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Genetically encoded organic molecules are the com-
mon chemical language that unites all life, from single 
cells to communities of organisms. Whereas many bio-
chemical compounds are shared among large swaths 
of the tree of life, some molecules are biosynthesized 
only by a select subset of organisms and/or are specific 
to certain ecological niches. The terms natural products, 
specialized metabolites and secondary metabolites are often 
used interchangeably for these molecules (although 
see refs1–3 for in- depth discussions of the definitions 
of these terms and their differences). They range in 
size, shape and complexity, from small terpenes and 
phosphonates to large and heavily post- translationally 
modified gene- encoded peptides; other prominent  
classes include polyketides, non- ribosomally synthesized 
peptides, alkaloids, glycosides and phenylpropanoids.

Specialized metabolites have evolved to impart diverse 
cellular intraspecies and interspecies functions that 
perform key roles in physiology and in simple to com-
plex ecosystems. These metabolites provide organisms  
— from single- cell microorganisms to multicellular 
plants and animals — with some of their most distin-
guishing chemical features of colour, smell, taste or tox-
icity. In other words, the blend of specialized metabolites 
endowed to an organism makes it unique. Production 
of a siderophore or antioxidant can enable an organism 
to thrive in an environment hostile to others; hormones 
allow different tissues of a complex organism to commu-
nicate while carrying out specialized tasks; and toxins, 
venoms, scents and pigments shape the role an organism 
plays in its ecosystem. Besides their natural functions, 
these molecules are widely applied in human society, 
as medicines, crop protection agents, food additives, 
colourants and fragrances. Molecules such as penicil-
lin, oestradiol and caffeine are just a small selection of 

nature’s chemical bounty that has had profound societal 
impact (fig. 1a).

Most specialized metabolites have been identified 
through experimental discovery approaches that take 
advantage of a chemical or biological feature of the 
expressed molecule to guide its isolation. The rapid accu-
mulation of genomic and transcriptomic information in 
recent years has revealed that the metabolic capacity of 
virtually all organisms is vastly underappreciated, with 
millions of additional molecules awaiting discovery4–6. 
Genome mining seeks to harness gene- based big data 
methods to expedite the concomitant discovery of  
specialized metabolites and their biosynthetic genes. 
With increasing technological improvements in genome 
sequencing, early mining experiments of relatively sim-
ple microbial genomes have been followed in recent 
years by much more complex genomes and metagen-
omes of plants, animals and other eukaryotic organisms 
that differ in the organization of their biosynthesis genes 
(fig. 1). Additionally, to truly arrive at a deeper under-
standing of life’s chemistry, genome mining approaches 
are being developed that provide insight into the 
functions that these molecules perform in physiology  
and ecology. Here, we address the why, what, where and 
how of genome mining and discuss key challenges in 
deciphering what nature is ‘verbalizing’.

Why we mine and what to mine
Natural chemicals have been identified dating back 
to 1803, with the isolation of morphine from opium 
poppy7. Historically, specialized metabolites have been 
isolated and characterized from biological samples col-
lected from the environment or from laboratory- grown 
organisms, whereby organic extracts of tissues or  
cells are chemically and biologically analysed. Whereas 

Natural products
Organic compounds originating 
from living organisms or natural 
sources, often prized for their 
medicinal properties or other 
biological activities of utility to 
humanity. The term is typically 
used to refer to products  
of secondary metabolism,  
but also includes primary 
metabolites.

Specialized metabolites
Natural compounds of limited 
clade- specific or niche- specific 
distribution, known or 
presumed to have a specialized 
role in ecology or physiology.
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analytical chemistry tools continue to improve in sen-
sitivity and speed8, the past decades have shown a clear 
deceleration of the discovery of novel structure chemo-
types versus the rediscovery of well- known molecular 
families with subtle chemical modifications9.

Genome mining has the potential to increase the 
discovery rate and facilitate the characterization of 
novel molecules and biosynthetic pathways. For exam-
ple, the model organism Streptomyces coelicolor A3(2) 
(ref.10) was heavily studied for about half a century 
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Secondary metabolites
Metabolites that are not 
strictly required for growth  
and development, as opposed 
to primary metabolites,  
but are often important for 
survival of an organism  
in its environment. in the 
classical meaning, secondary 
metabolites do not include 
proteins or large gene- derived 
peptides that are not post- 
 translationally modified by 
enzymes.

Siderophore
A metabolite that binds 
(chelates) iron ions from  
the environment and is 
re- imported back into a cell  
for iron acquisition. Other 
‘metallophores’ bind trace 
metals such as zinc and 
copper.

Biosynthetic genes
genes encoding enzymes that 
catalyse transformations in a 
biosynthetic pathway.
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before the publication of its genome sequence, with 
around a dozen (types of ) specialized metabolites 
discovered. Genome mining has since led to the dis-
covery of seven additional metabolites from diverse 
classes: the non- ribosomal peptides coelibactin10 and 
coelichelin11, the sesquiterpene (+)- epi- isozizaene12, 
2- alkyl-4- hydroxymethylfuran-3- carboxylic a ci ds  13, 
t he  ribosomally synthesized and post- translationally  
modified peptide (RiPP) SCO-2138 (ref.14), the poly-
ketide coelimycin P1 (ref.15) and a new set of partially 
characterized arsenopolyketides16.

Mining genomes has key advantages over the use 
of analytical chemistry techniques alone. First, min-
ing can access specialized metabolites that may not 
be produced under the growth conditions studied. 
Second, the approach inherently connects any discov-
ered molecules to their biosynthetic genes, allowing for 
heterologous expression and bulk production. This fac-
tor is particularly significant because many medicinally 
valuable molecules are isolated from dwindling natural 
resources or organisms that are difficult to cultivate, and 
genome sequencing typically requires much less biomass 
than structural analytics.

The motivations for genome mining have largely 
tracked those of the natural products community at 
large: historically, this has primarily been the explora-
tion of life’s biochemical prowess, the understanding of 
physiology and the pursuit of therapeutics. In the past 
century, the first specialized metabolites were linked to 
their biosynthetic genes usually from cloned DNA frag-
ments that could be used to experi mentally complement 
random mutations carried in those genes17–19. By the 
2000s, genome sequencing had started to mature, and 
the biosynthetic logic of some major classes of medicinal 
natural products, including polyketides, non-ribosomal 
peptides and terpenoids, had been deciphered to some 
extent. Newly sequenced genomes often harboured 
homologues of genes encoding biosynthetic machinery 
for these classes of compounds, but had not been associ-
ated with a metabolic product. Heterologous expression 
of these ‘orphan’ biosynthetic genes resulted in the dis-
covery of several novel natural products, including tri-
terpenes from the Arabidopsis genome20 and the hybrid 
peptide–polyketide aspyridones from the genome 
of the model filamentous fungus Aspergillus flavus21. 
Since these proofs of concept, countless new mem-
bers of established major compound classes have been 
discovered through genome mining.

Genome mining is also contributing to the ongo-
ing fundamental search for chemical and biosynthetic 

novelty in nature. Several specialized metabolites har-
bouring chemical moieties unprecedented for their class, 
such as furanone22,23 and benzo[a]tetraphene24 polyket-
ides, and aminovinylcysteine- based RiPPs25, were dis-
covered through genome mining. Even among known 
specialized metabolites, there are numerous structures 
for which the biosynthetic machinery was recently eluci-
dated through genome mining, such as the piperazate26, 
thiotetronate27, oxazolone28,29, isoxazole30, alkyne31,32, 
N- nitroso33, and diazo34 moieties, polybrominated phe-
nolics from marine bacteria35, plant- like isoquinoline 
alkaloids in diverse fungi36 and vinca alkaloids from 
medicinal plants37. As new biosynthetic reactions and 
structural classes are discovered, our ability to reliably 
predict orphan genes coding for the biosynthesis of novel 
structural features will continue to improve. Still, there 
are many classes of specialized metabolites for which 
the genetic basis is still completely or mostly a mystery, 
such as the polycyclic ethers found in dinoflagellates38 
or the ladderanes produced by anammox bacteria39,40. 
Undoubtedly, numerous chemical features not repre-
sented among known specialized metabolites remain to 
be discovered through genome mining.

Our understanding of ribosomally synthesized pep-
tides has particularly benefited from the rise of genome 
mining, as their structures can often be fairly easily 
predicted from genomic data. Among these peptides, 
RiPPs41 are particularly noteworthy for their broad dis-
tribution across all three domains of life and our growing 
knowledge of their diversity of peptidic modifications42. 
Even before the genomic era, RiPPs already played 
important societal roles43; for example, the bacterial 
lanthipeptide nisin is a widely used food preservative44, 
and the marine cone snail- derived ω- conotoxin MVIIA 
(the synthetic analogue of which is known as ziconotide) 
has been developed into a drug (Prialt) for the ameliora-
tion of chronic pain45. New structural families of RiPPs 
continue to be discovered, such as the spliceotides46 and 
epipeptides47 from bacteria, dikaritins48,49 from fungi 
and the lyciumins50 from plants. Ribosomally derived 
specialized metabolites are not always RiPPs and range 
remarkably in size, from small molecules, such as the 
pyrroloquinoline alkaloid ammosamide51,52, to small 
proteins, such as the three- finger toxins from spitting 
cobras53, venom proteins from spiders54,55 and antimicro-
bial proteins in humans56. Similar discovery trends can 
be seen in the other major biosynthetic lineages, where 
the mining of genomes has resulted in the growth of 
chemical and biochemical knowledge.

In recent years, new motivations for genome min-
ing have emerged from two new areas of research: 
microbiomes and synthetic biology. In microbiome 
research, the mining of specialized metabolites and 
the genes encoding their biosynthetic machinery pro-
vides a window into the mechanisms responsible for 
key phenotypes mediated by the microbiome, such as 
pathogen suppression57,58 or host immunomodulation59. 
Moreover, it potentially enables the design of synthetic 
microbial consortia that can be used as live therapies 
or biopharmaceuticals60–62, based on genome- based 
prediction of the chemical capabilities of individual 
strains. In synthetic biology, pathways being mined from 

Ribosomally synthesized 
and post- translationally 
modified peptide
(riPP). A peptide 
biosynthesized through the 
action of tailoring enzymes  
on a ribosomally translated 
precursor peptide.

Heterologous expression
expression of one or more 
genes originating from one 
organism in another organism; 
often used to obtain higher 
production titres or to 
independently verify their 
chemical structure or biological 
function.

Fig. 1 | Life’s chemical diversity. a | Bacteria, fungi, plants and animals produce a wide 
range of specialized metabolites that help them thrive in their respective environments. 
b–d | There is a large disconnect between the number of taxonomic genera in the 
biosphere (based on the National Center for Biotechnology Information (NCBI) taxonomy 
database) (part b), the number of genomes available for these species (based on the  
number of species represented in the NCBI genome database) (part c) and the number  
of specialized metabolites isolated (based on the number of molecules ascribed to these 
classes of organisms in the Dictionary of Natural Products) (part d). There is likely great 
potential for discovering new metabolites from animals and protists, and identifying new 
biosynthetic pathways from plants, animals and protists. Algae includes green, red and 
brown algae, diatoms and dinoflagellates. Heterotrophic protists and archaea were not 
included due to the low number of specialized metabolites isolated from these organisms.
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genomes, mainly as a source of enzymological diversity, 
are starting to be used as ‘parts’ for metabolic engineer-
ing of novel molecules with desirable properties63. In the 
future, this approach may enable combinatorialization 
of enzymes64 or even computer- aided design65 to create 
‘new to nature’ molecules.

Where to mine
Bacteria
Genome mining is predicated on the availability of omics 
data; thus, growth in the field has relied on improve-
ments in sequencing technologies. To date, the major-
ity of genome mining has been conducted on bacterial 
genomes, which, given their comparatively small size and 
low repeat content, dominate publicly available genomic 
databases (fig. 1c). Further simplifying the mining pro-
cess within bacteria is their propensity to physically 
cluster genes in operons and biosynthetic gene clusters  
(BGCs; BOx 1) for cooperative biosynthesis of special-
ized metabolites. This has allowed researchers to read-
ily formulate hypotheses regarding the biosynthesis of 
molecules of interest, even in cases where substrates 
and enzymes have no precedent. Genes that cluster with 
another gene known or are suspected to be involved in 
the biosynthesis of a specialized metabolite are often 
promising candidates for the identification of other 
genes involved in their biosynthetic pathway.

Soil microorganisms, and in particular the actino-
mycetes, were already a popular source of specialized 
metabolites in the pre- genomic era and were thus obvi-
ous targets for early sequencing and mining efforts. 
The first genomes of Streptomyces, Salinispora and 
Saccharopolyspora species pre 2008 revealed that the 
actinomycetes were metabolically richer than originally 
thought, with many species dedicating over 10% of their 
genomic space to the production of dozens of specialized 
metabolites10,66–68. This trend has now been observed in 
many other environmental bacteria, especially those 
with large genomes in excess of 10 Mb. The filamen-
tous marine cyanobacterium Moorea producens, for 
instance, devotes roughly one- fifth of its genome in this 
manner69. Due to decreasing costs of bacterial genome 
sequencing, recent efforts have ballooned in scale to 
mining 10,000–100,000+ genomes at a time for novel 
molecules70,71.

The specialized chemistry of uncultivated bacteria 
that dominate the microbiota of animals, plants and 
other host organisms has also been examined through 
genome mining, highlighting the importance of micro-
bial metabolites in modulating health and disease within 
their hosts. Be it human gut bacteria72, plant rhizosphere 
microbial communities73 or marine sponge microbiota74, 
metagenomic mining of the microbial ‘dark matter’ of 
life is quickly revealing that microorganisms are indis-
pensable for host chemical fitness. Even without a living 
host, such as in soils, seawater and the air, environmen-
tal DNA has further revealed the exquisite metabolic 
capacity of the Earth’s microbiota through the diversity 
of associated biosynthetic genes75,76. Although attempts 
to exploit environmental DNA as a genetic resource 
for natural product discovery were already initiated 
two decades ago77, better computational infrastructure 

such as reference databases78 and profiling software79, as 
well as massively increased sequencing volumes, have 
now turned this into a promising technology. Indeed, 
innovative efforts have now led to the engineered pro-
duction of drug leads directly from the mining of soil  
environmental DNA samples80,81.

Fungi
Filamentous fungi, such as Aspergillus nidulans and 
Penicillium chrysogenum, have long been known to 
cluster their genes for the biosynthesis of, for example,  
the carcinogenic toxin aflatoxin or the antibiotic peni-
cillin18,82. Although fungi and bacteria share many of the 
same hallmark secondary metabolic pathways, fungi also  
feature distinctive enzymatic reactions such as the reduc-
ing iterative polyketide synthases, which produce the 
cholesterol- reducing agent lovastatin83. With their larger 
genomes, fungi also encode many more biosynthetic 
pathways than the most prolific bacteria. The genome of 
the fungus Aspergillus tanneri NIH1004 has 95 BGCs84, 
setting it up as the strain with the largest specialized  
metabolic capacity amongst fungi discovered thus far.

Plants
Long thought to be a uniquely microbial phenomenon, 
it is now becoming increasingly clear that BGCs are 
found throughout the tree of life (BOx 1). Land plants 
dwarf all other organisms for known specialized metab-
olites (fig. 1d). Plant molecules, such as the anticancer 
drug taxol, the plant hormone gibberellin or caffeine 
(which functions as an insecticide yet is best known as 
a constituent of coffee and other caffeinated drinks), 
dominate the literature on specialized metabolism, with 
more than 145,000 described molecules. Early exper-
iments connecting plant chemistry and genes relied 
upon sequencing expressed sequence tag libraries and 
transcriptomes85–87. In recent years, plant genomics has 
gained traction, revealing the genomic context of special-
ized metabolism. The triterpene thalianol in Arabidopsis 
was one of the first plant compounds whose encoding 
genes were found to be chromosomally clustered88, albeit 
in a manner much unlike bacterial BGCs. Genes within 
plant BGCs are typically not organized in tight operons 
but, rather, with large intergenic regions that can span up 
to a few hundred kilobases in stretches; as such, genes 
are typically transcribed separately89. Recent plant omic 
studies have connected genes to the production of iconic 
opioid, cannabinoid and vinca alkaloid plant molecules, 
leading to renewable fermentation opportunities for 
their robust production37,90,91.

Algae
The success of the plant community in connecting genes 
to specialized chemistry has led to the investigation of 
other eukaryotic systems that each harbour distinctive 
chemistry. For instance, some of the most notorious 
environmental toxins are produced by diverse marine 
microalgae. Recently, a BGC was established in the 
diatom Pseudo- nitschia multiseries for the global pro-
duction of the amnesic shellfish toxin domoic acid92. 
By contrast, dinoflagellates produce arguably the larg-
est and most complex chemicals known from nature, 

Biosynthetic gene clusters
(BgCs). sets of genes that are 
physically co- located on a 
chromosome and together 
encode the production, 
regulation and transport of one 
or more specific metabolites.

Polyketide synthases
enzymes involved in the 
biosynthesis of polyketide 
metabolites; some form 
modular assembly lines of 
multidomain proteins, whereas 
others act as stand- alone 
enzymes.
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polyether toxins such as brevetoxin and maitotoxin93. 
Although biosynthesis genes have yet to be identified 
for these dinoflagellate compounds — perhaps owing 
to their large genome sizes that regularly exceed that 
of the human genome and assemble into liquid crys-
talline chromosomes94 — the recent assembly of the 
~6.4- Gb draft genome of the toxic Amphidinium gib-
bosum revealed an abundance of suspected polyketide 
synthase and non- ribosomal peptide synthetase (NRPS) 
genes95. The recent reconstruction of hundreds of 
genomes of plankton species from metagenomic data 
provides an additional rich set of unexplored genomic 
data to mine for specialized metabolic diversity96.

Metazoa
The anthropocentric bias of biomedical research has led 
scientists to qualify compounds isolated from many ani-
mals as distinct from bacterial, fungal and plant special-
ized metabolites. However, a more impartial perspective 
should recognize that many animal- specialized mole-
cules are chemically related to and perform functions 
similar to their non- animal counterparts. Although, in 
some cases, animal- derived specialized metabolites are 
biosynthesized by specialized microbiome members97,98, 
the biosynthetic capacities of the animal itself should 
not be underestimated. Humans, for instance, produce 
numerous steroid hormones such as oestradiol, cortisol 

Box 1 | Gene clustering in specialized metabolism

In most organisms, genes involved in specialized metabolic pathways are encoded contiguously on the chromosome  
in so- called biosynthetic gene clusters (bGCs). the extent to which biosynthetic genes are clustered differs between 
different taxonomic groups, and specifically between the plant, fungal and bacterial kingdoms, which show increasing 
degrees of gene clustering (see the figure). As an illustration, in the model actinomycete bacterium Streptomyces 
coelicolor, 22 bGCs have been experimentally characterized and linked to products (including 2 single enzyme- coding 
genes), and for none of the corresponding pathways is there evidence of encoding in multiple genomic loci. on the other 
hand, out of the 23 bGCs experimentally characterized in the model fungus Aspergillus nidulans, at least 3 pathways  
have been shown to be split over multiple loci: those for the biosynthesis of austinol/dehydroaustinol221, emericellin222 
and nidulanin A223. In the model plant Arabidopsis thaliana, only four pathways have been experimentally shown to be 
encoded by bGCs: those for the biosynthesis of thalianol, marneral, arabidiol and tirucalladienol. Although several  
other pathways seem to show partial clustering164,224, the pathways for the biosynthesis of glucosinolates, flavonoids, 
strigolactones, arabidopyrones, camalexin and 4- hydroxyindole-3- carbonyl nitrile seem to be (almost) devoid of 
clustering. Still, even in plants, bGCs are an attractive target for pathway discovery, as they provide ‘low- hanging fruits’ 
that can be straightforwardly identified in genome sequences5. In protists, several examples of bGCs have been 
reported92,225, whereas not much is known about gene clustering in animals. Yet a recent global synteny network analysis 
shows that the gene order in mammals is clearly non- random and may have large functional repercussions226.

there are several hypotheses for why the genes of specialized metabolic pathways are clustered on the genome. the four 
main ones are the following:

1.  Coordinated gene expression. In bacteria, given that transcription and translation occur in the same cellular location, 
the biophysics of transcriptional regulation favours co- regulation of operons located near the gene encoding a 
pathway- specific regulator102. In fungi and plants, there is evidence that clustered genes are co- regulated through 
epigenetic modification of chromosomal regions227,228.

2.  The selfish operon hypothesis. Given that horizontal gene transfer of bGCs, but also their deletion, occurs frequently 
in bacteria and fungi, the ‘survival’ of bGCs in the biosphere may depend on their ability to spread to other strains  
and species; clustering may increase the chances of genes being jointly transferred229. this can be supplemented by  
a ‘persistence hypothesis’, stating that clustered genes are less likely to be interrupted by a segmental duplication and, 
therefore, are more likely to survive as a unit230.

3.  Avoiding toxic intermediates. According to this hypothesis, clustering of genes is an adaptation against the 
accumulation of toxic pathway intermediates. Clustering promotes co- inheritance of the entire pathway, so that (sub)
lethal genotypes carrying only part of the pathway are avoided231.

4.  Co- adaptation through co- inheritance. many clusters in plants and fungi have formed in dynamic chromosomal 
regions as part of evolutionary arms races with competing species232. especially in sexual organisms, rapid adaptation 
of pathways may only be possible when co- adapted alleles of the underlying genes are not constantly separated by 
recombination events. this has recently been proposed to drive repeated and independent evolution of gene clusters 
encoding phenylpropanoid degradation pathways in fungi233.

Complete clustering

Incomplete clustering

No clustering

Common in
bacteria and fungi

Common in
plants and fungi

Chromosome 11, 150-kb region Chr.1 Chr.2 Chr.7

Morphine biosynthesis genes in Papaver somniferum (opium poppy)

Penicillin biosynthesis genes in Penicillium chrysogenum

Chromosome 1, 17-kb region

Serotonin biosynthesis genes in Homo sapiens (human)
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Non- ribosomal peptide 
synthetase
(NrPs). An enzyme involved  
in the polymerization of amino 
acids or other organic acids 
into peptide metabolites 
without involvement of the 
ribosome.
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and aldosterone, the thyroid hormone triiodothyro-
nine and even the antiviral ribonucleotide 3′- deoxy-
3′,4′- didehydro- CTP (ref.99). The recently discovered 
routes from bird100–102 and mollusc102,103 genomes to 
produce complex polyketides, as well as a novel ses-
quiterpene biosynthetic pathway from flea beetles104, 
exemplify the chemical ingenuity of animals in making 
important molecules key to their fitness and survival. 
Ecologically, venoms such as the conotoxin RiPPs pro-
duced by cone snails play major roles in predation and 
defence105. In some cases, animal pathways have been 
acquired through horizontal gene transfer from bacteria, 
as is evident for the β- lactam antibiotic biosynthetic 
genes found in the genome of the springtail Folsomia 
candida106,107, but in most of the documented cases 
mentioned above, their biosynthesis seems to have 
evolved independently100–102,104, indicating that consid-
erable quantities of distinct chemistry may be discovered 
through mining animal genomes.

Now that eukaryotic genome sequencing is becoming 
more routine, we anticipate that genome mining pro-
jects will soon extend to all organisms (BOx 2). Although 
there have been sporadic reports of specialized biosyn-
thetic genes and gene clusters being functionally eluci-
dated from, for example, the nematode Caenorhabditis 
elegans108, the fruit fly Drosophila melanogaster109 and the 
seaweed Digenea simplex110, large swaths of organisms 
such as arthropods, cnidarians and other invertebrates 
are understudied for their biosynthetic capacities yet 
well known for their specialized chemistry.

How to mine
Identifying candidate biosynthetic genes
A range of computational approaches has been devel-
oped to automatically identify the sets of genes that 
encode specialized metabolic enzymes across genome 
sequences (TABle 1). Many of these approaches have orig-
inally been developed for bacteria (and sometimes for 
fungi and plants), but the principles employed have the 
potential to be extended to other life forms. Below, we 
review these methodologies and the taxa they support, 
and what would be required to extend them into new 
taxonomic spaces.

The physical clustering of enzyme- coding genes in 
BGCs greatly facilitates the identification of biosyn-
thetic pathways. Although BGCs are highly variable 
in terms of gene content and are often strain-specific  
due to their rapid evolution and frequent horizontal 
gene transfer111, they often do possess common proper-
ties in the form of enzyme families that are responsible 
for the catalysis of biochemical reactions central to the 
biosynthesis of entire specialized metabolite compound 
classes. This feature has made it possible to largely auto-
mate the identification of BGCs in genomes. Widely 
used software tools such as antiSMASH112 and PRISM113 
employ profile hidden Markov models (pHMMs114) of pro-
tein domains to identify gene combinations encoding 
enzyme families that are signatures for specific pathway 
types. Although both of these tools generally provide very 
similar results, development of antiSMASH has focused 
more on functional and comparative analyses, whereas 
PRISM has specialized in combinatorial predictions 

of chemical structures that can be used for automated 
matching with mass- spectral data. The use of pHMMs 
is very reliable for identifying BGCs encoding many 
well- established types of biosynthetic machinery such as 
polyketide synthases, NRPSs and known classes of RiPPs, 
but risks overlooking less studied and wholly novel 
classes of BGCs. Probabilistic BGC prediction methods 
such as ClusterFinder115 (which is also integrated into 
antiSMASH) and DeepBGC116, or comparative genom-
ics approaches that identify metabolism- associated 
non- syntenic blocks of genes between genomes, are 
more likely to detect non- standard BGCs, but have 
higher false- positive rates. In addition, for RiPPs, spe-
cialized tools have emerged for the identification of BGCs 
encoding the production of distant members of known 
classes or members of altogether novel classes. Some of 
these, such as BAGEL117, use pHMM- based detection 
techniques similar to those seen in antiSMASH and 
PRISM. Others make use of either bait- based approaches 
(using specific query enzyme-encoding genes to identify 
loci that contain homologues of them)118,119 or machine 
learning approaches to identify potential precursor 
peptide- encoding genes120–122, the hits of which can 
be prioritized using metabolomics- based matching121 
or comparative genomics to identify operons that are 
taxon- specific and thus deemed to encode a specialized 
metabolic function122. For publicly available genomes, 
BGCs identified using antiSMASH can be interactively 
browsed in online databases such as IMG- ABC123 and 
antiSMASH- DB124.

Recently, it has become clear that, in plants, spe-
cialized metabolic pathways are sometimes encoded 
by BGCs89 (BOx 1), and specific algorithms have been 
devised for their detection125,126. However, there are also 
many examples of pathways in plants that are encoded by 
sets of genes distributed across multiple chromosomes 
instead of being located in a single gene cluster. When 
extending genome mining approaches to unexplored 
parts of the tree of life, it remains to be seen to what 
extent genes in these taxa will be clustered. Some recent 
evidence suggests that the phenomenon of gene cluster-
ing also occurs in protists; for example, the domoic acid 
biosynthetic pathway in the diatom P. multiseries was 
shown to be encoded by a four- gene cluster92. However, 
gene cluster detection algorithms originally devised for 
bacteria may require considerable optimization to make 
them effective for studying protist or animal genomes. 
Efforts to adapt antiSMASH for detecting BGCs in plants 
in the form of a new tool called plantiSMASH126 showed 
that, for this to be effective, new libraries of pHMMs 
focused on plant enzymology needed to be constructed, 
and the algorithm had to be adjusted to account for 
the considerably larger (and more variable) intergenic 
regions found in plant genomes113.

Prioritizing candidate biosynthetic genes
Computational predictions often lead to an overabun-
dance of candidate biosynthetic genes that could be 
investigated, necessitating prioritization. Given that the 
chemical structures of hundreds of thousands of spe-
cialized metabolites have been elucidated, a considerable 
number of these will be responsible for the biosynthesis 

Horizontal gene transfer
Acquisition of genetic material 
by one organism, originating 
from another. This is often 
facilitated by plasmids, viruses 
or mobile elements.

Profile hidden Markov 
models
(pHMMs). Computational 
models, trained on a 
multiple- sequence alignment 
of a protein family, used to 
assess whether proteins are 
part of (or related to) a family.
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of known molecules or their closely related variants. 
Hence, it is beneficial to assess whether biosynthetic 
genes and their likely products are novel or whether 
they have been discovered and characterized previously.

The simplest way of prioritizing is based on sequence 
information: if a BGC of interest is highly similar in 
sequence to a gene cluster that has been experimentally 
linked to a known specialized metabolite, it likely codes 
for the production of the same molecule. In 2015, a com-
munity effort established the Minimum Information 

about a Biosynthetic Gene cluster (MIBiG)78, a data 
standard and online repository for depositing annota-
tions and metadata on BGCs for which a product has 
been identified. The antiSMASH pipeline for BGC 
identification automatically compares each identified 
BGC against this repository of ~2,000 BGCs of known 
function. When studying large numbers of genomes at 
once, BGC sequence similarity networks115 can be uti-
lized to identify gene cluster families that cluster together 
with MIBiG reference clusters. The BiG- SCAPE software 

Gene cluster families
families comprising a set  
of similar biosynthetic gene 
clusters across strains or 
species, the members of  
which are responsible for  
the production of the same  
or very similar metabolites.

Box 2 | How much is there to mine?

both the large diversity of molecules found in nature and 
the even larger diversity of biosynthetic genes found in 
genome sequences make it clear that the chemical and 
enzymological space available to genome mining is vast. 
Yet it is difficult to gauge just how vast it is.

Focusing on possibly the most chemically diverse clade 
of microorganisms, the actinomycetes, Doroghazi et al. 
posited that sequencing a well- chosen set of only 
~15,000 actinomycete genomes would reveal virtually all 
naturally occurring gene cluster families in this class of 
bacteria132. this statement was based on extrapolating  
a rarefaction curve of gene cluster families, in which 
sampling had been corrected for phylogeny within the 
limits of the data set used. However, a subsequent study 
on the diversity of non- ribosomal peptide synthetase 
(NrpS) gene clusters, which included a larger number  
of genomes and used chemical structure predictions  
to support family assignments, indicated no signs of 
saturation around 15,000 genomes165, suggesting that 
genome- encoded biosynthetic diversity may be larger 
than previously estimated, at least for this class of 
pathways. Similarly, Schorn et al. revisited estimates  
of biosynthetic diversity based on a study of rare  
marine actinomycete genomes, which suggested that 
rarefaction analyses may be too conservative to estimate 
diversity across the biosphere, as they inherently do not 
take into account genomes from unsampled ecological 
niches and taxonomic subgroups234.

A rough estimate of the total number of specialized 
metabolites employed by life can be made based on 
known biodiversity (fig. 1b) and metabolic diversity  
(see the figure, panel a and fig. 1d), by multiplying  
the number of specialized metabolites reported for a 
relatively well- studied genus — sourced from Natural 
product Atlas235 for Pseudomonas and Aspergillus, and 
from the Dictionary of Natural products for all other 
genera, and assumed to be representative for the genus 
— by the number of genera for the type of organism: this 
results in a total in the order of tens of millions. these 
could be overestimates because genera may share 
specialized metabolites, or underestimates because more specialized 
metabolites may be discovered for the chosen genus or more genera  
may still be discovered. Contrasting this to the number of elucidated 
specialized metabolites (in the order of half a million) suggests we have 
merely scratched the surface of the biochemical diversity present in  
the biosphere. Studies on bacteria and fungi support this notion, showing 
that, regardless of the rapid accumulation of known specialized 
metabolites and associated risks of rediscovery, the absolute numbers  
of structurally novel specialized metabolites discovered over the past 
20 years has remained remarkably steady, at around 150–250 per year9,236.

Although estimates (see the figure, panel a) suggest there is great 
potential for the discovery of specialized metabolites throughout the 
whole tree of life, our understanding of their biosynthesis is heavily skewed 

towards bacteria (see the figure, panel b, in which areas indicate relative 
numbers of specialized metabolites whose biosynthetic genes have been 
identified, based on estimates made by the authors). this is likely due  
to the greater availability of genomic data for bacteria (fig. 1c). even  
for the relatively well- studied specialized metabolism of bacteria, our 
understanding of culturable species dwarfs uncultured bacteria. this could 
be remedied by bringing more bacterial species into culture through new 
sampling or cultivation strategies237,238, or by expanding metagenomic 
studies of diverse environments globally, and in turn mining the resulting 
genomics data. Nevertheless, to spur our understanding of specialized 
metabolism throughout the whole tree of life, it will similarly be imperative 
to collect thorough genomic data for a wide variety of eukaryotic 
organisms. NCbI, National Center for biotechnology Information.
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framework automates the process of generating these 
networks and facilitates their interactive exploration, 
which makes it possible to quickly explore the biosyn-
thetic diversity within hundreds or even thousands of 

prokaryotic genomes at once127. It remains to be seen 
to what extent this technology is universally applica-
ble across the tree of life. For example, it was recently 
shown that plant triterpene biosynthetic loci may be 

Table 1 | Genome mining technologies that combine genome sequence with other data

Hypothesis- generating 
method

Input data Helps generate 
hypotheses about

Select examples Select software 
pipelines

Classic genome mining Genome or transcriptome 
sequences

Gene–chemistry 
relationships

Coelichelin11,202

Triterpenes20

(Reviewed in4,203,204)

antiSMASH112

PRISM113

DeepBGC116

CO- ED29

Focused on RiPPs:

RODEO118

DecRiPPter122

Function- directed 
genome mining

Genome or transcriptome 
sequences

Gene–chemistry–
function 
relationships

Aspterric acid156

Siderophores153

Thiolactomycin27

Target- directed genome 
mining: ARTS157, FRIGG205

Genome neighbourhood 
analysis: EFI- GNT206

Co- expression analysis Gene expression levels Gene–chemistry 
relationships

4- Hydroxyindole-3- carbonyl nitrile 
(ref.146)

Steroidal glycoalkaloids144

(Reviewed in5,147,207,208)

WGCNA209

CoExpNetViz210

plantiSMASH126

mr2mods (ref.148)

Genome or transcriptome 
sequences (optional)

Gene expression–
metabolite correlation 
analysis

Gene expression levels Gene–chemistry 
relationships

Falcarindiol143

Proteomining211

NA

Analytical chemistry 
features (e.g. peaks)

Pattern- based genome 
mining (metabologenomics)

Genome or transcriptome 
sequences

Gene–chemistry 
relationships

Tambromycin131

Tyrobetaines134

Several Salinispora BGCs130

Zealexin biosynthesis through 
association mapping in maize212

Chemically guided functional profiling213

(Reviewed in133,214)

NPLinker135

EFI- CGFP206

MAGI215Gene expression levels

Analytical chemistry 
features (e.g. peaks)

Gene–phenotype 
correlation analysis

Genome or transcriptome 
sequences

Gene–function 
relationships

Bitterness in cucumber161

Flavobacterial NRPS–PKS in disease 
suppression58

BiG- MAP216

Gene expression levels

Bioactivities or phenotypes

Activity- guided genome 
mining

Genome or transcriptome 
sequences

Gene–chemistry–
function 
relationships

lomaiviticin217 NA

Bioactivities or phenotypes

Analytical chemistry 
features (e.g. peaks)

Gene–metabolite 
substructure matching

Genome or transcriptome 
sequence

Gene–chemistry 
relationships

Peptidogenomics

Glycogenomics

(Reviewed in133,218)

RiPPquest138

Pep2Path (ref.137)

MetaMiner139Fragmentation spectra

Retro- biosynthetic 
matching

Genome or transcriptome 
sequences

Gene–chemistry 
relationships

Several PKs, NRPs GRAPE/GARLIC141

rBAN219

In silico library of structural 
formulae

Spectral dereplication Fragmentation spectra Novel chemistry Reviewed in220 VarQuest193

MS2LDA (ref.169)

CSI:FingerID168

In silico library of structural 
formulae

Each combination has its own strengths and may allow generating hypotheses focused on finding an unknown biosynthetic pathway for an important known 
molecule, discovering new metabolites with desired biological activities or identifying potential links between metabolites and the genes and gene clusters  
that likely encode their biosynthesis. ARTS, Antibiotic Resistant Target Seeker; BGC, biosynthetic gene cluster; NA, not available; NRP, non- ribosomal peptide: 
NRPS, non- ribosomal peptide synthetase; PK, polyketide; PKS, polyketide synthase; RiPP, ribosomally synthesized and post-translationally modified peptide.
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highly similar in terms of domain composition, although 
having evolved independently and leading to divergent 
chemical outcomes128. These analyses suggest that at 
least certain categories of biosynthetic pathways in 
plants evolve through combinatorialization of a limi-
ted set of enzyme families, of which the members can 
have different catalytic activities or act upon different 
sites within their target molecules. Hence, for pathway 
types and organisms in which gene evolution is largely 
decoupled from gene cluster evolution, more automated 
phylogenetic methods need to be developed to perform 
comparative analysis at the gene level as well as the gene 
cluster level. Beyond plants, it should not be excluded 
that this is the case for other eukaryotic branches of the 
tree of life as well.

Improving genome mining with other data
All genome mining techniques discussed thus far rely on  
analysing genomic or transcriptomic sequence data 
on their own. However, the predictive power of these 
approaches can be further enhanced by combining 
them with different types of information, such as gene 
expression levels (as measured by, for example, RNA 

sequencing or quantitative proteomics) or known phe-
notypes or bioactivities exhibited by the organisms, 
or extracts thereof. Analytical chemistry data, such as 
the presence and intensity of chromatographic peaks 
and fragmentation patterns observed in tandem mass 
spectra, can be particularly valuable for the discov-
ery of metab olites and their biosynthetic genes129. For 
instance, if the same or similar molecules are produced 
by different organisms, they can be expected to harbour 
the same or similar biosynthetic genes. Pattern- based 
genome mining130 (also known as metabologenomic 
correlation analysis131,132; fig. 2a) correlates the presence 
of metabolites to homologous biosynthetic genes across 
strains. This approach (reviewed in detail in ref.133) 
has mostly been pioneered in bacteria, for which suf-
ficiently large numbers of genomes and metabolomes 
can be obtained. In one metabologenomic correlation 
study, gene cluster families were linked to a molecular 
network based on mass-spectral fragmentation patterns, 
leading to the discovery of the tyrobetaine metabolites134. 
Recently, the mathematics behind the association scor-
ing were improved and formalized in a software tool 
called NPLinker135. The advantage of this technology is 
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Fig. 2 | Linking genes to molecules using metabolomics and transcriptomics. Several approaches have been developed 
to link metabolites to genes and gene clusters encoding their biosynthesis. a | In bacteria, pattern- based genome mining 
approaches have been developed that match families of molecules (related by spectral similarity) to gene cluster families 
(GCFs; related by sequence similarity) through metabologenomic correlation131, identifying which GCFs co- occur strongly 
in the same strains where a given metabolite is observed. b | Molecules can also be connected to genes and gene clusters 
through feature- based matching, in which chemical features (substructures and modifications that are either manually 
annotated or identified using algorithms that identify motifs in tandem mass spectrometry data) are linked to genes and 
gene modules that are known to be responsible for the biosynthesis of such features. c | Transcriptomic data can also  
be used to identify potential biosynthetic pathways for a molecule of interest by, for example, identifying modules of 
co-expressed genes whose expression correlates with the presence of a given metabolite across a range of divergent 
conditions (for example, different biological stresses143). MF, molecular family.
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that no prior knowledge on biosynthetic mechanisms 
is required to link molecules to gene clusters, as it is 
purely based on correlations. A strategy that establishes 
genomic–metabolomic co- occurrence patterns has great 
potential to mine the genomes of understudied organ-
isms, even when virtually nothing is known about a  
taxon’s enzymology.

Another approach that also harnesses analytical 
chemistry to improve genome mining predictions is the 
correlation of mass shifts in tandem mass spectrometry 
fragmentation patterns to a BGC’s bioinformatically 
predicted building blocks (fig. 2b). At first, semi- manual 
approaches were developed that allowed matching of 
peptides (peptidogenomics14) and glycosylated spe-
cialized metabolites (glycogenomics136) to BGCs. More 
recently, this matching has been automated for peptides 
in algorithms such as Pep2Path (ref.137), RiPPquest138 and 
MetaMiner139. These algorithms, which have a major 
focus on RiPPs, could also be very relevant for finding 
novel peptidic metabolites in uncharted taxa, as recent 
evidence is emerging that RiPPs are produced by not only 
bacteria but also fungi140, plants50 and animals105. Going 
forward, the bigger challenge will be to extend these 
approaches beyond peptides to specialized metabolites 
in general133.

Instead of partial structural information from mass 
spectra, previously elucidated chemical structures can 
also be used to connect biosynthetic genes to ‘orphan’ 
metabolites and, conversely, identify those coding for 
novel molecules. There are many specialized metab-
olites for which the chemical structure is known but 
the biosynthetic genes are not. For drug discovery pur-
poses, not having the opportunity to check for novelty by 
sequence may pose a major problem, given the consider-
able effort wasted elucidating the chemical structure of 
a known molecule. Recently, the innovative method 
GRAPE/GARLIC was established141 to connect genes 
to molecules for polyketides and non- ribosomal pep-
tides in an automated fashion: by breaking down known 
specialized metabolite structures into their biochemical 
building blocks and retro- biosynthetically matching 
these with building blocks predicted to be incorporated 
into molecules based on BGC sequence information, 
the authors were able to identify thousands of puta-
tive matches between gene clusters and molecules. Of 
~16,831 BGCs, approximately 2,500 had best- matching 
scores to reference molecules that were so low they 
very likely encode the biosynthetic machinery for novel 
products. Although this number may seem fairly small, 
one should consider that the remaining set of ~14,000 
BGCs is enriched with many near- copies of BGCs from 
highly studied taxa for which large numbers of genomes 
have been sequenced. The retro- biosynthetic princi-
ple, although useful, seems largely limited to bacterial 
polyketides and non- ribosomal peptides, and expand-
ing retro- biosynthetic algorithms to other life forms will 
require considerable expansions of our knowledge of 
their biosynthetic routes. Training more generic models 
for enzymatic mechanisms based on large- scale exper-
imental data is needed here, as well as high- throughput 
assays on ‘enzymatic dark matter’ from unexplored taxa 
to provide the required training data for such models.

The presence of specialized metabolites can also be 
correlated to biosynthetic genes’ transcriptional levels in 
different conditions or across different tissues (fig. 2c). 
For example, the biosynthetic pathway for ingenol 
mebutate from Euphorbia plants was unravelled by iden-
tifying members of relevant enzyme families that were 
highly expressed in seeds142. Similarly, another recent 
study analysed the production of the defence metabolite 
falcarindiol by tomato across seven different biotic stress 
treatments, to identify relevant enzyme- coding genes 
that were upregulated in conditions when increased 
amounts of the molecule were observed143. This princi-
ple seems universally applicable and is widely useful for 
accelerating genome mining efforts.

Indeed, in plants, co- expression analysis has already 
been frequently used with success to identify genes that 
show similar expression patterns across a large number of 
samples, within the same species or even cross- species144. 
Often, this is done using one or more ‘bait’ genes, 
which are predicted or even known to belong to a path-
way of interest, to recruit additional members of that 
pathway145,146. However, unsupervised approaches are 
also being developed, which can be used to predict can-
didate pathways without prior knowledge. These methods 
rely on detecting co- expressed modules of genes given  
a set of transcriptomic samples, a procedure for which a  
range of algorithms is available147. Recently, the identi-
fication of co- expression modules was shown to effec-
tively and comprehensively retrieve genes implicated in 
methionine- derived aliphatic glucosinolate biosynthesis 
in Arabidopsis thaliana and Brassica rapa148. A key factor in  
the success of this study was the use of a graph clustering 
method that allows modules to overlap in their gene con-
tent, which makes sense given that specialized meta bolic 
enzymes from plants are often promiscuous and may 
have dual functions in multiple pathways. In general, the 
advantage of co- expression approaches seems to be that 
they are generally applicable, also when the genes encod-
ing a pathway of interest are only partially clustered or 
not clustered at all. Moreover, for eukaryotes with com-
plex genomes that are hard to assemble contiguously, 
co- expression- based approaches could also be performed 
on the basis of fragmented genome assemblies or tran-
scriptome assemblies. A challenge for these approaches 
is how to find the right combination of conditions that 
distinguishes expression patterns of a pathway of interest 
most effectively from those of other pathways, without 
requiring massive amounts of expensive transcriptome 
sequencing. One possible strategy to do this would be to 
first generate (targeted or untargeted) metabolome data 
for various samples, before choosing which samples are 
prioritized for RNA sequencing. Alternatively, integrative 
approaches could be developed that leverage structural 
information from metabolome data (for example, mass 
shifts and predicted substructures) to help prioritize 
which sets of co- expressed enzyme- coding genes are most 
likely responsible for the production of a given metabolite.

Function- first approaches
No matter how powerful modern genome mining  
approaches are to identify the genomic basis for 
chemical diversity, these methods are fairly blind and 
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untargeted — usually, a molecule’s physiological and 
ecological importance is only considered at the very 
end, after structural characterization and elucidation 
of its biosynthetic pathway. Function has traditionally 
been investigated only in a very narrow sense, that is, 
by considering hits in activity assays relevant to human 
health and prosperity, to the neglect of physiological 
and subtler ecological functions. Functions such as 
the arthropod- attracting capabilities of geosmin and 
2- methylisoborneol terpenoids from streptomycete 
bacteria149 or the conferring of heat stress resilience by 
flavonols by regulating levels of reactive oxygen species150 
were only identified decades after these metabolites were 
structurally characterized. To truly deepen our under-
standing of the fundamental roles of these molecules in 
biology and to allow for more targeted approaches to 
leverage them in, for example, drug discovery, it will be 
crucial to devise methods to help prioritize biosynthetic 
pathway candidates based on the specialized metabolite’s 
predicted function.

Target- directed genome mining. A good example of such 
a ‘function- first’ method, which has already gained trac-
tion, is based on the co- localization of genes within the 
same BGC that are indicative of function. For example, 
the co- localization of iron transport genes with biosyn-
thetic genes led to the discovery of siderophore mole-
cules, such as coelichelin and salinichelins in bacteria151 
and sideretin from plants152 (and this principle has 
recently been generalized153). The co- localization of 
resistance genes or duplicated genes resembling anti-
microbial targets within BGCs offers a more general-
izable approach to the discovery of bioactive molecules 
with specific cellular targets (fig. 3a). This approach, 
called target- directed genome mining, was first validated 
with the rediscovery of the thiolactomycin antibiotics 
as fatty acid synthase inhibitors from orphan bacterial 
BGCs that contain an open reading frame predicted to 
be a resistance gene27, associated with target modifica-
tion of the FabF fatty acid ketosynthase. Newer studies  
co- localizing putative target- modifying resistance 
genes with BGCs to identify compounds with activities 
against the resistance gene target include the proteasome 
inhibitor fellutamide B from the fungus A. nidulans154 
and the topoisomerase inhibitors pyxidicylines from 
the myxobacterium Pyxidicoccus fallax An d48 (ref.155). 
A clever twist on this resistance gene- guided approach 
led to the discovery of the fungal sesquiterpenoid asp-
terric acid as a potent herbicide, by deploying the fungal  
dihydroxy acid dehydratase self- resistance gene as a 
transgene to render plants resistant to aspterric acid156. 
To automate the resistance- based genome mining pro-
cedure, a web service called the Antibiotic Resistant 
Target Seeker (ARTS) was developed to identify BGCs 
containing likely self- resistance genes, suggesting 
they code for the production of specialized metabo-
lites with specific biological targets157. Intuitively, the 
approach is probably applicable to any organisms in 
which biosynthetic pathways are genomically clus-
tered, so long as there is sufficient selective pressure for 
the resistance genes to co- cluster (through facilitating 
co- expression and co- inheritance with the pathway).  

Although resistance- based genome mining is a break-
through as a key function- first strategy, the vast majority 
of BGCs do not contain self- resistance genes or other 
genes that unambiguously indicate a specific function. 
Hence, there is a great need for the development of 
additional strategies to generate hypotheses about the 
function of the molecules produced by the remaining 
majority of pathways. We believe that, again, the essence 
of these approaches will be in combining genomics with 
other types of data. Below, we outline three possible ways 
in which this could be achieved.

Cytological profiling and compound activity mapping. 
A first possibility would entail correlating genomic infor-
mation to bioactivities displayed by extracts (fig. 3b).  
There has already been some success in correlating bio-
activities of extracts as determined by cytological profil-
ing158 to untargeted metabolomics of the same extracts 
using a technique called Compound Activity Mapping159, 
facilitating the discovery of the quinocinnolinomycins, 
a new family of specialized metabolites that cause endo-
plasmic reticulum stress. The obvious next step will be 
to combine this with genomic and/or transcriptomic 
data to immediately identify the genes responsible for 
an activity of interest. Also, when cytological profiling 
does not give immediate insights into the mode of action 
of a molecule, it could be complemented with transcrip-
tome analysis of the target cells during exposure. Indeed, 
machine learning methods have recently been devised 
that predict pharmacological properties of drug mole-
cules, directly related to the mechanism of action, based 
on large- scale transcriptional response data160. In prin-
ciple, this approach would be applicable to any life forms 
for which extracts can be made, including many pro-
tists, plants and invertebrates. This could also be done 
through genome- wide association studies that map phe-
notypes to genetic variation within a species, as has been 
successfully practised to discover the cucurbitacin gene 
cluster responsible for the bitter taste in cucumber161.

Co- expression- based function prediction. A second way 
to perform function- first genome mining would be to 
study the effects of the expression of BGCs on other 
community members within their native ecosystem, 
and, optionally, how they relate to emergent properties 
of such an ecosystem (fig. 3c). This applies primarily to 
microbial ecosystems and microbiota associated with 
plant or animal hosts. For example, metatranscriptome 
data from soil microbial communities were recently 
used to investigate the ecological roles of BGCs from 
novel bacterial clades identified through metagenomic 
binning; co- expression of BGCs with iron starvation 
response genes or antimicrobial resistance genes thus 
indicated roles for their products as siderophores or 
antimicrobials162. This concept could be extended by 
also looking at co-expression across species, that is, cor-
relating the expression of putative antibiotic biosynthesis 
BGCs with stress responses in other organisms in the  
community to identify the likely target organisms.  
The expression of specific BGCs could also be correlated  
to microbiome- associated phenotypes163 that a commu-
nity confers to its host, such as disease suppression or 
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stress resilience, to identify which molecules are likely 
to be responsible for mediating these phenotypes.  
In host organisms, such as plants and animals, expres-
sion of particular biosynthetic pathways can also be 
linked to functions by studying the effects on the micro-
biome composition; for example, a recent study linked 
specific triterpene pathways to either the promotion or 
inhibition of specific rhizosphere microbiome commu-
nity members, which highlighted their specific roles in 
microbiome modulation164.

Predicting function via structure. A third strategy for 
function- first genome mining would be combining (sub)
structure prediction from sequences with structure- 
based prediction of biological activities and macro-
molecular targets (fig. 3d). Both of these prediction 
tasks are currently highly prone to error, but significant 
progress is being made on both fronts, so a robust plat-
form may become a reality in the not too distant future. 
Several tools are currently emerging that can predict the 
core scaffolds of key classes of specialized metabolites 
from sequence information with increasing accuracy 
and detail112,113,165,166, and several efforts are underway 
to complement these with additional predictions of 
tailoring and cyclization reactions113,167. Also, genome- 
based structure predictions could be integrated with 
metabolomics- based (sub)structure predictions168,169, 
which could confirm or guide routes through bio-
chemical reaction space. Based on these developments, 
consider able improvements in specialized metabolite 
structure prediction from genome and metabolome data 
can be expected in the near future.

Meanwhile, within the field of computational drug 
discovery, methods are emerging that allow predict-
ing macromolecular targets of drug molecules based 
on their chemical structures170. For example, the algo-
rithm SPIDER dissects specialized metabolites into 
pharmacophore-sized fragments and predicts which pro-
teins a compound targets by comparison with a library 
of 13,695 chemical structures of molecules of known 
function from the Collection of Bioactive Reference 

Analogues (COBRA)171. This method successfully pre-
dicted polypharmacological features of the macro lide 
archazolid A. Similarly, in another recent study, a deep 
learning model was trained that could successfully pre-
dict antibiotic activities of molecules with only limited 
chemical similarity to those used for training172. When, 
in the future, both sequence- based metabolite struc-
ture prediction and structure- based macromolecular 
target prediction become increasingly accurate, they 
could be coupled to predict biological targets directly 
from gene cluster sequences. The recently published 
PRISM4 pipeline provides a first step in this direction, 
using support- vector machines to predict the activities 
of the molecular products of gene clusters based on their 
predicted structures173. For the moment, this strategy is 
likely to be relevant mostly for bacteria and fungi, and 
to some extent for plants; however, when synthetic 
biology approaches63 and in vitro expression systems174 
increasingly allow experimental character ization of  
large sets of enzymes from animals and protists, oppor-
tunities will likely emerge to apply this strategy in these 
taxa as well.

Testing candidate biosynthetic genes
Fundamentally, there are three types of approaches to 
identify the metabolic product(s) of a BGC: hetero logous 
expression in a model organism, either in the BGC’s 
original form or after refactoring; genetic manipulation 
of the native host; and in vitro reconstitution.

Heterologous expression. Heterologous expression 
involves the cloning (also known as ‘capture’) of a BGC 
or non- clustered biosynthetic genes into one or more 
plasmids, cosmids or artificial chromosomes, possible 
manipulation of the BGC, transfer into a genetically 
tractable heterologous host and testing for the presence 
of metabolic products compared with the unmodified 
heterologous host175–177. If possible, heterologous expres-
sion is a highly desired approach, because it enables both 
facile scale- up of metabolite production for structural 
elucidation and biological testing, and manipulation of 
the captured BGC for biosynthetic investigations and 
analogue production. The large size of many BGCs has 
spurred the development of cloning methods that can 
capture BGCs directly from genomic DNA, such as 
transformation- associated recombination in yeast178,179, 
linear–linear homologous recombination in Escherichia 
coli180 or programmable nucleases in vitro181,182. One 
benefit of these PCR- free techniques is that they avoid 
mutation of the BGC, making sequence verification 
unnecessary. BGCs can also be cloned and assembled 
using PCR- based techniques, but as sequence verifi-
cation of large BCGs by Sanger sequencing can be a 
bottleneck, doing so using next- generation sequencing 
technologies183 will likely gain popularity.

However, heterologous expression has some notable 
potential challenges: promoters and ribosome- binding 
sites may not be recognized; genes may require RNA 
splicing; proteins may require chaperones, post- 
translational modification or transport to organelles; 
required metabolic precursors or cofactors may not be 
present; or the heterologous pathway could encounter 

Fig. 3 | Function-first genome mining approaches. In order to more effectively identify 
molecules with desired activities, function- first genome mining approaches have been 
and are being developed. a | In target- based genome mining approaches, self- resistance 
genes are identified that genomically cluster with the biosynthetic genes. Such self- 
 resistance genes are often resistant copies of a housekeeping gene whose protein 
product is targeted by the metabolite biosynthesized from the pathway. This provides  
a way to directly predict the mechanism of action for metabolic products of a subset of 
gene clusters. b | Cytological profiling can be used to identify the effects that metabolic 
extracts have on certain cell lines, and compound activity mapping can identify which 
underlying mass- spectral features are likely responsible for activities that are shared 
between extracts159. The activities and/or metabolites can then be matched to the 
presence or expression of genes and gene clusters to identify a candidate biosynthetic 
route towards the underlying molecule. c | Functions of products of biosynthetic genes 
and gene clusters can be predicted by looking for co- expression with other genes in  
the same organism (predicting function based on the guilt by association principle) or 
across organisms (identifying the potential effect that a pathway has on other organisms 
or on a microbiome- associated phenotype). d | Structural features and substructures  
that are likely part of the metabolic product of a gene cluster can be predicted in  
silico; sometimes, these substructures are diagnostic for a certain mechanism of  
action or biological activity, and machine learning algorithms can be trained to predict 
these activities based on sets of structural features. BGC, biosynthetic gene cluster;  
MOA, mechanism of action.

Heterologous host
An organism different from  
the source organism of a gene 
under investigation, usually  
a model organism with a 
well- developed genetic toolkit. 
A heterologous host optimized 
for a specific biotechnological 
application such as small- 
 molecule production is 
sometimes called a ‘chassis’.

◀
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metabolic bottlenecks due to non- optimal enzyme sto-
ichiometry. If the pathway’s reactions are impeded to 
different extents, heterologous production could result 
in the production of metabolic intermediates or shunt 
products instead of the ‘true’ specialized metabolite. 
Conventional wisdom states that employing heterol-
ogous hosts that are phylogenetically close relatives  
to the organism from which the BGC originates 
improves the chances of success, but exceptions to this 
dogma are known, caused, for instance, by unexpected 
interactions with a host’s gene regulatory machinery184. 
Techniques such as CRAGE185 aim to streamline testing a 
BGC in a multitude of heterologous hosts, increasing the 
chances of at least one succeeding. Research dedicated 
to developing genetic toolkits for various organisms will 
be crucial to streamline the heterologous expression 
of BGCs from organisms not closely related to classic 
model organisms.

Synthetic biology and refactoring. Synthetic biology 
approaches aim to circumvent the aforementioned 
challenges associated with heterologous expression by 
‘refactoring’ the candidate biosynthetic genes and/or  
engineering heterologous hosts (‘chassis’) optimized 
for heterologous expression of biosynthetic pathways. 
Chassis have been developed that provide metab-
olic precursors and post- translational modifications 
required for specific classes of specialized metab-
olism or to inactivate competing metabolic pathways. 
Refactoring usually entails bringing candidate biosyn-
thetic genes under the control of well- characterized 
promoters and ribosome- binding sites, elimination 
of introns and organellar targeting signals, and codon 
optimization63. However, gaps in our understanding of 
these cellular processes — for instance, how codon opti-
mization affects gene expression and protein folding —  
still limit the rationality of refactoring efforts. Several 
streamlined workflows for refactoring candidate bio-
synthetic genes have been described186,187. The use of 
combinatorial libraries188 and independently tunable 
promoters189 can help optimize the stoichiometry of 
biosynthetic genes in vivo. Although fully synthesizing 
refactored BGCs de novo, instead of refactoring captured 
BGCs, is currently still prohibitively expensive for all 
but the best- funded projects, we expect this practice to  
become widespread as gene synthesis costs continue  
to decline.

Genetic manipulation of the native host. Alternatively, 
the candidate gene(s) can be inactivated or repressed 
in their native host, followed by testing for the loss of, 
or decrease in the quantity of, a metabolite compared 
with the wild- type host. To more thoroughly establish 
the gene–metabolite link, ideally a genetic complemen-
tation experiment should also be carried out190. The big-
gest drawback to this approach is that it can be difficult 
or impossible to manipulate genes in non- model organ-
isms, but thankfully this situation is improving thanks to 
the broad host range of CRISPR–Cas9 technologies. The 
emergence of CRISPR–Cas9- based ‘microbiome editing’ 
technologies191,192 has even made it possible to knock out 
genes in specific members of a complex microbiome.

In vitro reconstitution. Reconstitution of the path-
way in vitro provides some advantages orthogonal to  
the in vivo approaches above, such as allowing for easier 
identification of pathway intermediates, determination 
of enzyme kinetics and substrate specificities, and quick 
optimization of the pathway’s enzyme stoichiometry174. 
However, in vitro reconstitution can be challenging if  
the metabolic precursor(s) or order of the enzymes 
in the metabolic pathway is unknown, or if any of the 
enzymes are insoluble, unstable or cannot be purified.

Structural elucidation of biosynthetic products. Once a 
metabolite has been identified as being the product of 
the candidate genes, its identity will need to be estab-
lished. Depending on the method that was used to select 
the candidate genes, one may already have a hypothet-
ical structure or chemical class. The act of ‘dereplica-
tion’ seeks to quickly identify whether the metabolite 
is, or is closely related to, any known molecule. Some 
currently popular approaches to dereplication are based 
on tandem mass spectrometry spectral networking 
(such as GNPS8), tandem mass spectrometry spectral- 
substructure matching (such as VarQuest193, MS2LDA 
(ref.169) and CSI:FingerID168) and NMR spectral cluster-
ing (such as SMART194), but it is worth remembering 
that dereplication tools are only as effective as the data-
bases/training data that underlie them. If the molecule 
is likely novel, structural elucidation will be necessary. 
Nowadays, this is most commonly achieved through 
2D- NMR techniques, with a slow uptick in the appli-
cation of computer- assisted structure elucidation195 
technologies. X- ray crystallography (occasionally 
aided by the crystalline sponge method196) and, more 
recently, microcrystal electron diffraction197 can also 
provide important insights into challenging structural 
elucidation problems.

Chemical synthesis of predicted BGC products. Finally, 
some recent studies circumvent biological experimen-
tation altogether by chemically synthesizing the pre-
dicted products of a BGC198–201. BGCs for RiPPs and 
non- ribosomally synthesized peptides are particularly 
amenable to this approach, as the structures of their 
products are highly predictable and their production can 
be streamlined through solid- phase peptide synthesis. 
Although doubt about the true identity of the BGC’s 
product remains, this approach has yielded molecules 
with promising biological activities198–200.

Conclusions and future perspectives
What else is there to mine, and what happens to genome  
mining after we have exhaustively identified all spe-
cialized metabolite scaffolds? Based on the inventory 
of known specialized metabolites and those that are 
already connected to biosynthetic genes, the future 
remains bright. Considering the efficiency and breadth 
of new strategies for genome mining and given the 
increased extent of resources available for mining, many 
new sources, enzymes and metabolites are expected to 
be discovered over the coming years. Even when min-
ing of orphan genes leads to rediscovery of previously 
reported specialized metabolites, new biosynthetic 
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knowledge may have biotechnological utility for 
(enhanced) biological production of these and related 
molecules.

Biosynthetic gene identification and prioritization 
are moving towards the incorporation of an increas-
ingly large number of different data types. Moving for-
ward, pioneering approaches will likely harness an even 
larger number of data types simultaneously. Integrating 
multi-omics data, although computationally challeng-
ing, has great potential to identify true gene–metabolite  
relationships among thousands of potential ones, espe-
cially across larger sets of related organisms for which 
sequence- based predictions of metabolite structures 
can be combined with absence–presence patterns of 
candidate genes133. Improvements in documenting 
links between different types of omics data129, statis-
tical association techniques135 and machine learning 
technologies for sequence- based prediction of enzyme 
activities and metabolite structures173 will further accel-
erate such efforts. Moreover, these omics data will pro-
vide new ways to assess metabolite function at an early 
stage, by evaluating the triggers and consequences of the 
expression of their biosynthetic genes.

The study of the chemistry of life has been brought 
to a next level by genome mining technologies initially 
developed in microorganisms. Now that large- scale 
genome sequencing is expanding to all branches of 

the tree of life, there is a great opportunity to port 
and extend genome mining technologies to other life 
forms and engage in truly global studies of life’s chem-
istry. At the same time, the microbial field has much to 
learn from scientists studying humans and mammals, 
who have been very effective at identifying physiolog-
ical roles of mammalian specialized metabolites such 
as steroids, prostaglandins and peptide hormones. 
Additionally, plant biologists’ extensive experience using 
gene expression analysis to link genes to molecules and 
identify their functions may become incredibly useful  
to the microbial field to acquire deeper perspectives into 
the physiological roles of many metabolites that have 
appeared ‘inert’ for so long. Finally, protists and inver-
tebrates provide an immense uncharted biological diver-
sity that is mostly untapped and likely to yield numerous 
new and surprising findings.

All in all, great potential presents itself in unifying 
these diverse scientific communities to find common 
ground between molecules and genes that may have 
seemed unrelated for so long. This will facilitate a deeper 
fundamental biological understanding of the ecological 
and physiological roles of life’s chemistry, more effec-
tively leveraging it for the common good in medicine, 
agriculture and nutrition.
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