
OR I G I N A L AR T I C L E

Statistical modelling of measurement error in wet
chemistry soil data

Cynthia C. E. van Leeuwen1,2 | Vera L. Mulder2 | Niels H. Batjes1 |

Gerard B. M. Heuvelink1,2

1ISRIC–World Soil Information,
Wageningen, The Netherlands
2Soil Geography and Landscape Group,
Wageningen University, Wageningen, The
Netherlands

Correspondence
Cynthia C. E. van Leeuwen, ISRIC–World
Soil Information, PO Box
353, Wageningen, AJ 6700, The
Netherlands.
Email: cynthia.vanleeuwen@wur.nl

Abstract

There is a growing demand for high-quality soil data. However, soil measure-

ments are subject to many error sources. We aimed to quantify uncertainties

in synthetic and real-world wet chemistry soil data through a linear mixed-

effects model, including batch and laboratory effects. The use of synthetic data

allowed us to investigate how accurately the model parameters were estimated

for various experimental measurement designs, whereas the real-world case

served to explore if estimates of the random effect variances were still accurate

for unbalanced datasets with few replicates. The variance estimates for syn-

thetic pHH2O data were unbiased, but limited laboratory information led to

imprecise estimates. The same was observed for unbalanced synthetic datasets,

where 20, 50 and 80% of the data were removed randomly. Removal led to a

sharp increase of the interquartile range (IQR) of the variance estimates for

batch effect and the residual. The model was also fitted to real-world pHH2O

and total organic carbon (TOC) data, provided by the Wageningen Evaluating

Programmes for Analytical Laboratories (WEPAL). For pHH2O , the model

yielded unbiased estimates with relatively small IQRs. However, the limited

number of batches with replicate measurements (5.8%) caused the batch effect

to be larger than expected. A strong negative correlation between batch effect

and residual variance suggested that the model could not distinguish well

between these two random effects. For TOC, batch effect was removed from the

model as no replicates were available within batches. Again, unbiased model esti-

mates were obtained. However, the IQRs were relatively large, which could be

attributed to the smaller dataset with only a single replicate measurement. Our

findings demonstrated the importance of experimental measurement design and

replicate measurements in the quantification of uncertainties in wet chemistry

soil data.

Highlights

• Accurate uncertainty quantification depends on the experimental measure-

ment design.
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• Linear mixed-effects models can be used as a tool to quantify uncertainty in

wet chemistry soil data.

• Lack of replicate measurements leads to poor estimates of error variance

components.

• Measurement error in wet chemistry soil data should not be ignored.
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1 | INTRODUCTION

A soil system's physical and chemical properties are com-
monly determined by the collection and subsequent wet
chemistry analysis of soil samples. The results from wet
chemistry measurements can be further used to, for
instance, develop soil spectroscopy models (McBratney,
Minasny, & Rossel, 2006) or estimate soil organic carbon
stocks (Smith et al., 2020). Accurate and reliable analyti-
cal data of relevant soil properties are key to achieve
accurate calibration and validation of such models
(Dangal, Sanderman, Wills, & Ramirez-Lopez, 2019). The
need for high-quality soil data is widely acknowledged by
organizations such as the FAO's Global Soil Partnership,
which established the Global Soil Laboratory Network
(GLOSOLAN) in 2017 (FAO, 2019a). GLOSOLAN aims
to build laboratory capacity and improve the provision of
reliable and comparable soil data by harmonizing
methods, units, data and information.

During the measurement process, errors can occur
from field sampling (e.g., Goidts, Van Wesemael, &
Crucifix, 2009), sample handling, sample transport, ship-
ment preparation, taking a subsample for laboratory
analysis and the laboratory analysis itself (Van Ee,
Blume, & Starks, 1990). Errors can also occur after the
laboratory analysis, for example during the data
processing. Other post-analysis errors are model error,
present in for instance pedotransfer functions and spec-
tral models (Libohova et al., 2019), and interpolation
error, included in digital soil mapping. In this study, we
focused on the error that occurs during the laboratory
analysis: the laboratory measurement error. Factors that
often contribute to measurement error are the analyst,
complex wet chemistry methodologies, varying measure-
ment conditions (e.g., temperature and humidity), a vari-
ety of different sample preparation methods and the
measurement instrument itself (Allchin, 2001; Libohova
et al., 2019; Viscarra Rossel & McBratney, 1998). Error in
soil measurements may be defined as the difference
between the 'true' value of a soil property and its

measured value (Hibbert, 2007). GLOSOLAN aims to
reduce such method-related errors through harmoniza-
tion of standard operating procedures (SOPs) for com-
monly used wet chemistry methods, and development of
quality assurance and quality control programs. In this
research, we aimed to quantify the uncertainty associated
with defined analytical methods, building upon the need
for high-quality soil data.

Errors in wet chemistry soil data can propagate in fur-
ther applications, such as pedotransfer functions, spectral
models and digital soil mapping (Heuvelink, 2018;
McBratney, Minasny, Cattle, & Vervoort, 2002). Over
time, the prediction accuracy of such models has
improved significantly, making the relative contribution
of measurement error in the calibration data larger. For
example, visible (Vis), near-infrared (NIR) and mid-
infrared (MIR) diffuse reflectance spectroscopy models
have improved rapidly due to advances in computation,
instrument manufacturing and multivariate statistics
(Dangal et al., 2019; Guerrero, Viscarra Rossel, &
Mouazen, 2010). Furthermore, developments in compu-
tation and statistics helped to extract useful information
from the measured spectra (Viscarra Rossel et al., 2016).

The 'true' value of a soil property must be known to
quantify errors in soil measurements. However, we rarely
have this knowledge and therefore we are uncertain
about the 'true' value. For instance, suppose a laboratory
clay content measurement yields a value of 24.2%, while
the 'true' clay content is 27.5%. The error is 3.3%, but we
do not know it because we have only the measurement.
Because we are aware that there may be a measurement
error, we are uncertain about the 'true' clay content.
Heuvelink, Brown, and van Loon (2007) defined uncer-
tainty as an expression of confidence in our knowledge of
the 'true' value of a specific soil property. Several methods
have been developed to deal with uncertain data. Com-
monly, uncertainties are quantified through probability
distribution functions (PDFs) (Heuvelink, 2018;
Heuvelink et al., 2007). This approach allows for a com-
plete characterization of the uncertainty, including
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correlations between uncertainties in soil measurements.
Just as soil observations can be dependent on each other, so
can the uncertainties associated with them. Furthermore,
PDFs can easily be implemented in the uncertainty propa-
gation and stochastic sensitivity analysis of environmental
models (Malone, McBratney, & Minasny, 2011). Despite the
availability of multiple methods, uncertainty estimates are
rarely specified by providers of wet chemistry soil data,
meaning that the user has little to no knowledge about the
quality, or uncertainty, of these data. Furthermore, mea-
sures for uncertainty associated with compilations of such
analytical datasets are seldom provided, with the exception
of the WoSIS database (Batjes, Ribeiro, & van
Oostrum, 2020). Hence, there is a need to quantify uncer-
tainties in wet chemistry soil data and store detailed uncer-
tainty information in soil databases.

In this research, we aimed to model uncertainties in
synthetic and real-world wet chemistry soil pHH2O and total
organic carbon (TOC) measurements through PDFs. For
this, we assumed that we can represent uncertainties by
normal distributions. To estimate the parameters of these
distributions, that is, the variances of the error compo-
nents, we applied a linear mixed-effects model approach.
The use of balanced and unbalanced synthetic data
allowed us to investigate how well the model parameters
(i.e., the variances of the error components) can be esti-
mated given a specific experimental measurement design.
We aimed to provide guidance on the 'best', or rec-
ommended, experimental measurement design for accu-
rate representation of the laboratory measurement error
through PDFs, based on the results of the synthetic case.
Furthermore, the model was applied on real-world data
provided by the Wageningen Evaluating Programmes for
Analytical Laboratories (WEPAL) (http://www.wepal.nl).
This real-world case study served to quantify the contri-
bution of multiple error sources to the overall measure-
ment uncertainty and to explore if the error source
variance estimates were still accurate for such unbal-
anced designs with only few replicate measurements.

2 | ERROR IN ANALYTICAL
CHEMISTRY

Analytical measurements are subject to various error
sources, such as the analyst and the instrument. Because
of error, a measurement on a soil sample for a given
property is considered to be only an approximation of the
'true' value. To assess the quality of a measurement, we
wish to know the size of the error. In the case of repeated
measurements, the measurement error can be divided
into a systematic and a random component. The system-
atic error will be the same for all repeated measurements,

whereas the random error may vary between replicates.
Each measurement is the sum of the 'true' value, a sys-
tematic error and a random error:

Yi ¼XþSþ εi, i¼ 1,…,n ð1Þ

where Yi is the i-th measurement, X is the 'true' value of
the soil property and n refers to the total number of mea-
surements performed on the soil sample. The measured
value differs from the 'true' value by a systematic compo-
nent, S , and a random component, εi , which differs for
each measurement (Figure 1). In this research, we
assume that the random error follows a normal distribu-
tion, with zero mean and standard deviation σ. Because it
has zero mean, it is theoretically possible to eliminate the
random error by measuring the same sample an infinite
number of times (Theodorsson, Magnusson, & Leito,
2014). The systematic error in Equation (1) affects the
results by the same amount (i.e., we assume S to be con-
stant). The systematic error can also be proportional to
the 'true' value (Ramsey, 1998). Here, S would be depen-
dent on X (e.g., S¼ c�X , where c is a constant).

In analytical chemistry, the error in measurement
results is typically addressed through applying a method
validation scheme (Hibbert, 2007). Commonly used terms
in method validation schemes are trueness, precision and
accuracy. Trueness is defined as the closeness of agreement
between the average value of a large number of measure-
ment results and an accepted reference value (International
Organization for Standardization [ISO], 1994). In other
words, trueness is the systematic difference between the
'true' value, X , and the mean value of a large number of
measurements, represented by S in Equation (1). When

FIGURE 1 Systematic (S) and random error (with standard

deviation σ) in a measurement (Y ). Each measurement result

deviates from the 'true' value, X , because of error. �Y refers to the

average of a large number of measurements on the same sample.

Figure adapted from Hibbert (2007)
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the trueness of measurement results is low, this means
that there is a large systematic error or bias.

In method validation schemes, the random error, ε,
characterizes the precision of repeated measurements. The
ISO (1994) defines precision as the closeness of agreement
between independent test results that were obtained under
stipulated conditions. Precision includes terms such as
repeatability and reproducibility (Ebentier et al., 2013;
Ellison, Barwick, & Farrant, 2009). Repeatability refers to
the best precision a single laboratory can obtain and can
be calculated from repeated measurements in comparable
conditions, that is, the same analyst, on the same day,
using the same instruments. Reproducibility is a measure
of agreement between repeated measurements on the
same samples, obtained by the same method, under differ-
ent conditions. Measurement conditions can differ within
and between laboratories, resulting in within- and
between-laboratory reproducibility (Ellison et al., 2009).

Both trueness and precision are used to determine the
quality performance characteristics of the measurements:
the accuracy (Menditto, Patriarca, & Magnusson, 2007).
Accuracy can be defined as the closeness of agreement
between a single measurement result and the accepted
reference value, which is considered as the 'true' value
(ISO,1994). Thus, accuracy relates to the sum of S and εi
in Equation (1). The accuracy of a result is used to deter-
mine the degree of confidence that one has in that partic-
ular measurement. A high accuracy can only be achieved
when trueness is high, meaning that the systematic error
(S) is small, and when the precision is high, meaning that
the standard deviation, σ, of the random error is small.

The systematic error can include multiple components,
for instance, the matrix variation effect, batch bias, labora-
tory bias and method bias (Thompson, 2000). For measure-
ments taken in the same batch, we can assume that
conditions are more similar. Bias in a single batch will sys-
tematically affect all measurements in that particular batch
because conditions are the same, such as the analyst and
the instrument. The same applies to a laboratory. Each lab-
oratory applies the same method but is likely to have its
own interpretation of the method protocol, leading to a lab-
oratory bias. Whenever multiple methods are applied to
measure a certain soil property, each method has its own
bias. In the next section we developed these error sources
more formally using a statistical modelling approach.

3 | METHODS

3.1 | Linear mixed-effects model

We assume that errors in analytical data result from vary-
ing measurement conditions between batches and

laboratories but also from method bias, as explained in
Sections 1 and 2. We can include identified error
sources in a linear mixed-effects model. Such a model
partitions the total variance in the dataset into compo-
nents and determines the relative contribution of each
variance component (Zuur, Ieno, Walker, Saveliev, &
Smith, 2009). The linear mixed-effects model includes
both fixed and random effects as predictor variables.
Fixed effects are group specific (i.e., the error of each
group or component), whereas random effects inform
on the variation between groups. Essentially, the sys-
tematic and random errors from Equation (1) are bro-
ken down into multiple components. Here, we assume
that variance in measurements is associated with true
soil variation (characterized by sample ID, a fixed
effect), and the batch, laboratory and sample prepara-
tion method (random effects). Residual variance that
cannot be attributed to these components is regarded
as the random error.

We included these fixed and random effects in the fol-
lowing linear mixed-effects model:

Ypqrst ¼XsþBpqr þLqþMr þ εpqrst, p¼ 1,…,P;
q¼ 1,…,Q;r¼ 1,…,R;s¼ 1,…,S; t¼ 1,…,T

, ð2Þ

where Ypqrst is the t-th measurement of the s-th soil sam-
ple of the p -th batch, performed by the q -th laboratory
while using the r -th preparation method. Bpqr represents
the random effect of the p-th batch in the q-th laboratory
using the r-th preparation method, Lq represents the ran-
dom effect of the q -th laboratory, Mr represents the
random effects of the r -th preparation method, Xs is the
'true' value of a soil sample (modelled as a fixed effect)
and εpqrst is the random error. Based on the theory of lin-
ear mixed-effects models, we assume that Bpqr , Lq , Mr

and εpqrst are uncorrelated and normally distributed
with zero mean, and standard deviations σbatch , σlaboratory ,
σmethod and σresidual, respectively.

3.2 | Parameter estimation

In this research, the linear mixed-effects model was
used to model measurement error in wet chemistry soil
data. In an ideal world, wet chemistry soil datasets
would be balanced and include replicate measurements
for all soil samples. Having a balanced dataset structure
means that the number of observations per combination
of factor levels is equal. In other words, multi-laboratory
soil data are balanced when each laboratory measured
the same soil samples the same number of times, and
included an equal number of samples in an equal
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number of batches. However, data delivered by multiple
laboratories are seldom balanced, as the number of ana-
lyses is highly dependent on available material, time
and financial resources.

Furthermore, repeated measurements on soil samples
are required to accurately quantify the random effects
included in the model. The batch effect can only be esti-
mated when the same soil sample is analysed in different
batches. The same applies to the laboratory effect. Fur-
thermore, sufficient replicate measurements per batch
should be available to correctly estimate the residual vari-
ance. However, replicate measurements of all soil sam-
ples are costly and are often only collected for a small
subset, for example, as part of the laboratory's quality
control programme.

Therefore, the accuracy of model parameter estimates
is dependent on the experimental measurement design,
namely the number of laboratories and batches, and the
number of replicates taken. A higher number of replicate
measurements means that more information is available
to accurately estimate the model parameters, in particu-
lar the residual variance. Whenever insufficient informa-
tion is available, that is, in case of (near-)singularity, the
model will become unstable and model parameter esti-
mates will become highly uncertain, or cannot be
estimated at all.

In the case studies of this research, restricted maxi-
mum likelihood (REML) was used to estimate the vari-
ance components of the random effects, as well as the
fixed effects (Lark & Cullis, 2004; Webster & Oliver, 2007;
Webster, Welham, Potts, & Oliver, 2006). For Gaussian
models, REML is known to produce less biased parame-
ter estimates when compared to maximum likelihood
(ML) (Harrison et al., 2018).

3.3 | Software implementation

The linear mixed-effects model was fitted on synthetic
data (Section 4) and real-world data (Section 5) in R
Studio (R Core Team, 2017) using the lmer function
from the lme4 package (Bates, Mächler, Bolker, &
Walker, 2015). In the lmer syntax, the model was
expressed through a formula including both the fixed
and random effects. Here, we assumed that hierarchy
was present in the grouping of the observations, by the
grouping variables batch and laboratory. Every labora-
tory groups a number of unique batches, making
batches nested within laboratory. All control argu-
ments in the lmer function kept their default value.
The R scripts of the synthetic case were made publicly
available via GitLab (van Leeuwen, Mulder, Batjes, &
Heuvelink, 2021).

4 | SYNTHETIC CASE STUDY

4.1 | Data

As explained in Section 3, we can distinguish between
many different error sources, which result from varying
measurement conditions between batches and laborato-
ries. However, we would also like to quantify these
errors. To do so, an experimental measurement design is
required that allows reliable estimation of the variance
associated with each error source. In this section, we used
synthetic datasets to estimate these variances. Using syn-
thetic data allowed us to compare various experimental
measurement designs. Furthermore, because we were in
control of generating the data, we knew the variances
associated with all error sources. Therefore, we could
evaluate how well they were estimated from the data.

Five synthetic datasets were generated, consisting of
n¼ 20,50,100,200 and 500 sample IDs. The datasets
included synthetic 'true' pHH2O values for each sample
ID, which were drawn from a normal distribution with a
mean of 6.5 and a standard deviation of 1 pH unit. Each
soil sample was 'measured' in duplicate, distributed over
four batches. This set-up was repeated for three hypothet-
ical laboratories. In the case of n¼ 100 sample IDs, this
experimental measurement design resulted in
600 (100�3�2) synthetic pHH2O measurements in total,
distributed over 12 batches (Figure 2). The batch effect
was taken to have a variance of 0.01 σbatch ¼ 0:1ð Þ,
whereas the laboratory effect had a variance of 0.0625
(σlaboratory ¼ 0:25 ). The residual variance was taken as
0.04 (σresidual ¼ 0:2). Two thousand repetitions were made
for the five datasets to study the effect of sample size and
experimental measurement design on the estimation of
the variance components. The 'true' pHH2O of a soil sam-
ple, as well as the random effects, were simulated for
each of these 2000 repetitions. The lmer function was
applied to each of the 2000 repetitions, after which the
estimated variance components were stored. We thus
obtained 2000 estimates of each variance component and
could compare these with the 'true' variances used to sim-
ulate the data. Note that we did not generate data with
different preparation methods. Therefore, Mr was
excluded from the model in Equation (2). All simulations
from normal distributions were performed using the
rnorm function in R.

To analyse the effect of missing data on model param-
eter estimation, 20, 50 and 80% of the data were ran-
domly removed from the original datasets, using the
sample function from the R Base package. The effect of
various percentages of missing data was studied through
comparing the interquartile ranges (IQR) of the model
parameter distributions. We used the IQR instead of the
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standard deviation to evaluate the spread of the model
parameter estimates, because some of the distributions
were skewed. In such a case, the IQR is easier to
interpret.

4.2 | Results

4.2.1 | Balanced data

The linear mixed-effects model was fitted on the five dif-
ferent synthetic datasets (Table 1; Figure 3). For all sam-
ple sizes, the average of the estimated variances for the
random effects was close to the 'true' values. This indi-
cates that REML estimation of the variance components
was unbiased. Some modest variation could be observed
in the mean estimated laboratory effect variance, which
ranged from 0.061 to 0.065. As expected, the IQR of the
model parameter estimates decreased with increasing n ,
meaning that the estimates became more accurate as the
size of the dataset increased (Table 1). However, this

effect was limited for batch and laboratory effect, with a
decrease in IQR of 23.3 and 4.6%, respectively, when
increasing from n¼ 20 to n¼ 500. The IQR of the resid-
ual variance estimates dropped by 80% between n¼ 20
and n¼ 500. Furthermore, the IQRs of the batch and lab-
oratory effect were almost equal to the variance esti-
mates. For example, for n¼ 100, σ2batch ¼ 0:010, whereas
the corresponding IQR was 0.0086. In contrast, the IQR
of the residual variance estimates was quite small com-
pared to the residual variance estimate itself.

Figure 3 shows the density plots of the estimated
model parameters. For batch and laboratory effect vari-
ance, the distributions are right skewed. Furthermore,
the laboratory effect variance shows a large mass at zero,
meaning that approximately 11% of the laboratory vari-
ances were estimated to be zero. Therefore, the labora-
tory effect has a mixed discrete-continuous distribution
(Weld & Leemis, 2019), indicated by the discrete spike
with solid disk in Figure 3. The probability density esti-
mates for the residual variance were fairly symmetric.
Their distribution became significantly narrower when

FIGURE 2 Nested structure of the synthetic dataset, here including three hypothetical laboratories, 12 batches and n¼ 100 sample IDs

[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Mean and interquartile range (IQR) of the batch, laboratory and residual variance estimates for different numbers of

sample IDs.

No. sample Mean batch IQR batch Mean laboratory IQR laboratory Mean residual IQR residual
IDs effect variance [�] effect variance [�] effect variance [�] effect variance [�] variance [�] variance [�]

20 0.010 0.0086 0.064 0.0736 0.040 0.0080

50 0.010 0.0077 0.065 0.0774 0.040 0.0051

100 0.010 0.0073 0.061 0.0701 0.040 0.0035

200 0.010 0.0067 0.062 0.0725 0.040 0.0024

500 0.010 0.0066 0.063 0.0702 0.040 0.0016
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more sample IDs were included in the dataset. Correla-
tions between estimates of individual random effects
were close to zero (Appendix S1).

4.2.2 | Unbalanced data

After removing 20, 50 and 80% of the data, the means of
the model parameter estimates over all 2,000 repetitions

were again similar to the 'true' parameter values (results
not shown). The IQRs of the estimates for batch effect
and residual variance clearly increased with a higher per-
centage of randomly removed data (Figure 4). The IQR of
the laboratory effect variance behaved more randomly. In
general, the IQRs of n¼ 20 , 50 , 100 and 500 increased
when comparing 0 and 80% of removed data. However,
the IQR values at 20 and 50% removed data behaved ran-
domly. Furthermore, the IQR values based on the n¼
200 dataset were highly fluctuating, showing no distinct
relationship between the IQR and the percentage of ran-
domly removed data.

Removing 80% of the data resulted in a larger IQR of
the batch effect and residual variance for the n¼ 20
dataset compared to the n¼ 500 dataset. For example,
the IQR of the batch effect variance of the n¼ 20 dataset
increased by 171%, whereas the IQR of the n¼ 500
dataset increased by only 15%. The same was observed
for the IQR of the residual variance. For both cases, the
effect of missing data is largest for the smallest dataset,
n¼ 20.

4.3 | Discussion

In this section, we explored the ability of the proposed
model (Equation 2) to estimate the random effects, σ2batch,
σ2laboratory and σ2residual , while using different experimen-
tal measurement designs. We expected that the width of
the distribution of the estimated variances for each of the
random effects would decrease with increasing n, as
more data were available. The distributions of the esti-
mated σ2batch and σ2laboratory were both right skewed,
whereas that of σ2residual was symmetrical. The mean esti-
mates of batch effect and residual variance were similar
to the 'true' values, indicating unbiased model estimates
for all n. The laboratory effect showed some variation in
the mean variance estimates, ranging from 0.061 to 0.065,
whereas the 'true' value was 0.0625. This minor variation
around the 'true' value could be attributed to the finite
number of repetitions (2,000) we performed. Increasing
the number of repetitions, to for example 10,000, is likely
to lead to more stable estimates.

The IQR of the estimated variances decreased with
increasing n . However, this effect was only clear for the
residual variance, where the IQR decreased by 80% when
comparing n¼ 20 to n¼ 500. The large number of repli-
cates available in the n¼ 500 dataset simply led to more
precise residual variance estimates, shown by the small
IQR. For batch and laboratory effect, the decrease in IQR
when increasing n from 20 to 500 was less marked, with
a reduction of only 23.3 and 4.6%, respectively. The lim-
ited decrease of the IQR could be explained by the

FIGURE 3 Density plots of the estimated batch, laboratory

and residual variances for the five synthetic datasets, computed

over 2,000 repetitions. The dashed line indicates the 'true' variance.

As the laboratory effect variance had a mixed discrete-continuous

distribution with a probability mass at zero, the discrete part is

indicated by the black spike together with the probability mass

represented by a solid disc. Note that the scales of the x- and y-axes

differ [Color figure can be viewed at wileyonlinelibrary.com]
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available information to estimate the random effects. For
batch effect, the datasets contained information of
12 batches, whereas for the laboratory effect, data from
only three laboratories were included. In other words,
increasing n did not increase the number of laboratories
and batches. For example, for the n¼ 500 dataset, 500
(sample IDs) � 2 (replicates) � 3 (laboratories) yielded
3,000 measurements. However, from these data, groups
of 1,000 measurements had the same laboratory error,
meaning that overall little information was available to

estimate the laboratory effect. As only limited laboratory
information was available, the model parameter esti-
mates were less precise.

After determining the random effects for balanced
datasets, we explored how the model parameter estimates
were influenced by different unbalanced experimental
measurement designs. We expected that for each n , the
IQR of the estimated variances for the random effects
would increase with a higher percentage of missing data.
Furthermore, we also expected that the IQR values would
be lower and show a gentler increase in the case of a
larger n . This effect could be explained by the fact that
more observations remained for n¼ 500 after removing
80% of the data, compared to when the same percentage
was removed from the n¼ 200 dataset. Our expectations
were in line with the observed IQRs for the batch effect
and residual variance, where the difference in IQR for
0 and 80% removed data was largest for n¼ 20 (171%
increase in batch effect variance IQR). For comparison,
the batch effect IQR for n¼ 500 increased by only 15%
when 80% of the data were removed. The relation
between IQR and the size of n was less distinct for the
laboratory effect. Randomly removing data from all
datasets led to highly fluctuating IQRs. These fluctua-
tions are likely to be reduced by increasing the number
of repetitions, for example, from 2,000 to 10,000. Thus,
they are a consequence of the approximation errors cau-
sed by the numerical evaluation of IQRs. However, the
size of the IQRs was, again, mainly influenced by the lim-
ited number of laboratories present in the datasets.
Increasing the number of laboratories is likely to result in
a smaller IQR of the laboratory effect, which would show
an increase when removing data randomly.

The use of synthetic datasets to develop and test the
model allowed us to study the influence of different
experimental measurement designs on model parameter
estimates. This application is especially interesting for
laboratories that aim to quantify and reduce measure-
ment error caused by the various error components. The
model could be used by individual laboratories to deter-
mine the minimal number of replicate measurements to
be included in the experimental measurement design. To
illustrate this, consider a case with batch and laboratory
effects removed, so that all variance in the data is cap-
tured by the residual part of the model. In this simplified
case, results may also be obtained analytically (and per-
haps also for more complex cases, but numerical
approaches may be more attractive in such instances).
Because we assumed normal distributions for the errors,
the variance estimator has a chi-squared distribution
(Webster & Oliver, 2007, Section 2.6.5), from which the
IQR can be derived using the qchisq function in R (van
Leeuwen et al., 2021).

FIGURE 4 Interquartile range (IQR) of estimates for batch

effect, laboratory effect and residual variance (n¼ 20, 50, 100, 200

and 500). For each n, 0, 20, 50 and 80% of the data were removed

randomly, before fitting the linear mixed-effects model (2,000

repetitions) [Color figure can be viewed at wileyonlinelibrary.com]
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Figure 5 shows the results of the analytical solution
for synthetic pHH2O data with σresidual = 0.2, 0.3 and 0.4.
For each σresidual, the IQR was determined for when 5, 10,
20, 50, 100, 200 and 500 replicates were available. The
IQR decreased between 26 and 29% whenever the num-
ber of replicates was doubled. In other words, the IQR
decreased approximately inversely proportional to the
square root of the number of replicates included in
the experimental measurement design.

In future research, the effect of different numbers of
batches and laboratories could be investigated. Further-
more, in the current model (Equation 2), we assumed
that only σlaboratory was systematically different for each
laboratory. However, the batch and residual standard
deviations may also vary between laboratories, meaning
that each laboratory has its own σbatch and σresidual .
Adding this effect would result in a more complex model
with more parameters, which are more difficult to iden-
tify and hence lead to larger IQRs with the same experi-
mental measurement design. Another effect that could be
added to the model is a proportional residual variance.
For instance, in soils with a high organic carbon content
(e.g., forest soils) measurements tend to have a larger
error. In this case, the residual variance is proportional
dependent on the TOC content of the sample.

5 | REAL-WORLD CASE STUDY

5.1 | Data

For the real-world case study, measurements of soil sam-
ples from WEPAL were used. These data are part of the
International Soil-analytical Exchange (ISE) programme
(WEPAL, 2020). TOC measurements (dry combustion)

were included in the analysis to determine if the model
was also able to precisely estimate the variances of the
random effects for a soil property different from pHH2O .
TOC is considered to be more difficult to measure than
pHH2O and its analysis is likely to yield more uncertain
results (Bisutti, Hilke, & Raessler, 2004). Here, TOC is
expressed in mass percentage (%).

Soil samples were selected based on their generic soil
characteristics, aiming for a diverse range of materials to
be included in the analysis (Table 2). Furthermore, we
required that each soil sample was included in at least
two rounds of the ISE programme. This condition
ensured that multiple measurements of the same soil
sample by the same laboratory were available.

The pHH2O and TOC data contained batch and labora-
tory information. Furthermore, in the proficiency testing
scheme, each homogenized soil sample was sent to par-
ticipating laboratories over multiple rounds. Therefore, a
round effect might be present, which was added as a ran-
dom effect in the linear mixed-effects model. We
expected the round variance to be close to zero, as
WEPAL ensures the homogeneity of soil samples over
rounds. The original model (Equation 2) was rewrit-
ten into:

Ypqrst ¼XsþRr þBpqr þLqþ εpqrst, ð3Þ

where the preparation method effect, M , was excluded,
and the round effect, R, was added. Ypqrst is the t-th mea-
surement of the s -th soil sample of the r -th round,
measured in the p -th batch by the q -th laboratory. For
pHH2O , the final dataset included measurements of all
nine soil samples (see Table 2), which were analysed by
332 laboratories over a maximum of four rounds. The
6,749 measurement results were spread out over 6,380
batches, thus including 369 replicates. The TOC dataset
contained only 1,756 observations that were analysed by
154 different laboratories. Here, only one batch contained
replicate measurements. Consequently, this made quanti-
fying the batch effect impossible, because the model
could not distinguish between batch effect and residual
variance. Therefore, batch effect was removed from the
model (Equation 4) before fitting it to the TOC dataset:

Yqrst ¼XsþRr þLqþ εqrst, ð4Þ

We also used the selected WEPAL data to test if the lin-
ear mixed-effects model (Equations 3 and 4) could accu-
rately estimate all model parameters given the specific
experimental measurement design used by WEPAL and
the number of available replicates. First, the model was
fitted on the real pHH2O and TOC measurements. Second,
the resulting estimated variances of the random effects

FIGURE 5 Interquartile ranges (IQRs) of residual variance

estimated based on the number of available replicates (5, 10, 20, 50,

100, 200 and 500), in a case where residual error is the only source

of uncertainty [Color figure can be viewed at

wileyonlinelibrary.com]

van LEEUWEN ET AL. 9

http://wileyonlinelibrary.com


were considered as 'true' variances and were used to sim-
ulate synthetic values for the round, batch (in case of
pHH2O ) and laboratory effect, as well as for the residual
part of the model. Third, after the synthetic WEPAL
dataset was created, we fitted the model on these data to
determine if model parameter estimates were similar to
the 'true' variances. We repeated this procedure 500 times
to assess the distributions of the model parameter esti-
mates, similar to the approach used in Section 4.1.

5.2 | Results

5.2.1 | pH-in-water

The linear mixed-effects model was fitted on the
WEPAL pHH2O measurements. The model estimated
σ2round ¼ 0:0015 , σbatch ¼ 0:047 , σ2laboratory ¼ 0:029 and
σ2residual ¼ 0:036 . The round effect variance was close to
zero. Furthermore, the batch effect was greater than the
laboratory effect. The estimated residual variance was
smaller than the batch variance, but larger than the labo-
ratory effect variance. The fitted values, based on the
WEPAL pHH2O measurements, were used as input, or
'true', values for the random effects in the simulation
study.

Figure 6 shows the distributions of the estimated
model parameters, based on 500 repetitions. The variance
estimates of all four parameters were fairly normally dis-
tributed and centred around the 'true' variances, which
were based on the model estimates from the real WEPAL
data. The IQRs of the estimated variances were 0.0006
(round effect), 0.0037 (batch effect), 0.0039 (laboratory
effect) and 0.0035 (residual). For all random effects, the
IQRs were relatively small, suggesting that the model

was able to accurately estimate the random effects in
WEPAL's pHH2O measurements.

5.2.2 | TOC

The linear mixed-effects model estimated σ2round ¼
0:21%2 , σ2laboratory ¼ 7:71%2 and σ2residual ¼ 32:90%2 . As
for pHH2O , the round effect was negligibly small, but for
TOC the residual variance was substantially larger than
the laboratory effect variance. These 'true' values were
again used in a simulation study (Figure 7). In 19.8% of
the simulations, the round effect variance was estimated
at exactly zero, indicating a mixed discrete-continuous
distribution (Weld & Leemis, 2019). The IQRs of the esti-
mated variances were 0.35%2 (round effect), 1.80 %2 (lab-
oratory effect) and 1.54%2 (residual). These were
relatively large compared to the estimated variances,
especially for the round and laboratory effect.

5.3 | Discussion

In Section 5.2, the model was fitted to WEPAL's pHH2O

(Equation 3) and TOC (Equation 4) data. For both soil
properties, the model estimated the round effect variance at
almost zero (pH: σ2round ¼ 0:0015, TOC: σ2round ¼ 0:21 %2).
These low values indicate that the variance as a result of
heterogeneity of the sample material was minimal. In
other words, the composition of the soil sample did not
change over rounds, which was expected as WEPAL
guarantees homogeneity of provided test material. Fur-
thermore, for pHH2O the model estimated that the batch
effect variance was larger than that of the laboratory
effect (σ2batch ¼ 0:047 and σ2laboratory ¼ 0:029).

TABLE 2 Description of selected certified International Soil-analytical Exchange (ISE) reference samples and summary statistics of

pHH2O and total organic carbon (TOC) (dry combustion method) measurements

Sample Generic soil Sample No. pHH2O pHH2O pHH2O TOC TOC TOC
ID characteristic location laboratories Mean [�] SD [�] Var [�] Mean [%] SD [%] Var [%2]

860 Sediment Kreekaksluizen (NL) 181 7.53 0.32 0.102 31.10 8.68 75.34

861 Calcareous clay Logrono (ES) 171 7.74 0.32 0.102 17.31 5.91 34.93

863 Clay Maren Kessel (NL) 165 5.97 0.28 0.078 35.18 5.97 35.64

866 Loess Eijsden (NL) 156 5.96 0.34 0.116 10.09 2.71 7.34

867 Forest sandy soil Unknown (NL) 196 4.00 0.38 0.144 51.08 10.15 103.02

872 Braunerde clay Zurich (CH) 154 7.87 0.29 0.084 28.07 5.49 30.14

890 Sandy soil Hengelo (NL) 174 5.48 0.34 0.116 18.12 3.83 14.67

921 River clay Wageningen (NL) 158 7.48 0.34 0.116 35.14 5.36 28.73

995 Sandy soil Droevendaal (NL) 176 6.92 0.26 0.068 26.09 4.48 20.07

Abbreviations: NL, The Netherlands; ES, Spain; CH, Switzerland
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We expected that the batch effect would be smaller
than the laboratory effect, because laboratories use their
own specific procedures and within-laboratory variability
is typically smaller than between-laboratory variability.
Having a batch effect larger than the laboratory effect
could be related to the structure of the testing scheme
WEPAL applies; every soil sample is distributed over the
participating laboratories between one and four times.
However, not every laboratory returns all measurement
results. In most cases, only a single measurement result
was returned per round per laboratory. Only 369 out of
6,380 batches (5.8%) contained a replicate measurement.
As a result, the model may have had difficulty in dis-
tinguishing between the batch effect and the residual part
of the model, leading to a higher batch effect variance and
thus an underestimated residual variance. The results
from the simulation study supported this assumption.
Here, batch effect and residual variance showed a strong
negative correlation (�0.839), whereas correlations
between the other random effects were close to zero

(Figure 8). The TOC batch effect variance was captured
within the residual variances, because the TOC dataset
contained only one replicate measurement. Therefore, the
batch effect was removed from the model. Correlations
between random effect estimates were all close to zero
(Appendix S1).

The model parameter estimates of the 'true' values
were in agreement with the WEPAL data. For pHH2O ,
Table 2 showed a mean variance of 0.103 (σ¼ 0:32 ),
whereas the model estimated the total variance at 0.114
(σ¼ 0:34). Similarly, the TOC data had a mean variance
of 38:88%2 σ¼ 6:24%ð Þ , whereas the model estimated a
total variance of 40:82%2 (σ¼ 6:39%). Table 2 shows that
the standard deviation for TOC differed substantially
between sample IDs. For example, sample 866 had a
mean TOC of 10.09% and a standard deviation of 2.71%,
whereas sample 867 had a mean TOC of 51.08% with a
standard deviation of 10.15%. With higher mean TOC,
the standard deviation increased, indicating a propor-
tional effect. Therefore, in future research, this effect may

FIGURE 6 Density plots of model parameter estimates for the round and laboratory effects, and the residual variance, based on the

synthetic WEPAL pHH2O dataset (based on 500 repetitions). The dashed vertical line indicates the input, or 'true', variance of the random

effects. Note that the scales of the x- and y-axes differ [Color figure can be viewed at wileyonlinelibrary.com]
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be included by assuming that the residual standard devia-
tion is proportional to the mean.

Results from the simulation study showed that the
average model parameter estimates were close to the
'true' values. For pHH2O , the IQRs of the variance esti-
mates were small, indicating that, despite the small
number of replicate measurements (369 of 6,749 observa-
tions), the model was able to accurately estimate the ran-
dom effects. In contrast, the relative IQRs for the model
parameter estimates were larger for TOC, especially for the
round and laboratory effect. This could be attributed to the
larger laboratory bias in the TOC data compared to pHH2O

data. Furthermore, the TOC dataset was much smaller
than that of the pHH2O (1,756 and 6,749 observations,
respectively), and included only a single replicate
measurement, whereas the pHH2O dataset contained
369 replicates.

6 | GENERAL DISCUSSION

6.1 | Quantification of uncertainties
in wet chemistry soil data

The quantification of uncertainties in wet chemistry data is
of utmost importance, as errors in these data can propagate
in further applications, such as pedotransfer functions or
spectroscopic models (FAO, 2019b). Unfortunately, the
majority of wet chemistry soil data is provided without
uncertainty estimates, thereby limiting the scope for users
to assess the “fitness for intended use”. Most databases that
are compilations of legacy data as well as spectrally derived
data from various sources, do not provide quality indicators
along with the data. In this study, we evaluated how mea-
surement uncertainties can be estimated using replicates
and a linear mixed-effects model approach.

FIGURE 7 Density plots of model parameter estimates for the round and laboratory effects, and the residual variance, based on the

simulated WEPAL TOC dataset (500 repetitions). As the round effect variance followed a mixed discrete-continuous distribution with a mass

at zero, the discrete part is indicated by the black spike together with the probability mass represented by a solid disc. The dashed vertical

line indicates the input, or 'true', variance of the random effects. Note that the scales of the x- and y-axes differ [Color figure can be viewed at

wileyonlinelibrary.com]
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We quantified uncertainties in pH and TOC measure-
ments through a linear mixed-effects model approach. In
other disciplines, such as ecology and medicine, (general-
ized) linear mixed-effects models are already commonly
used to estimate variances from multiple sources in
repeated measurements (Zuur et al., 2009). However, for
wet chemistry soil data, the measurement error is often
expressed by the mean squared error (MSE) or the root
mean square error (RMSE) (Lagacherie et al., 2019;
Libohova et al., 2019). These indicators are just summary
measures, which do not provide information about the
uncertainty associated with different components of
the measurement procedure. Linear mixed-effects models
allow determination of the contribution of each variance
component to the total variance in the measurement.
This information can help data providers decrease vari-
ance in their measurements by improving the limiting
components in the laboratory analysis process itself.

Several studies also determined the size of the measure-
ment error in basic soil properties, such as pH and TOC
(e.g., Laslett & McBratney, 1990; Libohova et al., 2019;
Pribyl, 2010). However, different approaches, alternative
terminologies for the error and the use of different units
made it challenging to compare our findings with those of

previous studies. Furthermore, one should pay attention to
what is included in the estimate of the measurement error.
For example, Rawlins, Lister, and Mackenzie (2002) men-
tion that, in practice, subsample and analytical variance
cannot be separated, because the analytical variance can
only be estimated by repeated analyses on the same uni-
form soil sample. However, as soil is never totally uniform,
part of the analytical variance should actually be attributed
to the subsampling error. In this research, we did not
include subsampling error as a separate random effect.
However, if this error source was present in the data, it
was captured within the residual variance.

Libohova et al. (2019) assessed the size of errors in
pH measurements, originating from the use of multiple
wet chemistry methods, pedotransfer functions and spa-
tial interpolation procedures, from different US data-
bases. For pHH2O, Libohova et al. (2019) found a RMSE of
0.19 for the laboratory repeatability and 0.34 for the
within-laboratory reproducibility. The between-
laboratory reproducibility was estimated to have a RMSE
of 0.50. Variance estimates were also provided for the lab-
oratory repeatability and within-laboratory reproducibil-
ity; 0.15 and 0.06, respectively. Another study
summarized analytical error variance estimates for a set

FIGURE 8 Scatter plots and Pearson correlations of the random effects variance estimates for pHH2O
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of soil properties from literature (Viscarra Rossel &
McBratney, 1998). A mean variance of 0.0295 for pHH2O

was obtained. Both values are relatively small compared
to the total variance estimated in the current research,
where pHH2O had a mean total variance of 0.114 in the
real-world case study. The data collected from the litera-
ture by Viscarra Rossel and McBratney (1998) originated
from multiple laboratories, which all analysed the same
soil sample. However, the study included only a small
number of soil samples and variances were reported per
soil sample. These examples from the literature show that
comparison of measurement errors between studies is dif-
ficult, pointing to the need for a consistent procedure for
quantifying the uncertainty in wet chemistry soil data.

6.2 | Implications for users of soil data

We applied the model to real-world soil data, provided by
WEPAL. For pHH2O data, the overall measurement error
was estimated at σ = 0.34, whereas σ = 6.39% was esti-
mated from the TOC data. These measurement errors are
relatively large, especially for TOC.

For data users, these findings are important to
determine the “fitness for intended use” of the data.
Negative effects can occur when using uncertain data
to, for example, provide nutrient or fertilizer recom-
mendations. For example, in the United States, applica-
tions of lime to acidic soils to raise soil pH are based on
a recommendation scheme that does not take the
uncertainty in measured pH into account, potentially
leading to additions that are either too low or too high
(Libohova et al., 2019). Target pH values in such nutri-
ent application schemes are categorized per 0.2 pH
units (Laboski, Peters, & Bundy, 2006). For these pur-
poses, the estimated random effect standard deviations
(σbatch ¼ 0:22 , σlaboratory ¼ 0:17 and σresidual ¼ 0:19 ) could
potentially lead to incorrect recommendations. TOC, a
common measure for SOC (soil organic carbon), is often
used to assess SOC stocks and carbon sequestration rates
at multiple spatial scales (Francaviglia, Di Bene, Farina,
Salvati, & Vicente-Vicente, 2019). For accurate estimates
of carbon sequestration rates and SOC stock changes,
precise and repeated measurements of SOC are required
(Stockmann et al., 2013). Uncertainty of SOC measure-
ments will lead to uncertainty of the SOC stock estima-
tion. For the TOC data, the total standard deviation was
estimated at 6.39% (mean TOC = 28.9%), which is a rela-
tive error of 22.1%. A relative error of 22.1% in a TOC
measurement will thus lead to a relative error of 22.1% in
the SOC stock estimate, besides the error that occurs
from measurement error in bulk density and coarse
fragments data.

6.3 | Recommendations for providers
of soil data

We applied the model to real-world soil data, provided by
WEPAL. Contrary to our expectations, the batch effect
variance was larger than the laboratory effect vari-
ance for pHH2O. The model estimated σ2batch ¼ 0:047 and
σ2laboratory ¼ 0:029. However, as explained in Section 5.3,
the small number of batches with replicate measure-
ments, and the strong negative correlation between the
batch effect and residual variance, suggested that this
experimental measurement design was not appropriate
for accurately estimating the batch effect and separating
it from the residual variance. Therefore, when quantify-
ing the batch effect, more batches should contain repli-
cate measurements.

The synthetic case study yielded insight on the influ-
ence of experimental measurement designs and number
of replicates on the accuracy with which error source
components could be estimated. The number of repli-
cates influenced the accuracy of the estimate of the resid-
ual variance, as illustrated by the IQRs (Table 1). For
n¼ 20, the IQR of the residual variance was 500% larger
than the IQR for n¼ 500 (0.0080 and 0.0016, respec-
tively). This change is not caused by the number of sam-
ples, but by the number of replicates, as was also
demonstrated in Figure 5. The IQR was inversely propor-
tional to the square root of the number of replicatesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

500=20
p ¼ ffiffiffiffiffi

25
p ¼ 5

� �
. This effect was less distinct for

the batch effect, where the IQR decreased from 0.0086
(n¼ 20) to 0.0066 (n¼ 500). The laboratory variance IQR
remained more or less the same (0.0736 and 0.0702 for
n¼ 20 and n¼ 500 , respectively). As mentioned in Sec-
tion 4.3, the IQR of both batch and laboratory effect vari-
ance did not decrease for larger n, as the total number of
batches and laboratories remained the same. This is
important to consider when using the model to assess
variance in multi-laboratory datasets. The same applies
to any other error source being included in the model.
Whenever a limited number of batches and laboratories
are included in the dataset, the model estimates for these
random effects will become less accurate.

The analytical results from the simplified model dem-
onstrated the importance of including sufficient repli-
cates in laboratory analyses (Section 4.3). A limited
number of replicate measurements led to imprecise
model parameter estimates, regardless of the number of
samples. The analytical tool can be used by laboratories
to determine how many replicates should be included in
their experimental measurement design. Of course, this
decision is also based on the financial resources that are
available for the analyses. Considering variance estima-
tion before performing analyses, could greatly improve
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uncertainty quantification of wet chemistry measure-
ments. These findings are relevant to initiatives such as
GLOSOLAN (FAO, 2019a). The importance of having
sufficient replicate measurements was also observed in
the real-world case study. For pHH2O , only 5.8% of the
batches included replicate measurements. The lack of
sufficient replicates in each batch caused the model to
have difficulties in distinguishing between the batch
effect and residual variance.

Furthermore, as demonstrated in the synthetic case
study with unbalanced datasets, the number of sample
IDs included in the analyses indirectly affected model
parameter estimates. Here, imprecise model parameter
estimates were observed for the smaller datasets (n¼ 20
and n¼ 50) after 80% of the data was removed. In these
smaller datasets, fewer replicates were available. When
removing 80% of the existing data for n¼ 20 , 96 of the
total 120 measurements were removed. The remaining
24 observations contained too little information to accu-
rately estimate the three random effects. In larger
datasets more data remained available to estimate the
model parameters after removing a large percentage of
the data.

Additionally, as suggested by the literature review,
when quantifying uncertainties in wet chemistry soil
data, SOPs for measuring and reporting data are of
utmost importance. Standardized methods will reduce
σbatch, σlaboratory , σmethod and σresidual . The positive effect of
SOPs on the laboratory measurement error is illustrated
by the results from the real-world case study. WEPAL
applies SOPs for preparing homogeneous soil samples
and subsequent storage of the material, leading to a small
round effect variance, as presented in Section 5.2.

7 | CONCLUSION

We aimed to quantify uncertainties in synthetic and real-
world wet chemistry soil data through a linear mixed-effects
model approach. Our study showed that for balanced and
unbalanced datasets, using data for three hypothetical labo-
ratories (four batches per laboratory), the mean estimated
variances of the random effects were in agreement with
those for the respective random effects used to generate the
synthetic datasets. In other words, there was no systematic
bias in the model variance estimates.

The results from the synthetic case study also
showed the importance of including sufficient batches
and laboratories in the experimental measurement
design when quantifying uncertainties in multi-
laboratory data. Including data from only three hypo-
thetical laboratories led to imprecise estimation of the
laboratory random effect, which did not improve when

more unique samples were added. A similar effect was
observed for the batch effect variances, although less
strong. To solve this problem, it may be better to repre-
sent the laboratory effect as a fixed effect instead of a
random effect in case of data from only a few laborato-
ries or batches. In contrast to the batch and laboratory
variance estimates, the residual variance estimates did
become more precise, as indicated by the decreasing
IQRs. In the unbalanced case, the IQRs increased after
various percentages of data were removed randomly.
The effect was clearest for smaller datasets, where
removing observations left only little information for
the model to estimate its parameters.

The real-world case study using WEPAL data showed
that the model could also accurately estimate the vari-
ances of the random effects using real unbalanced
datasets. For pHH2O , the model estimated σ2batch ¼ 0:047,
σ2laboratory ¼ 0:029 and σ2residual ¼ 0:036. However, due to
the small number of batches with replicate pHH2O mea-
surements (5.8%), the model had difficulties in dis-
tinguishing between batch and residual variance. For
TOC, only a single replicate measurement was available,
leading to batch effect being removed from the model.
The model estimated σ2laboratory ¼ 7:71%2 and σ2residual ¼
32:90%2. For both pHH2O and TOC, the round effect vari-
ance was close to zero, indicating that WEPAL success-
fully distributes stable and homogeneous soil samples
between rounds of the ISE Programme.

The results from the synthetic case also demonstrated
the importance of having sufficient replicate measure-
ments. Therefore, in laboratory performance compari-
sons, a greater number of batches should contain
replicate measurements to successfully estimate the vari-
ance components. The analytical result of the simplified
case with only residual error (Figure 5) showed that the
IQR of the variance estimates decreased proportionally
with the square root of the number of replicates included.
Data providers can use these types of analysis to deter-
mine how many replicates should be included in their
experimental measurement design, thus striking a bal-
ance between accurate measurement uncertainty quanti-
fication and financial resources.

This research demonstrated the importance of ade-
quate experimental measurement design and sufficient
replicate measurements in the quantification of uncer-
tainties in wet-chemistry soil data. Furthermore, the
results showed that the laboratory measurement error in
soil data is quite large and should not be ignored by the
users of the data, which, unfortunately, occurs regularly.

ACKNOWLEDGEMENTS
We thank W. van Vark from WEPAL for providing data
from the ISE Programme. We would also like to thank

van LEEUWEN ET AL. 15



the two anonymous reviewers for their constructive and
insightful comments.

AUTHOR CONTRIBUTIONS
Cynthia van Leeuwen: Conceptualization; data
curation; formal analysis; methodology; supervision;
visualization; writing-original draft; writing-review &
editing. Gerard Heuvelink: Conceptualization; formal
analysis; methodology; supervision; writing-original
draft; writing-review & editing. Niels Batjes: Conceptu-
alization; methodology; supervision; writing-original
draft; writing-review & editing. Titia Mulder: Conceptu-
alization; methodology; supervision; writing-original
draft; writing-review & editing.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are avail-
able from the corresponding author upon reasonable
request. Restrictions apply to the availability of the
WEPAL data.

ORCID
Cynthia C. E. van Leeuwen https://orcid.org/0000-0003-
3108-2136
Vera L. Mulder https://orcid.org/0000-0003-4936-0077
Niels H. Batjes https://orcid.org/0000-0003-2367-3067
Gerard B. M. Heuvelink https://orcid.org/0000-0003-
0959-9358

REFERENCES
Allchin, D. (2001). Error types. Perspectives on science, 9(1), 38–58.

https://doi.org/10.1162/10636140152947786
Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting

linear mixed-effects models using lme4. Journal of Statistical
Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01

Batjes, N. H., Ribeiro, E., & van Oostrum, A. (2020). Standardised
soil profile data to support global mapping and modelling
(wosis snapshot 2019). Earth System Science Data, 12, 299–320.
https://doi.org/10.5194/essd-12-299-2020

Bisutti, I., Hilke, I., & Raessler, M. (2004). Determination of total
organic carbon–an overview of current methods. TrAC Trends
in Analytical Chemistry, 23(10–11), 716–726. https://doi.org/10.
1016/j.trac.2004.09.003

Dangal, S. R. S., Sanderman, J., Wills, S., & Ramirez-Lopez, L.
(2019). Accurate and precise prediction of soil properties from a
large mid-infrared spectral library. Soil Systems, 3(1), 11.
https://doi.org/10.3390/soilsystems3010011

Ebentier, D. L., Hanley, K. T., Cao, Y., Badgley, B. D.,
Boehm, A. B., Ervin, J. S., … Jay, J. A. (2013). Evaluation of the
repeatability and reproducibility of a suite of qpcr-based micro-
bial source tracking methods. Water Research, 47(18), 6839–
6848. https://doi.org/10.1016/j.watres.2013.01.060

Ellison, S. L. R., Barwick, V. J., & Farrant, T. J. D. (2009). Practical sta-
tistics for the analytical scientist: A bench guide. Cambridge: Royal
Society of Chemistry. https://doi.org/10.1039/9781847559555

FAO. (2019a). Global soil laboratory network. Retrieved from
http://www.fao.org/global-soil-partnership/glosolan/en/

FAO. (2019b). Measuring and modelling soil carbon stocks and stock
changes in livestock production systems: Guidelines for assess-
ment (version 1). Rome, Italy: FAO.

Francaviglia, R., Di Bene, C., Farina, R., Salvati, L., & Vicente-
Vicente, J. L. (2019). Assessing “4 per 1000” soil organic carbon
storage rates under mediterranean climate: A comprehensive
data analysis. Mitigation and Adaptation Strategies for Global
Change, 24(5), 795–818. https://doi.org/10.1007/s11027-018-
9832-x

Goidts, E., Van Wesemael, B., & Crucifix, M. (2009). Magnitude and
sources of uncertainties in soil organic carbon (soc) stock assess-
ments at various scales. European Journal of Soil Science, 60(5),
723–739. https://doi.org/10.1111/j.1365-2389.2009.01157.x

Guerrero, C., Viscarra Rossel, R. A., & Mouazen, A. M. (2010). Dif-
fuse reflectance spectroscopy in soil science and land resource
assessment. Geoderma, 158, 1–2. https://doi.org/10.1016/j.
geoderma.2010.05.008

Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J.,
Fisher, D. N., Goodwin, C. E. D., … Inger, R. (2018). A brief intro-
duction to mixed effects modelling and multi-model inference in
ecology. PeerJ, 6, e4794. https://doi.org/10.7717/peerj.4794

Heuvelink, G. B. M. (2018). Uncertainty and uncertainty propaga-
tion in soil mapping and modelling. Pedometrics, 439–461.
Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-
319-63439-5_14

Heuvelink, G. B. M., Brown, J. D., & van Loon, E. E. (2007). A prob-
abilistic framework for representing and simulating uncertain
environmental variables. International Journal of Geographical
Information Science, 21(5), 497–513. https://doi.org/10.1080/
13658810601063951

Hibbert, D. B. (2007). Systematic errors in analytical measurement
results. Journal of Chromatography A, 1158(1–2), 25–32.
https://doi.org/10.1016/j.chroma.2007.03.021

International Organization for Standardization (ISO). (1994). ISO
5725-1: 1994: Accuracy (trueness and precision) of measure-
ment methods and results - Part 1: General principles and defi-
nitions. International Organization for Standardization. https://
www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en

Laboski, C. A., Peters, J. B., & Bundy, L. G. (2006). Nutrient applica-
tion guidelines for field, vegetable, and fruit crops in Wisconsin.
Madison, Wisconsin: Division of Cooperative Extension of the
University of Wisconsin-Extension.

Lagacherie, P., Arrouays, D., Bourennane, H., Gomez, C.,
Martin, M., & Saby, N. P. A. (2019). How far can the uncer-
tainty on a digital soil map be known?: A numerical experiment
using pseudo values of clay content obtained from Vis-swir
hyperspectral imagery. Geoderma, 337, 1320–1328. https://doi.
org/10.1016/j.geoderma.2018.08.024

Lark, R. M., & Cullis, B. R. (2004). Model-based analysis using reml
for inference from systematically sampled data on soil.
European Journal of Soil Science, 55(4), 799–813. https://doi.
org/10.1111/j.1365-2389.2004.00637.x

Laslett, G. M., & McBratney, A. B. (1990). Estimation and implica-
tions of instrumental drift, random measurement error and
nugget variance of soil attributes—A case study for soil ph.
Journal of Soil Science, 41(3), 451–471. https://doi.org/10.1111/
j.1365-2389.1990.tb00079.x

16 van LEEUWEN ET AL.

https://orcid.org/0000-0003-3108-2136
https://orcid.org/0000-0003-3108-2136
https://orcid.org/0000-0003-3108-2136
https://orcid.org/0000-0003-4936-0077
https://orcid.org/0000-0003-4936-0077
https://orcid.org/0000-0003-2367-3067
https://orcid.org/0000-0003-2367-3067
https://orcid.org/0000-0003-0959-9358
https://orcid.org/0000-0003-0959-9358
https://orcid.org/0000-0003-0959-9358
https://doi.org/10.1162/10636140152947786
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.5194/essd-12-299-2020
https://doi.org/10.1016/j.trac.2004.09.003
https://doi.org/10.1016/j.trac.2004.09.003
https://doi.org/10.3390/soilsystems3010011
https://doi.org/10.1016/j.watres.2013.01.060
https://doi.org/10.1039/9781847559555
http://www.fao.org/global-soil-partnership/glosolan/en/
https://doi.org/10.1007/s11027-018-9832-x
https://doi.org/10.1007/s11027-018-9832-x
https://doi.org/10.1111/j.1365-2389.2009.01157.x
https://doi.org/10.1016/j.geoderma.2010.05.008
https://doi.org/10.1016/j.geoderma.2010.05.008
https://doi.org/10.7717/peerj.4794
https://doi.org/10.1007/978-3-319-63439-5_14
https://doi.org/10.1007/978-3-319-63439-5_14
https://doi.org/10.1080/13658810601063951
https://doi.org/10.1080/13658810601063951
https://doi.org/10.1016/j.chroma.2007.03.021
https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:5725:-1:ed-1:v1:en
https://doi.org/10.1016/j.geoderma.2018.08.024
https://doi.org/10.1016/j.geoderma.2018.08.024
https://doi.org/10.1111/j.1365-2389.2004.00637.x
https://doi.org/10.1111/j.1365-2389.2004.00637.x
https://doi.org/10.1111/j.1365-2389.1990.tb00079.x
https://doi.org/10.1111/j.1365-2389.1990.tb00079.x


Libohova, Z., Seybold, C., Adhikari, K., Wills, S., Beaudette, D.,
Peaslee, S., … Owens, P. R. (2019). The anatomy of uncertainty for
soil ph measurements and predictions: Implications for modellers
and practitioners. European Journal of Soil Science, 70(1), 185–199.
https://doi.org/10.1111/ejss.12770

Malone, B. P., McBratney, A. B., & Minasny, B. (2011). Empirical
estimates of uncertainty for mapping continuous depth func-
tions of soil attributes. Geoderma, 160(3), 614–626. https://doi.
org/10.1016/j.geoderma.2010.11.013

McBratney, A. B., Minasny, B., Cattle, S. R., & Vervoort, R. W.
(2002). From pedotransfer functions to soil inference systems.
Geoderma, 109(1–2), 41–73. https://doi.org/10.1016/S0016-7061
(02)00139-8

McBratney, A. B., Minasny, B., & Viscarra Rossel, R. A. (2006).
Spectral soil analysis and inference systems: A powerful combi-
nation for solving the soil data crisis. Geoderma, 136(1–2), 272–
278. https://doi.org/10.1016/j.geoderma.2006.03.051

Menditto, A., Patriarca, M., & Magnusson, B. (2007). Understanding
the meaning of accuracy, trueness and precision. Accreditation
and Quality Assurance, 12(1), 45–47. https://doi.org/10.1007/
s00769-006-0191-z

Pribyl, D. W. (2010). A critical review of the conventional soc to
som conversion factor. Geoderma, 156(3–4), 75–83. https://doi.
org/10.1016/j.geoderma.2010.02.003

R Core Team. (2017). R: A language and environment for statistical
computing. Retrieved from https://www.r-project.org/

Ramsey, M. H. (1998). Sampling as a source of measurement uncer-
tainty: Techniques for quantification and comparison with ana-
lytical sources. Journal of Analytical Atomic Spectrometry, 13
(2), 97–104 10.1039/A706815H

Rawlins, B., Lister, T., & Mackenzie, A. (2002). Trace-metal pollu-
tion of soils in northern England. Environmental Geology, 42
(6), 612–620. https://doi.org/10.1007/s00254-002-0564-5

Smith, P., Soussana, J.-F., Angers, D., Schipper, L., Chenu, C.,
Rasse, D. P., … Klumpp, K. (2020). How to measure, report and
verify soil carbon change to realize the potential of soil carbon
sequestration for atmospheric greenhouse gas removal. Global
Change Biology, 26(1), 219–241. https://doi.org/10.1111/gcb.14815

Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J.,
Henakaarchchi, N., Jenkins, M., … Jastrow, J. D. (2013). The
knowns, known unknowns and unknowns of sequestration of
soil organic carbon. Agriculture, Ecosystems & Environment,
164, 80–99. https://doi.org/10.1016/j.agee.2012.10.001

Theodorsson, E., Magnusson, B., & Leito, I. (2014). Bias in clinical
chemistry. Bioanalysis, 6(21), 2855–2875. https://doi.org/10.
4155/bio.14.249

Thompson, M. (2000). Towards a unified model of errors in analyti-
cal measurement. The Analyst, 125, 2020–2025. https://doi.org/
10.1039/B006376M

Van Ee, J. J., Blume, L. J., & Starks, T. H. (1990). A rationale for the
assessment of errors in the sampling of soils. Las Vegas, Nevada:
US Environmental Protection Agency, Environmental Monitor-
ing Systems Laboratory.

van Leeuwen, C. C. E., Mulder, V. L., Batjes, N. H., &
Heuvelink, G. B. M. (2021). Gitlab repository - statistical model-
ling of measurement error in wet chemistry soil data. Retrieved
from https://git.wur.nl/cynthia.vanleeuwen/statistical-modelli
ng-of-measurement-error-in-wet-chemistry-soil-data

Viscarra Rossel, R. A., Behrens, T., Ben-Dor, E., Brown, D. J.,
Demattê, J. A. M., Shepherd, K. D., … Ji, W. (2016). A global spec-
tral library to characterize the world's soil. Earth-Science Reviews,
155, 198–230. https://doi.org/10.1016/j.earscirev.2016.01.012

Viscarra Rossel, R. A., & McBratney, A. (1998). Soil chemical ana-
lytical accuracy and costs: Implications from precision agricul-
ture. Australian Journal of Experimental Agriculture, 38(7),
765–775. https://doi.org/10.1071/EA97158

Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental
scientists. Chichester: John Wiley & Sons. https://doi.org/10.
1002/9780470517277

Webster, R., Welham, S. J., Potts, J. M., & Oliver, M. A. (2006). Esti-
mating the spatial scales of regionalized variables by nested
sampling, hierarchical analysis of variance and residual maxi-
mum likelihood. Computers & Geosciences, 32(9), 1320–1333.
https://doi.org/10.1016/j.cageo.2005.12.002

Weld, C., & Leemis, L. (2019). Mixed-type distribution plots. Infor-
mation Visualization, 18(3), 311–317. https://doi.org/10.1177/
1473871618756584

WEPAL. (2020). International soil-analytical exchange programme
- ise. Retrieved from https://www.wepal.nl/en/wepal/Home/
Proficiency-tests/Soil/Proficiency-tests/ISE.htm

Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M.
(2009). Mixed effects models and extensions in ecology with R.
New York, NY: Springer Science & Business Media. https://doi.
org/10.1007/978-0-387-87458-6

SUPPORTING INFORMATION
Additional supporting information may be found online
in the Supporting Information section at the end of this
article.

How to cite this article: van Leeuwen, C. C. E.,
Mulder, V. L., Batjes, N. H., & Heuvelink, G. B. M.
(2021). Statistical modelling of measurement error
in wet chemistry soil data. European Journal of Soil
Science, 1–17. https://doi.org/10.1111/ejss.13137

van LEEUWEN ET AL. 17

https://doi.org/10.1111/ejss.12770
https://doi.org/10.1016/j.geoderma.2010.11.013
https://doi.org/10.1016/j.geoderma.2010.11.013
https://doi.org/10.1016/S0016-7061(02)00139-8
https://doi.org/10.1016/S0016-7061(02)00139-8
https://doi.org/10.1016/j.geoderma.2006.03.051
https://doi.org/10.1007/s00769-006-0191-z
https://doi.org/10.1007/s00769-006-0191-z
https://doi.org/10.1016/j.geoderma.2010.02.003
https://doi.org/10.1016/j.geoderma.2010.02.003
https://www.r-project.org/
http://10.0.4.15/A706815H
https://doi.org/10.1007/s00254-002-0564-5
https://doi.org/10.1111/gcb.14815
https://doi.org/10.1016/j.agee.2012.10.001
https://doi.org/10.4155/bio.14.249
https://doi.org/10.4155/bio.14.249
https://doi.org/10.1039/B006376M
https://doi.org/10.1039/B006376M
https://git.wur.nl/cynthia.vanleeuwen/statistical-modelling-of-measurement-error-in-wet-chemistry-soil-data
https://git.wur.nl/cynthia.vanleeuwen/statistical-modelling-of-measurement-error-in-wet-chemistry-soil-data
https://doi.org/10.1016/j.earscirev.2016.01.012
https://doi.org/10.1071/EA97158
https://doi.org/10.1002/9780470517277
https://doi.org/10.1002/9780470517277
https://doi.org/10.1016/j.cageo.2005.12.002
https://doi.org/10.1177/1473871618756584
https://doi.org/10.1177/1473871618756584
https://www.wepal.nl/en/wepal/Home/Proficiency-tests/Soil/Proficiency-tests/ISE.htm
https://www.wepal.nl/en/wepal/Home/Proficiency-tests/Soil/Proficiency-tests/ISE.htm
https://doi.org/10.1007/978-0-387-87458-6
https://doi.org/10.1007/978-0-387-87458-6
https://doi.org/10.1111/ejss.13137

	Statistical modelling of measurement error in wet chemistry soil data
	1  INTRODUCTION
	2  ERROR IN ANALYTICAL CHEMISTRY
	3  METHODS
	3.1  Linear mixed-effects model
	3.2  Parameter estimation
	3.3  Software implementation

	4  SYNTHETIC CASE STUDY
	4.1  Data
	4.2  Results
	4.2.1  Balanced data
	4.2.2  Unbalanced data

	4.3  Discussion

	5  REAL-WORLD CASE STUDY
	5.1  Data
	5.2  Results
	5.2.1  pH-in-water
	5.2.2  TOC

	5.3  Discussion

	6  GENERAL DISCUSSION
	6.1  Quantification of uncertainties in wet chemistry soil data
	6.2  Implications for users of soil data
	6.3  Recommendations for providers of soil data

	7  CONCLUSION
	ACKNOWLEDGEMENTS
	  AUTHOR CONTRIBUTIONS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


