
Microbial Risk Analysis 19 (2021) 100174

Available online 14 May 2021
2352-3522/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Full length article 

Thermal inactivation kinetics of seven genera of vegetative bacterial 
pathogens common to the food chain are similar after adjusting for effects 
of water activity, sugar content and pH 

J. Hein M. van Lieverloo a,b, Mounia Bijlaart b,c, Marjon H.J. Wells-Bennik d, Heidy M. 
W. Den Besten c, Marcel H. Zwietering c,* 

a Viaeterna, Rosmalen, The Netherlands 
b HAS University of Applied Sciences, Food Technology, ‘s-Hertogenbosch, The Netherlands 
c Wageningen University, Food Microbiology, The Netherlands 
d NIZO, Ede, The Netherlands   

A R T I C L E  I N F O   

Keywords: 
Salmonella 
Listeria 
Escherichia coli 
Clostridium perfringens 
Cronobacter 
Staphylococcus aureus 
Yersinia enterocolitica 

A B S T R A C T   

A predictive model was made for the logarithm of the thermal decimal reduction time (logD) of Salmonella 
enterica (D = time to 90% reduction by inactivation). The model was fitted with multiple linear regression from 
521 logD-values reported in literature for laboratory media and foods highly varying in water activity and pH. 
The single regression model with temperature as the only variable had a high residual standard error (RSE) of 
0.883 logD and no predictive value (fraction of variance explained (R2) < 0.001). Adding water activity, sugar 
content and pH as predictors resulted in a model with a lower RSE of 0.458 logD and an adjusted R2 of 0.73. The 
model was validated by comparing 985 predicted with observed logD for S. enterica from other publications. The 
model was subsequently validated with 1498 published logD-values for inactivation of vegetative cells of nine 
other pathogenic bacteria genera (mainly Listeria monocytogenes, Escherichia coli, Clostridium perfringens, Crono-
bacter spp., Staphylococcus aureus, Yersinia enterocolitica) in or on a variety of laboratory media, meat, fish, dairy, 
nuts, fruits and vegetables. Regression analyses for validation with the 985 logD of S. enterica and 2483 logD of 
all genera show deviations from the expected slope of 1 (both 0.81) and the expected intercept of 0 (0.04 and 
0.19 logD respectively). However, only 0.7% and 2% respectively of the new logD (expected: 0.5%) were 
observed above the 99% prediction interval of the original S. enterica model based on 521 logD. The findings 
suggest that i) the variability of thermal resistance of strains within species is larger than between genera and 
species; ii) one generic predictive model, also accounting for variability, suffices for designing the thermal 
inactivation of a variety of vegetative pathogenic bacteria in many food types.   

Introduction 

Thermal inactivation processes – e.g., pasteurization and sterilization 
– aim at safeguarding microbial safety and limiting spoilage of products 
and materials (food, pharmaceuticals, cosmetics) that may otherwise 
cause infections, intoxications or spoilage by micro-organisms. The de-
signs of thermal inactivation processes are generally optimized to ensure 
safety and shelf life of products, while maintaining taste and nutritional 
value. At the same time, energy demand and other processing costs 
should be minimized. Inactivation kinetics of different species of bacteria 
and other micro-organisms are usually expressed with the variables DTref, 
the time to 1 log reduction of viable micro-organisms at the reference 

temperature (Tref), and zT, the temperature increase needed for 1 log 
reduction of D. Over the years, the heat inactivation of various strains in a 
variety of food products and laboratory media has been studied, resulting 
in many published D- and z-values for various conditions (e.g. ICMSF, 
1996; Doyle and Mazzotta, 2000; Doyle et al., 2001, Van Asselt and 
Zwietering, 2006). Factors reported to have an influence on the heat 
resistance of a pathogen are amongst others: strain variability, growth 
phase (age) of the culture, growth conditions, recovery media, and 
characteristics of foods such as salt content, aw, acidity, and the presence 
of other inhibitors (Doyle et al., 2001). 

The result is a large variety of values of DTref and zT. Quantitative 
microbial risk assessment models for the food industry include models 
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for contamination, growth and inactivation. To account for variability of 
the values of model variables, these models are designed with statistical 
techniques, including the Monte Carlo method (Vose, 2008). These 
methods apply probability functions, functions fitted from published 
data or from observations in the particular food chain. The result of 
these models is a prediction interval for the probability of a concentra-
tion of a microorganism in the food chain, including survival of heat 
inactivation. 

During the development of farm to fork chain models for the dairy 
industry (Van Lieverloo et al., 2007), the results of the first extensive 
quantitative analysis of published data concerning thermal inactivation of 
vegetative bacteria and bacterial spores (Van Asselt and Zwietering, 2006) 
were used as a source of means and standard deviations of DTref and zT. 
Applying these variables in chain models for Listeria monocytogenes in a 
variety of dairy products caused unrealistically wide prediction intervals, 
which were to be expected, as the study was not intended for this appli-
cation and only included temperature as a predictor. 

Evaluating most of the available literature, including many variables 
of liquids (laboratory media, dairy, juices etc.) and inactivation condi-
tions, a multiple regression model for L. monocytogenes was previously 
developed that adjusts the thermal inactivation kinetics for effects of pH, 
NaCl, sugar, culturing conditions and heating methods. This resulted in 
much narrower and more realistic prediction intervals (Van Lieverloo 
et al., 2013) that corroborated the observed safety of pasteurized, hy-
gienically packaged dairy products. A basic model for Salmonella enter-
ica, merely adjusting for water activity, pH and sugar content already 
allows for the fitting of a large variety of published DTref-values in one 
predictive model (Van Lieverloo and Zwietering, 2013), including even 
largely deviating observations in chocolate (aw = 0.45: Goepfert and 
Biggie, 1968; Barille and Cone, 1970) and peanut butter (aw = 0.33-0.7: 
Shachar et al., 2006; Ma et al., 2009; He et al., 2011; Keller et al., 2012). 
This multiple regression model had a fraction of variance explained (R2) 
of 0.73 compared to 0.002 with the single regression using only tem-
perature as descriptive variable (Van Lieverloo and Zwietering, 2013). 
In a subsequent comparison, the kinetics of L. monocytogenes and 
S. enterica proved to be very similar (Van Lieverloo et al., 2017). The 
contribution at hand aims to show that thermal inactivation kinetics, 
when adjusted for other variables, are similar for vegetative cells of a 
variety of common foodborne pathogenic bacteria genera and that 
variability of the kinetics is much higher within species. 

Theory and calculation 

This section summarizes the theory for multiple regression analysis; 
a single regression model is a linear prediction with estimated intercept 
β̂0 and slope β̂1 (the regression coefficient, the hat indicates ‘estimated 
mean’) in a two-dimensional plane, for thermal inactivation: logD(min) 

= β̂0 + β̂1T (◦C)+ε, only including T as a predictor (ẑ = − 1/ β̂1) and ε as 
the residual. For multiple regression analysis, the linear relation of each 
new predictor term (k predictors) in the model with logD is evaluated in 
a dimension orthogonal to the other dimensions, each with their own 
estimated β̂k and ̂zk = − 1/ ̂βk. Adding pH, sugar content and aw, but also 
aw

2 , T.aw and T.aw
2 as predictors essentially adds six new dimensions, 

each evaluated for a linear relation with logD. See the Methods for de-
tails on model fitting, checking and validation and the Glossary in the SI 
for explanation of terms. 

Methods 
A glossary of terms and common calculations is included in the 

supplementary information (SI). 

Thermal inactivation model 

The primary thermal inactivation model most commonly reported in 
literature describes the exponential reduction of the number of viable 

bacteria (N) as a function of time at a fixed temperature T, where DT is 
the negative inverted slope of linear relation after logarithmic trans-
formation of the viable counts: -∂t/∂log(N). Although other models have 
been successfully applied, such as the Weibull model - which often fits 
shoulders and tails of curves better than the linear model (Van Boekel, 
2002) -, the majority of the data in literature are presented as D-values, 
currently limiting an analysis to these linear models. 

Secondary inactivation models 

A common approach to secondary models is a single linear regression 
fit of logD (the response) as a function of the temperature (the predic-
tor), from which ẑT, the estimated mean change of temperature needed 
for a change of logD with 1 unit, can be calculated: the negative inverse 
of the estimated slope β̂T (Eq. (1)). 

ẑT =
− 1
β̂T

=
− ∂T

∂log(D)
(1)  

Development of the multiple predictor secondary model 

A multiple ordinary least squares regression model (Eq. (2)) was 
fitted previously to estimate the combined mean effects (regression co-
efficients β̂p of each predictor variable p) on logD of changes of four 
predictor variables: temperature (T), pH, water activity (aw) and sugar 
content (m/m) (Van Lieverloo et al., 2017). 

logD(min) = β̂0 + β̂1T(∘C) + β̂2aw + β̂3aw
2 + β̂4pH + β̂5Sugar(m/m)

+ β̂6T(∘C)aw + β̂7T(∘C)aw
2 + ε (2) 

The model was developed by testing the effect of these predictors, 
including their second and third order polynomials and multiplicative 
terms, with the null hypothesis (H0) for each term coefficient β = 0 and 
an alpha (acceptable probability of falsely rejecting the null hypothesis) 
of 0.05. The actual probabilities (p-values), the estimated regression 
coefficients (β̂0- β̂7) of the accepted variables and the residual standard 
error (standard deviation of ε i) are reported in Table 1. With the sample 
of 521 published logD-values used for model development, a statistically 
significant effect of other polynomial or multiplicative terms could not 
be found and thus β was assumed to be 0 for these effects. Although in an 
alternative model (with other β̂ for all other predictors, with the lowest 
p-values for H0: β = 0) the H0 β = 0 for fat content as an extra predictor 
was rejected with a p-value of 8.10− 6 (β̂ = 0.012 logD per 0.01 increase 
of fat m/m), the increase of R2 (0.731 to 0.741) and the decrease of RSE 

Table 1 
Means and standard errors of the estimated coefficients (β̂ and ̂z = − 1/(mean ̂β), 
NL = not linear) for the regression model (Eq. (2)) of log(D, min) for thermal 
inactivation of S. enterica based on 521 data sets. p = probability of the type I 
error for H0: β̂predictor = 0. The residual standard error is 0.4580 logD, the 
adjusted R2 is 0.73.    

Estimated coefficients p 
Variable Unit β̂  Mean Standard error Mean z  

Constant logD β̂0  10.23 2.93  5.2.10− 3 

T ◦C β̂1  − 0.1568 0.0408 a 1.4.10− 3 

aw  β̂2  − 33.25 8.57 NL 1.2.10− 3 

aw
2  

β̂3  32.02 5.98 NL 1.3.10− 7 

pH  β̂4  0.1776 0.0374 − 5.63 2.6.10− 6 

Sugar m/m β̂5  1.4840 0.0905 − 0.674 < 2.10− 16 

T . aw  β̂6  0.5599 0.1254 NL 9.8.10− 6 

T . aw
2  

β̂7  − 0.5754 0.0897 NL 3.3.10− 10  

a ẑT is dependant on water activity. At aw = 1, the fitted ̂zT = − 1/(β̂1+β̂6+β̂7) 
= − 1/− 0.1723 = 5.80. 
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(0.458 to 0.450) was not considered enough. As the data also showed 
heteroscedasticity (high variance at a fat content near 0 m/m) and 
considering the objective of parsimony, the model without fat content 
was selected. 

Partial regression scatter plots of the fitted model were used to 
visually check the requirement of homoscedasticity for each predictor. 
These plots were constructed by using all model coefficients from 
Table 1, fixing the values of all predictors but one, using reported values 
of the remaining predictor and adding the model residuals (ε). For 
example, the partial regression model for T was constructed using Eq. 
(2) to predict logD for the actual T of each observation (numbered i) 
from the literature and a fixed aw (0.993), pH (6.5) and sugar content 
(0.046 m/m) to values of whole milk, resulting in Eq. (3). The estimates 
of the preliminary model residuals (ε̂) are added to allow for visual 
evaluation of homoscedasticity, leverage and decrease of residual 
standard error. An alternative notation of Eq. (3) is given in Eq. (4). 

Model validation 

The model was validated by predicting logD with the inactivation 
model (Eq. (2)) using the temperature, water activity, pH and sugar 
content as reported in other publications (Table SI-1) and comparing the 
logD-values reported in these publications (called ‘observed’) with these 
predictions (called ‘predicted’). Scatter plots of observed vs. predicted 
logD are presented in graphs, including the line of the expected mean 
(observed = predicted) and the 99% prediction interval with a margin of 
1.184 logD (at 513 degrees of freedom: d.f.). Considering the main 
purpose of this evaluation and the high number of observations, the 
margin is presented as constant (for calculation and details, see Glossary 
in the SI). The mean regression line of observed vs. predicted logD is 
included in the scatter plot as an indicator of accuracy (intercept β̂0 and 
slope β̂1) and precision (residual standard error: RSE). The mean pre-
diction error (observed – predicted) was calculated, as another measure 
of accuracy, as well its standard deviation (SD), as a measure of preci-
sion not adjusted for β0 and β1 of the regression. 

Data sources for development of the predictive model 

For each experiment reported in literature, a data set consisting of 
the D-value at the experimental temperature T was supplemented with 
data regarding the composition of the heating medium or food product 
and experimental conditions (culturing, conditioning, isolation, storage, 
inoculation, heating/cooling, enumeration). In a preliminary analysis of 
this database the results of 521 experiments from literature were used to 
fit a basic model for inactivation of S. enterica (Van Lieverloo et al. 
2017), and this secondary model included T, pH, aw and sugar content as 
predictors (Eq. (2)). The data were extracted from 19 articles on thermal 
inactivation of S. enterica from 1968 to 2012, reporting 21 strains of 
serotypes Typhimurium (147 data sets), Senftenberg (91), Bedford (48), 
Enteritidis (34), Anatum (33), Tennessee (25), cocktails (69) and others 
(82). Condition ranges were: T 48–90 ◦C; pH 5.1–9.3; aw 0.33–0.998 (≤
0.5 in chocolate or peanut butter), sugar content (0–0.78 m/m), sodium 
chloride content (0–0.201 m/m) and fat content (0–0.5 m/m). Foods 
and media reported were: chocolate (22 data sets), liquid egg (54), 
peanut butter (49), water (61), heart infusion broth (134), McIlvaine 
citrate phosphate buffer (18), nutrient broth (15), and phosphate buffer 

(168). Observations from experiments with antimicrobial agents, heat 
shock or prior adaptation to extreme pH or aw conditions were excluded 
as inclusion leads to a more complex model and a more unbalanced data 
set, often leading to heteroscedasticity. Details and references of the data 
sources are included in Table SI-1 in the SI. 

Data sources for validation of the predictive model 

The model was validated for predicting inactivation of S. enterica 
using data from other publications. The model was also tested for its 
validity to predict inactivation of other genera. D-values from 2483 
experiments were collected from 118 articles published between 1968 
and 2013 on thermal inactivation (laboratory media: 932; meat: 618; 
dairy: 505; egg 263; nuts: 113, fruits: 68; fish: 18; vegetables: 18). 
These included 985 new data sets for S. enterica (30 strains + cocktails 
heated in or on media, egg, meat, fish, fruits, nuts, dairy), vegetative 

cells of Clostridium perfringens (129, meat and media), Cronobacter spp. 
(originally named: Enterobacter sakazakii, 79 data sets from dairy and 
media), E. coli (259, meat, media, dairy, fruit), Listeria monocytogenes 
(801, media, dairy, egg, meat, fruit, vegetables), Staphylococcus aureus 
(81, media, dairy, vegetables), Y. enterocolitica (61, dairy, meat) and 
eight other species (88 data sets from four genera (in dairy, meat, 
media) see Table 1 and SI1). Ranges of the conditions in the experi-
ments reported in the references providing validation data were: T 47 - 
90 ( ◦C); aw 0.2 - 1; pH 3 - 10; sugar 0 - 0.7 (m/m); sodium chloride 
0–0.201 (m/m) and fat 0–1.0 (m/m). Observations in foods with 
artificially adapted aw or at 126 ◦C were excluded from data retrieved 
from He et al. (2013; peanut butter with added moisture) and Phun-
gamngoen et al. (2011; dried cabbage). Details of foods and media, 
experimental condition ranges, and references of the data sources are 
included in Table SI-1 tab A in the SI. 

Supplementary sources of composition of food products and laboratory 
media 

Description of the conditions in food products and media used in 
many articles are limited, often even lacking information on water 
activity, pH or contents. Information on composition of foods and 
commonly used commercially supplied laboratory media is not avail-
able decades later and can only be assumed to be similar to foods and 
media currently available on websites of the same or other suppliers. 
Missing data were complemented with data from similar (mostly 
generic) foods, mostly from the USDA food composition database 
(FoodData Central, 2021). A list of these sources is provided in 
Table SI-1 (sheet B: per paper and sheet C: data from one or more 
papers used as standard value). 

Water activity 
In many publications, the water activity of the heating medium or 

food product was not reported. Most of the missing values were sup-
plemented with data from other papers, using similar products. A list of 
these sources is provided in Table SI-1 tab C. 

A calculation tool (Rouweler, 2013) was used to estimate the 
remaining missing 322 water activities (192 data sets (DS) ≥ 0.99; 0.99 
> 67 DS ≥ 0.98; 0.98 > 38 DS ≥ 0.95; 0.95 > 22 DS ≥ 0.73; 3 DS at aw =

0.61) from the composition of the laboratory media (230 DS) and beef 

logD(i,min) = β̂0 + β̂1T(i,∘C) + β̂20.993 + β̂30.9932 + β̂46.5 + β̂50.046 + β̂6T(i,∘C)0.993 + β̂7T(i,∘C)0.9932 + εi (3)  

logD(i,min) =

(

β̂0 + β̂20.993+ β̂30.9932 + β̂46.5+ β̂50.046
)

+

(

β̂1 + β̂60.993+ β̂70.9932
)

T(i,∘C) + εi (4)   
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and chicken gravy (92 DS). The tool is freely available from the world 
wide web and is added to the SI for the sake of traceability. The parts of 
the formula used from the tool, in this paper applied for NaCl 0.05% - 9% 
(278 DS), sugars (glucose ≤ 9% (156), fructose 30% and 70% (4), su-
crose 26%− 70% (24) and lactose 0,3% (45)) and polyols (glycerol 
30%− 70% (6) and sorbitol 30%− 70% (4)) is included in Table SI-1 
sheets C and D. 

pH 
For most D-values, the pH of the heating medium or food product 

was provided in the original publication, related publications (usually 
the same research group), books or from websites of suppliers of labo-
ratory media (although recipes possibly changed since publication). A 
list of these sources is provided in Table SI-1 sheets B and C. 

Variability between and with genera/species 

To evaluate similarity of thermal inactivation kinetics, variability 
between the seven species of seven genera with enough observations (N 
> 60, Table 2) and within these species were compared, using two 
methods:  

1 Comparing the mean prediction errors (observed – predicted; 
(Table 3)  

2 Comparing the intercepts β0,species of each species in a combined 
validation regression (observed vs. predicted; Table SI-2). 

Statistical and graphical software 

All statistical analyses were performed using R version 3.6.2 (R Core 
Team, 2019) with the RStudio interface version 1.2.5033 (RStudio, 
2019). The SI provides details on the functions used in R:  

• ‘stats’ package: ‘model <- lm(formula)’; ‘plot (model)’; ‘aov’; 
‘TukeyHSD’.  

• ‘car’ package: ‘vif(model)’ 

Graphs were made with Microsoft Excel ® Office 365 ProPlus. 

Results 

Preliminary secondary inactivation model for Salmonella enterica 

Fig. 1A shows the single regression scatter plot of 521 logD vs T with 
p(H0: βT = 0) = 0.24, a residual standard error (RSE) of 0.883 logD and 
R2 < 0.001 for S. enterica, indicating there is essentially no mean effect of 
T on logD, due to relevant effects of other relevant variables. By adding 
aw as a linear predictor, the p-values of the regression coefficients for 
both temperature as well as aw are lowered to < 1.10− 16 and the 
adjusted R2 for this model is 0.46. This clearly shows that it is essential 
to adjust for the effect of differences in aw, as the experiments include 
low aw foods such as peanut butter (aw 0.33 - 0.7), chocolate (0.45), 
chocolate syrup (0.75–0.83), liquid egg (0.75–0.998) and media 
(0.7–0.998). Adding aw

2 , pH, sugar and the multiplicative effects of T.aw 
and T.aw

2 further improves the model (Eq. (2) in Methods). Table 1 shows 
the coefficients of all predictor variables (mean β̂, standard error and ẑ 
= − 1/β̂ for independent linear effects) of this predictive inactivation 
model for S. enterica. The probabilities p of the type I error (falsely 
rejecting H0: β = 0) for each coefficient are 0.0012 or (much) lower, the 
RSE is 0.458 logD and the adjusted R2 is 0.73 (Table 1). Model checking 
with R-functions ‘plot(model)’ and ‘vif(model)’ resulted in acceptable 
deviations from modelling assumptions concerning residuals (homo-
scedasticity, normal distribution, Cook’s distance (measure for leverage) 
< 1 and variation inflation factors, see Methods and Glossary). The 
partial regression plots for T (Fig. 1B) at aw = 0.993 and aw = 0.400 
show a homoscedastic partial model for T and the effect of aw on T: zT 
decreases from 40 ◦C at aw = 0.4 to 6 ◦C at aw = 0.993. Similar single 
regression and partial regression plots at T = 55 ◦C and T = 72 ◦C for aw 
(Fig. 2), for pH (Fig. 3) and sugar content (Fig. 4) show the effect of 
adding predictors other than T as decrease of variance of the residuals 
and an improvement in homoscedasticity (constant variance). The mean 
model coefficients in Table 1, visualized in the partial regression plots, 
indicate that:  

• LogD is decreasing linearly with increasing temperature, but less 
rapidly at lower aw (Fig. 1).  

• Lowering the aw increases the thermal resistance, but less so at lower 
temperatures, and there seems to be a limit to the lowering effect of 

Table 2 
Results of validation of the thermal inactivation model (Eq. (2) and Table 1) based on 521 S. enterica data sets. N = number of observations; PI99 = 99% prediction 
interval; P = proportion of all observations (%), above (expected: 0.5%) and outside (expected: 1%); Mean = mean of prediction errors (observed minus prediction); 
β0 and β1 are the intercept (expected 0) and the slope (expected 1) respectively of the model validation regression (observed vs. predicted logD). Measures of precision 
are SD (standard deviation) of the prediction errors and RSE (residual standard error) of the validation regression. For comparison, RSE’s are included of the multiple 
regression model fit (0.46) and the single regressions (RSE ’06) of logD vs. T, each with their own β0 and βT, from Van Asselt & Zwietering (2006). See Methods and 
Glossary (in the SI) for differences in calculations.  

Species Observed Above PI99 Outside PI99 Accuracy Precision Figure no.  
N N P N P Mean β0 

a β1 
a SD RSE RSE ’06 

Model fit             
S. enterica 521 1 0.2% 5 1.0%     0.46  1-4 
Model validation             
All species 2483 49 2.0% 87 3.5% 0.20 0.19− 63 0.81− 47 0.59 0.54   
Species with N > 60 2395 48 2.0% 61 2.8% 0.22 0.22− 83 0.86− 27 0.58 0.52              

Fits ‘06  
S. enterica (new data) 985 7 0.7% 21 2.1% 0.05 0.04− 1.3 0.81− 17 0.59 0.56 0.72b 5 
C. perfringens 129 7 5.4% 8 6.2% 0.61 0.69− 36 0.32− 8 0.77 0.41 0.37 8 
Cronobacter spp. 79 0 0% 0 0% 0.09 0.10− 1.0 0.96 0 0.47 0.46 0.47 10 
E. coli 259 17 6.6% 19 7.3% 0.50 0.49− 49 0.93− 1.3 0.65 0.42 0.62 7 
L. monocytogenes (LM) 801 7 0.9% 8 1.0% 0.30 0.29− 81 0.96− 1.8 0.48 0.37 0.40 b 6 
S. aureus 81 10 12.3% 11 13.6% 0.56 0.46− 10 0.59− 11 0.92 0.54 0.47 9 
Y. enterocolitica 61 0 0% 2 3.3% − 0.10 − 0.10 0 1.01 0 0.45 0.44 0.44 11 
Campylobacter spp. 35 0 0% 5 14.3% − 0.71 − 0.35− 1.6 0.66− 2 0.83 0.41 0.50 SI-1 
Listeria spp. (not LM) 24 0 0% 0 0% 0.19 0.18− 7 0.93− 2 0.24 0.10  SI-2 
S. pyogenes 9 1 11.1% 1 11.1% − 0.01 − 0.58− 1.7 0.52− 2 0.63 0.39 0.57 SI-3 
Vibrio spp. 20 0 0% 15 75.0% − 1.4 − 0.19 0 0.23− 9 1.64 0.22 0.46 SI-4  

a log(p) of significance levels for rejecting H0 (β0 = 0) and H0 (β1 = 1) are indicated as superscripts of β0. β0 
x indicates β0 with p(β0 = 0) < 10x. β0 

0 indicates p > 0.1. 
b Without experiments in low aw food products: chocolate (S. enterica) and salted products (L. monocytogenes). 
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aw (Fig. 2). This multiplicative effect of temperature and aw cor-
roborates results of earlier studies e.g. by Jin et al. (2020).  

• LogD increases with pH, although a limited number of observations 
at pH above 7.5 suggest that the effect of pH may follow an optimum 
curve (Fig. 3). The limited number of observations above pH=7.5 do 
not supply enough information to fit a polynomial of pH describing 
such an optimum curve.  

• Increasing the sugar content further increases logD, suggesting that 
lowering aw by adding sugar, known to protect vegetative cells 
(Gibson, 1973; Corry, 1974; Sumner et al., 1991), is more effective 
in increasing resistance to thermal inactivation than lowering aw 
with other means (low moisture or adding other components 
affecting aw, such as NaCl and other salts). In the literature data 
used, experiments in heating media or food products with sugar 
contents above 0.7 m/m (all from Gibson, 1973) show logDs lower 
than the mean fit, suggesting the effect of sugar content may follow 
an optimum curve (Fig. 4). 

Validation with other S. enterica data 

Inactivation logDs were predicted using the model for S. enterica (Eq. 
(2) with mean coefficients from Table 1) and values of T, aw, pH and 
sugar content from 985 data sets on this species retrieved from other 
publications. The results of the validation, comparing observed logDs 
(reported) and predicted logDs, are presented in Table 2 and in Fig. 5. 

The mean of the prediction errors (0.05 logD) and the intercept (β0 =

0.04 logD) of the regression of observed vs. predicted logD are related 
measures of systematical error as part of the evaluation of accuracy. As p 
(β1 = 0) = 0.045, a slight constant underestimation of logD is likely. 

The slope (β1 = 0.81) of the regression model of observed vs. pre-
dicted logD is another measure of accuracy: the deviation from the ex-
pected slope of 1 is highly significant: p(β1 = 1) < 10− 17, indicating 
underestimation of low logD (short heating, usually at higher temper-
atures) and overestimation of high logD (long heating, usually at lower 
temperatures). 

A higher observed than predicted logD indicates a fail-dangerous 
underestimation of logD required. The proportion of predictions above 
the 99% prediction interval (PI99) has an expected value of 0.5%. Seven 
of the 985 observed logDs (0.71%) were above the PI99, one of which at 
a low predicted logD. 

The standard deviation (SD) of the observed – predicted logD and 
the residual standard error (RSE) of the validation regression of 
observed vs. predicted logD are measures of precision of the predictive 
model (for calculations, see the Glossary in the SI). The SD is the pre-
cision of observations relative to the line indicating identical values of 
observed and predicted logD in Fig. 5. The RSE is the precision relative 
to the regression line of observed vs. predicted logD in this figure and is 
adjusted for the effect of systematical errors quantifies as the validation 
regression intercept β0 and slope β1. These measures can be compared 

to the measures of precision of the predictive regression model. The RSE 
of the validation regression is 0.59 logD, which is higher than the ex-
pected 0.458 logD (the RSE of the predictive model). 

Validation of applicability for vegetative cells of other bacteria genera 

The model was then also tested to see how well it could predict the 
inactivation of vegetative cells of the nine other genera. The results of 
the validation, comparing observed logD (reported in literature) and 
predicted logD as explained for the validation with new data of 
S. enterica, are presented in Table 2 for the combined data and per 
species. The validation results are presented in graphs for the species 
for which the more than 60 observations were found: L. monocytogenes 
(Fig. 6), E. coli (Fig. 7), C. perfringens (Fig. 8), Staphylococcus aureus 
(Fig. 9), Cronobacter spp. (Fig. 10) and Y. enterocolitica (Fig. 11). 
Figures for the other genera/species are included in the SI. 

The mean prediction error and the intercept β0 show positive 
numbers for most species, indicating an underestimation of logD. The 
values overall are near 0.20 for all data combined and range from − 0.10 
(Y. enterocolitica) to 0.49 (E. coli) and 0.69 (C. perfringens) for species 
with more than 60 observations (Table 2). These systematic errors are 
not large in comparison to the RSE of the predictive model (0.458 logD) 
and the resulting 99% prediction interval (PI99) of 2.368 logD, but 
statistically significant from 0 for all species except for Cronobacter spp. 
(p = 0.09) and Y. enterocolitica (p = 0.11). 

The validation regression slope β1 is 0.81 for all species combined 
(2483 observations, Table 2), similar to that of S. enterica alone (Fig. 5, 
895 observations). Limiting the validation to the data from the first 
seven species in Table 2 (61 to 895 observations per species) results in a 
slope of 0.86. The slopes for most species statistically significantly differ 
from the expected 1, but differences are small for Listeria monocytogenes 
(0.96; p = 0.02; Fig. 6), E. coli (0.93; p = 0.05; Fig. 7), Cronobacter spp. 
(0.96; p = 0.66; Fig. 10), and Y. enterocolitica (1.01; p = 0.88; Fig. 11). 
For C. perfringens (Fig. 8), the slope is 0.32 (Table 2), partly due to 
leverage from outliers, possibly caused by spore formation (100 of 127 
observations were in heated meat products). Outliers have less effect on 
the slope of the predictions for S. aureus (Fig. 9), which is 0.59 (Table 2). 

The proportion of logD above the PI99 is highest for C. perfringens 
(5.4%), E. coli (6.6%) and S. aureus (12.3%) and is 2% for all species 
combined (Table 2). Lifting the whole PI99 by increasing the intercept of 
the predictive model with 0.20 logD would decrease the proportions of 
observations above the PI99 to 0.8% for all species, to 1.6% for 
C. perfringens, to 0.8% for E. coli, to 0.1% for L. monocytogenes and to 
0.5% for S. enterica. This is not the case for S. aureus, for which still ten 
out of 81 (12.3%) of observed logD would be above the prediction in-
terval. Of these ten data sets, eight are from Kornacki & Marth (1989) 
who found very high D-values at 58 ◦C and at 77–79 ◦C in cow milk. 

The SDs of the prediction errors are highest for S. aureus (0.92 logD), 
C. perfringens (0.77) and E. coli (0.65) and these SDs include the effects of 

Table 3 
Mean prediction errors (observed minus predicted) of logD of seven species (2395 data sets) and the results of analysis of variance post hoc pairwise testing of dif-
ferences (d) between these means using Tukey-adjusted probabilities p of falsely rejecting H0 (d = 0). < indicates that p < 1.10− 6. The last two columns show the 
standard deviations of the prediction errors per species (SDerrors) and the result of the Levene’s test for comparing these standard deviations with the standard deviation 
of the means of the seven species (0.28 logD), where p is the probability p of falsely rejecting H0 (SD of seven means of errors = SD of errors of one species). A similar 
table, comparing intercepts of a validation regression model for all seven species, is included as Table 3.  

Species n Mean error Tukey-adjusted p (pairwise comparison) SDerrors Levene’s   
(logD) (/RSE)a SE CP CS EC LM SA (logD) test (p) 

S. enterica new data (SE) 985 0.05 11%       0.58 0.09 
C. perfringens (CP) 129 0.61 133% < 0.46 0.40 
Cronobacter spp. (CS) 79 0.09 20% 0.99 < 0.46 0.15 
E. coli (EC) 259 0.50 109% < 0.35 < 0.42 0.48 
L. monocytogenes (LM) 801 0.30 66% < < 0.008 < 0.37 0.56 
S. aureus (SA) 81 0.56 122% < 0.99 < 0.97 2.10− 4  0.73 0.20 
Y. enterocolitica 61 − 0.10 − 22% 0.28 < 0.29 < < < 0.44 0.52  

a As proportion of the RSE of the predictive model (0.46 logD) in Eq. (2) with coefficients from Table 1. 
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the accuracy errors (mean, β0 and β1) described above (Table 2). The 
RSEs of the validation regressions (Table 2) are all close to the RSE of the 
predictive model (0.458) and are close to the RSEs of the single 
regression models presented by Van Asselt & Zwietering (2006) in their 
analysis, in which they allow the slope (and therefore z) to vary and 
exclude data with low aw. 

Differences within a species and between species or genera 
The mean prediction errors (observed – predicted logD), part of ac-

curacy evaluation in Table 2, were compared pairwise (with Tukey HSD), 
after analysis of variance of the residuals. The differences are small - 
although most are statistically highly significant - when expressed as 

Fig. 1. Effect of temperature in the thermal inactivation model fitted from 521 literature data sets for S. enterica. Graph A: Single regression of logD vs. T; Graph B: 
partial regression for T of the fitted multiple regression model, using fixed values of aw (0.400: open squares and 0.993: closed circles), pH (6.5) and sugar content 
(0.046 m/m). 
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proportions of the RSE of the preliminary prediction model of 0.4580 logD 
(11% - 133%, Table 3) and 5.2 times lower (2% - 26%) compared to the 
width of the 99% prediction interval (PI99 = 2.368 logD, Figs. 5 through 

11). The standard deviations for each species vary from 0.38 to 0.72 logD, 
higher than the standard deviation of the seven intercepts (0.26 logD), 
albeit not statistically significantly so (Table 3, Levene’s p ≥ 0.05). 

Fig. 2. Effect of water activity in the thermal inactivation model fitted from 521 literature data sets for S. enterica. Graph A: single regression plot logD vs. aw. Graph 
B: Partial regression for aw at fixed values of T (55 ◦C: open squares and 72 ◦C: closed circles), pH (6.5) and sugar content (0.046 m/m). 
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A similar analysis, comparing intercepts β0 of validation regressions 
(observed vs. predicted logD) shows almost identical results (Table SI-2 in 
the SI). 

These results show that the variability between common pathogenic 
species of seven bacteria genera is smaller than or at least similar to the 
variability within species. 

General discussion 

Limitations of analyses of literature data 

The data set is constructed from a large number of (mostly) inde-
pendent experimental data sets, obviously not forming a full factorial or 
balanced fractional factorial randomized block design. The effects of 
many combinations of the four predictors for inactivation, namely, T, 
aw, pH and sugar content have not been published for all species and 
food or media types presented here. The results therefore should not be 

Fig. 3. Effect of pH in the thermal inactivation model fitted from 521 literature data sets for S. enterica. Open squares, dotted line: single regression plot logD vs. pH. 
Closed circles, solid line: Partial regression for pH at fixed T (72 ◦C), aw (0.993) and sugar content (0.046 m/m). 

Fig. 4. Effect of sugar in the thermal inactivation model fitted from 521 literature data sets for S. enterica. Open squares, dotted line: single regression plot logD vs. 
sugar. Closed circles, solid line: Partial regression for sugar at fixed T (72 ◦C), aw (0.993) and pH (6.5). 
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considered the formal result of experimental hypothesis testing. It can 
only be used to form hypotheses for experiments that do follow a formal 
design. Using all of the data presented here for validating the S. enterica 
model, to fit an overall model for all species, would further decrease the 
balance of design and introduce more heteroscedasticity in the regres-
sion model. 

For linear regression, formally, all observations of the predictor 
variable should be independent. This is not true for all predictor vari-
ables, as the values of aw, pH and sugar contents are assumed identical, 
based on one or few measurements or even assumptions, while the value 
should formally be determined for each individual D-value observed. 

Fig. 5. Observed vs. predicted logD of inactivation of S. enterica. Predictions were made with the model for inactivation of S. enterica (fitted from 521 data sets) using 
T, aw, pH and sugar content of 985 new data sets providing logD. 99% PI = 99% prediction interval for a single prediction. The formula shows the slope and intercept 
of the regression line of observed vs. predicted logD (Obs vs Pred). 

Fig. 6. Observed vs. predicted logD of inactivation of Listeria monocytogenes (LM, 801 data sets). Predictions were made with the model for inactivation of S. enterica 
using T, aw, pH and sugar content from the LM data. 99% PI = 99% prediction interval for a single prediction. The formula shows the slope and intercept of the 
regression line of observed vs. predicted logD (Obs vs Pred). 
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Fig. 7. Observed vs. predicted logD of inactivation of Escherichia coli (EC, 259 data sets). Predictions were made with the model for inactivation of S. enterica using T, 
aw, pH and sugar content from the EC data. 99% PI = 99% prediction interval for a single prediction. The formula shows the slope and intercept of the regression line 
of observed vs. predicted logD (Obs vs Pred). 

Fig. 8. Observed vs. predicted logD of inactivation of vegetative cells of Clostridium perfringens (CP, 129 data sets, in meat and media). Predictions were made with 
the model for inactivation of S. enterica using T, aw, pH and sugar content from the CP data. 99% PI = 99% prediction interval for a single prediction. The formula 
shows the slope and intercept of the regression line of observed vs. predicted logD (Obs vs Pred). 
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Causes of residual variability 

The residual variability within species most likely is caused by:  

• Inaccuracy of assumptions regarding aw, pH and sugar contents not 
provided in the original articles. The process of estimation used is 
likely to decrease to the predictive value of the model.  

• Variability in composition – besides aw, pH and sugar - of heating 
media or food products and the culturing conditions of the bacteria 
before and after thermal inactivation. Adjusting for these effects on 
logD as well as on the relations between logD and the other pre-
dictors (e.g. carbohydrates and other macronutrients affecting water 

activity at high temperatures (Jin et al., 2019)), would result in a 
narrower prediction interval.  

• Complex foods are sometimes not homogeneous and may have 
different microvariations in water activity values.  

• Variability between experiments, especially due to differences in 
selected heating conditions and methods. 

• Variability between experiments performed under identical condi-
tions (reproduction variability).  

• Variability within experiments (experimental variability).  
• Strain variability, including strains with high thermal resistance. 

Most data in the study at hand were from experiments conducted 
with cultures in the stationary phase. Conditions during culturing of 

Fig. 9. Observed vs. predicted logD of inactivation of Staphylococcus aureus (SA, 81 data sets). Predictions were made with the model for inactivation of S. enterica 
using T, aw, pH and sugar content from the SA data. 99% PI = 99% prediction interval for a single prediction. The formula shows the slope and intercept of the 
regression line of observed vs. predicted logD (Obs vs Pred). 

Fig. 10. Observed vs. predicted logD of inactivation of Cronobacter spp. (CS, 79 data sets). Predictions were made with the model for inactivation of S. enterica using 
T, aw, pH and sugar content from the CS data. 99% PI = 99% prediction interval for a single prediction. The formula shows the slope and intercept of the regression 
line of observed vs. predicted logD (Obs vs Pred). 
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bacteria and the stage of growth (e.g. exponential versus stationary 
phase) may trigger stress responses including the heat stress response. 
Therefore, data from experiments with heat shocks were not included in 
model fitting. In addition to extrinsic factors that can influence heat 
resistance, different strains of a given species may have intrinsically 
different heat resistances. 

Variability in heat resistance of strains of the same species tested 
under the same conditions has been demonstrated for various foodborne 
pathogens, e.g. for E. coli (Mercer et al., 2015) and S. enterica (Lianou 
and Koutsoumanis, 2011) and for L. monocytogenes (Aryani et al., 2015; 
Van der Veen et al. 2009). In a detailed study, Aryani et al. (2015) 
quantified experimental, reproduction, and strain variability in heat 
resistance using 20 strains of L. monocytogenes, which showed that strain 
variability was much larger than reproduction variability, which was in 
turn larger than experimental variability. Strain variability can be 
attributed to differences in the genetic make-up of different strains of the 
same species. In L. monocytogenes, for instance, the presence of a plasmid 
carrying the gene encoding for the heat shock protein ClpL leads to 
increased heat resistance of cells (Pöntinen et al., 2017). Another 
example in L. monocytogenes is a mutation in the gene encoding the 
heat-shock repressor CtsR, leading to increased heat resistance (Kar-
atzas et al., 2003). In the case of E. coli and S. enterica, a major deter-
minant in the heat resistance of cells is the presence of a locus of heat 
resistance, encoding several putative heat-shock proteins, proteases, and 
transport proteins (Mercer et al., 2015, 2017). Clearly, variability in 
heat resistance can have many different causes, some of which due to 
biological responses. 

Suggested generic predictive model 

The proportion of fail-dangerous predictions over the 99%-predic-
tion interval for all species is 2% (expected 0.5%). Adjusting the pre-
dictive model (Eq. (2) with coefficients from Table 1) with results from 
validation for species with N > 60 from Table 2 results in Eq. (5).   

Where (see Table 2):  

• β0val = 0.22 logD, the validation regression intercept β0 for species 
with N > 60, suggested as a required safety measure.  

• β1val = 0.86, the validation regression slope β1 for species with N >
60. It is an optional safety measure for negative logD.  

• RSEfitted = 0.4580, the residual standard error of the predictive 
model (Table 1). 

• TPI = the margin of the prediction interval, expressed as the stan-
dardized residual of the predictive model, following a T-distribution 
with d.f. = 513. TPI95 = 1.965 and TPI99 = 2.585. An acceptable 
margin should be a risk management decision, based on a risk 
assessment including the probability distributions of the thermal 
resistance of strains common to the product to be heated and the ef-
fect of survival of the heating step. 

With the constant increase with β0val = 0.22 logD alone, the pro-
portions of the observed logDs above the 99%-prediction interval of the 
model already are close to the expected 0.5% or lower, except for 
vegetative cells of C. perfringens (possibly due to spore formation in 
experiments) and S. aureus (for which higher resistance has been re-
ported), as discussed above. 

The model is applicable within the observed ranges of T, aw, pH and 
sugar content (see Methods section and Figs. 1 through 4) and should 
include an assessment and acceptation of a risk of exceeding the upper 
limit of a chosen prediction interval. 

Application of the model with β0val = 0.22 logD to pasteurization of 
milk (aw 0.993, pH 6.5, sugar content 0.046 m/m) at 76 ◦C would result 
in a D of 1.34 s at the upper limit of the 95% prediction interval. This D 
would be 3.27 s when applying the optional safety measure of multi-
plying logD with β1val = 0.86 before adding 0.22 logD and the margin of 
the prediction interval. 

Fig. 11. Observed vs. predicted logD of inactivation of Yersinia enterocolitica (YE, 61 data sets). Predictions were made with the model for inactivation of S. enterica 
using T, aw, pH and sugar content from the YE data. 99% PI = 99% prediction interval for a single prediction. The formula shows the slope and intercept of the 
regression line of observed vs. predicted logD (Obs vs Pred). 

log D(min) = β0val + β1val
(
10.23 − 0.1568 T(∘C) − 33.25 aw + 32.02 aw

2 + 0.1776 pH + 1.484 Sugar(m/m) + 0.5599 T(∘C)aw − 0.5754T(∘C)aw
2)

+TPIRSEfitted
(5)   
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Conclusions 

A predictive model for thermal inactivation of vegetative bacteria 
was based on data from experiments in a number of different foods and 
media with just S. enterica. The model adjusts the inactivation effect of 
temperature for the effects of aw, sugar and pH. The model, validated 
with data from a large variety of genera, species and strains (including 
heat sensitive and heat resistant strains), heated in a variety of foods and 
media reported in literature, predicts the inactivation of vegetative 
bacteria of other genera and their species surprisingly well. The vari-
ability of thermal resistance within species has been shown to be larger 
than the variability between genera, based on the precision of the 
validations:  

• The similarity of the variability of logD in the validations and in the 
prediction model.  

• The small standard deviation of intercepts (constant differences in 
means) of logD of species compared to the overall standard deviation 
of prediction errors. 

A further decrease of the RSE and therefore the width of the logD 
prediction interval most likely is possible by adjusting for other 
characteristics of the heating media or food products and for condi-
tions of culturing, isolation, storage, inoculation, heating/cooling, and 
enumeration. 

The evaluation of the predictive model for seven of the species 
combined shows:  

• A systematic underestimation of logD with 0.22 (expected 0);  
• A prediction bias with a slope of 0.86 (expected: 1), indicating:  

∘ Underestimation of low logD (short heating, usually at higher 
temperatures);  

∘ Overestimation of high logD (long heating, usually at lower 
temperatures). 

Both accuracy errors suggest the possibility for improvement by 
adjusting for between-study variability and the effects of other differ-
ences in composition of heating media or food products, heating con-
ditions and culturing conditions. 

After an increase of the predicted logD with 0.22, the proportions of 
the observed logDs above the 99%-prediction interval of the model are 
close to the expected 0.5% or lower for most genera. Multiplying 
negative logD’s with 0.86 before adding 0.22 to logD would be an extra 
safety measure to consider. 

The findings suggest that the presented predictive model is appli-
cable for designing – to be followed by validation - the thermal inacti-
vation of a variety of vegetative pathogenic foodborne bacteria common 
to the food chain. 
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