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Abstract
We consider estimation of the average effect of
time-varying dichotomous exposure on outcome
using inverse probability weighting (IPW) under the
assumption that there is no unmeasured confounding
of the exposure–outcome association at each time point.
Despite the popularity of IPW, its performance is often
poor due to instability of the estimated weights. We
develop an estimating equation-based strategy for the
nuisance parameters indexing the weights at each time
point, aimed at preventing highly volatile weights and
ensuring the stability of IPW estimation. Our proposed
approach targets the estimation of the counterfactual
mean under a chosen treatment regime and requires
fitting a separate propensity score model at each time
point. We discuss and examine extensions to enable
the fitting of marginal structural models using one
propensity score model across all time points. Extensive
simulation studies demonstrate adequate performance
of our approach compared with the maximum like-
lihood propensity score estimator and the covariate
balancing propensity score estimator.
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1 INTRODUCTION

Inverse probability weighting (IPW) has become very popular as a method to adjust statistical
analyses for bias due to confounding or selection in cross-sectional and longitudinal observational
studies. It is widely used in causal inference (Hernán & Robins, 2006), incomplete data problems
(Seaman & White, 2013), sample surveys (Kott & Liao, 2012), among others. The reason for the
increasing popularity of IPW is that it is relatively simple and can handle complex problems of
confounding and selection bias. Moreover, IPW does not require a lot of modeling. In particular,
this method demands a propensity score model, which is defined as the conditional probability of
a subject being exposed (or assigned to certain treatment) given a set of pretreatment covariates
(Rosenbaum & Rubin, 1983). Correction for confounding bias or selection bias works by weight-
ing each subject differently in the analysis, that is, by assigning a weight equal to the inverse of the
conditional probability of the observed exposure. This sole reliance on a propensity score model is
useful as it helps to ensure robustness against outcome model misspecification, which is difficult
to diagnose when the exposed and unexposed subjects have fairly different covariate or exposure
history.

Unfortunately, despite its widespread popularity, inverse weighting has several important
drawbacks. This method can be very sensitive to the choice of estimation method for the inverse
probability weights (Kang & Schafer, 2007; Ridgeway & McCaffrey, 2007; Zubizarreta, 2015).
These are commonly estimated based on maximum likelihood estimation under standard logistic
models. The resulting estimated weights can be highly volatile and unstable, which can substan-
tially increase the finite sample bias and variance of the weighted estimators leading to unstable
results (Robins et al., 2007; Seaman & White, 2013). For instance, this could happen when for
some treated subjects the estimated probability of receiving treatment is low based on their
observed covariates. This can happen because maximum likelihood estimators do not guarantee
stability of the estimated weights. Obtaining stable inverse weights can be especially problematic
in longitudinal studies, where inverse probability weights are often accumulated as a product of
inverse weights across time.

A number of methods have been proposed to attain stable weights in fixed time period studies
(see Hainmueller, 2012; Imai & Ratkovic, 2014; Yiu & Su, 2018; Zubizarreta, 2015, among others).
Relatively few have been designed for longitudinal studies (e.g., Han, 2016; Kallus & Santacat-
terina, 2018). In view of this, we introduce a new approach to estimate the inverse probability
weights needed for estimation of the effects of a time-varying exposure on an outcome. We propose
a system of estimating equations in the fixed time period settings and further extend it to the lon-
gitudinal settings. Our proposal relies on so-called calibration equations which endorse covariate
balancing conditions between the whole sample and the subsample corresponding to the con-
sidered regime. A key feature of the proposed approach, unlike others, is that it adapts to the
estimand. Through extensive simulation results, we demonstrate that, under a wide variety of set-
tings, our proposed methodology performs well in terms of several statistical measures compared
with the traditional maximum likelihood propensity score estimator (MLE), the covariate bal-
ancing propensity score (CBPS) estimator (Imai & Ratkovic, 2014), the stable balancing weights
(SBW) estimator (only for the fixed time period setting) (Zubizarreta, 2015) and the adaptation of
the calibration approach proposed by Han (2016).

The rest of the article is organized as follows. Section 2 describes the IPW estimation method.
In Section 3, we provide our proposed methodology. Section 4 gives a thorough literature review
where we discuss the limitations of the existing methods and their relation to our proposed
method. In Section 5, we conduct a simulation study to evaluate the performance of our proposal.
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In Section 6, we demonstrate the applicability of our proposed approach in the estimation of
marginal structural models (MSM). In Section 7, we present an empirical application which aims
at estimating the impact of negative advertisement on election outcomes. Section 8 concludes
with discussions.

2 IPW ESTIMATION

We start with the problem of estimating the mean outcome under a certain point treat-
ment regime. For each subject i = 1, … ,n we denote Ri as the treatment variable, Xi as the
p-dimensional vector of observed pretreatment covariates, and Yi as the outcome of interest. For
simplicity we assume that the treatment variable is binary, that is, Ri = 1 if subject i received
treatment and Ri = 0 if subject i received control. Let Y r denote the potential outcome under
treatment r. It is assumed that there is no unmeasured confounding (Rosenbaum & Rubin, 1983),
that is, the potential outcome is conditionally independent of the treatment indicator given the
covariates (Y r ⟂⟂ R |X for r ∈ {0; 1}). No other restrictions are imposed on the outcome and the
covariates. Let the propensity score model be a parametric working model for the probability of
receiving treatment: P(R = 1 |X) = 𝜋(𝛾;X), where we assume that 𝜋() is known, bounded away
from zero and one with probability one (i.e., positivity assumption), and sufficiently smooth in
the unknown nuisance parameter 𝛾 . For example, it is common to assume that the propensity
score obeys a logistic regression model, that is, 𝜋(𝛾,X) = expit(𝛾 ′(1,X ′)′), where 𝛾 is the nuisance
parameter. For a consistent estimator �̂� , the IPW estimator of 𝜇 = E(Y r) is defined as follows
(Horvitz & Thompson, 1952):

�̂�IPW(�̂�) = 1
n

n∑
i=1

I(Ri = r)Yi

𝜋r(�̂� ,Xi)(1 − 𝜋(�̂� ,Xi))1−r . (1)

For instance, the IPW estimator of E(Y 1) is defined as 1
n

∑n
i=1

RiYi
𝜋(�̂� ,Xi)

and the IPW estimator of

E(Y 0) is defined as 1
n

∑n
i=1

(1−Ri)Yi
1−𝜋(�̂� ,Xi)

. The IPW estimator of 𝜇 is consistent if the propensity score
model is correctly specified (Lunceford & Davidian, 2004).

Consider next the problem of estimating the effect of a time-varying treatment on an
end-of-study outcome. For each subject i = 1, … ,n we denote Rt,i as the treatment variable at
time t ∈ {0, … ,T}, Xt,i as the p-dimensional vector of observed covariates at time point t and Yi
as the outcome of interest at time T. Again we assume that the treatment variables are binary, that
is, Rt,i = 1 if subject i received treatment at time t and Rt,i = 0 if subject i received control at time t.
We denote Xt = (X0, … ,Xt), Rt = (R0, … ,Rt) and Y r as the potential outcome under treatment
r = (r0, … , rT). We assume that at each time point t the potential outcome at the end of the study
is conditionally independent of the treatment indicator at period t given the history of covariates
and exposures (Y r ⟂⟂ Rt |Xt,Rt−1 = rt−1 for rt = (r0, … , rt) where rj ∈ {0; 1} for j = 0, … , t), that
is, the assumption of sequential randomization holds (Robins, 1986, 1999). As in the fixed time
period case, we do not impose any other restrictions on the outcome and the covariates. We define
parametric propensity score models at each time point:

P(R0 = 1 |X0) = 𝜋0(𝛾0,X0) ∈ (0, 1),
…

P(Rt = 1 |XT ,RT−1) = 𝜋T(𝛾T ,XT) ∈ (0, 1),
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where each 𝛾t is an unknown nuisance parameter and functions 𝜋0, … , 𝜋T obey similar restric-
tions as in the fixed time period setting. For consistent estimators �̂� = (�̂�0, … , �̂�T), the IPW
estimator of the counterfactual mean 𝜙 = E(Y r) is defined as

�̂�IPW(�̂�) = 1
n

n∑
i=1

I(R0,i = r0) … I(RT,i = rT)Yi

�̂�
r0
0,i(1 − �̂�0,i)1−r0 … �̂�

rT
T,i(1 − �̂�T,i)1−rT

, (2)

where we denote �̂�t ≡ 𝜋(�̂� t,Xt) for t = 0, … ,T. In particular, the IPW estimator of E(Y (1,… ,1)) is
defined as 1

n

∑n
i=1

R0,i …RT,iYi

�̂�0,i … �̂�T,i
.

The choice of estimation method for the nuisance parameters can drastically affect the perfor-
mance of �̂�IPW(�̂�) and �̂�IPW(�̂�). For example, in the fixed time period settings, estimated propensity
scores close to zero or one may lead to poor performance of the target estimator. In practice,
the nuisance parameter is estimated through standard MLE assuming that the propensity score
obeys a logistic regression model. The MLE does not guarantee the stability of the estimated
inverse weights since even minor changes in the regression coefficients may drastically change
the inverse weights for treated subjects who were unlikely treated. The choice of estimation
method for the nuisance parameters is especially important in the context of longitudinal stud-
ies, where the inverse weights accumulate as a product of inverse probability weights across
time.

3 PROPOSED METHODOLOGY

3.1 The fixed time period case

Before proceeding with our proposed methodology for longitudinal studies, we first consider the
problem of stable inverse probability weight estimation in point treatment studies. For the sake
of simplicity we consider a logistic regression model for the propensity score, that is, 𝜋(𝛾;X) =
expit(𝛾 ′(1,X ′)′), for r = 0, 1. We propose to estimate 𝛾 by solving the following system of p + 1
estimating equations:

0 =
n∑

i=1

(
1 − I(Ri = r)

𝜋r(𝛾,Xi)(1 − 𝜋(𝛾,Xi))1−r

)(
1,X ′

i
)′
. (3)

For instance, if one aims at estimating the mean E(Y 1), the following system of p + 1
estimating equations will be considered:

0 =
n∑

i=1

(
1 − Ri

𝜋(𝛾,Xi)

)(
1,X ′

i
)′
. (4)

Otherwise, if interest lies in the counterfactual mean E(Y 0), then the following system of p + 1
estimating equations will be considered:

0 =
n∑

i=1

(
1 − 1 − Ri

1 − 𝜋(𝛾,Xi)

)(
1,X ′

i
)′
. (5)
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The system of estimating equations (3) is popular in the survey sampling literature, where they
are known as calibration weighting or calibration equations. In this context, they are designed to
provide less volatile inverse weights when estimating the population mean (see Deville & Särn-
dal, 1992; Kott & Liao, 2012; Wu, 2003). This choice of estimating equations has several attractive
characteristics:

1. The estimating equations (3) ensure efficiency and robustness of the IPW estimator, when
the outcome mean is linear in Xi. Under this assumption (i.e., E(Y |R = r,X) = m(𝛽r,X) =
𝛽′r(1,X ′)′, where 𝛽r is p + 1-dimensional nuisance parameter of the outcome model), the IPW
estimator is the efficient estimator of E(Y r) under the model defined by the restrictions on
the propensity score. This estimator can indeed be seen to equal the augmented IPW (AIPW)
(Robins et al., 1994) because it can be rewritten as

�̂�AIPW(�̂� , 𝛽) = �̂�IPW(�̂�) + 1
n

n∑
i=1

(
1 − I(Ri = r)

�̂�
r
i (1 − �̂�i)1−r

)
m(𝛽r,Xi).

Note that the second term in the right-hand side of the equation above becomes zero when
m(X; 𝛽r) = 𝛽′r(1,X ′)′. The AIPW estimator is moreover double robust (DR), in the sense that
it is consistent for 𝜇 if either the propensity score model 𝜋 or the linear outcome model m is
correctly specified, but not necessarily both (Scharfstein et al., 1999).

2. The estimating equations (4) (and more generally (3)) ensure stability of the inverse weights
by imposing the following two constraints. First, they guarantee that the sum of the inverse
weights for treated subjects equals the sample size n (e.g., from (4) it follows that

∑n
i=1

Ri
𝜋(�̂� ,Xi)

= n). Second, they induce a certain covariate balancing condition, that is, they make the
weighted average of the covariates for treated subjects equal to the average of the corresponding
covariates in the whole sample (e.g., from (4) it follows that

∑n
i=1

Ri
𝜋(�̂� ,Xi)

Xi =
∑n

i=1Xi).
3. In contrast to the existing approaches for estimating inverse probability weights, the proposed

approach adapts to the estimand. For example, depending on the target of interest E(Y 1) or
E(Y 0), the nuisance parameter 𝛾 is obtained by solving the estimating equations (4) or (5),
respectively. The use of a different estimator of 𝛾 , depending on whether E(Y 1) or E(Y 0) is esti-
mated, is attractive. It ensures stability of the considered weights, which differ when estimating
E(Y 1) versus E(Y 0).

3.2 The longitudinal case

In this article, we will extend the previous proposal to longitudinal studies. We consider logis-
tic regression models for the propensity scores, that is, 𝜋t ≡ 𝜋t(𝛾t;Xt) = expit(𝛾 ′t (1,X

′
t)′), with

variation-independent parameters 𝛾t, for t = 0, … ,T and we focus on the estimation of the mean
𝜙 = E(Y r). For simplicity, we include all historical covariates in the set of covariates at any time
period t = 1, … ,T (we will allow for more generality later). To guarantee the stability of the
inverse weights in each time period, we propose to estimate the nuisance parameters 𝛾0, … , 𝛾T
using the following system of estimating equations:

0 =
n∑

i=1

(
1 −

I(R0,i = r0)
𝜋

r0
0,i(1 − 𝜋0,i)1−r0

)(
1,X ′

0,i

)′

,
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0 =
n∑

i=1

I(R0,i = r0)
𝜋

r0
0,i(1 − 𝜋0,i)1−r0

(
1 −

I(R1,i = r1)
𝜋

r1
1,i(1 − 𝜋1,i)1−r1

)(
1,X

′

1,i

)′

,

…

0 =
n∑

i=1

I(R0,i = r0)
𝜋

r0
0,i(1 − 𝜋0,i)1−r0

…
I(RT−1,i = rT−1)

𝜋
rT−1
T−1,i(1 − 𝜋T−1,i)1−rT−1

(
1 −

I(RT,i = rT)
𝜋

rT
T,i(1 − 𝜋T,i)1−rT

)(
1,X

′

T,i

)′

, (6)

We will refer to our proposed method as Stable Estimand AdaptiVE IPW estimation (here-
after SEAVE). The proposed estimating equations deliver IPW estimators with similar properties
as before. First, the IPW estimator �̂�IPW(�̂�) equals the AIPW estimator when �̂� = (�̂�0, … , �̂�T) is
the solution of (6) with E(Y |RT = r,XT) = mT(𝛽T,r,XT) = 𝛽′

T,r
(1,X

′
T)′ and E(mt+1 |Rt = rt,Xt) =

mt(𝛽t,rt
,Xt) = 𝛽′

t,rt
(1,X

′
t)′ for each t = 0, … ,T − 1, where 𝛽t,rt

is the nuisance parameter of the out-
come model at time t corresponding to the treatment regime rt. Indeed, the AIPW estimator is
defined as (Robins & Rotnitzky, 1995; van der Laan & Robins, 2003)

�̂�AIPW(�̂�, 𝛽0, … , 𝛽T) = �̂�IPW(�̂�) + 1
n

n∑
i=1

(
1 −

I(R0,i = r0)
�̂�

r0
0,i(1 − �̂�0,i)1−r0

)
m0(𝛽0,r0

,X0,i)

+ 1
n

n∑
i=1

I(R0,i = r0)
�̂�

r0
0,i(1 − �̂�0,i)1−r0

(
1 −

I(R1,i = r1)
�̂�

r1
1,i(1 − �̂�1,i)1−r1

)
m1(𝛽1,r1

,X1,i)

…

+ 1
n

n∑
i=1

I(R0,i = r0)
�̂�

r0
0,i(1 − �̂�0,i)1−r0

…
I(RT−1,i = rT−1)

�̂�
rT−1
T−1,i(1 − �̂�T−1,i)1−rT−1

×

(
1 −

I(RT,i = rT)
�̂�

rT
T,i(1 − �̂�T,i)1−rT

)
mT(𝛽T,r,XT,i),

where all terms (except �̂�IPW(�̂�)) equal 0 by (6). This is attractive because the AIPW estimator is
locally efficient (when the outcome model is correctly specified at each time t) and DR.

The estimating equations (6) moreover ensure stability of the inverse weights by inducing the
following constraints. For the sake of simplicity, we consider the regime r = (1, … , 1). At any
time point t = 0, … ,T, the estimating equations guarantee that the sum of the inverse weights
equals the sample size, that is,

n∑
i=1

R0,i … Rt,i

�̂�0,i … �̂�t,i
= n, (7)

which is a desirable property. Next, at any time point t > 0, it makes the following covariate
balancing conditions hold

n∑
i=1

R0,i … Rt,i

�̂�0,i … �̂�t,i
Xk,i =

n∑
i=1

R0,i … Rt−1,i

�̂�0,i … �̂�t−1,i
Xk,i (8)

for the set of covariates Xk at time point k = 0, … , t. By imposing these constraints, the considered
estimated inverse probability weights target the estimand.
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Remark 1. It is likely that some of the historical covariates cannot be included in the model when
the number of time periods is large. In this case, we can define the following propensity score
function at time t:

P(Rt = 1 |Wt,Rt−1) = 𝜋∗
t (𝛾

∗
t ,Wt), (9)

where Wt is the set of covariates which contains Xt and a subset of the covariates in Xt−1.
For example, by considering the propensity score 𝜋∗

1 (𝛾
∗
1 ,W1) = expit(𝛾∗′ (1,X ′

1)
′ ) at t = 1, we

define W1 = X1 and omit the baseline covariate X0. The function 𝜋∗
t obeys similar restrictions as

𝜋t and 𝛾∗t is the corresponding nuisance parameter. Furthermore, we can reformulate our
proposed estimating equations (6) by replacing 𝜋t and Xt with 𝜋∗

t and Wt, respectively.
Note from (8) that by including lagged covariates Xt−1 in the set of covariates Wt, we obtain

additional balancing conditions. For example, if the baseline covariate X0 is included in all covari-
ate sets Xt for t = 1, … ,T, then we will obtain the following sequence of balancing conditions
for X0:

n∑
i=1

R0,i … RT,i

�̂�0,i … �̂�T,i
X0,i =

n∑
i=1

R0,i … RT−1,i

�̂�0,i … �̂�T−1,i
X0,i = · · · =

n∑
i=1

R0,i

�̂�0,i
X0,i =

n∑
i=1

X0,i. (10)

Our numerical results confirm that additional balancing conditions lead to better estimation
performance when the number of time periods is not large, but not generally otherwise.

4 RELATION TO THE EXISTING LITERATURE

As mentioned in Section 1, several methods have been proposed to achieve stable inverse
weights in fixed time period studies. In the literature related to causal inference and missing
data problems, the criterion (3) is closely related to the covariate balancing framework which
has been widely studied by several authors (see, e.g., Athey et al., 2018; Chan et al., 2016; Fan
et al., 2016; Fong et al., 2018; Imai & Ratkovic, 2014; Zubizarreta, 2015). Most prominently,
Imai and Ratkovic (2014) developed an approach known as covariate balancing propensity score
(CBPS) aimed at estimating the propensity scores such that resulting covariate balancing is opti-
mized. This method aims to improve covariate balance in the observed data and may potentially
provide robust and more accurate IPW estimates of the counterfactual means compared with IPW
estimates based on traditional maximum likelihood propensity scores. In general, CBPS balances
a particular function of covariates X , that is,

0 =
n∑

i=1

(
Ri

𝜋(𝛾,Xi)
− 1 − Ri

(1 − 𝜋(𝛾,Xi))

)
f (Xi), (11)

where function f () is specified by the researcher. For instance, if f (X) = (1,X ′)′ then the first
moment of each covariate will be balanced (known as “exactly identified” CBPS). In this case,
CBPS ensures that the weighted average of the covariates for treated and control subjects are
equal. Our proposed approach additionally ensures that these averages equal the sample average
of the corresponding covariates.

Recently, several authors (see, for instance, Hainmueller, 2012; Yiu & Su, 2018;
Zubizarreta, 2015, among others) have focused on estimating the inverse probability weights
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directly without involving a propensity score model. In particular, Zubizarreta (2015) designed a
method based on convex optimization that is referred to as SBW which aims at directly estimating
the inverse weights in the context of a missing data problem. The SBW method simultaneously
minimizes the variance of the inverse weights and balances the covariates under a tolerance level
which is specified by the researcher based on data. In addition, Wang and Zubizarreta (2020)
generalized this approach, aimed at minimizing the sum of a convex function applied on the
weights and balancing basis function of the covariates. In Appendix A (see the supplementary
materials), we conduct a simulation study in fixed time period settings and evaluate a compar-
ison of IPW estimators when the inverse probability weights are estimated using MLE, SBW,
CBPS, and our proposed approach (3).

Although considerable research has been devoted to estimating stable inverse probability
weights in one time period studies, less attention has been paid to this problem in longitudinal
studies. Imai and Ratkovic (2015) generalized the CBPS framework to longitudinal studies for
estimating the inverse probability weights for MSM (Robins, 2000; Robins et al., 2000). While our
proposed method in particular ensures the balancing conditions of CBPS in fixed time point stud-
ies for f (x) = (1, x′)′, our numerical simulations demonstrate that, under certain settings CBPS,
may fail to provide desirable stability for the estimated inverse weights.

Han (2016) considered the problem of estimating the propensity score in longitudinal studies
with dropout using DR estimation. The proposed approach is based on the following calibrated
estimating equations:

0 =
n∑

i=1

(
R1,i

�̂�1,i(𝜆1)
− 1

)
ĝ0,i,

0 =
n∑

i=1

R1,i

�̂�1,i(�̂�1)

(
R2,i

�̂�2,i(𝜆2)
− 1

)
ĝ1,i,

…

0 =
n∑

i=1

RT−1,i

�̂�1,i(�̂�1) … �̂�T−1,i(�̂�T−1)

(
RT,i

�̂�T,i(𝜆T)
− 1

)
ĝT−1,i, (12)

where Rt denotes the indicator of observing a subject at period t = 1, … ,T, that is, Rt = 1 if
the subject is observed or is still in the study at period t and Rt = 0, otherwise. Here, �̂�t(𝜆t) is
the calibration of the propensity score 𝜋t = P(Rt = 1 |Rt−1,Xt), 𝜆 = (𝜆1, … , 𝜆T) is a calibration
parameter and is estimated sequentially by solving (12). Two calibration techniques considered,
multiplicative and additive, are defined as

�̂�(𝜆t) = �̂�t exp
(
𝜆′t ĝt−1

1 − �̂�t

�̂�1 … �̂�t

)
,

�̂�(𝜆t) = �̂�t + 𝜆′t ĝt−1
1 − �̂�t

�̂�1 … �̂�t
,

respectively, where the noncalibrated �̂�t is obtained by maximizing the partial likelihood. Finally,
ĝt−1 is a function of Xt−1 which includes 1, �̂�t and the estimate of E(Y |Xt−1). Although the pro-
posed system of estimating equations is similar to (6), the main goal of Han (2016) is to achieve
intrinsic efficiency of the AIPW estimator and not directly stability of the inverse probability
weights. Intrinsic efficiency guarantees that, when the missingness model is correctly specified,
the estimator �̂� attains the minimum asymptotic variance among the class of AIPW estimators
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regardless of whether the considered model for the outcome is correctly specified. The calibra-
tion of the propensity score also requires estimation of the noncalibrated propensity scores �̂�t
using maximum likelihood. Moreover, the calibrated propensity scores are not guaranteed to lie
between 0 and 1. Finally, in contrast to our method, the proposal by Han (2016) requires the
estimation of E(Y |Xt−1). Although the proposed calibration approach focuses on studies with
dropouts, we include its adaptation in the numerical study provided in Appendix A. In our study,
we use the additive calibration technique since it was recommended by the author.

More recently, Kallus and Santacatterina (2018) introduced a method called kernel optimal
weighting (KOW) which is based on a quadratic optimization problem. Their method directly
estimates the inverse weights by balancing the time-dependent confounders (by using kernels)
and simultaneously controlling the precision of the MSM. Specifically, this method optimizes
the trade-off between the imbalance (defined as the sum of discrepancies between the weighted
observed data and the counterfactual over all treatment regimes) and the precision (defined as
the squared distance of the weights from uniform weights).

5 SIMULATION STUDY

In this section, we perform a simulation study to compare the performance of the proposed
estimator SEAVE with that of different estimators of a counterfactual mean 𝜙. Specifically, in
Subsection 5.1, we detail the considered estimators. In Subsection 5.2, we describe the simula-
tion scenarios for the models. We provide additional simulation results in Appendix C (see the
supplementary materials).

5.1 Considered estimators and study layout

In our numerical study, we consider the following weighted estimators for given nuisance param-
eter estimates �̂� = (�̂�0, … , �̂�T): the Horvitz–Thompson estimator �̂�IPW(�̂�) defined in (2) and the
sample-bounded IPW (SB-IPW) estimator with normalized weights (Hirano & Imbens, 2001;
Hirano et al., 2003):

�̂�SB−IPW(�̂�) =

( n∑
i=1

I(R0,i = r0) … I(RT,i = rT)Yi

�̂�
r0
0,i(1 − �̂�0,i)1−r0 … �̂�

rT
T,i(1 − �̂�T,i)1−rT

)

×

(∑n
i=1

I(R0,i = r0) … I(RT,i = rT)
�̂�

r0
0,i(1 − �̂�0,i)1−r0 … �̂�

rT
T,i(1 − �̂�T,i)1−rT

)−1

. (13)

This estimator can be obtained by solving the following score equations:

1
n

n∑
i=1

Ui(�̂�) = 0,

where

Ui(𝜙) = I(R0,i = r0) … I(RT,i = rT)
(
�̂�

r0
0,i(1 − �̂�0,i)1−r0 … �̂�

rT
T,i(1 − �̂�T,i)1−rT

)−1
(Yi − 𝜙)
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for i = 1, … ,n. The considered estimator (13) is sample-bounded in the sense that �̂�SB−IPW(�̂�)
lies in the range of the outcome Yi. Due to the condition (7) both SB-IPW and IPW estimators are
equal if the nuisance parameters are estimated using our proposed approach (6).

We examine the numerical performance of these estimators when parameter 𝛾t is estimated
for each period t using the following methods:

1. Maximum likelihood estimator, that is, using standard logistic regression (MLE).
2. Covariate balancing propensity score (CBPS),
3. Our proposed estimator (SEAVE).

In our study, we use the R commands glm and CBPS to obtain MLE and CBPS, respectively.
For the CBPS approach we use the argument exact aimed at obtaining “exactly identified”
CBPS. We additionally consider the argument over (not reported) which provides “overidenti-
fied” CBPS by employing both covariate balancing and score conditions, but this may provide
poor finite sample performance (Imai & Ratkovic, 2014), which was confirmed by our simulation
results. Finally, we solve the estimating equations of SEAVE by considering the corresponding
optimization problems (see Fu, 1998) which are solved using the command nlm. In Appendix
E (see the supplementary materials), we provide R-code for a particular simulation setup (e.g.,
Scenario 1 described below).

Remark 2. If no convergence is attained for solving certain estimating equations of the proposed
SEAVE approach using the commandnlm, we recommend penalizing the corresponding estimat-
ing function using a ridge penalty 𝜖𝛾t, where the penalty parameter 𝜖 has a small positive value
(e.g., 𝜖 = 0.001).

To evaluate the performance of a given estimator �̂�, we consider the following measures:

1. Monte Carlo bias (Bias): 1
M

∑M
m=1�̃�m − 𝜙

2. Root mean square error (RMSE):
[

1
M

∑M
m=1(�̃�m − 𝜙)2

]1∕2

3. Median of absolute errors (MAE): med|�̃� − 𝜙|
4. Monte Carlo standard deviation (MCSD): sd(�̃�),

where M is the number of replications, �̃� = (�̂�1, … , �̂�M) is a 1 × M vector of estimators �̂�

based on each Monte Carlo replication. In our numerical evaluation, we also consider the average
of the sandwich standard errors (ASSE) and the Monte Carlo coverage of 95% confidence intervals
(COV). For the IPW estimator, the standard error �̂�∕

√
n is calculated as �̂� = sdn(U), where sdn

is the empirical standard deviation and U is the score function of the IPW estimator. The 95%
confidence intervals are calculated as

CI(𝜙) =
(
�̂� ± 1.96�̂�∕

√
n
)
.

Furthermore, in order to calculate the confidence intervals for the SB-IPW estimator, we consider
the estimated standard error �̂�∕

√
n with

�̂� = sdn(U)E−1
n

[ T∏
t=0

I(Rt,i = r)
�̂�

rt
t,i(1 − �̂�t,i)1−rt

]
, (14)
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where U is the score function of SB-IPW estimator defined earlier and En is the empirical
expected value. We also consider the corrected estimators of the standard errors (accounting for
the uncertainty in the estimated propensity scores) by calculating the standard deviations using
the influence function (Tsiatis, 2007):

�̂� = sdn

(
U − E

(
𝜕U
𝜕𝜂

)
E−1

(
𝜕U𝜂

𝜕𝜂

)
U𝜂

)
E−1

n

[ T∏
t=0

I(Rt,i = r)
�̂�

rt
t,i(1 − �̂�t,i)1−rt

]
, (15)

where U𝜂 = U𝜂(RT ,XT) is the estimating function of the considered nuisance parameter estima-
tor, as defined in Appendix B (see the supplementary materials) for each estimation method.

5.2 Simulation scenarios

5.2.1 Scenario 1

In the first simulation scenario, we consider a simple data-generating mechanism where for each
i = 1, … ,n we generate Zi = (X0,i,,R0,i,X1,i,R1,i,Yi) as

X0,i ∼ N(0, 1),
R0,i ∼ Ber(expit(1 + X0,i)),
X1,i ∼ N(0.5X0,i + 0.5R0,i, 1),
R1,i ∼ Ber(expit(X1,i + X0,i + 0.5R0,i)),

Yi ∼ N(1 + 0.5R0,i + 0.5R1,i + X1,i + X0,i, 1).

We focus on estimating E(Y (1,1)) at sample sizes n = 500, 1000, and 2000. The following
working models are considered: 𝜋0(𝛾0;X0) = expit(𝛾 ′0

(
1,X ′

0
)′) and 𝜋1(𝛾1;X1) = expit(𝛾 ′1

(
1,X

′
1

)′
).

5.2.2 Scenario 2

In the second scenario, we consider three time periods. For each i = 1, … ,n we generate Zi =
(X0,i,X1,i,X2,i,R0,i,R1,i,R2,i,Yi), where

X0,i ∼ N(0, 1),
R0,i ∼ Ber(expit(1 + X0,i)),
X1,i ∼ N(0.5X0,i + 0.5R0,i, 1),
R1,i ∼ Ber(expit(X1,i + 0.5X0,i + 0.5R0,i)),
X2,i ∼ N(X1,i + 0.5R1,i, 1),
R2,i ∼ Ber(expit(X2,i + 0.5X1,i + 0.25X0,i + 0.5R1,i)),

Yi ∼ N(1 + 0.5R0,i + 0.5R1,i + 0.5R2,i + X2,i + X1,i + X0,i, 1).

We focus on estimating E(Y (1,1,1)) at sample size n = 500, 1000, and 2000. The following
working models are considered 𝜋0(𝛾0;X0) = expit(𝛾 ′0

(
1,X ′

0
)′), 𝜋1(𝛾1;X1) = expit(𝛾 ′1

(
1,X

′
1

)′
), and

𝜋2(𝛾2;X2) = expit(𝛾 ′2
(

1,X
′
2

)′
).
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5.2.3 Scenario 3

In the third scenario, we consider a data-generating mechanism where for each i = 1, … ,n, we
generate Zi = (X0,i,R0,i,X1,i,R0,i,Yi), X0,i = (X01i,X02i,X03i,X04i), X1,i = (X11i,X12i,X13i,X14i), as

Xt1i = UitWt1i, Xt2i = UtiWt2i, Xt3i = |UtiWt3i|, Xt4i = |UtiWt4i|,
Wtki ∼ N(0, 1), for k = 1, … , 4, and U0i = 1,

R0,i ∼ Ber(expit(𝛾 ′X0,i − 0.5)), U1i = 2 + (2R0,i − 1)∕3,

R1,i ∼ Ber(expit(−R0,i + 𝛾 ′X1,i + 0.25)),

Yi ∼ N(250 − 10R0,i − 10R1,i + 𝛿′X0,i + 𝛿′X1,i, 1))

for t = 0, 1, where 𝛾 = (1,−0.5, 0.25, 0.1)′ and 𝛿 = (27.4, 13.7, 13.7, 13.7)′. This mechanism was
previously used by Imai and Ratkovic (2015) with three time periods. In our study, we consider
only two time periods, because the additional time period leads to fewer observations required for
the convergence of the proposed SEAVE approach (considering the presence of the instrumental
variables).

We focus on estimating E(Y (1,1)) at sample sizes n = 3000 and 6000. We note that for this sim-
ulation setting relatively larger n, since smaller sample sizes lead to unidentified estimates of the
proposed method. Following the data generating mechanism, we consider the following working
models: 𝜋0(𝛾0;X0) = expit(𝛾 ′0

(
1,X ′

0
)′) and 𝜋1(𝛾1;X1) = expit(𝛾 ′1

(
1,X ′

1
)′). We additionally consider

the following working models: 𝜋0(𝛾0;X0) = expit(𝛾 ′0
(
1,X ′

0
)′) and 𝜋1(𝛾1;X1) = expit(𝛾 ′1

(
1,X

′
1

)′
),

thus, including the baseline covariates in the propensity score model 𝜋1.

5.3 Discussion of results

Tables 1–3 report the simulation results based on 1000 replications. We observe that SEAVE
outperforms other methods in terms of all statistical measures. More specifically, our proposed
methodology provides lower RMSE and MAE than MLE and CBPS. Moreover, we observe that
for most of the considered settings, the confidence interval coverage (based on the corrected stan-
dard errors) obtained using the proposed SEAVE approach is closer to the nominal level than that
calculated using MLE or CBPS methods.

We observe that for Scenario 3 (see Table 3) MLE and CBPS methods provide the lowest bias
for IPW and SB-IPW estimators, respectively. However, both methods provide high RMSE and
MAE as a result of high variability in the estimated inverse weights. Note that in this scenario
the covariates X0 do not affect the treatment variable A1. We repeated our numerical study by
including X0 in the estimation procedure of the propensity score 𝜋1 (see Table 4). By doing so, we
induce an additional balancing condition for the covariate X0. Table 4 shows that by including the
baseline covariates X0, we significantly improve the statistical performance of SEAVE in terms of
all measures compared with those in Table 2.

Furthermore, we provide additional results in Appendix C (see the supplementary materials)
for the counterfactual mean E(Y (1,0)) for Scenarios 1 and 3. We observe that the proposed method
again provides stable results. Moreover, similar results are obtained for dichotomous outcome,
where SEAVE provides desirable results compared with other methods (see Appendix C for more
details).
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T A B L E 1 Estimation of E(Y (1,1)). Simulation results based on 1000 replications: Scenario 1

Estimator Bias RMSE MAE MCSD ASSE COV
n = 500
�̂�IPW(�̂�MLE) −0.011 0.551 0.092 0.552 0.195

0.159
0.984
0.929

�̂�IPW(�̂�CBPS) 0.012 0.224 0.119 0.224 0.189
0.158

0.970
0.889

�̂�IPW(�̂�SEAVE) 0.0009 0.129 0.084 0.129 0.164
0.121

0.988
0.926

�̂�SB−IPW(�̂�MLE) 0.023 0.339 0.158 0.338 0.253
0.199

0.901
0.819

�̂�SB−IPW(�̂�CBPS) −0.074 0.298 0.153 0.289 0.276
0.193

0.946
0.848

�̂�SB−IPW(�̂�SEAVE) 0.0009 0.129 0.084 0.129 0.246
0.121

0.997
0.926

n = 1000
�̂�IPW(�̂�MLE) 0.009 0.148 0.069 0.148 0.129

0.107
0.973
0.914

�̂�IPW(�̂�CBPS) 0.009 0.160 0.087 0.159 0.133
0.116

0.944
0.885

�̂�IPW(�̂�SEAVE) 0.002 0.091 0.058 0.091 0.117
0.087

0.986
0.933

�̂�SB−IPW(�̂�MLE) 0.028 0.230 0.135 0.228 0.193
0.156

0.900
0.818

�̂�SB−IPW(�̂�CBPS) −0.036 0.240 0.142 0.237 0.206
0.156

0.903
0.847

�̂�SB−IPW(�̂�SEAVE) 0.002 0.091 0.058 0.091 0.186
0.087

1
0.933

n = 2000
�̂�IPW(�̂�MLE) 0.004 0.120 0.053 0.120 0.096

0.082
0.963
0.916

�̂�IPW(�̂�CBPS) 0.0002 0.131 0.064 0.132 0.100
0.090

0.935
0.894

�̂�IPW(�̂�SEAVE) −0.0001 0.066 0.042 0.066 0.087
0.063

0.984
0.931

�̂�SB−IPW(�̂�MLE) 0.015 0.177 0.093 0.176 0.151
0.126

0.917
0.852

�̂�SB−IPW(�̂�CBPS) −0.035 0.194 0.100 0.191 0.162
0.129

0.921
0.887

�̂�SB−IPW(�̂�SEAVE) −0.0001 0.066 0.042 0.066 0.144
0.063

1
0.931

Note: The top/bottom standard errors (and the corresponding confidence intervals) are obtained using the
uncorrected/corrected standard deviations defined in (14) and (15), respectively (see Section 5.1). The corrected
standard errors are considered to account for the uncertainty in the estimated propensity scores.
Abbreviations: ASSE, average of sandwich standard errors; bias, Monte Carlo bias; CBPS, covariate balancing
propensity score; COV, coverage of 95% confidence intervals; IPW, inverse probability weighting; MAE, median
of absolute errors; MCSD, Monte Carlo standard deviation; MLE, maximum likelihood propensity score
estimator; RMSE, root mean square error; SB-IPW, sample-bounded IPW; SEAVE, Stable Estimand AdaptiVE
IPW estimation.
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T A B L E 2 Estimation of E(Y (1,1,1)). Simulation results based on 1000 replications: Scenario 2

Estimator Bias RMSE MAE MCSD ASSE COV
n = 500a

�̂�IPW(�̂�MLE) 0.039 0.253 0.131 0.250 0.262
0.198

0.994
0.947

�̂�IPW(�̂�CBPS) 0.114 0.465 0.220 0.451 0.325
0.253

0.959
0.833

�̂�IPW(�̂�SEAVE) 0.010 0.192 0.121 0.192 0.260
0.174

0.993
0.919

�̂�SB−IPW(�̂�MLE) 0.116 0.424 0.275 0.408 0.359
0.311

0.861
0.791

�̂�SB−IPW(�̂�CBPS) −0.219 0.651 0.290 0.613 0.432
0.346

0.903
0.789

�̂�SB−IPW(�̂�SEAVE) 0.010 0.192 0.121 0.192 0.374
0.174

0.996
0.919

n = 1000
�̂�IPW(�̂�MLE) 0.015 0.337 0.100 0.336 0.205

0.160
0.996
0.942

�̂�IPW(�̂�CBPS) 0.042 0.298 0.144 0.295 0.230
0.188

0.964
0.867

�̂�IPW(�̂�SEAVE) 0.005 0.126 0.089 0.126 0.182
0.122

0.995
0.953

�̂�SB−IPW(�̂�MLE) 0.058 0.411 0.216 0.407 0.302
0.264

0.856
0.803

�̂�SB−IPW(�̂�CBPS) −0.158 0.545 0.241 0.522 0.354
0.308

0.897
0.838

�̂�SB−IPW(�̂�SEAVE) 0.005 0.126 0.089 0.126 0.290
0.122

1
0.953

n = 2000
�̂�IPW(�̂�MLE) 0.003 0.190 0.074 0.190 0.152

0.123
0.986
0.920

�̂�IPW(�̂�CBPS) 0.006 0.265 0.100 0.265 0.173
0.145

0.954
0.882

�̂�IPW(�̂�SEAVE) −0.003 0.095 0.062 0.095 0.132
0.088

0.995
0.927

�̂�SB−IPW(�̂�MLE) 0.028 0.330 0.176 0.329 0.249
0.222

0.866
0.804

�̂�SB−IPW(�̂�CBPS) −0.114 0.455 0.198 0.441 0.281
0.263

0.880
0.849

�̂�SB−IPW(�̂�SEAVE) −0.003 0.095 0.062 0.095 0.229
0.088

1
0.927

Note: The top/bottom standard errors (and the corresponding confidence intervals) are obtained using the
uncorrected/corrected standard deviations defined in (14) and (15), respectively (see Section 5.1). The corrected
standard errors are considered to account for the uncertainty in the estimated propensity scores.
Abbreviations: ASSE, average of sandwich standard errors; bias, Monte Carlo bias; CBPS, covariate balancing
propensity score; COV, coverage of 95% confidence intervals; IPW, inverse probability weighting; MAE, median
of absolute errors; MCSD, Monte Carlo standard deviation; MLE, maximum likelihood propensity score
estimator; RMSE, root mean square error; SB-IPW, sample-bounded IPW; SEAVE, Stable Estimand AdaptiVE
IPW estimation.
aNo convergence was attained for SEAVE in 24 runs out of 1000.
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T A B L E 3 Estimation of E(Y (1,1)). Simulation results based on 1000 replications: Scenario 3

Estimator Bias RMSE MAE MCSD ASSE COV
n = 3000

�̂�IPW(�̂�MLE) −0.177 34.45 13.85 34.47 26.80
19.35

0.965
0.823

�̂�IPW(�̂�CBPS) 9.662 20.23 11.71 17.78 26.83
12.01

0.999
0.814

�̂�IPW(�̂�SEAVE) 0.995 4.457 3.074 4.347 25.88
3.412

1
0.845

�̂�SB−IPW(�̂�MLE) 2.161 11.80 7.208 11.60 8.637
7.682

0.809
0.758

�̂�SB−IPW(�̂�CBPS) 0.710 8.817 5.710 8.793 8.867
5.988

0.913
0.803

�̂�SB−IPW(�̂�SEAVE) 0.995 4.457 3.074 4.347 8.798
3.412

0.993
0.845

n = 6000

�̂�IPW(�̂�MLE) 0.291 21.83 10.35 21.84 20.12
15.25

0.950
0.860

�̂�IPW(�̂�CBPS) 5.699 14.03 8.427 12.83 19.59
9.213

1
0.859

�̂�IPW(�̂�SEAVE) 0.510 3.064 2.059 3.023 18.87
2.596

1
0.892

�̂�SB−IPW(�̂�MLE) 1.007 9.910 5.647 9.863 7.322
6.694

0.829
0.773

�̂�SB−IPW(�̂�CBPS) 0.197 7.334 4.125 7.335 7.275
4.962

0.920
0.840

�̂�SB−IPW(�̂�SEAVE) 0.510 3.064 2.059 3.023 6.989
2.596

0.997
0.892

Note: The top/bottom standard errors (and the corresponding confidence intervals) are obtained using the
uncorrected/corrected standard deviations defined in (14) and (15), respectively (see Section 5.1). The corrected
standard errors are considered to account for the uncertainty in the estimated propensity scores.
Abbreviations: ASSE, average of sandwich standard errors; bias, Monte Carlo bias; CBPS, covariate balancing
propensity score; COV, coverage of 95% confidence intervals; IPW, inverse probability weighting; MAE, median
of absolute errors; MCSD, Monte Carlo standard deviation; MLE, maximum likelihood propensity score
estimator; RMSE, root mean square error; SB-IPW, sample-bounded IPW; SEAVE, Stable Estimand AdaptiVE
IPW estimation.

6 MARGINAL STRUCTURAL MODELS

In this section, we demonstrate the performance of the proposed SEAVE method for estimating
the coefficients of an MSM. This is a model for the causal effect of (time-varying) exposure on the
population mean of an outcome, and is defined as, for example,

E(Y r) = 𝜌0 +
T∑

t=0
𝜌t+1rt,
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T A B L E 4 Estimation of E(Y (1,1)). Simulation results based on 1000 replications: Scenario 3,
including additional balancing conditions

Estimator Bias RMSE MAE MCSD ASSE COV
n = 3000a

�̂�IPW(�̂�MLE) −0.059 35.50 13.54 35.52 27.08
18.78

0.972
0.806

�̂�IPW(�̂�CBPS) 12.67 19.51 12.53 14.84 26.51
9.707

1
0.714

�̂�IPW(�̂�SEAVE) 0.020 2.663 1.834 2.665 26.37
2.576

1
0.941

�̂�SB−IPW(�̂�MLE) 2.021 11.77 7.151 11.60 8.716
7.519

0.832
0.758

�̂�SB−IPW(�̂�CBPS) 0.540 7.835 4.956 7.820 8.792
5.238

0.939
0.819

�̂�SB−IPW(�̂�SEAVE) 0.020 2.663 1.834 2.665 8.878
2.576

1
0.941

n = 6000

�̂�IPW(�̂�MLE) 0.324 21.35 10.17 21.36 20.24
14.84

0.962
0.844

�̂�IPW(�̂�CBPS) 7.600 13.23 8.434 10.84 19.29
7.506

0.999
0.761

�̂�IPW(�̂�SEAVE) −0.029 1.879 1.306 1.879 18.85
1.836

1
0.949

�̂�SB−IPW(�̂�MLE) 0.986 9.886 5.723 9.841 7.342
6.566

0.826
0.772

�̂�SB−IPW(�̂�CBPS) 0.237 6.316 3.903 6.314 7.126
4.302

0.955
0.861

�̂�SB−IPW(�̂�SEAVE) −0.029 1.879 1.306 1.879 6.856
1.836

1
0.949

Note: The top/bottom standard errors (and the corresponding confidence intervals) are obtained using the
uncorrected/corrected standard deviations defined in (14) and (15), respectively (see Section 5.1). The corrected
standard errors are considered to account for the uncertainty in the estimated propensity scores.
aNo convergence was attained for SEAVE in one run out of 1000.

where 𝜌1, … , 𝜌T+1 are unknown causal parameters. Using the proposed estimating equations (6),
the propensity scores �̂�r0

0 (1 − �̂�0)1−r0 , … , �̂�
rT
T (1 − �̂�T)1−rT are obtained for each feasible treatment

regime r separately. Next, we define the inverse probability weights as

wi(r,XT,i) =
T∏

t=0

1
�̂�

rt
t,i(1 − �̂�t,i)1−rt

for i = 1, … ,n. Furthermore, the MSM coefficients 𝜌 = (𝜌0, … , 𝜌T+1) are estimated through a
weighted least squares regression

�̂� = arg min
𝜌

n∑
i=1

Wi(Yi − 𝜌0 −
∑T

t=0 𝜌t+1Rt,i)2,
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where Wi = wi(RT,i,XT,i). We demonstrate the performance of the proposed inverse weights for
estimating the MSM coefficients and compare with that of MLE and CBPS on a particular numer-
ical study. The weights Wi are estimated separably for each possible regime. We use Scenario 1
described in Subsection 5.2.1 and we estimate MSM coefficients at sample sizes n = 500, 1000, and
2000. It can be shown that the MSM is correctly specified under the data-generating mechanism
and has the following form:

E(Y (r0,r1)) = 1 + r0 + 0.5r1.

Table 5 summarizes the results of our study. We observe that our proposed methodology provides
more stable estimators of 𝜌 than MLE and CBPS methods. The results demonstrate that RMSE and
MAE of the MSM coefficients are much lower if the corresponding weights are obtained through
the SEAVE method compared with those for MLE and CBPS.

Remark 3. Although this article does not focus on estimating the parameters of the MSM, this
simple example shows that the stability of the inverse probability weights positively affects
the estimated MSM coefficients. This simulation study simply demonstrates the stability of the
SEAVE approach which is consistent with the results obtained for the simulation Scenario 1 (see
Section 5.2.1).

7 APPLICATION

In this section, we illustrate the performance of the proposed methodology through an empirical
application. We use a data set previously analyzed by Blackwell (2013) who focused on estimating
the impact of negative advertisements (when a politician or party focuses on criticizing the oppo-
nents rather than highlighting their own qualities) on election outcomes. The data set includes
information on 5 weeks leading to the elections from 114 U.S. election races from the period
2000–2006. In our study, we only focus on two time periods: the first week and the last week of the
5-week period. In each week t ∈ {0, 1}, the candidate i may run a negative campaign (Rt,i = 1) or
remain positive (Rt,i = 0). The outcome (Y ) is the “Democratic” percentage of the votes. We esti-
mate the expected percentage of the votes under two regimes: running a negative campaign in the
first week and in the last week (i.e., r = (1, 1)), and remaining positive in the first week and in the
last week (i.e., r = (0, 0)). The following covariates are considered: campaign length, share of the
polls, type of office, baseline share, and baseline proportion of undecided voters (observed at the
first week of the considered five week period). We estimate counterfactual mean 𝜙0 using MLE,
CBPS, and SEAVE methods. Table 6 summarizes the results. We observe that under the regime
r = (1, 1) the estimators show roughly the same results. On the other hand, we observe that under
the regime r = (0, 0) the proposed SEAVE method shows relatively lower corrected standard error.
The results show that under the regime r = (0, 0) the inverse probability weights estimated using
the proposed SEAVE approach are slightly more stable than those estimated using MLE or CBPS
methods.

Additionally, we repeat the same calculations by considering three time periods: the first, the
third, and the last week of the 5-week period leading to the elections. We estimate the expected
percentage of the votes under two regimes: running a negative campaign in three periods (i.e.,
r = (1, 1, 1)), and remaining positive in three periods (i.e., r = (0, 0, 0)). The considered covariates
are the same as above. Table 7 provides the results. We observe that under the regime r = (1, 1, 1)
the estimators based on MLE and SEAVE show roughly the same results. On the other hand, we
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T A B L E 5 Estimation of the MSM coefficients. Simulation results
based on 1000 replications. Scenario 1.

Estimator Bias RMSE MAE
n = 500

MLE −0.166 0.518 0.337

𝜌0 CBPS −0.061 0.412 0.264

SEAVE −0.034 0.251 0.170

MLE 0.055 0.460 0.248

𝜌1 CBPS −0.001 0.351 0.209

SEAVE 0.020 0.227 0.155

MLE 0.167 0.436 0.306

𝜌2 CBPS 0.010 0.298 0.183

SEAVE 0.028 0.197 0.117

n = 1000

MLE −0.079 0.478 0.267

𝜌0 CBPS −0.030 0.351 0.208

SEAVE −0.011 0.177 0.113

MLE 0.049 0.428 0.230

𝜌1 CBPS 0.001 0.296 0.183

SEAVE 0.009 0.159 0.106

MLE 0.066 0.375 0.225

𝜌2 CBPS −0.004 0.256 0.151

SEAVE 0.003 0.132 0.085

n = 2000

MLE −0.065 0.350 0.211

𝜌0 CBPS −0.022 0.282 0.173

SEAVE 0.002 0.123 0.082

MLE 0.026 0.298 0.165

𝜌1 CBPS −0.004 0.227 0.140

SEAVE −0.001 0.112 0.072

MLE 0.059 0.273 0.179

𝜌2 CBPS −0.0007 0.209 0.126

SEAVE −0.002 0.096 0.061

Abbreviations: bias, Monte Carlo bias; CBPS, covariate balancing propensity
score; MAE, median of absolute errors; MCSD, Monte Carlo standard deviation;
MLE, maximum likelihood propensity score estimator; MSM, marginal structural
model; RMSE, root mean square error; SEAVE, Stable Estimand AdaptiVE IPW
estimation.
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T A B L E 6 Estimation of the counterfactual mean E(Y r) for two time periods

Estimator IPW SE Corrected SE SB-IPW SE Corrected SE

r = (1, 1)

MLE 48.56 7.078 0.886 49.11 0.812 0.680

CBPS 48.86 7.048 0.797 49.05 0.833 0.707

SEAVE 49.07 7.245 0.698 49.07 0.823 0.698

r = (0, 0)

MLE 50.24 8.535 1.733 49.86 1.998 1.163

CBPS 57.86 10.71 7.623 49.31 2.530 1.640

SEAVE 49.49 8.322 0.897 49.49 1.928 0.897

Abbreviations: CBPS, covariate balancing propensity score; IPW, inverse probability weighting; MLE, maximum likelihood
propensity score estimator; SB-IPW, sample-bounded IPW; SEAVE, Stable Estimand AdaptiVE IPW estimation.

T A B L E 7 Estimation of the counterfactual mean E(Y r) for three time periods

Estimator IPW SE Corrected SE SB-IPW SE Corrected SE

r = (1, 1, 1)

MLE 48.67 7.645 1.030 49.21 0.930 0.764

CBPSa 51.57 8.428 6.669 48.13 1.602 1.962

SEAVE 49.25 7.922 0.736 49.25 0.910 0.736

r = (0, 0, 0)

MLE 53.59 17.09 9.695 49.79 2.530 1.899

CBPSb 88.21 43.37 34.58 46.87 2.158 1.707

SEAVE 49.97 15.28 0.946 49.97 2.566 0.946

Abbreviations: CBPS, covariate balancing propensity score; IPW, inverse probability weighting; MLE, maximum likelihood
propensity score estimator; SB-IPW, sample-bounded IPW; SEAVE, Stable Estimand AdaptiVE IPW estimation.
a,bCBPS method provides propensity score estimates close to one, which leads to extreme target estimates and standard

errors for the IPW estimator.

observe that under the regime r = (0, 0, 0) the proposed SEAVE method shows relatively lower
corrected standard error. In our study, we do not consider all five time periods since this leads to
convergence issues for the considered approaches.

Remark 4. The results show that with three time periods the CBPS method provides propensity
score estimates close to one. This leads to extreme target estimates and standard errors.

8 DISCUSSION

In this article, we have developed a new approach for estimating the nuisance parameters
indexing the propensity score model in IPW estimators for longitudinal studies. The proposed
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method is based on a system of estimating equations and guarantees stability of the inverse
weights at each time point. Moreover, it provides balancing conditions on the covariates. Unlike
other existing estimation methods, our proposed approach adapts to the estimand, that is, depend-
ing on the target of interest, the corresponding nuisance parameter is obtained by solving different
estimating equations. The IPW estimator that employs the proposed inverse probability weights
equals the efficient and robust AIPW estimator when the outcome model is linear. Through an
extensive numerical analysis we have demonstrated that our proposed method provides more sta-
ble IPW estimation than MLE and CBPS approaches. In our study, we considered the estimation
of counterfactual means. In addition, we have demonstrated the performance of the considered
methods on a simple example of fitting MSMs.

Despite desirable features of our proposed methodology, an important limitation is that solv-
ing (6) requires a separate model in each time period, and that (6) moreover may become difficult
to solve at the larger time points where the observed treatment regime becomes sparse. The pro-
posed approach may therefore not be flexible in problems where the number of time periods is
large or there are many confounders in the study. In future work, we will remedy this by apply-
ing generalized method of moments (Hansen et al., 1996) to solve the estimating equations in (6)
simultaneously. This will significantly increase the usability of the proposed method in settings
such as the estimation of MSMs.
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