yield
alignments with low RMSDs in this dataset, this is at the expense of coverage, which
is often quite low. Figure 4.4 shows the average RMSD vs. average percentage of
gap-less columns for Matt, mTM-align and Caretta on the SABmark-Sup dataset.
While Matt and mTM-align have a gap-less percentage range typically within 20-
60%, this increases to 40-80% for Caretta, often still within the same RMSD range.
This indicates that Caretta also performs well at fragmented substructure alignment,
though optimizing the gap penalties and consensus weight may improve results further
for individual cases.

The time complexity of Caretta’s alignment algorithm is O(n2l2) where n is the
number of proteins and l is the length of the longest protein in the alignment. Figure
4.5 shows the time taken for Caretta alignment for varying numbers and lengths of
proteins. These results show that aligning a reasonably large set of protein structures
(50-90) with a mid-range residue length (200-300) takes less than 2 hours on a
workstation with 20 threads.

4.3.2 An application of Caretta in predicting Cyclin-dependent kinase
conformation

Apart from α-carbon coordinates, residues in a protein carry a wealth of structural
information, as a result of the physicochemical differences between amino acids and
the many interactions to neighbouring residues. This information can be extracted
from structures and used to explore differences and similarities between proteins in the
same family performing different functions. To enable such exploration, Caretta cal-
culates and outputs various structural features aligned according to the core columns
in the multiple structure alignment. The feature matrices outputted by Caretta can
be also used for downstream tasks such as dimensionality reduction and supervised
learning. As proteins typically have many hundreds of residues each with tens of
features, a feature selection step is recommended for small datasets, to focus on
functionally important residues.

An application of Caretta for a classification task is presented using a dataset of
cyclin-dependent kinases (CDKs). This family of enzymes is involved in cell cycle
regulation and its members share a high degree of structural similarity. Classical
kinase inhibitors bind to the ATP site of CDKs and compete for substrate binding39.
The determination of additional inhibitor binding sites in these enzymes, which would
switch their state from active to inactive in terms of substrate binding, is a challenging
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Figure 4.4: Plots showing average pairwise RMSD vs. percentage of gap-less align-
ment positions across the alignments in the SABmark-sup dataset. A, B, and C show
the results for alignments generated by mTM-align, Matt, and Caretta respectively.
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Figure 4.5: Runtime measured in minutes for Caretta alignment using 20 threads
on proteins of differing lengths (constructed as described in Section 4.2.4. Each line
represents a different number of proteins aligned.

and significant problem in the drug design field. One intriguing aspect of this family is
that the same or very similar sequences can switch state depending on their structural
conformation which means that sequence similarity cannot be successfully used for
classification23.

Fortunately, a large number of CDK structures have been experimentally solved. We
used Caretta to align 80 CDK structures and extracted bond angles, Gaussian and
anisotropic network model residue fluctuations, residue depths and solvent accessi-
bility features from these structures. The alignment had a mean pairwise RMSD of
3.08 �A and 128 gap-less positions. We trained a logistic regression model to pre-
dict active/inactive states of CDKs using features aligned according to these gap-less
positions and attained a mean cross-validation accuracy of 98%, with only 60 struc-
tures used for training in each split. The performance is summarized in Figure 4.6A
in a Receiver operating characteristic (ROC) curve. Summing the absolute values of
the feature coefficients for a residue across all splits allowed us to rank informative
residue positions and pinpoint residues relevant to the activation process, as shown
in Supp. Figure 4.2. Figure 4.6B labels the fifteen most informative residues on the
structure of inactive proline-rich tyrosine kinase 2 (PYK2), co-crystallized along with
an ATP-mimetic kinase inhibitor (ATPγS). Supp. Figure 4.3 shows a PCA plot of
the feature values of these top 15 residues, demonstrating a clear distinction between
active and inactive CDKs. Interestingly, a number of the selected residues lie close
to the inhibitor, with one falling within the well-studied DFG motif39, indicated in
the figure. The remaining selected residues cluster underneath this motif, indicat-
ing flexibility in these regions associated with a conformational change. This simple
example demonstrates the power of a robust structural alignment, combined with
features describing various aspects of protein structures, in exploring distinguishing
characteristics of protein families. Insights gained from such studies can be utilized
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for mutational studies to engineer enzymes with desired activity, or in inhibitor design.
While CDKs are relatively unique in that there are many solved crystal structures,
due to the advances in homology modelling as well as the growing size of the PDB,
most protein families can be supplemented with accurate structural models, which
can then be aligned and analysed in a similar way with Caretta.

Figure 4.6: A. ROC-AUC curve showing the cross-validation performance of the
logistic regression model to predict the state (active/inactive) of cyclin-dependent
kinases (CDKs). This model is trained on structural residue features (bond angles,
residue depths, fluctuations, and solvent accessibilities), and aligned according to
Caretta’s multiple structure alignment of the CDKs. B. Structure of active proline-
rich tyrosine kinase 2 (PYK2), co-crystallized with the ATPγS ATP-mimetic kinase
inhibitor. The catalytically important DFG motif is labelled and the fifteen most
predictive residues for active/inactive state determination are coloured in blue and
represented as sticks.

4.3.3 Caretta can be used to visually explore structure alignments and
features.

A Caretta GUI application can be found at www.bioinformatics.nl/caretta for
aligning selected structures, from either a Pfam domain or a custom folder, and
exploring their structural features. Figure 4.7 shows the kind of information that
can be obtained. The application is fully interactive, with the sequence and feature
alignments linked to the corresponding residues in the structure alignment. Different
features such as bond and torsion angles, electrostatics, atom fluctuations etc. can
be visualized separately, and the means and standard deviations across all proteins are
shown for each position allowing the user to easily pinpoint highly variable or highly
conserved residues or residues. While the website only allows for the alignment of up
to 40 structures, the application can be installed locally to avoid this restriction. In

www.bioinformatics.nl/caretta
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Figure 4.7: An example of Pfam domain alignment possible with the Caretta website
(found at www.bioinformatics.nl/caretta). The user selects a Pfam domain
and is given the list of PDB IDs associated with that domain. The website allows
selection of up to 40 PDB IDs to align. Once alignment is complete, three panels are
displayed, showing the multiple sequence alignment, the corresponding superposition
of the structures, and the alignment of structural features (with a drop-down menu to
choose between different features). These three panels are interconnected, allowing
the user to select proteins and residue positions across all three views at once.

www.bioinformatics.nl/caretta
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addition, Caretta can also be installed as a command line application or used as a
Python library for easy handling of multiple structures, features, and alignments.

4.4 Conclusion

Multiple sequence alignment is an integral part of a broad range of bioinformatics re-
search topics, including phylogenetics, functional domain identification, co-evolution
analysis and machine learning to predict functional properties of proteins. Compared
to protein sequences, protein structures echo an even deeper evolutionary history
that in a more direct way relates to their function. Previously, this kind of analysis
was hindered by the scarcity of protein structures available. However, the number of
solved protein structures is increasing at a great pace, and structural modelling meth-
ods are also improving rapidly, in part due to the use of co-evolutionary information
when reliable structural templates are not available. This means it is now possible to
analyse patterns correlating with function in a protein family by aligning, comparing
and applying machine learning on a large set of solved or modelled structures.

We contribute to this field with Caretta, a multiple structure alignment suite which
returns accurate alignments with an increased ratio of aligned positions to make
the best use of structural features from functionally comparable residues. Dong
et al. 31 noticed that the accuracy of a multiple structure alignment depends heavily
on the quality of the individual pairwise alignments, which in turn depends on the
initial superposition of two proteins, often accomplished by approximate point cloud
registration techniques. Caretta uses signals of distances derived from overlapping
contiguous stretches of residues to make this initial superposition, a novel rotation-
invariant technique. This, combined with a novel feedback approach to maintain
well-aligned blocks of residues in the multiple alignment, works well with protein
families where large and numerous stretches of insertions are not expected to be
found.

In the Caretta GUI, we coupled structural alignment and feature extraction with a
visual interface to pinpoint relevant proteins and residue positions for downstream
prediction tasks. This kind of feature selection becomes necessary as proteins typically
have many hundreds of residues, each of which is described by a number of structural
features. This quickly leads to what is known as the “large p small n” problem
in machine learning, where the number of descriptors far exceeds the number of
labelled data points from which to learn. Feature selection in such cases removes
noisy and irrelevant features, and can be used to find residue positions correlated
with the response variable. We demonstrated this in our application on predicting
the conformational state of cyclin-dependent kinases, where we found a small set
of predictive residues, some of which lie in previously studied motifs known to be
involved in conformational change.

More research into protein families using the approach we present for dealing with
structural alignments and residue selection across a large set of structural features
will lead to improvements and novel techniques for feature selection, dimensionality
reduction, and learning that work well on such large, hierarchically structured data.
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Given the prominent role in present-day bioinformatics of both machine learning and
homology modelling, this will lead to further breakthroughs in using protein structures
to analyse protein function.
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Abstract

Motivation: As the number of experimentally solved protein structures rises, it
becomes increasingly appealing to use structural information for predictive tasks in-
volving proteins. Due to the large variation in protein sizes, folds, and topologies, an
attractive approach is to embed protein structures into fixed-length vectors, which
can be used in machine learning algorithms aimed at predicting and understand-
ing functional and physical properties. Many existing embedding approaches are
alignment-based, which is both time-consuming and ineffective for distantly related
proteins. On the other hand, library- or model-based approaches depend on a small
library of fragments or require the use of a trained model, both of which may not
generalize well.

Results: We present Geometricus, a novel and universally applicable approach to
embedding proteins in a fixed-dimensional space. The approach is fast, accurate,
and interpretable. Geometricus uses a set of 3D moment invariants to discretize
fragments of protein structures into shape-mers, which are then counted to describe
the full structure as a vector of counts. We demonstrate the applicability of this
approach in various tasks, ranging from fast structure similarity search, unsupervised
clustering, and structure classification across proteins from different superfamilies as
well as within the same family.

Python code available at https://github.com/TurtleTools/geometricus

5.1 Introduction

The number of structures added to the Protein Data Bank1 has been increasing
rapidly, with over 10,000 structures deposited in 2019 alone. Meanwhile, major ad-
vances have been made in the areas of homology-based and de novo protein structure
modelling2. This increased availability of protein structures has enabled protein bi-
ologists and bioinformaticians to start including structural data and information in
protein function studies instead of being confined to the sole use of sequence data.
These studies address a variety of questions, such as finding remote protein homologs
with a similar structural fold, or defining the properties of a single protein family. Pro-
tein structures evolve slower than sequences, and encode long-range contact and fold
information that are often crucial for protein activity. Hence, our understanding of
molecular biology can be greatly enhanced by the inclusion of protein structures.

For both structures and sequences, choosing the right computational method to gen-
erate a representation of a protein for comparison and prediction purposes is crucial.
This is especially true for machine learning methods, which often require variable-
length sequences of amino acids, coordinate sets or other residue descriptors to be
transformed into fixed-length representations. These representations can be used
as input for supervised and unsupervised machine learning methods or be compared
using standard vector distance formulae. As proteins typically cover a wide range
of shapes, sizes and topological folds, the choice of representation is not always

https://github.com/TurtleTools/geometricus
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straightforward and may depend on the scale of the study. For instance, research
questions addressing proteins within a single family may opt to use alignment-based
representations3,4. These have the advantage of easy interpretability, as each residue
can be directly mapped to a column in the transformed representation. However,
alignment is computationally expensive, and its accuracy decreases with decreasing
protein similarity.

To solve this, alignment-free methods were introduced, which learn a reduced and
condensed representation of proteins without an explicit alignment. There are many
examples of such approaches using machine learning and deep learning methods to
learn generic patterns and features of the protein sequence space5,6. Structure-based
representations also exist7,8 but are generally more difficult to generate due to the
three-dimensional nature of structures compared to the one-dimensional sequences.
Some structure-based “alignment-free” methods generate a representation of a pro-
tein of the same length as the sequence and then use sequence alignment or calculate
sequence similarity to compare these structural sequences in 1D9,10. The conserved
nature of protein structure circumvents the problem of decreasing accuracy of se-
quence alignment in these approaches.

Many structure embedding techniques make use of a library of small structural frag-
ments to which fragments of each input structure are compared, usually requiring
the calculation of rotations and translations that would orient the input fragment
and the library fragment in the same position7. To reduce the computational load
of these structure-structure comparisons, library sizes are limited. Newer techniques,
which make use of deep learning8, do not need a library but still require a pre-trained
model to generate new embeddings. In both cases the size, scale and resolution
of the embedding is highly dependent on the initial choice of library fragments or
training data used, and thus may not be applicable to research questions about a
different protein set. Also, in both these approaches it is difficult to link predictive
importance to functionally important residues or structural regions, which is often
desired in studies aimed at understanding underlying mechanisms in protein biology.

To address these disadvantages of existing approaches, we introduce Geometricus,
a novel structure embedding technique based on 3D rotation-invariant moments.
Moment invariants were proposed in the 1960s for 2D images11 and have been used
extensively in the image processing field for object detection12 and character recogni-
tion13 among other applications. In the 1980s they were subsequently adapted to the
3D field14, and found applications in the fields of robotics15, gesture recognition16,
brain morphology17, and even in structural biology18. Rotation-invariant moments
yield identical output when performed on any translated and/or rotated version of a
set of continuous or discrete three-dimensional coordinates. This implies that coor-
dinate sets can be compared without the need for superposition. Alternatively, any
set of coordinates can be represented by a number of these moments.

To generate a Geometricus embedding for a protein structure, we fragment the struc-
ture into overlapping k-mers based on sequence, as well as into overlapping spheres,
calculated for a certain radius, based on 3D coordinate information. Moment invari-
ants are calculated for each of the coordinate sets corresponding to these structural
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fragments, and then binned into shape-mers, each of which represents a set of sim-
ilar structural fragments. Counting the occurrences of these shape-mers across the
protein yields a representation of the whole protein structure as a fixed-length vector
of counts, similar to an amino acid k-mer count vector describing a protein sequence.
As the moment invariant calculation is simple, the entire embedding process runs in
the order of tens of milliseconds per protein and is easily parallelized. In addition,
each element in the count vector can be mapped back to the residues forming the
corresponding shape-mer, allowing for interpretation of predictive residues on par
with alignment-based approaches. The shape-mer binning process is easily control-
lable, allowing for coarse shape-mer definitions for divergent proteins with distinct
structures, or a fine-grained resolution for closely related proteins from the same
family. This makes Geometricus suitable for a variety of tasks where library-based or
model-based embeddings would struggle or require expensive retraining.

We demonstrate the effectiveness and versatility of Geometricus embeddings in a
variety of machine learning approaches and other applications applied to datasets of
varying structure similarity. Geometricus can be used for very fast structure similarity
searches, while maintaining accuracy close to that obtained by alignment-based meth-
ods. The innate simplicity of the approach enables flexibility in application, such that
embeddings can be optimized for the task at hand, as we demonstrate using datasets
with proteins from different superfamilies and within the same family. Geometricus is
available as a Python library at https://github.com/TurtleTools/geometricus.

5.2 Methods

5.2.1 Protein Embedding

To generate embeddings for a set of proteins, we define so-called shape-mers which
are analogous to sequence k-mers. A shape-mer represents a set of similar struc-
tural fragments, each a collection of coordinates in 3D space. The following sections
describe the process of generating these structural fragments, their subsequent con-
version into rotation- and translation-invariant moments, the moment-based grouping
of structural fragments into shape-mers, and finally, shape-mer counting to obtain
the resulting embedding.

Protein Fragmentation

We consider two different ways of dividing a protein with l residues into structural
fragments, using its α-carbon coordinates, α = {αi|αi = (αx

i , α
y
i , α

z
i ), i : 1, ..., l}.

1. k-mer based - for a given value of k, a protein is divided into l k-mer-based
structural fragments, {Ck

i , i : 1, ..., l} where

Ck
i = {αj |j ∈ (max(1, i− bk/2c),min(l, i+ bk/2c))}

Here bc converts a floating point number to the closest integer value below it.

https://github.com/TurtleTools/geometricus
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2. radius based - for a given radius r, a protein is divided into l radius-based
structural fragments {Cr

i , i : 1, ..., l} where

Cr
i = {αj |d(αi,αj) < r}

with d(αi,αj) being the Euclidean distance between αi and αj .

Practically, this is accomplished by constructing a KD-Tree on α, using the KD-
tree implementation in ProDy v1.10.1119 and querying by radius with each αi as
the centre.

While the k-mer based approach is effective in describing structural fragments that
are sequential in nature, such as α-helices and loops, the radius-based approach
can capture long-range structural contacts as seen in β-sheets, as well as distinct
interaction patterns in space, as found in enzyme active sites. Both fragmentation
methods have O(l) time complexity.

Each resulting structural fragment is then transformed into four moment invariants,
described in the next section. In our examples and results section we use a k of
16 and a radius r of 10 �A as a compromise between specificity of the structural
fragments and effectiveness of the moment invariants. In principle, optimization of
these parameters could lead to further improvements of our approach for specific
applications, but we leave this open for future exploration.

Moment Invariants

Three-dimensional moment invariants are computed using the formula of the central
moment, defined below for a discrete set of c coordinates, with (x, y, z) being the
centroid:

µpqr =

c∑
i=1

(xi − x)p(yi − y)q(zi − z)r

Using this formula, we then compute four moments that were previously used in a
structural bioinformatics study to describe enzyme active sites18. These include the
three second-order rotation invariants (O3, O4, and O5) described by Mamistvalov 20

and a fourth invariant, F , described by Flusser et al. 21 . These four moment invariants
are defined below:

O3 = µ200 + µ020 + µ002

O4 = µ200.µ020 + µ200.µ002 + µ020.µ002

−µ2
110 − µ2

101 − µ2
011

O5 = µ200.µ020.µ002 + 2µ110.µ101.µ011

−µ002.µ
2
110 − µ020.µ

2
101 − µ200.µ

2
011
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F = 15µ2
111 + µ2

003 + µ2
030 + µ2

300 − 3µ102.µ120 − 3µ021.µ201

−3µ030.µ210 − 3µ102.µ300 − 3µ120.µ300

−3µ012.(µ030 + µ210)− 3µ003(µ021 + µ201)

+6µ2
012 + 6µ2

120 + 6µ2
201 + 6µ2

210 + 6µ2
021 + 6µ2

102

Thus, any structural fragment can be represented by a vector (O3, O4, O5, F ). Mo-
ment invariant calculation is implemented using Numba v0.48.022 and has O(c) time
complexity which is negligible for small values of c, as seen for k=16 (i.e. a maximum
c of 16) and r=10 (c = 18± 6).

Discretization to Shape-mers

While the moment invariants obtained for each structural fragment can be directly
compared, discretizing them enables collecting sets of fragments that resemble each
other across multiple proteins. We convert the continuous and real-valued moment
invariants to discrete shape-mers as follows:

(O′3, O
′
4, O

′
5, F

′) = (bm× ln(O3)c, bm× ln(O4)c,
bm× ln(O5)c, bm× ln(F )c)

Here m is the resolution parameter, which defines the coarseness of the shape-mers,
with higher values leading to more fine-grained separation of structural fragments.
Thus, a shape-mer is defined by four discrete numbers and can describe any number
of structural fragments. Figure 5.1 gives examples of moment invariant and shape-
mer calculations (with m = 1) for three synthetic coordinate sets generated with the
equation {αi = (R cos(i), R sin(i), i), i : 1, ..., 16} for R = 0, 0.5, and 2 respectively,
each rotated by ±45°, and translated by ±10�A along the x-axis.

Counting Shapes

Given a set of n proteins, we generate a collection of shape-mers for each protein.
The total number of shape-mers s is then the number of distinct shape-mers observed
across all n proteins. A count vector of length s is calculated for each protein, with
each element recording the number of times the corresponding shape-mer appears in
that protein. This counting is done separately for the k-mer and radius based ap-
proaches, as they represent different types of structural fragments. The two resulting
count vectors are concatenated to form the final protein embedding. The entire em-
bedding process has a time complexity of O(nl) and takes around 50 milliseconds
CPU time for proteins of medium length (400-600 residues). Note that different
values for m (the resolution parameter) and different input sets of proteins will lead
to different sets of shape-mers and embedding sizes. This allows the user to generate
feature spaces tailored to the problem at hand.
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5.2.2 Datasets

We apply Geometricus to a number of datasets to demonstrate the wide applicability
of shape-mer based protein embedding. These are described below. The remaining
sections use the acronyms defined here to refer to these datasets.

1. CASP11 - 87,573 protein structures from the Critical Assessment of protein
Structure Prediction XI23 training set, obtained from the ProteinNet data source24.

2. CATH20 - The CATH database of protein structures25 categorizes proteins hier-
archically based on secondary structure class (C), architecture (A), topology (T),
and homology (H). From the CATH hierarchy, we selected 3,673 proteins with
<20% sequence identity to each other from the top five most populated CAT
categories. Table 5.1 shows the number of proteins per CAT category.

3. SCOP-Lo - The Structural Classification of Proteins (SCOP) database26 provides
a detailed classification of structures based on their topologies and folds. We
adapted the SCOP-Lo dataset from Lo et al. 9 . This dataset comprises 23,912
target proteins from ASTRAL SCOP 1.67 further divided into sets with 10%,
30%, 70% and 100% maximum sequence identity within each group respectively.
It also contains a query set of 83 proteins each with at least two proteins from the
same SCOP family in the 10% target protein set, and <10% sequence identity
to other proteins in the query set.

4. Pfam10 - The Protein families database (Pfam)27 collates a large set of protein
families. Out of the twenty most populated Pfam domains, the ten accessions with
most available structures are considered, resulting in a total of 3,053 structures.
Table 5.2 lists the number of proteins for each of these ten Pfam accessions.

5. CMGC - 1,822 human protein structures in the CMGC kinase family were col-
lected from the Kinase-Ligand Interaction Fingerprints and Structures (KLIFS)
database28. These are further divided into 660 cyclin-dependent kinases (CDK),
527 mitogen-activated protein kinases (MAPK), 268 casein kinase 2 (CK2) pro-
teins, 160 dual specificity Tyrosine regulated kinases (DYRK), 122 glycogen syn-
thase kinases (GSK), 61 cdc2-like kinases (CLK), 16 serine/threonine-protein
kinases (SRPK), and 8 cyclin-dependent kinase-like kinases (CDKL).

6. MAPK - The 527 MAP kinases from the CMGC dataset are considered sepa-
rately. These comprise 271 p38 MAPK structures (p38), 147 extracellular signal-
regulated kinases (ERKs), and 109 c-Jun N-terminal kinases (JNKs).

Note that the low sequence identity between the proteins in many of these datasets
clearly underlines the need for structure-based embedding.

5.2.3 Visualization of shape-mers and Geometricus embeddings

To visualize two commonly occurring k-mer-based shape-mers from the CASP11
dataset, we first randomly selected 1,000 structural fragments described by them.
From these 1,000, one fragment was randomly chosen as the base and the remaining
were superposed to the base using the Kabsch algorithm29. For each fragment, the
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Class Architecture Topology No. of Proteins
Mainly Alpha Orthogonal Bundle Arc Repressor Mutant, subunit A 465
Mainly Beta Sandwich Immunoglobulin-like 700
Mainly Beta Sandwich Jelly Rolls 401
Alpha Beta 3-Layer (aba) Sandwich Rossman Fold 1,660
Alpha Beta 2-Layer Sandwich Alpha-Beta Plaits 447

Table 5.1: Number of proteins in each CAT category in the CATH20 dataset

Pfam Accession Short name Description No. of Proteins
PF00005 ABC tran ABC transporter 187
PF00069 Pkinase Protein kinase domain 438

PF00076 RRM 1
RNA recognition motif.
(a.k.a. RRM, RBD, or RNP domain)

269

PF00096 zf-C2H2 Zinc finger, C2H2 type 144
PF00400 WD40 WD domain, G-beta repeat 906

PF00440 TetR N
Bacterial regulatory proteins,
tetR family

164

PF02518 HATPase c
Histidine kinase-,
DNA gyrase B-, and HSP90-like ATPase

87

PF12796 Ank 2 Ankyrin repeats (3 copies) 263
PF13561 adh short C2 Enoyl-(Acyl carrier protein) reductase 273
PF13855 LRR 8 Leucine rich repeat 322

Table 5.2: Number of proteins for each Pfam accession in the Pfam10 dataset
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best superposition to the base of that fragment and its flipped version, in terms of
the minimum Root Mean Square Deviation (RMSD), is taken in order to account for
360° rotations. We also visualized two radius-based shape-mers using two of their
structural fragments shown in the context of their respective protein structures.

The Geometricus embeddings of the Pfam10, CMGC, and MAPK datasets, gener-
ated for different values of the m parameter, were reduced to two dimensions using
the Python implementation (v0.3.10) of the Uniform Manifold Approximation and
Projection (UMAP) algorithm by McInnes et al. 30 , with the cosine similarity metric
and default settings.

5.2.4 Structure similarity search

We demonstrated how Geometricus can be used in structure-based similarity searches
by applying it to the CATH20 and SCOP-Lo datasets. A pair of proteins is called
similar if they share the same CAT category for the CATH20 dataset or the same
SCOP category for the SCOP-Lo dataset, and dissimilar otherwise.

Typically, in structure similarity search applications, similarity scores are calculated
for a small set of query proteins against a larger predefined and preprocessed target
set of structures. Here, the target set determines which collection of shape-mers will
be used in the search. For the CATH20 dataset, 70% of the proteins are randomly
chosen as the target set. The SCOP-Lo dataset already has four defined target sets
(10%, 30%, 70%, and 100% sequence redundant sets) which are each evaluated
separately.

The pairwise similarity measure between two proteins is defined as the cosine similarity
of their Geometricus embedding vectors, constructed with a low resolution (m =
0.25) to reflect the major structural differences expected between proteins in these
two datasets. Proteins with a similarity score above a threshold t are predicted to
be similar and those below t are predicted as dissimilar. We calculated similarity
scores for all CATH20 proteins against the CATH20 target set, and the 83 SCOP-Lo
query proteins against each of the four sequence redundant SCOP-Lo target sets.
ROC-AUC curves were constructed by varying t to evaluate the correctness of the
similarity search in these five cases.

5.2.5 CATH classification

A k-nearest neighbour classifier from the scikit-learn python library v0.22.1 (k=5,
metric="cosine") was trained to predict the CAT category for the proteins in the
CATH20 dataset with 50% of the data randomly chosen for training and the remaining
for testing. We repeated this five times and report the average accuracy.

5.2.6 MAP kinase classification

To demonstrate the applicability of Geometricus for interpretable machine learning
on protein structures, we performed classification on the MAPK dataset to predict
the type of MAP kinase (namely p38, ERK, or JNK) from protein structure. This
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was accomplished using the decision tree classifier from the scikit-learn Python library
(v0.22.1)31, with a random 70%-30% split of training and test data. The top two
most predictive shape-mers from the trained classifier were then mapped back to
the residues that they correspond to and visualized on one p38 structure (PDB ID:
3QUE), one ERK structure (PDB ID: 2OJJ) and one JNK structure (PDB ID 4KKG)
using PyMOL32.

5.3 Results

5.3.1 Shape-mers capture common structural fragments across protein
structures

We performed moment-invariant and shape-mer calculations on over 87,000 proteins
in the CASP11 dataset to understand their distributions and patterns found across
structurally divergent proteins. Figure 5.2A shows the log-distribution of each of
the four moment invariants for the k-mer- and radius based structural fragmentation
approaches. The radius-based approach shows wider distributions in general, which
can be expected: different locations in a protein have different densities of residues
leading to differing numbers of coordinates in the radius-based approach, while the
k-mer based approach largely produces fragments with k coordinates except for some
shorter fragments at the N- and C-terminal ends of each protein.

Shape-mers were computed from the moment invariants using a resolution m of 1
(see Methods). The resulting 565 k-mer shape-mers and 703 radius shape-mers
do not all represent the same number of structural fragments. Figure 5.2B shows
the log10 distribution of structural fragment counts represented by each shape-mer.
Some shape-mers, at the right end of Figure 5.2B, are found over a million times,
and unsurprisingly represent common structural fragments such as short, well-defined
α-helices. One k-mer based and one radius-based example are shown in Figure 5.2C1
and Figure 5.2D1 respectively, both found across most of the proteins in the CASP11
dataset. Conversely, the shape-mers on the very left end of the Figure 5.2B represent
only one structural fragment, likely loops or specific folds which are structurally and
functionally unique and thus rare. The remaining shape-mers describe anywhere
between one and a million fragments and may be specific to certain superfamilies
or families of proteins. Figure 5.2C2 shows an extended roll-like shape-mer found in
almost 10,000 proteins and Figure 5.2D2 shows a sparse radius shape-mer found on
the surfaces and ends of 5,000 proteins.
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5.3.2 Geometricus can be used for fast and accurate structure similarity
search and topology classification

A common application of structure-based embeddings is to perform a fast similarity
search for an input structure across a database of structures and return the most
similar candidates. We demonstrate the performance of Geometricus on this task
using CATH and SCOP classifications as a ground truth measure of protein similarity.

Figure 5.3 shows the Receiver Operating Characteristic (ROC) curves for the CATH20
dataset and for various sequence redundancy levels of the SCOP-Lo dataset, along
with their corresponding area under the curve (AUC) values. The all vs. all similarity
calculation for the 3,673 proteins in the CATH20 dataset took 250 milliseconds. For
the SCOP-Lo dataset, query vs. target similarity calculation for the 83 query proteins
against the 10% target dataset (with 4,332 proteins) took 4 milliseconds and the
100% target set (with 23,912 proteins) took 20 milliseconds. Generating the target
dataset embeddings was also fast, taking 2 minutes for the CATH20 dataset and 15
minutes for the 100% SCOP-Lo dataset (excluding file parsing time as this depends
on the speed of the disk). Target set embedding time is not as important as search
time, as it only has to be run once. Embedding each additional query protein takes
20-60 milliseconds depending on its length. A k-nearest neighbours classification of
the CATH20 dataset into the five CAT classes showed a high accuracy of 82%.

In both these applications, Geometricus performs favourably compared to results
reported by other alignment-free approaches applied to comparable datasets7,9,10,
which typically achieve search AUCs between 0.75 and 0.85 and fold classification
accuracy up to 75%. For the structural alphabets defined by Le et al. 10 classifica-
tion accuracy increases to 80% upon using more sophisticated SVM classifiers with
tailored kernels. This approach is not investigated here but would likely improve our
fold classification accuracy further. Geometricus comes close to the highly accurate
alignment-based methods10 (with search AUCs exceeding 0.9 and fold classification
accuracy exceeding 90%) at a mere fraction of the computational cost.

5.3.3 Geometricus can be used across and within protein families

Unlike library-based or deep learning-based structure embedding techniques, Geomet-
ricus can be adapted to the type and scale of the problem at hand without sacrificing
speed, via the m (resolution) parameter. When comparing proteins from different su-
perfamilies, a coarse discretization of structural fragments is preferred as it is expected
that these proteins will have very different structures. However, as the specificity of
the problem increases, the proteins under investigation start resembling each other
more. In such cases, more specific binning of fragments, i.e a higher resolution, is
advantageous to better capture their differences. This is demonstrated in Figure 5.4
with the Pfam10, CMGC, and MAPK datasets.

The Pfam10 dataset (Figure 5.4A) consists of proteins that contain one of ten fairly
divergent Pfam domains. A low resolution of 0.25 (leading to 26 k-mer based shape-
mers and 28 radius-based shape-mers) already separates these ten Pfam accessions
into well-defined clusters. Some similar accessions, such as the Protein kinase domain
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Figure 5.3: ROC curves for an all vs. all structure similarity search using Geometricus
embeddings on the CATH20 dataset (dark blue) and four similarity searches of 83
query proteins on different sequence redundant target sets from the SCOP-Lo dataset
(10% - light blue, 30% - orange, 70% - green, and 100% - red). True positives were
determined using CATH and SCOP classifications, as described in the Methods.
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(Pkinase) and the Histidine kinase-like ATPase (HATPase c) cluster closer together as
expected. Higher resolutions perform worse on this dataset, as comparable structural
fragments are split across different shape-mers.

The CMGC dataset (Figure 5.4B) contains proteins from a group of kinases called
the CMGC group (named after the initials of some members). As these proteins are
more evolutionarily and functionally related, a higher resolution of 0.5 (resulting in 78
k-mer shape-mers and 93 radius shape-mers) is required to achieve a good separation
between the individual families within this group.

Finally, the MAPK dataset (Figure 5.4C) consists of MAP kinases, a family of pro-
teins which relay signals from the cell surface to coordinate growth, stress and other
responses. This family is divided into subfamilies, here simplified into the p38, ERK,
and JNK categories, each of which relay different types of growth and stress sig-
nals. A high resolution of 2 (resulting in 1098 k-mer shape-mers and 908 radius
shape-mers) separates these subfamilies.

Thus, the feature space generated by Geometricus can be altered depending on
the structural similarity expected between the proteins under consideration. This
is especially advantageous in situations where the proteins under study are from
the same family or subfamily and share a common structural fold, or in the case of
mutation studies where local structure alterations occur due to single residue changes.
In contrast, other embedding techniques are often optimized for divergent structures,
and would likely assign the same embedding to each protein in these cases.
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5.3.4 Geometricus can be used as input for interpretable machine learn-
ing

Typically, when analysing highly similar proteins as found in the MAPK dataset, one
would also be interested in interpreting the results to find functionally important
residues or structural regions. Such insights can be directly be applied to select
candidate residues for mutational studies or used in directed evolution techniques to
engineer proteins and enzymes with desired properties such as substrate specificity33,
drug-target binding affinity34, interaction specificity35, or thermostability36 among
others. Geometricus embeddings are well-suited for this kind of learning as each
element of an embedding can easily be mapped back to the specific residues of the
shape-mer it represents.

We demonstrate this with a classification problem defined for the MAPK dataset,
namely to predict the specific subfamily of a MAP kinase. A simple decision tree
trained on 70% of the data and tested on the remaining 30% showed an accuracy
of 96% for this task. More interestingly, this trained classifier can now be inspected
for predictive features. We mapped the top two shape-mers considered the most
predictive by the decision tree back to all the residues and locations at which they
occur across all the MAPK proteins. These locations are visualized on three example
proteins, one from each of the three subfamilies (Figure 5.5A; shape-mer 1 in red,
shape-mer 2 in blue). Figure 5.5B details the percentage of proteins from each
subfamily which contain each of the two shape-mers, and the average number of
times they appear per protein. The first appears more often in p38 kinases at a
higher frequency per protein, while the second favours the ERK kinases with over
three occurrences per protein on average. Looking at the structures themselves,
it becomes clear which particular locations (highlighted and magnified) cause this
difference in frequencies, even in such highly similar structures. While this is a simple
example, it demonstrates the potential for using Geometricus in interpretable machine
learning tasks for protein families.
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5.4 Conclusion

We have presented a novel, fast and accurate approach for protein structure em-
bedding with a wide range of applications. Geometricus uses 3D rotation invariant
moments to describe structural fragments such that they can be easily compared
across proteins without the need for superposition or alignment. This allows for a
blazing fast embedding technique that takes milliseconds to generate an embedding
of a protein, and scales linearly with the number of proteins.

The simplicity of this approach also brings with it versatility, as Geometricus does not
depend on a fixed library of predefined fragments and can instead grow or shrink de-
pending on the scale of the problem at hand. Therefore, it is readily applied to more
specialised prediction tasks focusing on a single protein family with a conserved struc-
tural fold where other structure embedders would likely struggle to resolve each pro-
tein. The explicit mapping between residues and shape-mers further allows the user
to trace back from a predictive model to predictive residues and structural regions,
which can broaden our understanding of specific protein and enzyme mechanisms.
This makes Geometricus well-suited for machine learning tasks where interpretation
is a concern along with accuracy.

While this initial version of Geometricus uses four rotation-invariant moments, more
such invariants have been studied37 and could be added to increase the specificity of
a shape-mer. Another possible extension is to include solvent accessibility or amino
acid descriptors as rotation-invariant aspects of a residue set. While these additions
would likely not be so helpful in tasks spanning diverse proteins, such as structure
similarity search, they may be useful in tasks involving enzyme mechanisms38 or
protein/ligand interactions and hotspots39,40 where the accessibility of a structure
fragment as well as its physicochemical and electrostatic properties matter as much
as its shape.

Geometricus thus combines a set of highly attractive features that sets it apart from
other structure embedding and structure similarity techniques. It is much faster than
alignment-based algorithms such as Madej et al. 41 and Ye & Godzik 42 , and at the
same time highly accurate compared to other alignment-free techniques such as Le
et al. 10 and Lo et al. 9 . Unlike most techniques, its independence from a fragment
library or predefined training set allows for broad application to generate feature sets
for machine learning, even for differentiating mutants - something that has not been
explored due to the focus of current techniques on divergent proteins. The shape-mer
approach allows for easy interpretability and possible association of specific shapes to
function, and its simplicity allows for ease of expansion. Shape-mer similarity could
also be utilized to train structure-informed sequence embedding techniques, similar
to the approach detailed by43, or as part of a scoring function to assess protein model
quality, a field in which topology has been shown to play a crucial role44.

Improvements in homology and de novo modelling techniques have greatly expanded
the number of proteins for which we can accurately model structure. This means
that future structure-based machine learning tasks will likely be augmented with
structural models to obtain large datasets comparable to those used in sequence-
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based predictive approaches, where such a fast and versatile structural embedder
would be useful. Given the prominent role in present-day bioinformatics of both
structural modelling and machine learning, Geometricus embeddings, with possible
further embellishments, may lead to breakthroughs in understanding protein function.
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Abstract

The growing prevalence and popularity of protein structure data, both experimen-
tal and computationally modelled, necessitates fast tools and algorithms to enable
exploratory and interpretable structure-based machine learning. Alignment-free ap-
proaches have been developed for divergent proteins, but proteins sharing functional
and structural similarity are often better understood via structural alignment, which
has typically been too computationally expensive for larger datasets. Here, we intro-
duce the concept of rotation-invariant shape-mers to multiple structure alignment,
creating a structure aligner that scales well with the number of proteins and al-
lows for aligning over a thousand structures in 20 minutes. We demonstrate how
alignment-free shape-mer counts and aligned structural features, when used in ma-
chine learning tasks, can adapt to different levels of functional hierarchy in protein
kinases, pinpointing residues and structural fragments that play a role in catalytic
activity.

6.1 Introduction

The dual effect of the ever-growing number of protein structures deposited in the
Protein Data Bank1 and dramatically improved protein structure modelling2 has led
to an increasing number of studies incorporating structure information for predicting
and understanding protein function. Structures are essential to our understanding
of protein biology as their form dictates function, and they evolve more slowly than
sequences. Research questions for which structural data may provide an answer are
many and diverse - ranging from searching for remote protein homologs with similar
structural folds across the tree of life to exploring the properties of a single pro-
tein family in a single species. These two extremes require different approaches, as
both the numbers of protein structures involved and the types of insights that can
be obtained differ greatly. In the past years, machine learning is proving itself to
be crucial in solving these research questions, evident by its meteoric growth in the
bioinformatics field. Machine learning algorithms have been applied across divergent
protein structures for tasks such as topology classification3, model quality assess-
ment4, ligand pocket prediction5, and mutant stability estimation6. For specific
protein families, structure-based machine learning has helped with predicting SH2
domain specificity7, modelling the fitness landscape of cytochrome P450s8, find-
ing similarities in telomerases9, and predicting ligand-binding for G-protein coupled
receptors10, among others.

Recently, we published Geometricus11, a fast alignment-free protein structure em-
bedding approach for describing and comparing divergent proteins. Geometricus
defines discrete so-called shape-mers, analogous to sequence k-mers, using a set of
rotation-invariant moments. The embedding of a protein is then simply the count
vector of these shape-mers. This alignment-free approach accurately represents the
topological aspects of proteins in machine learning for predicting protein function.
The embedding allows for interpretation by mapping predictive shape-mers back to
a set of residues in every protein. Given that applications on divergent proteins often
encompass tens of thousands of structures, Geometricus provides a good balance
between speed and interpretability.
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However, for more similar proteins more correspondence between individual residues
is expected, and an alignment better captures information about conservation, out-
liers, and functionally important residue positions. For each residue, a variety of
features can be measured according to their relevance to the problem at hand, rang-
ing from amino acid physicochemical properties to electrostatic energies and, in this
research, topological properties via rotation-invariant moments. These features when
aligned according to a multiple structure alignment generate a matrix that can di-
rectly be used as input to a machine learning algorithm. The algorithm looks across
the alignment positions for patterns and correlations relevant for predicting the de-
sired response variable. Predictions can be understood in terms of predictive residue
positions, which are now easily compared to known catalytic residues or form hy-
potheses for mutagenesis studies. Gaps in an alignment are considered as missing
data, and alignment positions with too many gaps are often discarded, potentially
losing out on the predictive power of catalytically important residues split across mul-
tiple gap-filled positions. Thus, to generate an alignment-based feature matrix from
a set of similar proteins we start with our recently released Caretta multiple structure
alignment algorithm, built with the aim of generating high-coverage alignments for
use in machine learning12.

Computational structure modelling, both de novo and homology-based, has started
to play more of a role in structure-based machine learning research6,13, leading to
datasets with up to thousands of protein structures sharing similar functionality and
structural folds. These numbers are difficult to handle with current multiple structure
alignment approaches, which generally scale poorly with the number of proteins14.
In many cases, this can be attributed to the initial all vs. all pairwise alignment
step used to generate a guide tree for subsequent progressive alignment steps. Mul-
tiple sequence alignment algorithms such as ClustalW15, Kalign16 and MUSCLE17

circumvent this by using alignment-free k-tuple similarity, calculated by collecting
matching subsequences of length k (k-mers) from both input sequences, instead of
pairwise alignment. This greatly reduces time complexity and allows for near-linear
scaling with the number of proteins. With Geometricus this now becomes possible
for structure alignment as well, by defining shape-tuple similarity as the collection
of matching shape-mers from each protein’s structure, thus completely avoiding the
need for all vs. all pairwise structure alignment. The progressive alignment stage still
aligns pairs of proteins at a time, and unlike for sequences, the three-dimensional na-
ture of structures necessitates a superposition step in pairwise alignment. This step
orients the input protein pair such that distance measures between aligning residues
are meaningful. We use rotation-invariant moments to define this initial superposi-
tion step. Both of these improvements are incorporated into the Caretta algorithm
to give Caretta-shape. We demonstrate that Caretta-shape is comparable to other
popular structure alignment algorithms in terms of alignment quality and accuracy,
while scaling easily to thousands of proteins.

We use the well-studied protein kinase superfamily to demonstrate how Geometricus
and Caretta-shape can be used in unison to explore and understand structural sim-
ilarities and differences between large datasets of protein structures. We showcase
both unsupervised and supervised machine learning analyses at the superfamily, fam-
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ily, and subfamily levels, with emphasis on extracting structural insights useful for
downstream research.

6.2 Methods

6.2.1 Caretta-shape

We recently released Caretta12, a software for multiple structure alignment aimed at
generating aligned features for use in machine learning algorithms. The advantage
of Caretta in the context of machine learning applications lies in its focus on high
coverage alignments using a novel consensus weight mechanism, which improves the
information content of the aligned features. Here we detail the modifications made
to the Caretta algorithm in Caretta-shape. Python code for Caretta-shape is available
at https://github.com/TurtleTools/caretta

Shape-tuple similarity for fast guide tree construction

An all vs. all similarity matrix is constructed for input proteins by calculating the
Bray-Curtis similarity between each protein pairs’ Geometricus count vectors (with
k-mer size k = 20 and resolution m = 2). The guide tree for determining the order
of progressive alignments is constructed using maximum linkage neighbour joining18

on this similarity matrix.

Rotation-invariant moment-based superposition

Caretta-shape replaces the signal- and secondary structure-based superposition scheme
of Caretta by moment-based superposition. For each of the two structures to be
aligned, four moment invariants are calculated for each residue with a fixed k-mer
size (set to k = 20), ~M = [O3, O4, O5, F ] (named as in Durairaj et al. 11). To ensure
that the four moments contribute equally to the distance measure, each moment is
normalized across both structures by subtracting the mean and dividing by the stan-
dard deviation to form ~M ′. The two series of normalized moment invariants are then
aligned by dynamic programming using the Gaussian Caretta score:

ScoreM (i, j) = exp
(
−γm

∑
( ~M ′i − ~M ′j)

2
)

(6.1)

with γm = 0.6. The aligning residues are used to calculate the optimal superpo-
sition using the Kabsch algorithm19, after which coordinate-based superposition is
performed as in the Caretta algorithm with default parameters (γ = 0.03, gap open
penalty = 1, gap extend penalty = 0.01, consensus weight = 1). Parameter opti-
mization for specific tasks could improve the results presented here, but we leave this
open for future exploration.

Benchmarking

Caretta-shape was tested on two benchmark datasets, Homstrad20 and SABmark-
superfamily21. The PDB files for these two datasets (390 sets with 3–27 proteins each

https://github.com/TurtleTools/caretta
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Kinase
group

CMGC TK CAMK AGC STE TJL CK1 Atypical Other

No. of
proteins

2,049 2,057 811 517 455 654 209 346 648

Table 6.1: Number of proteins in the KinaseAll dataset across the eight major kinase
groups (the rest are labelled as “Other”).

from Homstrad and 425 sets with 3-42 proteins each from SABmark-superfamily)
were obtained from mTM-align’s website22 and Matt benchmark results23 respec-
tively, in order to directly compare results to the output of these two tools. To this
end, the Matt23 and mTM-align22 alignments for the Homstrad20 and SABmark-
Sup21 datasets were obtained from their respective websites. For 17 cases in the
Homstrad dataset, mTM-align returned alignments where at least one sequence did
not match the corresponding PDB sequence. These cases were not considered.

We report various quality metrics of multiple structure alignments obtained from the
different tools benchmarked. For both benchmark datasets we report the average
(median) TM-score of the alignment, a measure that takes into account both the
structural equivalence of corresponding residues and the overall coverage of the align-
ment24. We also report the median percentage of positions in the alignment without
gaps (gapless positions), an aspect important to consider when using aligned features
as input to machine learning algorithms, as gaps are seen as missing data and may
cause loss of information about the residue positions in which they occur. In addi-
tion, the Homstrad dataset provides a set of manually curated reference alignments,
for which we define an accuracy score (Acc.) that measures the number of correct
gapless positions found, i.e gapless positions which are equivalent to positions in the
corresponding reference alignment, divided by the total number of gapless positions
in the reference alignment.

To estimate Caretta-shape running times, we chose four proteins from the SABMark
dataset as “seeds”, with lengths 100, 300, 504, and 714 respectively. Each seed
was used to form multiple groups of proteins by introducing noise of up to 5 �A to
each of the seed coordinates, to create a given number of members, from 10 to 1010
in increments of 200. Each noisy structure was further rotated by a random angle
(between 0°and 360°) along a randomly selected axis. Caretta-shape was then used
to align these groups on a Linux workstation using a single thread.

6.2.2 Protein kinases

Data

Protein kinase PDB files with group and family annotations were collected from the
kinase–ligand interaction fingerprints and structure database (KLIFS)25, resulting in
7,746 monomeric structures collectively named the KinaseAll dataset. Table 6.1 lists
the number of proteins in this dataset in each kinase group.
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Data about active and inactive states of kinase structures was taken from work by
McSkimming et al. 26 yielding 1,773 kinases marked as having active conformations
and 1,592 structures in inactive conformations. This dataset is referred to as the
KinaseActive dataset in the text. A subset of 514 cyclin-dependent kinases from this
set was further analysed and referred to as the CDKActive dataset.

Shape-mers

Geometricus count vectors were calculated for kinase structures using a k-mer size
k = 20 and a resolution m = 2. These were visualized using a t-SNE embedding
calculated using the scikit-learn Python library27 with perplexity = 30 and default
parameters.

Shape-mers distinguishing a kinase group G were found as those shape-mers which
are present in > 95% of the proteins within G and whose mean count value within
G is at least one more than the mean count outside G. We visualized distinguishing
shape-mers for the STE, AGC, and TK kinase groups using three representative
structures, one from each group, with PyMOL28. Each shape-mer can have multiple
occurrences across a protein, some of which are shared across groups and do not
contribute to the distinguishing nature of the shape-mer. To overcome this, we only
visualize occurrences of a group’s shape-mer in the group’s structure which are absent
in similar positions across the two structures from the other groups.

Agglomerative clustering was performed on the count vectors, again using the scikit-
learn library27, with the Bray-Curtis affinity metric and a distance threshold of 0.63.
This threshold was decided using an all vs. all pairwise alignment for 232 kinase struc-
tures, up to 40 from each kinase family, from which we took the mean Geometricus
similarity score of pairs with an alignment TM-score > 0.95.

Alignment

Subsets of kinase structures were aligned using Caretta-shape with the same parame-
ters as used in benchmarking. For the CK2 alignment, we superposed 292 structures
according to the aligning positions and depict each structure as grey lines passing
through the α-carbon coordinates using Matplotlib29. The mean and standard devi-
ation of all coordinates were depicted as a black line and coloured circles respectively.

Machine Learning

Gradient Boosting trees were used for machine learning tasks due to their high gen-
eralization potential and capability to include missing features as a separate category.
These were implemented using the XGBoost Python library30 with a maximum depth
of 5 and remaining default parameters. Kinase active vs. inactive state classification
was performed on the KinaseActive and CDKActive datasets with five-fold cross val-
idation. For the KinaseActive dataset consisting of divergent proteins, Geometricus
count vectors were used as features. For the CDKActive dataset consisting of the
structurally similar cyclin-dependent kinases, aligned moment invariant values were
used.
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In both cases, feature importance values of each predictor were averaged across cross-
validation folds and summed across features. The top 2 predictive shape-mers from
the KinaseActive classifier and top 10 predictive residues from the CDKActive classi-
fier are considered in the text. Predictive shape-mer occurrences were mapped back
to their corresponding residues. Predictive shape-mer residues and predictive residues
from the alignment-based approaches were visualized on representative structures us-
ing PyMOL28.

6.3 Results

6.3.1 Fast and accurate multiple structure alignment with rotation-
invariant moments

Most machine learning algorithms accept a tabular, fixed dimensional matrix as in-
put, with rows representing individual data points and columns representing features
measured across all data points. For proteins sharing high structural similarity, this
can be accomplished by organizing residue-level features in the order dictated by a
multiple structure alignment. Desired properties of this alignment would be high
accuracy in terms of structural equivalence of residues, high coverage in order to in-
clude as many relevant residue positions as possible instead of just highly conserved
positions, and high speed to be able to align and re-align large datasets of proteins
in typical parameter selection and validation pipelines. Here we demonstrate that
Caretta-shape possesses all three of these properties.

We benchmarked Caretta-shape with the Homstrad20 and SABMark-superfamily21

alignment datasets, and compared against two popular structure aligners, Matt23

and mTM-align31. Table 6.2 shows average quality metrics across these datasets
and demonstrates that Caretta-shape returns high quality, accurate alignments with
high coverage. The pairwise alignment step in Matt and mTM-align is prohibitive,
with runtime complexities of O(n2l3log(l)) and O(n2l2) respectively (where n is the
number of proteins and l is the length of the longest protein). mTM-align’s authors
mention that 80-90% of their running time is spent in this step31. Shape-tuple
similarity reduces this step to O(n2) in Caretta-shape. The entire Homstrad dataset
takes only 4 minutes to align with Caretta-shape, compared to half an hour using
the old Caretta algorithm and mTM-align, both of which are 10-15 times faster than
Matt31.

Figure 6.1 shows the runtime of Caretta-shape on a single thread across synthetic
datasets with differing lengths and numbers of proteins. Over a thousand medium-
length proteins can be aligned in as little as 20 minutes on a personal computer with
a single thread. Further speed improvements such as those employed by multiple
sequence alignment algorithms32 or by the use of graphical processing units (GPUs)
could extend Caretta-shape to aligning hundreds of thousands of protein structures
in hours; these approaches are left for further exploration.
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Aligner
Homstrad SABMark-superfamily

TM-score % Gapless Acc. TM-score % Gapless
mTM-align 0.88 0.61 0.84 0.77 0.32
Matt 0.85 0.56 0.87 0.68 0.25
Caretta 0.92 0.73 0.87 0.82 0.46
Caretta-shape 0.92 0.74 0.87 0.81 0.45

Table 6.2: Average TM-score and percentage of gapless columns across Homstrad
and SABmark-superfamily datasets. As the Homstrad dataset also provides refer-
ence alignments, “Acc.” shows the number of gapless columns present in the corre-
sponding reference alignment divided by the total number of gapless columns in the
reference alignment.

Figure 6.1: Running time in minutes of Caretta-shape on synthetic datasets with
differing number of proteins and proteins with different lengths.
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6.3.2 Structure-based exploration of protein kinases

In the past decades, protein kinases have become an alluring target for drug discovery
due to the important role they play in key signal transduction pathways. These
phosphotransferase enzymes mediate the transfer of the phosphate moeity from high-
energy molecules such as ATP to their substrates, and are classified into broad groups
based on the substrates they act on. Their popularity has led to a boom in the number
of experimentally solved kinase structures with different ligands and inhibitors bound.
The kinase–ligand interaction fingerprints and structure database (KLIFS)25 now
contains 7,746 monomeric structures covering 308 kinases across 8 groups and 3,341
unique ligands.

This superfamily as a whole has divergent protein structures for which only a small 85-
residue catalytic segment can successfully be aligned33. However, individual kinase
families, each consisting of up to a thousand structures, share common structural folds
that lend well to alignment. With a combination of Caretta-shape and Geometricus
we are able to pinpoint differences between kinase groups, align kinase families, and
predict conformational change across and within kinase families all in a matter of an
hour.

Divergent groups of proteins

Figure 6.2A shows a t-SNE embedding of Geometricus shape-mer count vectors of
all 7,746 kinase monomers in the KinaseAll dataset, coloured by the group to which
they belong. Clear separation is seen between groups, with smaller clusters visible
within each group. These mostly correspond to the kinase families, some of which
are labelled in the figure. In Figure 6.2B, for three kinase groups, we look at some
shape-mers present in the members of that group and absent in the others. Many
of these regions in the structure do not lie in the alignable catalytic stretch and thus
would not have been found using alignment-based methods.

Similar families of proteins

By clustering Geometricus count vectors, we arrive at clusters of proteins displaying
high structural similarity which are better suited to alignment. Table 6.3 shows
clusters with > 100 proteins obtained after performing agglomerative clustering with
a distance threshold derived from comparison of Geometricus similarity scores with
pairwise alignment TM-scores (described in Methods). Each cluster only contains
proteins from a single kinase group and many are dominated by a single kinase
family (labelled in Figure 6.2A), demonstrating that Geometricus similarity scores
can be used to assign proteins to functional groups when annotations are lacking.
We used Caretta-shape to align the proteins within each cluster. The average TM-
score of each cluster alignment (reported in Table 6.3) is very high, confirming their
structural similarity. Figure 6.3 shows the coordinate standard deviations for the CK2
alignment, demonstrating how alignments can be used to assess residue conservation
and pinpoint outliers or sub-groups.
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Figure 6.3: 292 CK2 kinase structures superposed according to their Caretta-shape
alignment, each depicted as grey lines passing through the α carbon coordinates.
The mean is depicted as a black line with each residue position coloured according
to its standard deviation. The blue box marks a well-conserved region, green boxes
mark regions showing subgroups where different structures follow different distinct
paths (visible in lighter grey), and red boxes mark outlier regions where each protein
has highly differing coordinates.

6.3.3 Kinase activity from different perspectives

The protein kinase domain can undergo dramatic conformational changes when re-
acting to regulatory signals in signalling pathways. These changes are controlled by
protein-protein interactions, phosphorylation, and ligand binding34. Drug discovery
efforts often aim to target specific kinase conformations and thus benefit from an
understanding of conformational activation across kinases and how this activation
differs across the different kinase groups and families.

Using a dataset of 3,365 kinase structures labelled as being in active or inactive con-
formations26, we aim to classify a structure as belonging to one of these two states as
well as pinpoint structural elements responsible for the change. We demonstrate how
the alignment-free Geometricus is well-suited to tackle such classification problems
across diverse proteins, such as those belonging to the different kinase groups, and
Caretta-shape alignment allows for zooming into the idiosyncrasies of a single family.
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No. of proteins Avg. TM-score Group Top family Purity (%)
741 0.96 CMGC CDK 82
661 0.96 CMGC MAPK 100
570 0.94 TK Tec 28
454 0.95 TK JakA 59
346 0.95 TK FGFR 61
292 0.99 CMGC CK2 100
288 0.94 TK EGFR 100
248 0.95 CMGC DYRK 64
230 0.96 AGC PKA 62
176 0.99 CAMK PIM 100
163 0.96 CAMK DAPK 73
157 0.98 TKL RAF 100
157 0.98 TKL IRAK 100
141 0.98 TKL STKR 100
139 0.98 CAMK CAMKL 100
137 0.96 STE STE20 100
125 0.98 CK1 CK1 91
117 0.98 AGC DMPK 100
108 0.96 TK Src 66

Table 6.3: Clusters of kinases obtained from Geometricus count vector clustering,
also labelled in Figure 6.2A. For each cluster we report the average TM-score of
its Caretta-shape alignment, the group in which its members belong, and the most
frequent family along with the percentage of the family’s occurrence in the cluster
(purity).
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Activation across divergent kinases

To inspect activation across all kinases, we trained a Gradient Boosting classifier on
Geometricus embeddings of the KinaseActive dataset. The five-fold cross validation
accuracy of this classifier was 96 ± 0.01%. Figure 4A shows the top two predictive
shape-mers and their prevalence across active and inactive kinases. These shape-mers
are also depicted on an example kinase structure (PDB ID 1E9H). One shape-mer, in
dark blue, is localized in the DFG motif which lies in the well-established activation
segment26. Another, in green, lies in the linker region connecting the activation
segment to the αF-helix which acts as an organizing hub in the activation process35.
The DFG motif shape-mer is repeated (in light blue) but since Geometricus works
with counts we cannot distinguish the true predictive motif using a single structure.
More clarity is obtained when looking across multiple structures, as the dark blue
occurrence is present in many structures in the active conformational state while the
light blue occurrence is not.

Activation in the cyclin-dependent kinase family

While the Geometricus approach gives us good prediction performance and pinpoints
critical structural regions, it misses some structural regions that are specific to certain
families. For instance, the cyclin-dependent kinase (CDK) family is dependent on the
formation of a CDK-cyclin complex. Upon binding, cyclin induces conformational
changes in the kinase domain that allow for autophosphorylation of the activation
segment to produce a fully active kinase36. Thus, CDKs are further allosterically
regulated through cyclin-binding, an aspect not seen in our coarse-grained classifier
trained across all kinases. To analyse a specific subfamily such as CDKs, an alignment
based approach can be beneficial due to the high structural similarity between proteins
and expected residue correspondences. We create a Caretta-shape alignment across
514 CDKs, resulting in an alignment of 399 residues with an average TM-score of
0.96. A Gradient Boosting classifier is trained on the aligned moment invariant values
of each CDK, resulting in a very high accuracy of 99%. Figure 4B depicts the top
10 predictive residues. While some residues are again found in the DFG motif and
αF-helix linker regions, residues in the αC-helix which forms part of the cyclin-CDK
interface are also found as predictive, indicating that this predictor picks up CDK-
specific patterns relevant for kinase conformational change.
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6.4 Conclusion

With growing numbers of experimentally solved protein structures and proteins capa-
ble of being computationally modelled, structures are seeing increasing use in machine
learning applications. To that end we present Caretta-shape, a very fast and accu-
rate multiple structure alignment algorithm based on the concept of rotation-invariant
moments, aimed at generating aligned structural features for machine learning.

Depending on the similarity between proteins under study, an alignment-free or
alignment-based approach is preferred and each presents its own advantages and
insights. We adapt these two approaches to the protein kinase superfamily, which
consists of structurally divergent protein groups as well as more similar protein fam-
ilies. We use machine learning to tackle active/inactive conformational state pre-
diction across all kinase families with Geometricus and across the cyclin-dependent
kinase family with Caretta-shape alignments. These two approaches lead to the
exploration of different aspects of catalytic mechanisms: one aspect explains com-
monalities within all proteins in this diverse superfamily, and the other zooms in on
peculiarities displayed by a single family.

Computational structure modelling is capable of expanding datasets of proteins into
the thousands. Once the expensive but automated modelling steps are complete,
analyses similar to the ones presented here, both unsupervised and supervised, can be
carried out with comparable ease allowing for fast iteration and adaptive exploration
of protein biology.

Broader Impact

The research presented here includes a novel multiple structure alignment algorithm
and a demonstration of recently developed algorithms for analysing protein structures
with machine learning. Researchers in structural bioinformatics and enzymology may
benefit from this work for obtaining structural insights from their data. The ideas
discussed also form a fertile basis for more complex algorithms that leverage the
increasing amounts of data and recent advances in machine learning and deep learning
techniques aimed at such structured, high-dimensional data.
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Abstract

Plant sesquiterpene synthases (STSs) catalyse the formation of a large number of
volatile sesquiterpenes. Predicting the exact sesquiterpene produced by a given STS
is a challenging task, yet crucial for a number of biotechnological applications. Here,
we present a novel machine learning framework, Matchmaker, that combines pro-
tein structural features derived from STS homology models with chemical features
derived from sesquiterpenes to successfully predict product specificity of STSs. We
experimentally characterize 64 novel STSs across STS sequence and chemical space,
on which we demonstrate Matchmaker’s performance. Matchmaker also enables pin-
pointing residues involved in the formation of specific sesquiterpenes. These insights
will be useful for future studies looking to engineer enzymes with desired specificity.

7.1 Introduction

A number of protein families are capable of collectively modifying or producing one or
many of a wide range of possible compounds. This is especially the case for families
involved in the production of natural products or specialized metabolites – compounds
not required for an organisms primary biochemical pathways of cell growth and repro-
duction, yet crucial for environmental adaptation1. The intense evolutionary pressure
over nearly half a billion years to keep up with surrounding predators, competitors,
and allies alike combined with limits on the amount of available energy and material
to spend on this ongoing battle has resulted in a relatively small number of proteins
capable of producing and modifying a vast array of natural product compounds2.
Thus, these proteins are very diverse in terms of sequence, across families and even
within the same family across different species.

Biotechnological applications involving specialized metabolites often require compu-
tational methods to predict substrate or product specificity. These can be useful to
screen for proteins with desired specificity, to predict specificity in proteins from a
specific species or containing other desired characteristics such as high thermostabil-
ity, to optimize production in different host systems, and to understand the residues
involved with the aim of engineering mutants and novel proteins to possess required
specificity or inhibit/enhance protein activity. The immense sequence diversity of
these enzyme families has led to approaches tailored to specific proteins, for example
those combining molecular docking and molecular dynamics to screen possible com-
pounds and intermediates against a single protein3–8. Such techniques often have a
significant computational cost, require extensive fine-tuning and focus entirely on a
single protein, thus hindering the interpretation of results from a family perspective.
Another common technique for screening is simple sequence identity to proteins with
known products. While this has some success for proteins from previously charac-
terized species or genera, it does not generalize well to proteins from rare species
or proteins producing rare compounds. More importantly, such an approach gives
no indication of the residues or regions in the protein responsible for transferring a
particular specificity. This knowledge is crucial for successful engineering of novel
mutants with desired properties.
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The family of plant sesquiterpene synthases (STSs), responsible for the production
of compounds called sesquiterpenes involved in plant fragrances, is a perfect example
of a diverse natural product enzyme family associated with a diverse range of spe-
cialized metabolites. STSs collectively produce hundreds of different sesquiterpene
compounds, with many STSs being promiscuous in nature and capable of individually
producing multiple compounds at varying levels. Figure 7.1 shows the STS reaction
cascade, starting from the substrate farnesyl diphosphate (FPP) which undergoes a
series of cyclizations, hydride shifts, methyl shifts, rearrangements, re- and deproto-
nations to produce the final enzyme products. In previous research, we demonstrated
that all the products of a multi-product STS tend to arise from the same reac-
tion pathway, indicating that chemical similarity between sesquiterpene compounds
is important to consider when predicting product specificity9. In addition, we showed
that sequence identity in this family did not explain product specificity,10, but protein
structure carries more information about reaction specificity9. Thus, predicting prod-
uct specificity in STSs requires an approach that takes into account STS structure
information and sesquiterpene chemical information.

Recently, machine learning has become a popular choice for a variety of general
protein-compound specificity predictors. Deep learning has been used to predict in-
teraction specificity on large datasets consisting of tens to hundreds of thousands
of protein-ligand pairs. However, while these models tend to have superior perfor-
mance when applied to broad and diverse datasets consisting of proteins spanning
multiple superfamilies, their performance drastically decreases when applied to small
datasets of individual families11. Thus, a variety of shallow machine learning algo-
rithms relying on expert-based descriptors have been developed and demonstrated
on independent families of just hundreds of proteins. These approaches can be cat-
egorized according to the kinds of input they take – some use only the protein as
input, some only the compound, and some are proteochemometric and use both
protein and molecule descriptors. Classification algorithms need a sufficient number
of samples per class in order to successfully learn generalizable patterns for each
class. This presents a problem for approaches that take only the protein as input
and attempt to classify the specificity of the protein, as the number of such classes
(of compounds) they can successfully predict is limited by the number of labelled
proteins available in each class. Thus, to ensure sufficient data per class, compounds
are typically grouped according to some shared criteria such as the presence of a par-
ticular chemical skeleton, shared parent compound etc., as was done in our previous
research on classifying STSs into two categories based on the parent cation of their
products9. This unfortunately often means that these predictors only narrow down
compound specificity but cannot resolve the final compound, still leaving researchers
with numerous possible answers. In addition, the chemical similarity between com-
pounds in the different classes contains relevant information for prediction but is
left unused. A similar situation occurs in ligand-centric approaches. These typically
use a large set of molecules as input and predict specificity of these molecules to a
single protein and thus cannot be used to make claims about other proteins. Pro-
teochemometric approaches, on the other hand, do not have these limitations and
thus are ideal for predicting compound specificity in individual protein families such
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Figure 7.1: The reaction mechanism of sesquiterpene production starts with farnesyl
diphosphate ((E,E )-FPP). Loss of the diphosphate moiety (OPP) leads to farnesyl
cation formation. The farnesyl cation can subsequently be converted to the nerolidyl
cation. Acyclic sesquiterpenes (acyclic-F and acyclic-N) are formed from these two
cations by proton loss or reaction with water molecules. Possible cyclizations for
both cations are indicated in the figure. The subsequently formed cyclic cations
undergo modifications and rearrangements to form cyclic sesquiterpenes. Some of
these sesquiterpenes (g-A and bcg) themselves act as neutral intermediates which can
be re-protonated and undergo further reactions to form more products. Products are
also formed from specific charged intermediates such as a 1,2- or 1,3-hydride shift of
the 10,1-cyclized farnesyl cation (1,2H, 1,3H) and the cadalane skeleton (cadalanes),
which can be formed via either of the two precursor cations, or via acid-induced
rearrangement of germacrene D. The 7,1-cyclization of the nerolidyl cation, shown
in grey, is not found in plant-derived sesquiterpenes. g-A = germacrene A, g-D =
germacrene D, bcg = bicyclogermacrene
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as the STSs. However, previous proteochemometric approaches either used protein
sequence derived features12 or protein-ligand complex derived features13,14. While
the former misses out on useful structure information, the latter requires structures
of complexes or expensive docking studies to generate these. In addition, a number
of these predictors use kernel methods, such as support vector machines, to generate
protein-compound similarity matrices for learning. These are difficult to interpret,
in that it is not straightforward to learn from a trained predictor what residues and
regions are predictive for specificity.

Here we present a novel joint framework for STS product specificity prediction,
Matchmaker, which considers sequence and structure features extracted from mod-
elled 3D structures of unbound proteins along with chemical features extracted
from the free state of individual compounds. The framework is trained on protein-
compound pairs and returns a compatibility score. This score, when sorted across
all possible compound combinations for a given protein, reveals the most proba-
ble product. In addition, the framework enables inspection of predictive features
and residues for each individual compound, allowing researchers to drill down into
compound-specific structural regions and design mutant studies tailored towards de-
sired compounds.

We evaluate two settings: predicting the compound produced by a specific STS,
i.e. protein-centric prediction, and screening for STSs producing desired compounds,
i.e. compound-centric prediction, demonstrating the ease of adaptation of a trained
Matchmaker framework to different biotechnological applications. We also consider
the inclusion of minor or side products of multi-product STSs, and the effect this has
on performance. To comprehensively evaluate our framework on STSs from different
species with varying levels of sequence identities to known enzymes, we experimentally
characterize 64 novel STSs to use as an independent test set. Compound-specific
predictive residues returned by our framework overlap with results of previous theo-
retical research and mutation studies specific to the compound under consideration,
implying that the advanced interpretation capabilities of Matchmaker can be used to
customize experimental studies to compounds and proteins of choice. Matchmaker
thus provides a unique, structure-based and highly interpretable proteochemometric
compound specificity prediction approach, likely to be useful for other protein families
with similar properties where pinpointing residues important in reaction mechanisms
is as important as predicting specificity.

7.2 Methods

7.2.1 Overview

Figure 7.2A depicts the usage and workflow of Matchmaker, starting from a set of
protein sequences and a set of compound SMILES strings. Homology modelling is
used to generate structural models for each STS sequence, followed by the extraction
of sequence- and structure-derived features and the alignment of these features across
the set of proteins based on structural alignment. Chemical fingerprints are generated
for each compound from its SMILES representation. A gradient boosting classifier
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is then trained on all protein-compound pairs, with pairs consisting of compounds
produced by a protein labelled as positive and the remaining as negative. For test
proteins, compatibility scores are generated across all possible compounds, producing
a protein-compound compatibility score matrix (Figure 7.2A). Figure 7.2B depicts
the two settings for obtaining predictions from this matrix:

1. Protein-centric prediction setting: to predict product specificity for a protein,
compatibility scores are sorted across compounds for that protein, and the com-
pound with the highest score is its predicted product.

2. Compound-centric prediction setting: to predict proteins containing desired
specificity from a set of possible candidates, compatibility scores are sorted across
proteins in the column corresponding to the desired compound. The proteins
with the highest scores in this column are most likely to produce the compound
of interest.

The subsections below delve into the details of applying the above prediction approach
to plant STSs.

7.2.2 Proteins

For training Matchmaker we used the proteins in the plant STS database (https://
www.bioinformatics.nl/sesquiterpene/synthasedb/) for which product speci-
ficity has been experimentally determined via GCMS and NMR studies10. This
dataset consists of 302 enzymes, covering 106 species in 68 genera, and is henceforth
referred to as the training set.

Test set selection and characterization

As an independent test set, we selected and experimentally characterized novel pu-
tative STSs from sequenced plant genomes and transcriptomes. We started with a
set of 18,667 putative STS candidates from the TrEMBL database15 and the 1000
plant transcriptome project16, defined as proteins containing the Terpene synth C
Pfam domain (Pfam ID: PF03936). These were extracted using HMMER (version)
with default settings. We used the approach detailed by Terzyme17 to create hidden
Markov models (HMMs) for characterized STSs, monoterpene synthases (MTSs),
and diterpene synthases (DTSs) and further restricted candidates to those having
an STS HMM score over 500 (which was the average STS HMM score of proteins
in the STS database) and greater than the corresponding MTS and DTS scores.
To remove non-functional enzymes, we discarded sequences which didn’t start with
Methionine, which had sequence lengths more than one standard deviation away
from characterized enzymes (both considering full sequence length and C-terminal
domain sequence length), and which did not contain the conserved RXR, DDXXD,
and NSE/DTE motifs10,18. From this resulting set we used three different strategies
to select 160 candidates to characterize:

1. Filling sequence space: We iteratively selected 50 sequences with the lowest
pairwise sequence identity to their closest sequence from both the training set

https://www.bioinformatics.nl/sesquiterpene/synthasedb/
https://www.bioinformatics.nl/sesquiterpene/synthasedb/
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Figure 7.2: A Matchmaker workflow, starting from a set of protein sequences and a
set of molecule SMILES strings, and resulting in a protein-compound compatibility
score matrix. B The two settings for generating predictions from the compatibility
score matrix.
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and previously chosen set. As this experiment was performed before the second
version of the plant STS database with updated literature studies was released9,
it used only the STSs from the first version10 in the training set.

2. Filling mutation space: We obtained 26 cyclization-specific residues (according
to the cyclizations depicted in Figure 7.1) by inspecting the sequence alignment
of already characterized enzymes. These enzymes were divided into cyclization
groups based on the cyclization of their major product. Residue positions where
the most common amino acid was not the same across all groups, and at least one
group had a >50% conservation at that position were considered as cyclization-
specific. These positions were used to create a graph of characterized and un-
characterised STSs, with edges representing the number of mutations within the
cyclization-specific residues. From this graph, we selected 30 as yet uncharac-
terised enzyme sequences with the highest load centrality, i.e. those acting as a
bridge between characterized enzymes.

3. Increasing nerolidyl cation representation: In order to deal with the imbalance
in our database, with over 70% of the characterized enzymes producing com-
pounds derived from the farnesyl cation, we used our previous cation specificity
predictor9 to select 80 sequences at least 10 residues away from characterized
enzymes, from species with <2 characterized enzymes, with <90% identity to
each other and with >5% predicted nerolidyl specificity. We also ensured that
none of these selected enzymes had protein features close to those of nerolidol
synthases, as described in Durairaj et al. 9 .

Codon-optimized versions of the selected candidates were produced using JCat19.
The resulting synthetic genes were ordered from BaseClear (Leiden), and cloned
into MCS1 (BamHI, NotI) cloning sites of the expression vector pACYCDuet-1 (No-
vagen, CmR). The resulting constructs, and an empty pACYCDuet, were transformed
into chemically competent Escherichia coli BL21 DE3 carrying the plasmid pMEV,
which is a kanamycin-resistant version of a mevalonate pathway-expressing plasmid20.
Transformants were plated on LB plates supplemented with kanamycin (50 µg/ml),
chloramphenicol (50 µg/ml) and 1% glucose. A starter culture of all clones was grown
overnight in 5 ml LB medium supplemented with kanamycin (50 µg/ml), chloram-
phenicol (50 µg/ml) and 1% glucose at 37 °C, 250 rpm. 20 ml YT supplemented with
kanamycin (50 µg/ml) and chloramphenicol (50 µg/ml) in 100 ml Erlenmeyer flasks
were inoculated using the starter cultures at an OD600 of 0.1. The culture was incu-
bated at 37 °C, 250 rpm until the OD600 reached 0.45-0.55. At this point, 20 µl 1 M
IPTG was added, and 2 ml n-dodecane, and cultures were further incubated for 24h
at 30 °C and 250 rpm. Subsequently, cultures were centrifuged (15 min 3,600×g),
and the dodecane fraction was collected. Dodecane was diluted 1:100 in hexane,
and used for GCMS analysis according to Di Girolamo et al. 21 . Eluting peaks were
identified by their mass spectrum using the NIST V8 library22.
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Table 7.1: The six structures used for multi-template modelling

Name PDB ID Resolution Species Product Cation

GACS 3G4F 2.65�A Gossypium arboreum (+)-δ-cadinene cadalane
AGBS 3SDU 1.89�A Abies grandis α-bisabolene nerolidyl
AABS 4FJQ 2.00�A Artemisia annua α-bisabolol nerolidyl
AAHS 4GAX 1.99�A Artemisia annua γ-humulene farnesyl
HMVS 5JO7 2.15�A Hyoscyamus muticus vetispiradiene farnesyl
TEAS 5EAU 2.15�A Nicotiana tabacum 5-epi-aristolochene farnesyl

Sequence extraction

The C-terminal domain sequence, that contains the active site, was extracted from
each STS using HMMER23 and the Pfam24 domain PF03936. The C-terminal do-
main sequence is defined from the starting position of the HMMER hit to the end of
the protein.

Measuring sequence similarities

A distance matrix of the C-terminal domain sequences of all 160 novel STS candidate
enzymes from Section 7.2.2 and 302 training set STSs was constructed using the
pairwise sequence k-tuple measure described by Wilbur & Lipman 25 , implemented in
Clustal Omega (version 1.2.4)26. This distance matrix was then used to construct a
multi-dimensional scaling (MDS) plot using scikit-learn (version 0.19.1)27.

Homology modelling

For each STS, 500 multi-template homology models were created of the C-terminal
domain sequence using MODELLER28, with six STS structures from the PDB29 as
templates, as listed in Table 7.1. These were aligned to each sequence using the C-
terminal PF03936 Pfam domain24 as a guide, using Clustal Omega26. Three Mg2+

ions were also included while modelling. The model with the lowest normalized DOPE
score was selected for feature extraction.

Feature extraction and alignment

The same protein features were extracted for each STS from both sequence and
modelled structure as described in our previous work9. This includes residue-level
features derived from sequence conservation, flexibilities based on normal mode anal-
ysis, Coulomb and Born electrostatics, bond angles, residue depths, and surface
accessibility. In addition, our recently released topological feature extraction tool,
Geometricus30, was used to extract rotation invariant moments for each residue of
each modelled structure. 16 moments were calculated considering the Cα coordi-
nates of residues from 6 positions upstream and downstream of each residue. These
include the 4 moments described in our manuscript30(O3, O4, and O5 and F ) and
12 independent third order moments from Flusser et al. 31 (phi2−13). Features were
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aligned according to a multiple structure alignment generated by Caretta-shape32

using default parameters. Gaps in the alignment were represented as NaNs.

7.2.3 Compounds

We collected all sesquiterpene compounds produced by STSs in our dataset and ob-
tained their SMILES strings from the PubChem database33 using the Python wrapper
for the PubChem REST API34, PubChemPy (version 1.0.4). Since in many cases
the exact chirality of the compound was not determined during experimental charac-
terization, we use canonical SMILES without chirality information. This resulted in
64 unique compounds of which 4, produced by 11 STSs, are unique to the test set.

Feature extraction

Morgan circular fingerprints35 with a radius of 3 were calculated from the SMILES
strings of each compound using RDKit (version 2020.09)36. Only bit indices present
in at least one sesquiterpene from the training set were retained, resulting in 816
features per compound.

7.2.4 Matchmaker prediction framework

Matchmaker uses gradient boosting trees trained on concatenated protein and com-
pound features (X). The training set consists of all possible pairs of the 302 training
STSs and 64 training compounds. The response variable (y) for pairs consisting of
STSs and their major products are marked as 1 and the rest as 0. Matchmaker-Multi
on the other hand includes all products of promiscuous STSs, i.e. y = 1 for pairs
consisting of STSs and any of their products.

The classifier is constructed using XGBoost37. We use gradient boosting param-
eters consistent with the low number of proteins and high number of features in
our dataset in order to avoid overfitting - a high number of trees (n trees =

1000), a low learning rate (learning rate = 0.01), subsampling data points for
each tree (subsample = 0.8), and subsampling features for each tree and level
(colsample bytree = 0.5, colsample bylevel = 0.5). To handle the high rate
of imbalance between positive (y = 1) and negative (y = 0) samples, we also control
the balance of positive and negative weights (scale pos weight = number of positive pairs

number of negative pairs ).
The posterior predicted probabilities of the trained gradient boosting model are
termed as the compatibility scores of protein-compound pairs.

7.2.5 Prediction and evaluation

We evaluate Matchmaker on STSs across the two different settings depicted in Figure
7.2B, and compare it to prediction using sequence identity, defined as the Clustal
Omega k-tuple similarity measure26 between C-terminal domain sequences.
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Protein-centric prediction setting

The goal in this setting is to correctly predict the product of a given protein. Our
previous research9,10 established that overall protein similarity in STSs is more as-
sociated with phylogeny than product specificity - i.e. STSs from the same species
are similar irrespective of the compounds they produce. This necessitates careful
evaluation that takes this phylogeny into account. Hence, instead of random cross-
validation, we use a genus-based split with each fold consisting of STSs from six
genera at a time. For each protein in each validation set, we generate compatibility
scores for each possible product. After sorting these scores for each protein in de-
scending order, we inspect the topmost, top-3, and top-5 predicted compounds and
count the prediction as correct if the major product is present in these sets (and, in
Section 7.3.3, if any of the products is present). These same scores are used across
the remaining settings as well. For sequence-based prediction, we use a 1-nearest
neighbour classifier on sequence identity. As a baseline, we also calculated results for
random prediction, assigning labels based on the frequencies of compounds in our
dataset. This setting is also used for our independent test set of newly characterized
enzymes using a Matchmaker predictor trained on the entirety of the training set.

Compound-centric prediction setting

In this setting, the goal is to predict proteins which produce a particular compound,
aiming to reduce the experimental cost of screening for desired specificity. To evaluate
this setting, we attempt to predict proteins producing sesquiterpenes with more than
10 examples in the training set. This is considering the compatibility scores across
columns corresponding to the selected compounds. We report the score obtained by
sorting the compatibility scores in descending order (Figure 7.2B2) and counting the
number of proteins in the top 10 which truly produce the corresponding compound
for each compound. To evaluate sequence identity based screening, for each selected
compound, the top-10 proteins with the highest sequence identity to any training
protein producing the compound are considered. To obtain a percentage, we divide
these counts by the count obtained when assuming perfect recall. For the three
compounds most common in the training set, the Receiver Operating Characteristic
(ROC) curve is calculated for Matchmaker and sequence-identity based scoring.
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7.2.6 Interpretation and visualization

The trained classifier can give insights about residues involved in determining com-
pound specificity. The overall residue predictiveness score is calculated by averaging
Gradient boosting importance scores from the trained model across protein features
for each residue.

To assess the predictive value of residues for each individual compound we use
SHAP38 which assigns a positive or negative value to each feature of each data
point, determining each feature’s influence on the prediction result for that data
point. For a given compound, say compound A, we collect all protein-A pairs con-
sisting of proteins producing compound A (i.e. y = 1) and add the SHAP scores
across features for each residue, obtaining a score for each residue that indicates
its predictive value in the context of compound A specificity. This is illustrated in
Figure 7.3. These values are then further averaged across the collected pairs. Pos-
itive scores in the resulting array correspond to residues which push the prediction
towards a higher compatibility score, which are thus most likely to be involved in the
production of that compound.

Overall residue scores and compound-specific scores for four compounds are visualized
on the tobacco aristolochene synthase structure (TEAS, PDB ID: 5EAT)39 using
PyMOL40. The size of the residue is proportional to the predictive score.

7.3 Results

7.3.1 Characterization of novel STSs

Out of the 160 enzymes selected as described in the Methods, we experimentally
characterized 64 novel STSs across the STS sequence space. Of the remaining 96
genes, 10 could not be cloned or transformed into Escherichia coli and 86 did not
produce detectable amounts of product. We use the 64 productive STSs as an
independent test set. Figure 7.4 shows the distribution of sesquiterpenes across the
STSs in the training set and test set.

Figure 7.5 depicts the sequence identities of the 302 STSs in the training set with
the 160 selected genes using multi-dimensional scaling (MDS), a technique used to
visualize the level of similarity of individual objects in a dataset such that the between-
object distances are preserved as well as possible. Therefore, STSs appearing close in
Figure 7.5 have a high sequence identity, while those further away have lower identity.
STSs from the current database, novel STSs with successfully detected products, and
STS candidates which could not be cloned or did not produce detectable amounts
of products are labelled with different colours, with markers differentiating dicot,
monocot and conifer STSs.
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Since STSs producing the acyclic sesquiterpene nerolidol are numerous in our dataset,
and many were shown in previous research to have easily detectable sequence and
structural patterns9,10, these would not be as useful in enhancing our knowledge of
product specificity. Thus, we discarded sequences with protein features close to neroli-
dol STSs during our selection process. This is reflected back in the characterization
results - in Figure 7.5 none of the novel enzymes are close to the cluster of nerolidol
synthases (in green), and only one novel nerolidol synthase was detected (Figure 7.4).
The test set also does not consist of any STSs from coniferous species, these were
likely discarded from the selection process due to their longer than average sequence
lengths and lower sequence identities compared to the remaining STSs, which lowers
their corresponding HMM scores. After considering these exceptions, Figures 7.4
and 7.5 show that the novel STSs are evenly distributed across STS sequence and
product space, indicating that the experimental characterization study successfully
broadens our coverage of STSs and presents an independent and representative test
set for evaluating product prediction.

More than half of the candidates (42/80) found by the first two selection techniques,
based on sequence similarity to existing STSs irrespective of product, were produc-
tive enzymes but produced predominantly farnesyl cation-derived sesquiterpenes, with
only two examples of nerolidyl cation-derived STSs. However, of the 80 candidates
obtained from the third selection technique, which made use of our STS cation pre-
dictor9 to select STSs with a chance of producing sesquiterpenes derived from the
nerolidyl cation, 15 out of 22 productive enzymes were nerolidyl cation-derived STSs.
This demonstrates that our cation prediction approach is accurate on productive en-
zymes and can be used for screening of enzymes from a desired cation, but it cannot
differentiate between productive and unproductive STSs. It is difficult to pinpoint the
exact reason for genes producing unproductive enzymes and no discernable clustering
can be seen in Figure 7.5 differentiating productive from unproductive enzymes. One
possibility is that these genes encode for monoterpene synthases (MTSs) instead of
STSs. While we attempt to discard MTSs from our selection using the approach de-
tailed by Terzyme17, this relies on HMMs covering the entire sequence, and evidence
of an MTS and STS sharing 97% sequence identity21 demonstrates that this is not
a foolproof strategy. Another possibility is the presence of sequencing and assembly
errors, which are prevalent in such large-scale sequencing datasets and are not easy
to correct. Thus, differentiating between productive and unproductive STSs is a pre-
diction problem of its own right and could be attempted in future studies using data
from experiments such as ours.
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Predictor Top Top-3 Top-5
Random 7% 19% 27%
Sequence 30% 38% 48%
Matchmaker 37% 57% 62%

Table 7.2: Prediction results of random prediction, sequence identity-based predic-
tion and Matchmaker. The columns indicate the percentage of STSs with correctly
predicted major products when taking into account the topmost, top-3 and top-5
compounds with the highest compatibility scores.

7.3.2 Matchmaker predicts STS product specificity in different settings

Table 7.2 shows validation results for the protein-centric prediction setting, where the
goal is to predict the correct product for a given enzyme, using random prediction
(which selects products randomly based on their frequencies in the training data),
sequence-identity based prediction, and Matchmaker prediction when considering the
topmost, top-3 and top-5 predicted products. Matchmaker improves over sequence
based prediction and achieves over 60% accuracy when considering the top 5 prod-
ucts. Given the sheer number of possible sesquiterpenes, Matchmaker prediction can
greatly narrow down the possible products produced by any novel STS of interest.

In contrast to the prediction setting, some applications such as screening assays and
directed evolution studies may require a selection of proteins that are likely to have a
desired compound specificity. We assessed performance in such a compound-centric
setting by checking if enzymes with high compatibility scores for a given compound are
truly specific for that compound (see Methods for details). Matchmaker found such
enzymes with a 40% probability in the top-10, compared to just 14% using sequence
identity. Figure 7.6 shows the ROC curve and area under the curve measure for
the three most populous sesquiterpenes in our training set, again demonstrating the
superiority of Matchmaker prediction to sequence identity based screening. In this
setting, Matchmaker can greatly reduce the number of characterization experiments
needed to locate STSs producing a desired product, an application which could be
particularly useful for diversifying the number of STSs making industrially valuable
sesquiterpenes.

Both settings demonstrate that Matchmaker has a significant advantage over se-
quence identity-based approaches in biotechnological applications.

7.3.3 Incorporating minor products improves prediction

STSs, like many other natural product enzyme families involved in producing the
wide array of specialized metabolites, can be highly promiscuous and often produce
a number of products at once. In previous research, we observed that all the prod-
ucts of a promiscuous STS predominantly arise from the same chemical pathway9.
This indicates that chemical similarity could hold information valuable for predicting
specificity, possibly linked to active site shape and size constraints and compound
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Figure 7.6: The Receiver Operating Characteristic (ROC) curves comparing Match-
maker compatibility scores and sequence identity for the three most common products
in our training set - A. caryophyllene, B. germacrene A, C. farnesene

.

Predictor Top Top 3 Top 5
Sequence-Multi 34% 48% 59%
Matchmaker 41% 61% 70%
Matchmaker-Multi 43% 63% 71%

Table 7.3: Prediction results of Matchmaker, Matchmaker-Multi and sequence
identity-based prediction, with the latter two considering all products of a promiscu-
ous STS as positives in the training process. The columns show the percentage of
STSs with correctly predicted products when considering all products of a promiscu-
ous STS as correct, looking at the topmost, top-3, and top-5 compounds with the
highest compatibility scores.

positioning for enzymatic reactions. Such situations are easily handled by the Match-
maker framework by marking pairs between a protein and all its products as 1. Table
7.3 shows the performance obtained by adding minor or side products to our training
process (labelled “-Multi”) and evaluating any product produced by an STS as cor-
rect. When considering the top-5 predicted products, Matchmaker-Multi correctly
predicts partial product specificity for over 71% of STSs. Thus, Matchmaker easily
adapts to multi-compound specificity, and can be applied in situations where even
trace amounts of sesquiterpene are of interest.

Such protein-centric multi-product prediction would also be useful in settings where
all STSs from a specific plant species are under study. Since sesquiterpenes are
volatile metabolites, volatile studies on plant parts such as flowers and stems give
an indication of which compounds are produced by that species. This information,
combined with Matchmaker prediction, can help produce highly accurate and compre-
hensive prediction reports linking each putative STS from a species to their respective
products in the species’ volatile profile.
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Predictor Top Top 3 Top 5
Sequence 8 20 24
Matchmaker 16 22 27
Sequence-Multi 15 29 32
Matchmaker-Multi 19 34 39

Table 7.4: Prediction results on the test set of novel characterized enzymes. Sequence
and Matchmaker only consider major products during training and evaluation, while
Sequence-Multi and Matchmaker-Multi include all products of promiscuous STSs.
The columns show the number of STSs with correctly predicted products (out of 64
novel STSs) when looking at the topmost, top-3, and top-5 compounds with the
highest compatibility scores.

7.3.4 Matchmaker predicts specificity for novel STSs

Table 7.4 shows the prediction results for the 64 novel STSs producing sesquiterpenes
present in the training set. Matchmaker shows clear improvement over sequence
identity-based prediction, despite the fact that the distribution of sesquiterpenes in
the test set differs from that in the training set. This indicates that Matchmaker is
an accurate and useful tool for STS screening in biotechnological applications.

In future work, we intend to integrate the novel enzymes characterized in this study
into our database of characterized plant STSs, greatly expanding our coverage of STS
sequence space and allowing for more accurate predictors that generalize across di-
verse sequences and products. Similar to the manner in which we used the cation pre-
dictor to increase our representation of nerolidyl cation-derived products, the Match-
maker predictor could be used in an active learning setting41, to select candidates
producing relatively rarer sesquiterpenes or for which prediction scores are not as ro-
bust. Such an expanded database could further improve product specificity prediction
while simultaneously reducing the number of experiments needed to be performed to
obtain STSs with desired specificity.

7.3.5 Combinations of residues are predictive for different products

A major advantage of the framework presented here, where residue-level protein
features are considered explicitly, lies in its interpretability. Firstly, the underlying
Gradient Boosting classifier provides a score for each feature, indicating how use-
ful or valuable it was in the construction of the boosted decision trees within the
model. The more often a feature plays a role in making key decisions, the higher
its relative importance score. These feature importances are depicted in Figure 7.7
with higher values indicated in red. In previous research, we performed cation speci-
ficity classification in STSs using a protein-centric approach, dividing sesquiterpenes
into two groups based on their precursor cation9. As the cation specificity classifier
also depended on gradient boosting trees, we performed a similar analysis of feature
importance, finding that many of the 30 predictive residues found overlapped with
residues that changed cation specificity in multiple mutation studies. Unsurprisingly,
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Figure 7.7: Gradient
Boosting predictive scores
per residue, as depicted on
the tobacco aristolochene
synthase structure. The size
of the residue is propor-
tional to its predictive score.
The score is also depicted
on a blue-red colour scale,
with blue representing lower
scores and red representing
higher scores.

we now find 12 of these residues again as predictive for product specificity. In addi-
tion, product-predictive residues cluster near the sides and bottom of the active site
cavity, where the bulk of rearrangement and modification reactions take place.

However, while inspecting Gradient Boosting importances is useful to obtain an over-
all picture of residues likely involved in compound specificity, the proteochemometric
approach of Matchmaker calls for a more compound-specific interpretation. For this
we turn to SHAP (SHapley Additive exPlanations) analysis on the trained model,
based on the game theoretical concept of Shapley values38. The goal of SHAP is
to explain a single prediction by computing the contribution of each feature to the
prediction. In short, this is done with coalitional game theory, assuming each feature
is a “player” in a coalition game with the prediction as a payout, and calculating how
to fairly distribute the payout among the players. This gives us a straightforward ap-
proach to calculate predictive features per compound, simply by aggregating SHAP
scores across positive pairs for that compound.

In Figure 7.8 we depict these aggregated SHAP scores for four prevalent compounds in
our dataset - germacrene D (farnesyl cation, 10,1 cyclization in Figure 7.1), humulene
(farnesyl cation 11,1 cyclization), bisabolene (nerolidyl cation, 6,1 cyclization), and
nerolidol (nerolidyl cation acyclic), all deriving from distinct precursor cations. It
is clear that combinations of different residue positions are involved in predictions,
and that some positions are similar across compounds, but many are distinct. For
example, the highly flexible H3-α1 loop (in teal, Figure 7.8A, B, C, D), close to
the catalytic NSE/DTE motif42, is a common predictive feature across compounds.
Given the inability to crystallize this region in three crystal structures, it is likely that
structural models, and hence residue features, differ drastically here in concordance
with compound specificity. The G2 helix kink (in yellow, Figure 7.8A, C, D) is
predictive for all three cyclic compounds but not for the acyclic nerolidol, which
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matches our theoretical understanding of the underlying mechanism where carbonyl
oxygens of the residues in this kink direct the cationic end of the substrate for further
cyclization39. Residues in the A-C loop, which contains the RXR motif, are predictive
only for nerolidol (in red, Figure 7.8B). Previous research has indeed shown that
changes in conserved amino acids in this loop are observed predominantly in nerolidol
synthases10. Similarly, the J-K loop has previously been implicated in 11,1 cyclization
to form humulene43, explaining its relative importance in our predictor (in brown,
Figure 7.8C). The residues found predictive for bisabolene synthases (in dark blue,
Figure 7.8D) match what we know from maize mutants about the importance of
active site-adjacent residues in bisabolyl-cation derived products44.

The interpretation of predictive residues could form the basis for designing mutation
studies to change compound specificity, reduce promiscuity, or increase activity. While
some residues have been mutated in the past with demonstrable effects, as mentioned
above, inspecting SHAP scores for a prediction can help decide whether the same
residues may be as crucial in STSs of a different species or specificity. In addition,
residues which have not yet been mutated in any STS, perhaps due to lack of direct
proximity to the substrate, form excellent candidates for future studies. Product
specificity, activity, and promiscuity in these enzymes is a complex cocktail of far-
reaching effects from residues both in and around the active site45, something that
is likely true for many other protein and enzyme families as well.

7.3.6 Matchmaker as a software library for proteochemometric speci-
ficity prediction

Our results on the STS enzyme family demonstrate the applicability of the Match-
maker framework to protein-compound compatibility prediction in small datasets
without expensive procedures, and with advanced interpretation capabilities. The
same approach can easily be adapted to other protein families and prediction tasks
such as substrate specificity, drug or inhibitor binding etc. In many cases, compound
specificity is not an exclusive feature of a protein and demonstrable specificity for one
protein-compound pair does not preclude specificity of that protein for another com-
pound. This is especially true in drug discovery applications, where proteins often
successfully bind to multiple inhibitors or drug-like molecules; predicting off-target
effects is an ongoing challenge in the field. We provide Matchmaker as a Python
library at https://git.wur.nl/durai001/matchmaker, with modules for gener-
ating structural models and extracting features, downloading compounds as SMILES
strings and generating molecular fingerprints, training and evaluating the prediction
framework, and inspecting predictive residues per compound which can then be vi-
sualized in any molecular visualization software of choice.

7.4 Conclusion

We have presented a novel, interpretable machine learning framework for STS product
specificity prediction, combining insights, concepts, and algorithms from previous re-
search on STSs and structural bioinformatics. Matchmaker improves upon sequence

https://git.wur.nl/durai001/matchmaker


160 Chapter 7

Figure 7.8: SHAP-based predictive scores per residue for four different sesquiterpenes,
A germacrene D, B nerolidol, C bisabolene, and D humulene. The size of the residue
is proportional to its predictive score. Coloured residues are discussed in the text -
teal residues in A, B, C and D are in the H3-α1 loop; yellow residues in A, C and
D correspond to the G2 helix kink; red residues in B are in the A-C loop; dark blue
residues in C were mutated in maize STSs by Köllner et al. 44 ; and brown residues in
D are in the J-K loop.
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identity based screening, adapts to different prediction settings, and provides an
attractive alternative for biotechnological applications. We experimentally character-
ized 64 novel STSs, and were able to accurately predict product specificity for 70% of
these. We plan to use this data set in future work to improve prediction performance
across diverse sequences and compounds. Inspecting the trained Matchmaker allows
to locate residues responsible for the formation of specific sesquiterpenes. This level
of advanced interpretation sets Matchmaker apart from other prediction methods,
enabling the design of mutation studies and protein engineering experiments with
input derived from across the entire STS family. Matchmaker is also available as
a Python library, and could be applied to other protein families to obtain predictive
insights on residues driving compound specificity. The universe of natural products
comprises a huge diversity of enzymes and compounds, in plants and also in bacteria
and fungi. Many of these are highly sought after for industrial bioproduction and
engineering. Interpretable machine learning on sparsely characterized proteochemo-
metric data, as espoused by Matchmaker, enables guided and efficient experimental
studies and design.
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[14] Wójcikowski, M., Kukie lka, M., Stepniewska-Dziubinska, M. M., & Siedlecki, P. (2019). De-
velopment of a protein–ligand extended connectivity (PLEC) fingerprint and its application for
binding affinity predictions. Bioinformatics, 35 , 1334–1341.

[15] Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., Martin,
M. J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., & Schneider, M. (2003). The SWISS-
PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research,
31 , 365–370.

[16] Matasci, N. et al. (2014). Data access for the 1,000 Plants (1KP) project. GigaScience, 3 .

[17] Priya, P., Yadav, A., Chand, J., & Yadav, G. (2018). Terzyme: A tool for identification and
analysis of the plant terpenome. Plant Methods, 14 , 4.

[18] Degenhardt, J., Köllner, T. G., & Gershenzon, J. (2009). Monoterpene and sesquiterpene
synthases and the origin of terpene skeletal diversity in plants. Phytochemistry , 70 , 1621–
1637.

[19] Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D.
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Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation
of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems
Biology , 7 , 539.

[27] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V. et al. (2011). Scikit-Learn: Machine learning in
Python. the Journal of Machine Learning Research, 12 , 2825–2830.

[28] Webb, B., & Sali, A. (2014). Comparative protein structure modeling using MODELLER.
Current Protocols in Bioinformatics, 47 , 5–6.

[29] Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Brice, M. D., Rodgers, J. R.,
Kennard, O., Shimanouchi, T., & Tasumi, M. (1977). The Protein Data Bank: A computer-
based archival file for macromolecular structures. Journal of Molecular Biology , 112 , 535–542.

[30] Durairaj, J., Akdel, M., de Ridder, D., & van Dijk, A. D. J. (2020). Geometricus represents
protein structures as shape-mers derived from moment invariants. Bioinformatics, 36 , i718–
i725.

[31] Flusser, J., Suk, T., & Zitova, B. (2016). 2D and 3D Image Analysis by Moments. John Wiley
& Sons.

[32] Durairaj, J., Akdel, M., de Ridder, D., & van Dijk, A. D. (2021). Fast and adaptive protein
structure representations for machine learning. bioRxiv .

[33] Kim, S. et al. (2016). PubChem substance and compound databases. Nucleic Acids Research,
44 , D1202–D1213.



REFERENCES 163

[34] Kim, S., Thiessen, P. A., Bolton, E. E., & Bryant, S. H. (2015). PUG-SOAP and PUG-REST:
Web services for programmatic access to chemical information in PubChem. Nucleic Acids
Research, 43 , W605–W611.

[35] Rogers, D., & Hahn, M. (2010). Extended-connectivity fingerprints. Journal of Chemical
Information and Modeling , 50 , 742–754.

[36] Landrum, G. et al. (2006). RDKit: Open-source cheminformatics, . URL: http://www.rdkit.
org/.

[37] Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
KDD ’16 (pp. 785–794). Association for Computing Machinery.

[38] Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett
(Eds.), Advances in Neural Information Processing Systems 30 (pp. 4765–4774). Curran
Associates, Inc.

[39] Starks, C. M., Back, K., Chappell, J., & Noel, J. P. (1997). Structural basis for cyclic terpene
biosynthesis by tobacco 5-epi-aristolochene synthase. Science, 277 , 1815–1820.

[40] DeLano, W. L. et al. (2002). PyMOL: An open-source molecular graphics tool. CCP4 Newslet-
ter on Protein Crystallography , 40 , 82–92.

[41] Settles, B. (2009). Active Learning Literature Survey . Technical Report, University of
Wisconsin-Madison Department of Computer Sciences.

[42] Christianson, D. W. (2006). Structural biology and chemistry of the terpenoid cyclases. Chem-
ical Reviews, 106 , 3412–3442.

[43] Davis, E. M., & Croteau, R. (). Cyclization enzymes in the biosynthesis of monoterpenes,
sesquiterpenes, and diterpenes. In Biosynthesis: Aromatic Polyketides, Isoprenoids, Alkaloids.
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Abstract

Scientists who study individual protein families often perform a wide range of bioin-
formatics analyses using an assortment of different tools. There is mostly limited
compatibility between tools, and without programming skills it is difficult and time-
consuming to integrate and comprehensively investigate the different outputs, espe-
cially for large datasets. Here, we present Turterra: an accessible and comprehensive
analysis portal for protein families. Turterra automatically constructs a web-portal
from user-provided data, interactively visualising multiple sequence alignments, phy-
logenetic trees, protein structures and chemical substrates/products side by side. In
this portal, data can be filtered by user-defined categories such as accession, species
or compound specificity, so that the user can easily visualise relevant subsets of data.
Turterra also provides the option to build multiple sequence and structure align-
ments, phylogenetic trees and homology models from scratch. Once the portal has
been built, new sequences can be uploaded by end-users and compared to existing
datasets, making Turterra the perfect engine for quick analysis of multifaceted data
and for rapid deployment of protein portals. This will accelerate protein family re-
search and facilitate collaboration between researchers working on the same families.

Turterra code and documentation are available at https://git.wur.nl/durai001/
turterra.

8.1 Introduction

With a wealth of biological data published each day, bioinformatics analyses have be-
come standard practice for researchers in the fields of biology and biochemistry. Novel
protein sequences can be instantly compared to large databases such as Genbank1,
SWISS-PROT2, Pfam3 and PDB4, giving scientists direct insight into potential bi-
ological functions of their sequences. Once sufficient related proteins have been
collected, a wide variety of analyses are routinely performed, including the construc-
tion of multiple sequence alignments, phylogenetic trees and structural homology
models to approximate 3D architecture. Such family-level analyses are particularly
important for enzymes, which often share conserved folds as well as variable parts
linked to their activity and specificity. Understanding and visualising patterns of con-
servation and variability is essential for grasping how different components relate to
the various aspects of an enzyme’s function.

Resources such as the tools published by EMBL-EBI5 have definitely made large-scale
sequence analysis more accessible to non-bioinformaticians. Still, life scientists have
to employ a small army of different tools to analyse their protein data, including tree
builders6,7, homology modellers8,9, and sequence aligners10,11. It can be an arduous
and time-consuming task to integrate different, not always compatible outputs of
independent tools into comprehensive analyses that capture the essence of a research
question. Also, it is often useful to look only at subsets of a dataset at a given
time, or to add a new data point to an existing analysis without having to redo the
entire analysis for the existing data entries. This is especially true for large datasets,

https://git.wur.nl/durai001/turterra
https://git.wur.nl/durai001/turterra
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which due to sheer scale are usually difficult to visualise in a digestible manner.
Even for experienced bioinformaticians it can take considerable time to integrate and
summarise different tool outputs into an intelligible format.

To decrease the time spent by bioinformaticians and molecular biologists on integrat-
ing different data outputs, several integrative analysis packages for protein families
have already been developed. These include among others JalView 212, a tool that
specialises in multiple sequence alignment analysis which can link to external web
services like PDBe13 for 3D structure visualisation and ViennaRNA14 for RNA sec-
ondary structure prediction; and Zebra3D15, which focuses on 3D analysis of protein
homologs by 3D similarity search and structure alignment. While these tools are
great at integrating and visualising the data types they were designed to handle,
each has their shortcomings. For instance, Jalview 2 does not provide the option
to build or analyse computationally modelled structures alongside structures in the
PDB database, which would be a valuable addition given the increased accuracy of
computational modelling techniques. While Zebra3D does allow for the analysis of
modelled structures, it lacks the interactivity that tools such as JalView 2 possess.
Also, the analyses produced by these tools are not easily filterable on metadata. The
inclusion of such an option would enable the targeted study or direct comparison of
protein subsets based on auxiliary information such as mutation and variant studies,
substrate specificity, inhibitor binding, and phenotypes at various temperature and
pH conditions. Finally, the analyses performed by existing tools are not easily share-
able, as most tools were designed for individual use and not targeted at communities
of researchers who might work on the same protein (sub-)families. A multifaceted
data analysis platform that allows users to easily publish their data to the web would
truly elevate integrative analyses to the next level: researchers would not have to
waste time performing computationally expensive analyses that have already been
done, and could easily contribute to existing efforts that aim to understand their pro-
tein family of interest. Consequently, protein family information could be coherently
stored in a single place for the benefit of research communities.

To provide the scientific community with a shareable platform for state-of-the-art
multifaceted data analysis, we have developed Turterra: an accessible and compre-
hensive analysis portal for protein families. Here, we present a detailed overview of
Turterra’s features and demonstrate its versatility through two examples: the family
of sesquiterpene synthase (STS) enzymes, which catalyse a single substrate into hun-
dreds of 15-carbon sesquiterpene molecules, which give many plants and their fruits
their smell16; and the family of non-ribosomal peptide synthetase (NRPS) adenyla-
tion domains, which govern the composition of microbial non-ribosomal peptides by
specifically binding amino acid substrates in their active site17.

8.2 Methods and implementation

Turterra contains two main executable scripts: Turterra-build and Turterra. Both
scripts and their dependencies were written in Python (v3.9)18.
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8.2.1 Turterra-build

Turterra-build creates the data used for visualisation and analysis by Turterra. If
Turterra-build is run without arguments, it will only create the required folder archi-
tecture, which can then be manually populated by the user with the appropriate files.
However, the user can also specify if they want Turterra-build to create homology
modelled structures, a multiple sequence alignment, multiple structure alignment,
profile HMM, phylogenetic tree, or any subset of the above. Multiple sequence align-
ments are created with MUSCLE (v3.8, default settings)11, structure alignments
with Caretta-shape (v1.0, default settings)19, profile HMMs with HMMER (v3.3.2,
default settings)20, phylogenetic trees with FastTree (v2.1.10, default settings)21,
and homology models with MODELLER (v10.0, default: 250 models per sequence,
no loop refinement)9. The arguments and settings for each tool can be configured
separately with a YAML-formatted configuration file. From each set of generated
homology models, the model with the lowest normalised DOPE score is selected as
the best model, and used for analysis and visualisation purposes.

8.2.2 Turterra

Turterra constructs and runs the layout of the main web portal with the Python pack-
age Dash (v1.15.0)22. Apart from the built-in Dash components used for buttons,
dropdown lists, and uploading files, the web portal contains five Dash components
that handle data analysis: SequenceViewer, AlignmentChart, Molecule3DViewer, and
Molecule2DViewer from dash-bio (v0.4.8)23, and Cytoscape from dash-cytoscape
(v0.2.0)24. These visualise protein sequences; multiple sequence alignments (sequence-
based or structure-based); (homology modelled) protein structures in 3D; substrate
and/or product structures in 2D; and phylogenetic trees, respectively. A tab-separated
file is provided by the user with Accession, Species, and Compounds as required
columns defining each protein’s accession, the species it is obtained from, and the
compound (ligand/product) specificity. All other columns in the file are considered
as extra data and are used in the portal to filter data. The dash-extensions package25

is used to allow downloading filtered subsets of data in each panel via its Download
component, and to facilitate server-side filesystem storage of the data used by the
application via the ServersideOutput component - this allows storing large datasets of
proteins, alignments, models etc. without burdening the user’s browser with intensive
data transfer operations. Compound chemical structures are parsed from SMILES for-
mat using the cheminformatics kit PIKAChU (unpublished software). ProDy (v2.0)26

is used to parse protein structures from PDB files, combined with the dash-bio-utils
(v0.0.6)27 package to convert each structure into the format required for visualisation
by Molecule3DViewer.

The portal also includes a component that allows the user to upload new sequences
and/or associated structures. New sequences are appended to the existing sequence-
based sequence alignment using MUSCLE (v3.8)11. Similarly, Caretta (v1.0)28

rapidly aligns new structures to the consensus structure computed from the origi-
nal set of 3D (homology modelled) structures, to then generate a new consensus
structure. Uploaded sequences are appended to the existing phylogenetic tree using
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the phylogenetic placement tool epa-ng (v0.3.8, default settings, model: JTT)29,
and the resulting JPLACE output is parsed and converted to Newick format.

The various components and panels are interconnected by means of a series of call-
back functions, with different buttons and selections acting as triggers to activate
changes in other entities, resulting in a highly networked application integrating the
different views of data. Figure 8.1 depicts this as a flowchart, with arrows representing
the relationship between triggers and their corresponding outputs.

8.2.3 Extending Turterra

To enable developers to easily add and interlink new custom panels, we have built
Turterra in an extensible and modular fashion and provide tools and resources to
quickly on-board developers to the code base. One such tool is a script to gener-
ate flowcharts using Mermaid diagram syntax (described at https://mermaid-js.
github.io), depicting the flow of information from each component to the other.
Figure 8.1 shows this chart generated for the current portal. This can be used as a
reference when drafting a new component or panel, to pinpoint other components
that may act as inputs, triggers, or outputs to the new one. With the predefined vari-
able naming scheme described in our documentation, developers can get a birds-eye
view of their components labelled and styled according to their component type and
the panel they are placed in, allowing for easy debugging of highly interconnected
code. In addition, we have extensive documentation aimed at Python developers new
to the Dash library or to GUI programming in general.

8.2.4 Data preparation

For this paper, we assembled two datasets to visualise in Turterra: a dataset of 302
STS enzymes from the characterized plant STS database (https://bioinformatics.
nl/sesquiterpene/synthasedb)30, and a dataset of 1,093 NRPS adenylation do-
mains (in-house data). For each accession, the datasets included an amino acid
sequence in FASTA format, a structural (homology) model in PDB format, and the
chemical structure of the enzyme’s or domain’s product or substrate respectively in
SMILES format. Adenylation domain sequences were trimmed to only contain the
N-terminal domain, as the C-terminal domain was too flexible and variable to obtain
high-quality homology models. The STS homology models cover only the C-terminal
domains of their sequences.

https://mermaid-js.github.io
https://mermaid-js.github.io
https://bioinformatics.nl/sesquiterpene/synthasedb
https://bioinformatics.nl/sesquiterpene/synthasedb
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8.3 Results and Discussion

8.3.1 Turterra: an easy-to-use portal for protein family analysis

For researchers interested in a quick initial assessment of their dataset and molecular
biologists less experienced with bioinformatics tools, Turterra-build provides the op-
tion to build a multiple sequence alignment, structure alignment, phylogenetic tree
and homology models, or a subset of these, from scratch. The user can provide
as little as a FASTA file containing the sequences of interest, and a folder of PDB
files to be used as templates for homology modelling, from which turterra-build will
create all the files that are required for the construction of the web portal. Later,
any individual files can be replaced by user-provided versions. Required formats are
described in-depth in the Turterra manual, making it straightforward for researchers
of any discipline to provide the necessary files.

From this user-provided or Turterra-generated data, Turterra builds a comprehensive
web-portal providing different views into the data. Datasets can be easily filtered ac-
cording to user-defined categories and phylogeny, allowing for straightforward analysis
and visualisation of relevant protein subsets. After construction of the portal, new
sequences and corresponding (modelled) structures can be uploaded and compared
to the pre-existing dataset. In settings where a researchers’ Turterra portal is shared
with others, the upload panel allows each individual viewer to independently compare
their own data to the dataset shared by the portal. This unique combination of fea-
tures makes Turterra the perfect engine for quick analysis of multifaceted biological
data and rapid portal building for publication to the web.

To showcase Turterra’s functionalities, we constructed Turterra web portals for two
example enzyme families: a dataset of 302 STS enzymes, and a dataset of 1,093
NRPS adenylation domains, at https://bioinformatics.nl/turterra. STSs
are a large family of plant enzymes responsible for the synthesis of a large variety of
sesquiterpenes: plant natural products that help give plants and fruits their distinctive
smell16. Previous research has shown that sequence similarity in these enzymes
is explained more by phylogeny than similarity in product specificity30. However,
structural information has been successfully used to group these enzymes by precursor
cation specificity31, thus indicating that researchers studying STSs would benefit from
an integrated appraisal of sequence, phylogeny, and structure, enabled by Turterra.
Like STSs, NRPS adenylation domains are also involved in the biosynthesis of natural
products. They are found in both bacteria and fungi, and are core components of
the much larger modular macro-enzymes called NRPSs32. These enzymes produce
peptide scaffolds, the composition of which is determined by the specificity of NRPS
adenylation domains for certain amino acids. Subtle differences in sequence and
structure of these otherwise highly similar domains result in the recognition of over
100 different amino acid substrates33,34, making NRPS adenylation domains very
suitable for the multifaceted analysis Turterra provides. We use these two portals to
describe Turterra’s functionalities and performance below.

https://bioinformatics.nl/turterra


172 Chapter 8

F
ig

u
re

8.
2:

T
h

e
p

an
el

s
o

f
T

u
rt

er
ra

w
eb

-p
or

ta
l

b
u

ilt
fo

r
N

R
P

S
ad

en
yl

at
io

n
d

o
m

ai
n

s.
A

.
T

h
e

F
ilt

er
p

an
el

d
is

p
la

ys
o

p
ti

o
n

s
to

se
le

ct
pr

o
te

in
s

by
va

ri
o

u
s

u
se

r-
d

efi
n

ed
cr

it
er

ia
.

T
h

e
re

su
lt

in
g

se
t

o
f

ac
ce

ss
io

n
s

ar
e

th
en

av
ai

la
b

le
th

ro
u

g
h

o
u

t
th

e
re

m
ai

n
in

g
p

an
el

s.
B

.
T

h
e

P
h

yl
o

g
en

y
p

an
el

d
is

p
la

ys
a

zo
o

m
ab

le
p

h
yl

o
g

en
et

ic
tr

ee
o

f
al

l
pr

o
te

in
s,

w
it

h
se

le
ct

ed
ac

ce
ss

io
n

s
h

ig
h

lig
h

te
d

.
C

lic
ki

n
g

o
n

an
u

n
se

le
ct

ed
n

o
d

e
in

th
is

tr
ee

ad
d

s
th

e
co

rr
es

p
o

n
d

in
g

ac
ce

ss
io

n
to

th
e

se
le

ct
io

n
in

th
e

F
ilt

er
p

an
el

.
C

.
T

h
e

S
eq

u
en

ce
an

d
A

lig
n

m
en

ts
p

an
el

ca
n

sh
ow

an
in

d
iv

id
u

al
se

ar
ch

ab
le

pr
o

te
in

se
q

u
en

ce
,

a
se

q
u

en
ce

-b
as

ed
se

q
u

en
ce

al
ig

n
m

en
t

(a
s

sh
ow

n
),

or
a

st
ru

ct
u

re
-b

as
ed

se
q

u
en

ce
al

ig
n

m
en

t,
b

as
ed

o
n

th
e

ra
d

io
b

u
tt

o
n

se
le

ct
ed

.
T

h
e

al
ig

n
m

en
ts

ar
e

in
te

ra
ct

iv
e,

al
lo

w
zo

o
m

in
g

in
to

sp
ec

ifi
c

re
g

io
n

s,
an

d
d

is
p

la
y

th
e

le
ve

l
o

f
co

n
se

rv
at

io
n

at
ea

ch
p

o
si

ti
o

n
o

n
to

p
.

D
.

T
h

e
S

tr
u

ct
u

re
p

an
el

d
is

p
la

ys
a

zo
o

m
ab

le
,

in
te

ra
ct

iv
e,

an
d

cu
st

o
m

iz
ab

le
vi

ew
o

f
th

e
3

D
pr

o
te

in
st

ru
ct

u
re

.
E

.
T

h
e

C
o

m
p

o
u

n
d

S
tr

u
ct

u
re

p
an

el
d

is
p

la
ys

su
b

st
ra

te
/

pr
o

d
u

ct
ch

em
ic

al
st

ru
ct

u
re

s
o

f
se

le
ct

ed
ac

ce
ss

io
n

s.
F

T
h

e
U

p
lo

ad
p

an
el

al
lo

w
s

th
e

en
d

-u
se

r
to

in
te

g
ra

te
an

d
co

m
p

ar
e

n
ew

se
q

u
en

ce
s

an
d

st
ru

ct
u

re
s

w
it

h
th

e
ex

is
ti

n
g

d
at

as
et

.



Turterra 173

8.3.2 Turterra in action

Figure 8.2 depicts the six interconnected analysis panels in Turterra, described in
detail below.

After loading the user-provided dataset, Turterra has two panels useful for filtering
subsets of proteins - the Filter panel (Figure 8.2A) and the Phylogeny panel (Figure
8.2B). The former provides filtering options based on user-defined categories such
as species and compound specificity. The latter depicts a phylogenetic tree of all
proteins - protein subsets can be defined, expanded or narrowed by selecting or de-
selecting clades or single enzymes in the phylogeny panel, allowing for inspecting
similarities and differences between phylogenetically related proteins. These two pan-
els are linked: selecting accessions via either panel updates the other as shown in
Figure 8.3. For example, the accession outlined in red in Figure 8.3A was selected
by clicking on the corresponding node in the Phylogeny panel in Figure 8.3B.

Figure 8.3: A the Filter panel and B the Phylogeny panel are interlinked - accessions
selected in one reflect in the other, as names in the Filter panel and with red stars in
the Phylogeny panel. The accession outlined in red in A has been added by clicking
on the corresponding node in B. The phylogeny tree in B can be exported as a Newick
file using the Download button.

Once a set of accessions are selected, the next three panels allow visualisation of their
sequences, 3D structures, and the compounds that they produce or modify. These
are, respectively, the Sequence and Alignments panel (Figure 8.2C), the Structure
panel (Figure 8.2D), and the Compound Structure panel (Figure 8.2E).



174 Chapter 8

The Sequence and Alignments panel can display an individual sequence (single se-
quence mode), a sequence-based sequence alignment (sequence alignment mode)
or a structure-based sequence alignment (structure alignment mode), controlled by
a set of radio buttons. The alignments are interactive, zoomable, and scrollable,
with conservation at each position represented as a bar on top of the alignment.
The Structure panel displays an interactive 3D protein structure, and has multiple
visualisation styles and colour schemes to choose from, described in the online doc-
umentation. In addition, the Sequence panel (in single sequence mode) and the
Structure panel are interlinked as shown in Figure 8.4: the residues highlighted in
the sequence correspond to those highlighted and labelled in the Structure panel.
These highlights can be defined in either panel through mouse selection and inter-
active clicking respectively, and selected residues can be visualised differently. This
is especially useful to inspect the structural context of residues deemed as important
from literature or from conservation analysis, and to map the sequence context of in-
fluential residues in the structure, determined by mutational studies or by analysis of
crystal structures. For example, Figure 8.4 depicts the STS from tobacco producing
the sesquiterpene 5-epi-aristolochene35. The two stretches of sequence selected with
the mouse in Figure 8.4A correspond to two known STS catalytic motifs16 which are
seen to surround the active site cavity in the structure in Figure 8.4B. The residue
selected by clicking in the structure in Figure 8.4B caps this active site cavity, and
thus is interesting to map back to its sequence and alignment context.

The Compound panel displays the two-dimensional structure of compounds associ-
ated with a protein, with an option to select one if multiple such compounds exist.
The protein visualised across the Sequence and Alignments, Structure, and Com-
pound Structure panels is the same and can be chosen using the accession selection
dropdowns in any of these panels.

Finally, the Upload panel (Figure 8.2F) allows end-users to compare their novel pro-
teins to the proteins in the loaded dataset. Users can upload sequences and optionally
structures of their proteins and have them integrated into the existing phylogenetic
tree, sequence alignment, and structure alignment without recalculation for the whole
dataset. This enables comparison of putative or newly characterized proteins, and
mutants or variant sequences with previously characterized proteins and their exist-
ing literature - especially useful in collaborative studies with researchers working on
different subsets or variants of the same protein family.

Turterra gracefully handles missing or incomplete data: proteins without associated
structures or compounds can still be analysed from a sequence and phylogeny per-
spective, and incomplete structural models with missing residues are still correctly
mapped to the corresponding sequence. In addition, both filtered and expanded data
can be exported and downloaded by end-users: the phylogeny tree in Newick format,
sequences and alignments as FASTA files, superposed structures as PDB files, and
chemical compounds as SMILES strings.
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Figure 8.4: A the Sequence and Alignments panel in single sequence mode and B
the Structure panel are interlinked - residues selected with the mouse in A (“Mouse
Selection”) are highlighted in B with residue numbers labelled in the list at the
bottom, and residues clicked in B (“Click”) are highlighted in A. The colour scheme
and visualisation style of the structure can be changed using the provided dropdowns
in B. The available colour schemes and styles are described in the documentation.
Selected residues can be visualised differently from the rest of the structure using the
provided colour picker and style selection dropdown - in the figure they are shown as
light blue spheres. The three Download buttons in A allow exporting the sequence
of the selected accession, the sequences of all filtered accessions, and the aligned
sequences of filtered accessions respectively as FASTA files (with the radio buttons
controlling whether the sequence alignment or structure alignment is exported). The
two download buttons in B export the structure of the selected accession and the
superposed structures of filtered accessions respectively as PDB files.
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Dataset
No.
proteins

Avg. sequence
length

Avg. model
length

Creation Loading Response Upload

STS 302 551 ± 62 265 ± 3 7 min 2s ∼0.1s 4.2s
NRPS 1093 475 ± 54 370 ± 22 25 min 6s ∼0.3s 37s

Table 8.1: Portal creation, loading, response, and upload times for the STS and
NRPS datasets, for which the average protein sequence length and structural model
lengths are given. “Creation” is the time taken for generating sequence and structure
alignments on a single thread. We don’t include the model and tree generation times
here as this is highly dependent on the program and settings used and hence would
differ significantly depending on the user and use case. “Loading” is the amount of
time taken upon pressing the “Load Data” button in the portal. “Response” is the
time taken to register mouse click and selection events. “Upload” is the time taken
for integrating a new sequence and structure into each portal using the Upload panel.

8.3.3 Performance and distribution

Table 8.1 depicts the data creation, loading, response and upload times for the
STS and NRPS datasets. Since the bulk of data transfer for data shared across
components is performed on the server side, the Turterra portal easily scales to
datasets with thousands to tens of thousands of proteins. Portals which are published
and made available to users through the web can be accessed simply via a URL
and do not consume any space on the end-user’s filesystem unless data is explicitly
downloaded. Each user receives their own session key on the portal maintainer’s side
which is used to store their filtering and analysis options. These keys can be used
to keep track of the time since a user’s analysis to inform them of the results or to
eventually clear their data once enough time has passed.

8.3.4 Opportunities for extension

The Turterra source code provides a good starting point for developing more cus-
tomized panels holding information specific to certain proteins, use cases, or stud-
ies. For example, a mutation panel could connect experimentally solved or modelled
structure mutants with their phenotypes and allow users to visualise these mutated
residues in the structure and sequence panels. Specialized predictors of compound
specificity could generate their own panels giving a detailed prediction report for each
protein, and linking to predictive residues in other panels as well as predicted com-
pounds in the compound panel. For multiple researchers working on a shared project,
a Turterra portal could contain annotations and notes linked to the sequence, struc-
ture, compound, or phylogeny, allowing productive collaboration and easy sharing
of results. With thorough documentation and the availability of helper scripts to
auto-generate flowcharts of inputs and outputs, adding new panels and interlinking
these with existing panels is straightforward for novice programmers as well. As us-
age becomes more widespread, we envision an open-source community of developers
designing plug-and-play panels for Turterra users.
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8.4 Conclusion

Turterra provides a comprehensive solution for highly interactive, multifaceted bio-
logical data analysis, allowing even researchers with limited bioinformatics experience
to quickly analyse and filter their protein data in a single place. It is the ideal
framework for in-house or web-based server publication, facilitating collaboration be-
tween researchers working on the same protein families. For more experienced users,
Turterra’s accessible source code makes the portal easily customisable and extendable
to better fit specific protein families or to allow for integration into existing tools and
databases. We expect that Turterra will drastically cut time spent on data analysis
by researchers in all fields of protein biology, and will organically grow to suit the
needs of the scientific community.
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General discussion
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The introduction to this thesis establishes the biotechnological opportunities pre-
sented by secondary metabolite (SM) enzyme families and puts forth a combination
of structural bioinformatics and machine learning (ML) to take advantage of these
opportunities. During the research described in this thesis, I developed several strate-
gies along these lines. Here, I expand on further challenges posed by these enigmatic
families and how these may be overcome in the future with innovation in ML tech-
niques. Given recent advances in the field, I contemplate the future of structural
bioinformatics and the new frontiers likely to define the next decade of computa-
tional efforts. Finally, I discuss aspects of protein structures that go beyond their
rigid coordinates and aspects of proteins that go beyond their structures, both of
which play a role in most biological phenomena.

9.1 The tangled web of natural product enzymes

The numerous approaches designed and explored in this thesis for product prediction
in the single enzyme family of plant sesquiterpene synthases (STSs) already point to
the sheer complexity and diversity shown by such families specialized for producing
SMs. This complexity is further compounded by three factors, discussed below, which
to various extents also translate to the broader field of protein bioinformatics.

9.1.1 Generalizing to novel protein and compound space

Many SM enzymes are promiscuous: they can accept multiple substrates, catalyse
multiple kinds of reactions, or produce multiple SMs as products1,2. Promiscuous
product specificity in the STS family is explored in Chapter 3 and Chapter 7. Due to
the size, shape, and properties of the active site, which confers substrate and reaction
specificity, promiscuous product enzymes often have high chemical similarity among
their products with the minor products typically derived from intermediates along
the same reaction pathway as the major product. Conversely, however, there could
be multiple different active site conformations resulting in similar product specificity.
Both these aspects are crucial to consider given that the enzymes responsible for
the majority of already known SMs have not been characterized, and no doubt the
number of SMs and their biosynthetic enzymes yet to be identified far exceeds the
number of known ones. This indicates that prediction approaches trained on sparse
datasets of characterized SM enzymes to predict known specificity will miss out on,
or mischaracterize, the huge untapped potential of novel SM enzymes and their prod-
ucts. We observed this in Chapter 7 when our attempts to search for novel nerolidyl
cation-derived enzymes (which were a minority in our dataset) led to many more
non-productive enzymes than those from the majority class - indicating that predic-
tions beyond the space of enzymes similar to those in our characterized dataset are
not robust. Similarly, the predicted enzymes that we characterized mostly produced
commonly occurring sesquiterpenes as products, suggesting that the identification of
rare or novel sesquiterpene-producing enzymes is not yet solved.

One avenue to alleviate some of these issues is semi-supervised learning, which is the
branch of ML concerned with using both labelled and unlabelled data for learning
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tasks3. Typically, semi-supervised learning algorithms attempt to improve perfor-
mance in a classification task by utilizing information from unlabelled data points
associated with labelled data points, thus increasing the robustness of the classifier
to the data distribution. Though semi-supervised learning is not a new concept, re-
cent approaches have successfully applied these algorithms to millions of unlabelled
data points across a variety of protein learning tasks4–10. In the case of STSs, TPSs,
and other SM enzymes, this unlabelled data could be in the form of the tens of
thousands of uncharacterised proteins from sequenced genomes and transcriptomes
annotated as belonging to the same enzyme family. It could also be in the form
of naturally occurring SM compounds without associated enzymes, and even pu-
tative SM molecules with computationally predicted production paths consisting of
reactions known to be catalysed by the SM enzyme family, but as yet unobserved in
nature11–14. Such data could be additional input to predictors such as those in Chap-
ters 3 and 7 to both increase their robustness towards prediction of uncharacterised
SM enzymes and their potential in predicting rare or novel SMs.

In addition, the field of ML in SM enzyme families is usually closely interlinked with
experimental characterization studies. This facilitates opportunities where the results
and inspection of ML models can be used to design or suggest novel experiments,
enabling active learning. Active learning is a paradigm which iteratively selects the
most significant unlabelled data points for experimental labelling, allowing for the
greatest improvement in predictive performance at the lowest experimental cost15.
Some common strategies for this selection include density-based selection, where data
points from dense regions are selected, uncertainty-based selection which picks points
that the current classifier struggles with most, representative-based selection which
tries to find points most representative of the dataset, estimated-error reduction based
selection which aims to reduce the classifier’s maximal estimated error, and ensemble-
based selection which combines multiple of the above criteria16. In the field of drug
development, researchers have used existing knowledge (e.g., about signalling path-
ways), investigator insight and intuition to guide paths through experimental space,
a process often hindered by incomplete or incorrect pathway information and the
difficulty of making predictions about complex pathway interactions. Active learn-
ing has provided an attractive alternative to this, and has been used to characterize
structurally diverse hits for virtual screening17, to pinpoint compounds binding a tar-
get molecule in a minimum number of iterations of biochemical testing18, and to
predict off-target and unexplored biological responses19 (see Reker & Schneider 20

for a review of active learning approaches in the drug discovery field). To aid our
understanding of protein fitness, active learning via Gaussian processes has been used
to select and experimentally characterize small sets of diverse proteins with differ-
ing thermostability, again with the aim of improving generalization of the stability
predictor21,22. Also in applications such as rescue mutant prediction23,24, protein-
protein interaction prediction25, and inhibitor structure prediction26, active learning
was shown to significantly reduce experimental cost for improved performance. We
explored a simplified version of uncertainty-based active learning in this thesis by
using the cation predictor in Chapter 3 to select enzymes for characterization which
were predicted to be in the minority class, in order to increase our representation of



182 Chapter 9

that class. These new training points will likely improve the generalization of the
product predictor in Chapter 7 to products derived from this class. More advanced
active learning paradigms could similarly be used to select which STSs to character-
ize in order to improve prediction of STSs producing rare or novel sesquiterpenes,
or to select relevant mutants to characterize as input to models predicting catalytic
activity for STSs producing a specific product. While this aspect is not explored in
this thesis, it presents a logical next step to computational STS research, as under-
standing determinants of activity could be crucial in engineering STSs to produce
industrial levels of sesquiterpenes in demand. Thus, active learning could provide
the path forward to further extend ML methods into the field of plant specialized
metabolism without the need for huge datasets and large-scale experiments.

9.1.2 Generalizing across domains and distributions

The diversity of proteins across different species, conditions, and functional groups
may present a significant challenge for prediction algorithms. In this thesis we ob-
served the distinct separation of STSs from coniferous species compared to those from
other plants. ML tasks involving data with such distinct subgroups require careful
design of evaluation strategies, to ensure that the patterns learned generalize across
the subgroups. Chapter 3 demonstrates the need for this; we show that testing our
predictor on a randomly selected set of STSs overestimates its performance on STSs
from species rare in the dataset. This separation is even larger in the case of bacterial
and fungal STSs, and other terpene synthases (TPSs) using different substrates.

From an evolutionary perspective, phylogenetic analyses can help locate shared an-
cestry and hypothesize evolutionary mechanisms leading to the diversity we see. For
example, TPSs have been divided into seven clades on the basis of phylogeny, with
two clades including members distantly related to primary metabolism and the others,
showing greater diversification, involved in specialized metabolism27. Some lineages
have members specific to certain substrates and even to certain products, thus at-
tempts to predict this lineage specificity28 are also beneficial to the kind of compound
specificity screening explored in this thesis, though much of this specificity is still un-
explained by phylogenetic analysis alone. Examining evolutionary relatedness between
TPSs both within individual species such as tomato29, grape30 and Cannabis sativa31

as well as across species32–34, has pinpointed a number of orthologous genes, as well
as species-specific genes which deviate from overall TPS sequence patterns.

From an ML perspective, the presence of distinct subgroups in data could lead to
a situation where ML algorithms learn different patterns for each subgroup. Such
patterns are often not meaningful in some subgroups due to insufficient amounts
of data, but also not desired as many insights about biological mechanisms can be
obtained by looking into similarities across these proteins rather than fixating on
where they diverged, unlike in the phylogenetic analysis where this divergence was
the focus. ML models trained on a single subgroup, on the other hand, may not
perform well on a broader set, limiting their usefulness and compelling researchers
to go through the process of data collection, preprocessing, training, and evaluation
for different subgroups individually. Domain adaptation is one ML strategy that
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can be used to alleviate this issue in the case of distinct domains such as bacterial,
fungal, and plant STSs, or STSs and other kinds of TPSs such as mono- and di-
TPSs35. Domain adaptation is concerned with transferring knowledge to a target
domain using information from different but related source domains. One approach
to do this is using large amounts of unlabelled data from different source domains to
obtain implicit information about the target domain36–38. In Chapter 3 we utilized
a similar concept, where uncharacterised putative TPS sequences (covering STSs
but also mono-, di- and other TPSs) were used to spot possible catalytically co-
evolving residues linked with STS cation specificity. Another approach attempts
to normalize features obtained from labelled source and target domain instances -
either via weight transfer39, or by attempting to extract domain-invariant features40.
Bacterial and fungal STSs share a number of products with plant STSs but contain
distinct sequence and structural features - thus, such domain adaptation approaches
may be useful in learning STS compound specificity across the tree of life. STSs
from different plant clades, producing sesquiterpenes from different reaction paths,
or characterized under different experimental conditions do not constitute distinct
domains - these instead represent data which is not independent and identically
distributed (i.i.d). While some domain adaptation concepts may also translate to
these settings, recent approaches to deal with non-i.i.d data can also be found in the
field of federated or decentralized learning, where ML needs to be performed over
datasets generated at different devices and locations. Algorithms for this purpose
have been created which attempt to deal with both skewed data distributions41 and
labels42, but often require more labelled data than is currently available for STSs,
though this is changing fast with the rate of novel STS characterization studies such
as the one in Chapter 7.

Additionally, some aspects of individual protein families are likely to be shared across
the protein universe as a whole - including phylogenetic, fluorescence, pair-wise con-
tact, structural, and subcellular localization properties, many of which may not ac-
tually be well-defined for the family under study due to lack of experimental data
(especially true for proteins in the so-called “dark proteome”43). Two associated ML
strategies, transfer learning and self-supervised learning, can take advantage of this
implicit universe-level protein data. Both fall under the category of “pretraining”,
a technique to learn more effective representations of data to use as input for ML
algorithms, but whereas transfer learning uses labelled data from a larger target do-
main to learn a good representation of the source domain, self-supervised learning
does not require annotated labels for target domain data44. These techniques would
enable learning global protein representations which may emphasize characteristics of
proteins relevant to a particular task, followed by individual retraining in one family
to learn idiosyncrasies specific to these proteins for that task. Transfer learning has
been used in protein modelling45 and model quality assessment46, in predicting the
effects of mutation47 and post-translational modifications48. Self-supervised learning
has been implemented to generate embeddings for proteins mainly using techniques
from natural language processing49–52; these embeddings were found to capture vari-
ous global properties of proteins such as amino acid characteristics, topological folds,
and other physiological properties. Endeavours such as the recently released Tasks
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Assessing Protein Embeddings (TAPE) datasets will be critical to compare these
and future embeddings across a variety of protein ML tasks such as secondary and
tertiary structure prediction, remote homology detection, fluorescence and stability
landscape prediction, function prediction and more53. However, these approaches
often suffer from a lack of interpretability, as it is often not straightforward or even
possible to go from a learned embedding to features and regions of the original input
proteins which are relevant to a predictive task. In Chapter 5 we described a pro-
tein structure embedding that captures structural characteristics across diverse and
homologous protein families while still being able to locate and interpret predictive
structural regions in individual proteins. As the field of ML moves more towards
“opening the black box”54, I expect to see more advanced versions of such flexible
and interpretable protein embeddings.

9.1.3 Specialized portals to integrate data from different sources

One of the first challenges in the work in this thesis was the collection of character-
ized STS enzyme data. In Chapter 2 we performed an extensive literature survey
to gather characterization studies of these enzymes and their products, and this was
further expanded upon in Chapters 3. Despite the presence of curated aggregators
such as SwissProt which aim to collect information across the protein universe, such
individual literature surveys and databases are widely prevalent for multiple protein
families55–57. This is partly because the speed at which new proteins are experi-
mentally characterized is too high for universal curated databases to keep up with,
as we saw in Chapter 2 where our literature survey returned nearly twice as many
characterized STSs as those annotated on SwissProt. However, an additional major
advantage of specialized databases and portals is their capability to include auxiliary
information only relevant for the protein family under consideration, enabling easy
comparison across different species, annotated properties, experimental conditions
and more.

This is especially true for SM enzyme families, as the intricate and highly complex
metabolic networks present in cells involve numerous external factors and a lot of
research has been done that does not always fit into the standardized forms and
fields of universal databases. For instance, apart from protein sequence, plant SM
production via SM enzyme families can be influenced by transcription factors, the
development stage of the plant, morphogenetic factors such as the tissues involved
and concentrations of various molecules within these tissues, and environmental fac-
tors such as pH, temperature, and biotic stresses58. Some of these aspects, such
as concentrations of certain molecules and ions, pH, and temperature also influence
experimental studies and may alter the detected profiles of enzymes in terms of the
molecules produced and their abundance59. In some cases, experiments have been
performed to adapt enzymatic production to novel microbial systems, or to modify
a product profile by changing the substrates provided. In addition, there are a mul-
titude of mutation studies, such as those described in Chapter 1, that affect various
aspects of enzyme activity and are also performed under varying conditions. It can
be worthwhile to document this information in a way that allows for comparison and
exploration across all annotated enzymes and experiments.
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Standardization of experimental characterization studies is difficult due to varying
conditions in labs across the world and differing hypotheses and expectations. This
underlying level of noise and experimental bias can negatively impact computational
studies. However, thorough documentation of these conditions in the proposed spe-
cialized portals may allow for better handling of different experimental settings ex-
plicitly within the model. In Chapter 8 we present a starting point for a protein
family portal, that includes information on sequence, structure, substrate, product,
and conservation, and allows for comparison across proteins based on any number
of these axes. This could be extended to include information on catalytic activity,
mutations and their effect, and various other kinds of experiments too specific to be
included in universal databases yet crucial for the understanding of individual families.
They would also be the ideal centralized setting to incorporate various predictors such
as the ones described in this thesis. Cross-talk between portals could be designed to
aid analysis of interactions between proteins from different families. While initially
the issue of keeping a portal continuously updated with novel experiments lies on
the shoulders of the authors, increasing usage across the research community leads
to submission of novel data becoming convention. This is often seen in databases
and portals for model organisms60, which serve as a focal point for the research
community.

9.2 The promising future of structural bioinformatics

One landmark in 2020 (from a structural bioinformatics perspective) was the Crit-
ical Assessment of Structure Prediction (CASP14) result. DeepMind’s AlphaFold2
algorithm prevailed over its competition, so much so that the CASP organizers re-
leased a press statement declaring the protein structure problem for single protein
chains solved. Despite contrasting opinions from researchers in the field on whether
or not this is a hyperbolic statement, it clearly represents an important and historic
breakthrough in the field, demarcating the start of a new era in structural bioin-
formatics. Given this leap forward in structure prediction combined with various
advances in experimental structure determination such as deep mutation scanning
and cryo-electron microscopy, and the uninterrupted pace of traditional experimental
structure resolution, it is not far-fetched to foresee an age where protein structure
information is as prevalent and ubiquitous as sequence. Judging by the velocity of
these advancements, this age is right around the corner.

This opens up a number of new opportunities in structural bioinformatics, and also
places some urgency on a few long-standing open challenges. A number of these
can be anticipated from the AlphaFold2 results themselves. Firstly, the press release
emphasized “single protein chains” for a reason - complex structures are yet to be
successfully predicted at the same breakthrough levels. Thus, using ML and deep
learning (DL) for protein-protein interaction and interface prediction could be the next
frontier. Many, if not most, interaction prediction algorithms rely on sequence data
as input simply due to their wider availability61. However, structure-based prediction
is more accurate and will likely become more sought after, with Wass et al. 62 , Zhang
et al. 63 , Fout et al. 64 , Townshend et al. 65 , Sanchez-Garcia et al. 66 , Gainza et al. 67
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representing some early entrants into the field. In addition, the fields of cryo-EM
and cryo-electron tomography (cryo-ET), driven by improvements in the underlying
technology and in algorithms for image processing, have transformed drastically in
the past decade into high-throughput, high-resolution structural biology techniques
for describing macromolecular complexes68,69. By capturing millions of snapshots of
the molecule of interest, each carrying a unique molecule in its own conformational
state, cryo-EM holds promise to reveal the conformational landscape of very large
dynamic macromolecular complexes and molecular machines. While some existing
areas for improvement lie in sample preparation and experimental design, computa-
tional algorithms for on-the-fly image processing and 3D reconstruction are also in
high demand. Fast and accessible machine learning based tools to analyse and con-
dense cryo-EM data have started to appear70,71 and will likely become crucial tools
in protein complex determination. Recently, a study combined incomplete cryo-EM
data with parts of AlphaFold2-predicted domains to obtain a full-length atomic model
for a SARS-CoV-2 protein, allowing for hypotheses linking specific residues to RNA
binding72

A second area ripe with opportunities lies in protein design, also referred to as the
inverse protein-folding problem. The typical goal of protein design is to identify an
amino acid sequence that will stabilize a desired protein conformation or binding
interaction, in order to raise thermostability, control binding specificities, increase
binding affinity by scaffolding binding sites, design novel interfaces to disease-related
signalling proteins, introduce novel ligand binding sites, and more73,74. While a num-
ber of computational approaches are being used in protein design75 there is still a
great deal of room for improvement. For instance, current prediction techniques
have difficulty distinguishing between functional and non-functional proteins which
have a high degree of similarity, and the space of possible proteins is too large and
too functionally sparse to search exhaustively naturally, in the laboratory, and even
computationally. Directed evolution is one technique used to alleviate this issue, as
it sidesteps the need for accurate function prediction. Inspired by natural evolution,
directed evolution starts from a (set of) known functional proteins and accumulates
beneficial mutations via an iterative protocol of mutation and selection. This gen-
erates a library of modified sequences followed by screening to identify mutants and
variants with improved properties, with further rounds of diversification until fitness
goals are achieved. While this approach implicitly imposes limits in the lab – there
are an enormous number of ways to mutate any given protein and even the most
high-throughput screening or selection methods can sample only a fraction of these
sequences – ML methods can intelligently select new variants to screen, thereby
reaching higher fitness levels than are possible through screening alone76. One way
to do this is by using information from unimproved sequences from previous rounds
to learn functional relationships from experimental data even when the underlying
biophysical mechanisms are not well understood. Additionally, specificity predictors
such as those detailed in Chapters 3 and 7 can be inspected for predictive or relevant
residues to improve or modify compound specificity which can then form the starting
points for mutation, thus reducing the sequence space to experimentally explore.
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Another area with scope with improvement is de novo protein design of rare or un-
natural folds. Approaches similar to the first AlphaFold have been used successfully
in design tasks77–79, indicating that the AlphaFold2 breakthrough may also cause
a leap in protein design prediction. However, since ML-based structure prediction
algorithms typically rely on natural protein structures during their learning phase, it
is expected that the patterns they learn apply more to naturally occurring proteins
than artificially designed ones, implying that synthetic protein design may still be out
of reach. One major downside of existing DL-based structure prediction techniques
is that prediction acts merely as an alternative to an experimental technique - it does
not provide us with any more understanding of the processes behind the folding of
proteins. However, the process of constructing idealized folds during protein design
can reveal new information about the physical and structural constraints that dictate
which conformations a protein can adopt80,81. Such insights could be of vital impor-
tance to solving fundamental biological questions behind the evolution of proteins,
as well as critical to further improvement of protein engineering and design82.

Finally, it seems to be time for a new sub-field of structural bioinformatics, which
Mohammed AlQuraishi aptly dubbed “comparative structuromics”. This sub-field
would be concerned with tools, algorithms, and techniques to compare and contrast
assorted datasets of protein structures to answer a variety of biological questions - the
evolutionary relationships between structural orthologs, interaction networks and how
they are affected by structural changes, folding and changes within different cellular
contexts and organisms, and how structure and folding is coupled with different
functional characteristics. Just as there exists a wide variety of tools for answering
analogous questions from a sequence perspective, there need to be tools in structural
bioinformatics, such as those described in Chapters 4, 5, and 6, that are as easy to
use, as intuitive to interpret, as optimized, and as feature-rich as these sequence-based
counterparts. I envision that in the coming decade people will reach for structure-
based tools and algorithms nearly as often as they reach for BLAST, and that machine
learning will play a major role in many of these tools, just as it has with sequence.

9.3 Structure as one part of the puzzle

The three-dimensional coordinates of a protein structure or computationally gener-
ated model provides information about the kinds of folds and structural motifs within
a protein, the interaction networks between non-sequential residues, and the position-
ing of amino acid sidechains, many of which are relevant to protein activity. However,
proteins are much more than these coordinates, just as they are much more than their
one-dimensional sequence representation.

Since proteins are inherently dynamic in nature, their true “structure” is an ensemble
of possible conformations, with some areas of the protein displaying more flexibility
than others. This is further influenced by the constant interaction of proteins with
the surrounding solvent, small molecules, nucleic acids, peptides and of course other
proteins, all of which drive conformational changes within the protein. Protein biolog-
ical activity often involves adopting specific conformations, contributions from local
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fluctuations, and even large-scale structural transitions between different conforma-
tions. Correspondingly, structural flexibility ranges from small sidechain fluctuations
to fragments of highly disordered or unstructured regions becoming ordered to large
rearrangement of the entire backbone. In fact, the old paradigm that sequence en-
codes structure, and structure determines function can now be rephrased as sequence
encodes structure, structure determines dynamics, and dynamics encodes function83.

Molecular dynamics (MD) is a commonly used technique to model protein flexibility.
Given the positions of all atoms in a protein system (i.e. including water or other
solvent molecules, and sometimes a lipid bilayer), MD calculates the force exerted
on each atom by all other atoms as a function of time, using a molecular mechanics
force field fit to the results of quantum mechanical calculations and, typically, to
certain experimental measurements84. MD simulations typically involve millions or
billions of time steps and calculations of millions of interatomic interactions during
each time step, causing them to be computationally extremely expensive. More-
over, MD does not address covalent bond formation or breakage, both crucial in a
number of enzyme families, leading to the need for the even more expensive and
challenging set up of Quantum mechanics/molecular mechanics (QM/MM) simula-
tions, in which a small part of the system is modelled using quantum mechanical
calculations and the remainder by MD simulation85. Since MD is often too time-
consuming, computational-resource hungry, or difficult to set up to be applied ef-
fectively to large-scale protein systems, coarse-grained (CG) modelling with Monte
Carlo (MC) simulations and elastic network models (ENM) with normal mode anal-
ysis (NMA) both provide simplified protein representations that still allow for quite
accurate understanding of protein flexibility. CG protein representations reduce amino
acid residues or even whole fragments of secondary structural elements to so-called
united atoms, thus greatly reducing the number of degrees of freedom. For example,
the CABS CG model86 represents each amino acid as four united atoms correspond-
ing to the Cα, Cβ, the centre of mass of the sidechain atoms, and the centre of the
Cα−Cα pseudobond to the next amino acid. The SURPASS CG model87 goes even
further and condenses four consecutive amino acids into a united atom at the centre
of mass of their Cαs. CG models are typically used with MC simulation, a technique
that maps the distribution of possible protein conformations through a very long ran-
dom sequence of small local moves controlled via knowledge-based force fields83. In
contrast to CG models, the ENM representation of a protein consists of nodes corre-
sponding to residues with identical harmonic springs connected residues closer than
a set distance threshold88. The simple harmonic oscillations of these interconnected
springs around an energy minimum define the normal modes, with different modes
accounting for low frequency large-scale movements up to high frequency small local
fluctuations.

Together, these computational techniques can provide information about globular
protein flexibility and mutations89,90, large-scale structural transitions (e.g. from ac-
tive to inactive conformations)91–94, and conformations involved in the formation
of protein complexes95. They have also been used to assess and refine 3D mod-
els96–98, improve ligand positioning99,100, and to create receptor ensembles for en-
semble docking101,102. The faster and cruder CG-MC and ENM-NMA approaches
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can be combined with atomistic-level MD, providing efficient strategies and starting
points for multiscale simulations of proteins and complexes103. While ML is be-
coming more prevalent in the MD and CG-MC fields, to construct force field models,
energy surfaces, sampling etc.104,105, future efforts will likely also utilize the flexibility
information obtained from these techniques to use as input in ML-based predictors of
protein function, as we did in Chapters 3 and 7. This was also demonstrated in pre-
vious research to improve over static structure-based prediction106. The topological
featurization described in Chapter 5 could be a starting point for such advances.

Sometimes, computational prediction methods produce important information as a
by-product of the prediction process. For example, the model scores produced dur-
ing homology modelling can be useful to select the correctly folded model produced
by ab initio modelling107. Scores produced during computational docking can be
used to predict interacting partners for proteins62. Similarly, it has been noticed
that comparing accessible surface area predicted from sequence alone to that ob-
tained from structure can give an idea of areas of the structure which are buried
during binding, due to the difference in the sources of information used for these two
predictions108. The recent Essential Site Scanning Analysis algorithm mimics the
crowding induced upon substrate binding by adding the heavy atoms of each residue
as additional network nodes into the α-carbon-based ENM, and measuring the effect
this increased density has on the resulting ENM normal modes - residues that cause
significant changes can play key roles in altering the global dynamics of proteins on
ligand-binding109. Such normal mode perturbation analyses have also been used to
detect allosteric interactions and pockets, where one site on a molecule is perturbed
by an effector and causes a functional change at another, possibly distant, site109,110.

Eventually protein ML will need to explicitly or implicitly handle all of these different
sources of features, also including the underlying physicochemical properties of the
amino acids involved, as they all play crucial roles in determining protein activity,
interaction, and function. End-to-end approaches may help select and utilize the
combination of features relevant to the task at hand.

Furthermore, biological function is only partly determined by an individual protein –
its genomic and cellular contexts also play a big role. Each protein is determined by
an underlying gene sequence, but the mapping from gene to protein is not so straight-
forward, complicated by the existence of alternatively spliced transcript variants111,
pre-protein sequences in need of further processing112, and moonlighting pseudoen-
zymes113. In addition, transcription factors114, post-translational modifications115,
the developmental stage of an organism’s life, their subcellular localization and en-
vironment in the cell, and even the extra-cellular conditions all have an effect on
protein expression and function. More often than not, proteins also work in concert
with a wide variety of other entities, ranging from metal ions and cofactors116, water
and other solvent molecules117, small molecule ligands118, peptides, nucleic acids,
and other proteins.

One area of study focused on integrating these different contexts of proteins and
their complex interactions is network biology. This field is crucial for the accurate
modelling of biological systems, and given the influx of data from high-throughput
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interaction assays and large-scale multi-omics studies, a great target for ML and
DL methods. The future holds an increasing number of opportunities for this com-
bination of network biology and ML119 – in understanding and fighting diseases by
inspecting protein and gene interaction networks, in locating off-target effects of drugs
and concocting valuable drug combination therapies based on chemical networks and
multi-omics data from drug treatments120, in understanding microbial interactions
through metabolic networks, in finding biosynthetic gene clusters through gene neigh-
bourhoods, transcriptomics, and expression profiling, and in designing synthetic gene
circuits combining interconnected genes, promoters, and ribosome binding sites. Each
of the individual entities involved have their own set of features and representations
and there is a long way to go to harness the networked intricacies and complexities
of these systems.

9.4 Closing remarks

The field of plant specialized metabolism is exciting to work in, mainly due to the
growing prevalence and diversity of computational methodologies capable of address-
ing a number of research questions and limitations of previous approaches. Structural
bioinformatics, with its capabilities of inspecting the relationships and mechanisms
of the proteins and compounds involved, and machine learning, with its capacity
to identify general patterns across entire protein families and superfamilies, both
present numerous opportunities and applications to specialized metabolism and pro-
tein biology. With this thesis I have contributed to the field by developing novel
computational methods for structural bioinformatics, and providing insights into the
puzzling and sought-after family of terpene synthase enzymes. With the boundaries
of experimental biology and bioinformatics starting to blur, computational approaches
guiding experimental ones and experiments providing data to create predictors nearly
as accurate, the ability to understand biological function is closer than ever.
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Summary

Plant specialized metabolites (SMs) are crucial to plants and to humanity, with nu-
merous applications in food, healthcare, agriculture, and cosmetics. The enzyme
families involved in producing SMs, such as the terpene synthases, are very diverse,
both across and within families. Understanding and predicting compound specificity
of these enzymes is critical for biotechnological applications and protein engineering.
The growing availability of structure data and improved computational modelling
techniques puts us in the position to use structural bioinformatics and machine learn-
ing (ML) techniques to learn patterns across all enzymes in an SM family, instead of
focusing on a few structures or mutants. In this thesis I explore new algorithms and
approaches to analyse datasets of SM families and take advantage of their complex
structural data.

In Chapter 1 I introduce the terpene synthases and place them in context among the
wider field of plant specialized metabolism. Their importance in both the plant and
human worlds is discussed along with a history of the elucidation of their catalytic
mechanisms via structural and mutational studies. I explore the various opportunities
and challenges offered by computational techniques, found in the structural bioin-
formatics and ML fields, to better understand such elusive SM enzyme families. In
Chapter 2 I describe the creation of a database of experimentally characterized plant
sesquiterpene synthases (STSs), collected from literature studies, covering over 250
enzymes collectively responsible for the production of over a hundred sesquiterpene
compounds. These proteins are analysed from a sequence perspective leading to in-
teresting results on previously studied motifs, as well as the conclusion that phylogeny
plays a larger role in STS sequence similarity than product specificity. This further
expedited the need for protein structure information, extracted using homology mod-
elling. In Chapter 3 I put forth an analysis of STS major and minor products,
demonstrating that sesquiterpenes produced by an STS tend to be derived from the
same reaction path. This enabled us to simplify the idea of product prediction to
parent cation prediction, where I show that ML on the modelled STS structures
out-performs sequence-based approaches.

To make further use of this structural information, in Chapters 4, 5 and 6 I de-
veloped structural bioinformatics embeddings for ML applications, resulting in an
embedding allowing alignment-free comparison of the topologies and shapes con-
tained in a structure, and a multiple structure alignment algorithm for structural
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features. The former, termed Geometricus and presented in Chapters 5 and 6, uses
a concept from computer vision called rotation invariant moments to extract and
count “shape-mers”, structural analogues to sequence k-mers. The latter, Caretta,
presented in Chapters 4 and 6 is a multiple structure aligner that incorporates Ge-
ometricus shape-mer counting to scale to many thousands of proteins, and includes
a feedback loop between single proteins and the progressively created alignment to
return accurate and high-coverage alignments. To enable downstream ML analyses,
Caretta also extracts and outputs aligned feature matrices, including the moment
invariants used by Geometricus as a novel feature source describing protein shape
and topology.

This novel feature extraction and alignment approach is applied in Chapter 7 to the
task of predicting STS product specificity. To increase our coverage of STS sequence
and compound space we use what we learned in Chapters 2 and 3 to select and
experimentally characterize over 60 new STSs. As the number of possible products
precludes the classification approach in Chapter 3, I create a joint protein-compound
framework combining aligned protein structural features with chemical compound
features to both successfully predict product specificity, and pinpoint residues involved
in the formation of each sesquiterpene.

Many of the analyses and techniques used in this thesis are common across protein
biology and bioinformatics. To allow life scientists to explore the interconnected prop-
erties of their protein family of interest from a variety of different perspectives, and
share these findings across the web, in Chapter 8 I present Turterra, an interactive
data visualization portal.

Chapter 9 concludes this thesis by describing ongoing challenges in studying SM
enzyme families and their potential solutions from an ML perspective. I expand
the discussion to the broader field of protein structure bioinformatics and the many
opportunities it holds for enhancing our understanding of biological function.
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Talk: "Exploration of fragrance producing enzymes in plants", EPS Theme 4

Seminar: B-Wise Mathijs Nieuwenhuis & Jorge Navarro Muñoz
Seminar: B-Wise Anton Feenstra & Ehsan Motazedi

Seminar: B-Wise Martin Huijnen & Mark Sterken

Symposium: Wageningen 100 Years WUR Science Week: Wilhelm Huck, Philip Ball, Philip Brey

International symposia and congresses

Seminar: B-Wise Veronika Laine & Raúl Wijfjes
Seminar: B-Wise Eliana Papoutsoglou & Roeland Voorrips

Seminar: B-Wise Simon van Heeringen & Chiara Bortoluzzi
Seminar: B-Wise Jorge Roel Touris & Victoria Pascal Andreu

Seminar: B-Wise Christian Gilissen and Mohammad Alanjary
Seminar: B-Wise Erik van den Bergh & Willem Kruijer
Seminar: B-Wise Rachel Cavill & Mehmet Akdel
Seminar: B-Wise Rik van Rosmalen & Sevgin Demirci

Netherlands Society on Biomolecular Modelling (NSBM 2018) Fall Meeting, Utrecht, NL

Dutch Bioinformatics & Systems Biology conference (BioSB) conference, Lunteren, NL

European Conference on Computational Biology (ECCB 2018), Athens, GR

European Conference on Computational Biology (ECCB 2020), Online

International Meeting on the Biosynthesis, Function and Synthetic Biology of Isoprenoids (TERPNET 2019), 
Halle (Saale), DE

From Information to Function: a systems biology view of the processes of life (infotofunc) - A tribute to Anna 
Tramontano, Online

Poster: ‘Product Specificity in Plant Sesquiterpene Synthases’, Annual meeting EPS

Neural Information Processing Systems Conference (NeurIPS 2020), Online

Presentations

Subtotal Start-Up Phase

2) Scientific Exposure 

Annual Meeting Experimental Plant Sciences, Lunteren, NL

EPS Get2Gether, Soest, NL

EPS theme symposia

EPS PhD student days

Intelligent Systems for Molecular Biology/European Conference on Computational Biology (ISMB/ECCB 
2019), Basel, CH

Workshop: ELIXIR | 3D-Bioinfo: Integrating structural and functional data to support in silico predictions in 
drug design, ECCB 2020, Online
Seminar plus

Seminars (series), workshops and symposia
Seminar: B-Wise Jens Allmer & Jesse van Dam
Seminar: B-Wise Pulva Kulkarni & Twan America

Lunteren Days and other national platforms

Symposium: Celebrating five years of bioinformatics collaboration @EPS

Poster: “Structure and Sequence-Based Prediction of Sesquiterpene Synthase Product Specificity”, ECCB 

Workshop: BioExcel 2nd SIG Meeting: Advanced Simulations for Biomolecular Research, Athens, GR

Seminar: B-Wise Justin van der Hooft & Victor Carrion
Seminar: B-Wise Martijn Derks & Rik Kooke

Seminar: B-Wise Gerben Hermes & Pariya Berouhzi



 2 Apr 2019 1.0

27 May 2020 1.0
8 Sep 2020 1.0
27 Oct 2020 1.0

► 
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27.7

date cp
► 

30 Oct - 3 Nov 2017 3.0
12-16 Feb 2018 1.5
9-12 Sep 2019 1.2

► 
2017-2021 3.0

► 
8.7

date cp
► 

26 Sep 2017 0.3
1-11 Mar 2021 0.5
Jun-Jul 2021 1.6

► 
25-29 Jun 2018 1.5

3 Feb 2020 1.5
21 Feb 2018 0.0
4 Apr 2018 0.0
16 Jul 2019 0.0

24 Apr 2018, 16 Jul 2019 0.0
► 

Subtotal Personal Development 5.4

date cp
► 

Feb - Mar 2018
18 Feb - 8 Mar 2019
17 Feb - 6 Mar 2020
15 Feb - 5 Mar 2021

Feb 2020
22 Nov 2019, 27 Nov 2020

► 

19 Feb - 27 Jun 2018

20 Mar - 3 Jul 2019

22 Feb - 19 Sep 2019

7 May – 3 Jul 2020
6.0

49.3

* A credit represents a normative study load of 28 hours of study.

Herewith the Graduate School declares that the PhD candidate has complied with the educational requirements set by the Educational Committee of EPS with a 
minimum total of 30 ECTS credits. 

Machine Learning: Practical assistant

Supervision of BSc/MSc students 
Data Analysis and Visualization: Guest lecture

Advanced scientific courses & workshops

Journal club

Machine Learning: Practical assistant, Grading
Machine Learning: Course material preparation, Practical assistant, Grading

MSc student internship, Kenneth Rivadeneira Guadamud, "Bioinformatic approach for predicting novel 
natural product enzymes"
BSc student, Nico Louwen, “The Turterra web portal for natural product enzyme family data visualization and 
analysis”

Organisation of meetings, PhD courses or outreach activities

Seminar: Updates in Scientific Python, Wageningen + Gelselaar, NL

5) Teaching & Supervision Duties

Subtotal In-Depth Studies
Individual research training
Literature Discussion, Bioinformatics Group

3rd year interview

Workshop: Code-Discussion Session, Wageningen, NL

TOTAL NUMBER OF CREDIT POINTS*

Courses

Subtotal Teaching & Supervision Duties

Excursions

BioSB: Protein structures: production, prowess, power, promises, and problems, Nijmegen, NL
BioSB: Optimisation techniques in Bioinformatics and Systems Biology, Wageningen, NL

4) Personal Development
General skill training courses
EPS Introduction Course, Wageningen, NL
Wageningen Graduate Schools course: Working on your PhD in times of crisis, Online
Wageningen Graduate Schools course: Career Perspectives, Online

Membership of EPS PhD Council

Machine Learning: Practical assistant, Grading

Course: BioSB Algorithms for Biological Networks, Wageningen, NL
Course: Wageningen Data Science Week, Machine Learning Crash Course, Wageningen, NL 
(https://research.wur.nl/en/publications/crash-course-machine-learning)

Workshop: Numba Code-Along Session, Wageningen, NL
Workshop: Interactive Visualization, Gelselaar, NL

Data Science Concepts: Course material preparation

MSc student,  Dàmi Rebergen, "Prediction of the enzymatic reactions of sesquiterpene synthases: comparing 
sequence and structural information in machine learning"
BSc student, Chris Congleton, "Predicting product category of monoterpene synthases based on protein 
sequence data"

Talk: "Structure-based prediction of sesquiterpene synthase product specificity", BioSB 2019

Summer School in Gaussian Processes and Uncertainty Quantification, Sheffield, UK

3) In-Depth Studies

Subtotal Scientific Exposure

3.0

3.0

Talk: "Predicting Sesquiterpene Synthase Product Specificity", Applied Metabolic Systems (AMS) 
Clustermeeting, WUR
Talk: “Geometricus represents protein structures as shape-mers derived from moment invariants”, ECCB 2020 
Talk: "Comparing protein structures with and without alignment", BioSB 2020



The research described in this thesis was financially supported by the Dutch Research
Council NWO (TTW 15043) and the Graduate School Experimental Plant Sciences.

Cover design by Janani Durairaj

Printed by Proefschriften, Ede


	General introduction
	An analysis of characterized plant sesquiterpene synthases
	Integrating structure-based machine learning and co-evolution to investigate specificity in plant sesquiterpene synthases
	Caretta - A multiple protein structure alignment and feature extraction suite
	Geometricus represents protein structures as shape-mers derived from moment invariants
	Fast and adaptive protein structure representations for machine learning
	Matchmaker - A joint structure-molecule framework to predict protein-compound specificity
	The Turterra web portal for protein family data visualization and analysis
	General discussion
	Summary
	List of publications
	Acknowledgements



