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A B S T R A C T   

Variation observed in heat inactivation of Salmonella strains (data from Combase) was characterized using 
multilevel modeling with two case studies. One study concerned repetitions at one temperature, the other 
concerned isothermal experiments at various temperatures. Multilevel models characterize variation at various 
levels and handle dependencies in the data. The Weibull model was applied using Bayesian regression. The 
research question was how parameters varied with experimental conditions and how data can best be analyzed: 
no pooling (each experiment analyzed separately), complete pooling (all data analyzed together) or partial 
pooling (connecting the experiments while allowing for variation between experiments). 

In the first case study, level 1 consisted of the measurements, level 2 of the group of repetitions. While 
variation in the initial number parameter was low (set by the researchers), the Weibull shape factor varied for 
each repetition from 0.58–1.44, and the rate parameter from 0.006–0.074 h. With partial pooling variation was 
much less, with complete pooling variation was strongly underestimated. 

In the second case study, level 1 consisted of the measurements, level 2 of the group of repetitions per tem-
perature experiment, level 3 of the cluster of various temperature experiments. The research question was how 
temperature affected the Weibull parameters. Variation in initial numbers was low (set by the researchers), the 
rate parameter was obviously affected by temperature, the estimate of the shape parameter depended on how the 
data were analyzed. With partial pooling, and one-step global modeling with a Bigelow-type model for the rate 
parameter, shape parameter variation was minimal. Model comparison based on prediction capacity of the 
various models was explored. 

The probability distribution of calculated decimal reduction times was much narrower using multilevel global 
modeling compared to the usual single level two-step approach. Multilevel modeling of microbial heat inacti-
vation appears to be a suitable and powerful method to characterize and quantify variation at various levels. It 
handles possible dependencies in the data, and yields unbiased parameter estimates. The answer on the question 
“to pool or not to pool” depends on the goal of modeling, but if the goal is prediction, then partial pooling using 
multilevel modeling is the answer, provided that the experimental data allow that.   

1. Introduction 

Modeling heat inactivation of micro-organisms is important from 
both a practical and a scientific point of view. It is essential for opti-
mization of heat processing, where balance is needed between desired 
inactivation and undesired damage (Van Boekel et al., 2020). Many 
publications on this topic have led to much knowledge, summarized in 
meta-analyses such as the one from Den Besten et al. (2018). Charac-
teristic for microbial kinetics is the enormous variation observed be-
tween experiments, an inevitable phenomenon due to the biological 
nature of micro-organisms. Many factors affect how they behave, 

including response to heat stress. Variation is not so easy to quantify. 
Repeating experiments provides information; the question is how to deal 
with such data. Variation can be seen as a nuisance, but it can also serve 
as a source of information. Averaging is sometimes applied but using all 
data without averaging is also possible. Then the question becomes 
whether all results should be pooled together or that every experiment 
should be analyzed on its own, a question that is addressed here. 

Many types of inactivation models are proposed in literature. The 
first model ever applied is some 100 years old now, describing log-linear 
inactivation as in Eq. (1): 

☆ Author note: This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors. 
* Food Quality & Design Group, P.O. Box 17, 6700 AA Wageningen, the Netherlands. 

E-mail address: tiny.vanboekel@wur.nl.  

Contents lists available at ScienceDirect 

International Journal of Food Microbiology 

journal homepage: www.elsevier.com/locate/ijfoodmicro 

https://doi.org/10.1016/j.ijfoodmicro.2021.109283 
Received 12 March 2021; Received in revised form 19 May 2021; Accepted 30 May 2021   

mailto:tiny.vanboekel@wur.nl
www.sciencedirect.com/science/journal/01681605
https://www.elsevier.com/locate/ijfoodmicro
https://doi.org/10.1016/j.ijfoodmicro.2021.109283
https://doi.org/10.1016/j.ijfoodmicro.2021.109283
https://doi.org/10.1016/j.ijfoodmicro.2021.109283
http://creativecommons.org/licenses/by/4.0/


International Journal of Food Microbiology xxx (xxxx) xxx

2

log10N = log10N0 −
t
D

(1) 

Parameter D represents decimal reduction time, log10N0 and log10N 
the logarithm of the number of micro-organisms at time zero and time t, 
respectively. Sometimes, the survival ratio S = N/N0 is modeled as in Eq. 
(2): 

log10S = −
t
D

(2)  

but it may be better to model log10N0 as a parameter since it is not a fixed 
number but subject to experimental variation. The parameters in Eq. (1) 
are usually derived via linear regression, though it was noted by Dolan 
and Mishra (2013) that parameter D should actually be considered as a 
nonlinear parameter as it is the inverse of the slope of the linear 
regression line, with consequences for calculating confidence intervals 
and predictions. In the course of time, various other models have been 
proposed because log-linear behaviour is rather the exception than the 
rule, e.g., Peleg and Cole (1998); Peleg (2006); Van Boekel (2002). 
Though the log-linear model is still popular, nonlinear models are more 
often applied the last two decades. Free web applications of various 
models are available (Garre et al., 2018; Garre et al., 2017; González 
et al., 2019; Peleg et al., 2017). The Weibull model in Eq. (3), is quite 
flexible because it is able to describe log-nonlinear as well as log-linear 
behaviour: 

log10N = log10N0 −
1

2.303
⋅
( t

β

)α
(3) 

α represents the shape parameter (dimensionless), β is a rate-like 
parameter (dimension time). Parameter β is similar to but not the 
same as a D-value. It represents a characteristic time at which the sur-
vival function log10S(t) = exp (− 1) = 0.434 regardless of α. A simpler 
form of the Weibull model is the equivalent Weibullian model (Peleg, 
2006): 

log10N = log10N0 − kr⋅tnt (4) 

Comparison of Eqs. (3) and (4) shows that nt = α and kr = 1/(2.303 ⋅ 
βα). With α = nt = 1, Eq. (3) becomes Eq. (1) with kr = 1/D = 1/(2.303 ∙ 
β). However, the simple Weibull model is not a panacea for every sur-
vival curve; other models may do a better job, depending on the shape of 
the survival curve, see, for instance, Gil et al. (2017) for a recent over-
view of possible models. The purpose of this article is not to test various 
models, however. The question addressed is, for cases where the Weibull 
model applies, how parameters α and β vary as a function of experi-
mental repetitions and temperature experiments. To characterize such 
variation, the possibilities of multilevel modeling are explored, for 
which the Bayesian approach is most suited (Gelman and Hill, 2007; 
McElreath, 2020) though a frequentist approach is also possible (Pin-
heiro et al., 2020). 

Multilevel modeling is not new in food microbiology. Bayesian 
multilevel modeling using a Weibullian type model was recently 
described for microbial risk assessment (Garre et al., 2020). They 
characterized variability in thermal inactivation within strains and be-
tween strains of 20 strains of Listeria monocytogenes. Their dataset is 
quite unique because it allowed distinction between three levels: 
experimental variability, within-strain variability and between-strain 
variability, making it a comprehensive three-level model. Multilevel 
models have been used also in other cases, e.g., Salmonella survival in 
dry nuts (Santillana Farakos et al., 2016), E. coli survival in beef gravy 
(Juneja and Marks, 2005), Salmonella survival in chicken (Juneja et al., 
2016). Multilevel models are also well-known in meta-analyses and risk 
management. 

A Bayesian approach to heat inactivation using the same Salmonella 
data as in case study 2 in the current article was applied by Koyama et al. 
(2019), be it with the log-linear model (Eq. (2)) despite the nonlinear 
trend in the data. Moreover, log10N0 was not modeled nor did they apply 

multilevel modeling. Next, a very brief introduction to the concept of 
multilevel modeling is given by explaining the differences between no 
pooling, complete pooling and partial pooling of data. Then, a very brief 
recapitulation about the Bayesian approach and its connection to 
multilevel modeling follows, after which the results are discussed. 

1.1. Multilevel data resulting from experimental design 

Experimental designs are obviously important for subsequent anal-
ysis and modeling. In that context, levels are to be understood as follows. 
Repetitions of similar experiments can be grouped; measurements 
within each repetition form the lowest level 1, while repetitions them-
selves are grouped into level 2, a subsample of the population of all 
possible repetitions. Similarly, experiments at various temperatures can 
be grouped per temperature: measurements at each temperature form 
level 1, while the various temperature experiments form groups at level 
2. Another example is the multilevel approach by Garre et al. (2020), the 
lowest level being variability in repeated experiments with the same 
batch and strain (experimental variability), the second level variability 
measured for the same strain from different batches (biological vari-
ability within strains), and the third level variability between 20 
different Salmonella strains. Typical for multilevel modeling is that ex-
periments/observations are characterized by a grouping factor while 
model parameters are then allowed to vary per group around a central 
value. Response variables at level 1 are always measurements/obser-
vations. Response variables at higher levels are regression coefficients 
from the level below that. 

The way data can be analyzed depends on how experiments are 
designed. Fig. 1 gives a schematic overview of a common design for heat 
inactivation experiments. Suppose that, as an example, six trials (i.e., j 
= 6 in Fig. 1) are done isothermally under the same conditions, to 
determine heat survival curves, i.e., number of surviving bacteria are 
measured as a function of heating time. Inexplicable variation between 
the trials will happen, in other words, experimental results will be 
similar but not completely identical. Several possibilities then arise for 
analysis. The first approach could be to pool the results from all six 
repetitions together and analyze them as if they are all generated in the 
same way without any variation between the trials. This is called 
complete pooling; it ignores grouping structures and may lead to 
underfitting (Gelman and Hill, 2007), i.e., not using all the information 
in the data. The second approach could be to average over the six 
measurements at each heating time, described as pooling and aver-
aging. The data are then compressed, leading to even more underfitting. 
The third approach could be to analyze each repetition separately. This is 
the no pooling approach, which would lead (in the example) to six 
different modeling results at each temperature. The outcome of one 
repetition is then in no way connected to the outcome of another 
repetition. In the no pooling case, group means are estimated indepen-
dently as if the variation between groups is infinitely large; this may lead 
to overfitting because it tends to make the groups more different than 
they actually are (Gelman and Hill, 2007). The fourth approach connects 
the groups (6 trials in the example) with each other, called partial 
pooling, which is achieved with multilevel modeling. Group means are 
then considered a random sample from an overarching common distri-
bution. Partial pooling is in between no-pooling and complete pooling, 
and a compromise between under- and overfitting. Complete pooling 
and no pooling approaches are thus subsets of partial pooling. If varia-
tion at the group level of trials (Fig. 1) is characterized by a standard 
deviation σg, no pooling implies that σg → ∞, while complete pooling 
implies σg → 0. With partial pooling, 0 < σg < ∞, and σg can be estimated 
by multilevel modeling. Common single level classical regression is 
actually a special case of multilevel regression with either σg → 0 or σg → 
∞, depending on whether data are pooled or not. Another important 
aspect with heat inactivation experiments is that measurements within a 
trial are mostly not completely independent statistically as they may be 
correlated. Regression of such data without accounting for correlation 
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underestimates variation, resulting in biased parameter estimates and 
their uncertainties. The advantage of multilevel modeling is that it takes 
correlation into account so that an unbiased estimate of variability is 
obtained, thereby counteracting the danger of “pseudoreplication” 
(Lazic et al., 2018; Lazic et al., 2020). Parameters describing the pop-
ulation level are sometimes named ‘fixed’ while parameters describing 
variation on the cluster/group level are called ‘random.’ The term 
‘mixed effect models,’ sometimes used instead of multilevel modeling, 
refers to a mixture of random and fixed effects. The terminology is 
somewhat confusing but the approach is not. The strength of the 
multilevel method is that the various levels inform each other; indi-
vidual variation between experiments is allowed but similarities be-
tween experiments are also taken into account. The term ‘borrowing 
strength’ is also used sometimes: information from one experiment is 
used in the analysis of another. Yet another term is hierarchical 
modeling, pointing at hierarchy in the levels, shown also in Fig. 1. This 
short introduction attempted to clarify that models taking various levels 
into account are to be preferred, provided that group levels can be 
distinguished in the data. To loosely quote McElreath (2020): “if re-
searchers use single level classical regression, they should make clear 
why they did NOT use multilevel modeling”, in other words, multilevel 
modeling should be the standard. More background material is provided 
in Garre et al. (2020), Gelman and Hill (2007), Gelman et al. (2013), 
Kruschke (2015), Lambert (2018), McElreath (2020). 

1.2. Bayesian regression 

A detailed description of Bayesian regression for kinetics is given by 
Van Boekel (2020). The Bayesian method considers every unknown as a 
random variable. Measurements and observations, once available, are 
considered fixed and are called data, while non-observable variables 
such as rate constants, D− and Z− values are considered random vari-
ables and called parameters. A random variable is described by a 
probability distribution. In Bayesian analysis, unknown parameters are 
given a probability distribution before data analysis, called the prior, 
reflecting the expert knowledge that is available before data analysis. 
The data themselves are described by a data-generating model and a 
probability distribution called the likelihood function, and by 
combining the prior and the likelihood according to Bayes' theorem an 
updated probability distribution is obtained called the posterior. This 
posterior density gives the probability for certain parameter values, 
reflecting the state of knowledge about the parameters, conditional on 
the data and the proposed model. In the frequentist framework only 
point estimates are obtained after regression because parameters cannot 
have distributions: they are considered fixed. Confidence intervals and 
p-values are not probability statements about parameters but reflect the 
theoretical range of values obtained if the experiments are repeated 

infinitely. While application of Bayes' theorem faced computational 
difficulties in the past, it is nowadays well possible, also for very com-
plex models, because of the Markov Chain Monte Carlo (MCMC) method 
with which the posterior parameter distribution is approximated, based 
on the input of the likelihood function and the proposed prior distri-
butions. The details are not explained here but can be found in many 
textbooks, e.g. McElreath (2020). Software packages are available to do 
that routinely, and the one used here is the Stan language (Gelman et al., 
2015), referred to in the Material and methods section. Multilevel 
modeling goes naturally in the Bayesian approach where parameters are 
considered variable, while parameters become response variables at the 
higher levels. Assigning probability distributions to parameters is not 
possible in the frequentist approach. Nevertheless, multilevel modeling 
is also done in the frequentist way, be it that maximum likelihood 
methods are then used in parameter estimation, as was, for instance, 
done by Juneja et al. (2016). 

1.3. Outline of the paper 

The goal of this paper is to explore the potential of multilevel 
regression using two case studies of microbial heat inactivation. The 
present work differs from the multilevel approach by Garre et al. (2020) 
in the micro-organism studied (Salmonella rather than Listeria mono-
cytogenes); the present Salmonella dataset only allows within-strain 
variability analysis, however. Another difference is the use of the 
basic Weibull model, rather than a reparameterized Weibull model. The 
dimension of rate parameter β does not depend on shape parameter α in 
the basic Weibull model which makes interpretation and comparison 
easier. In models such as the Weibullian model (Eq. (4)), the dimension 
of kr is t− nt, thus depending on shape parameter nt. 

Two case studies about microbial inactivation kinetics are reported 
here. The first one comprises trials (repetitions) for one strain at one 
isothermal condition, allowing to investigate quantitatively by multi-
level modeling how parameter estimates vary between similar experi-
ments. This has not been reported before in literature, to the best of the 
author's knowledge. The second case investigates if and how isothermal 
experiments at various temperatures can be analyzed in a multilevel 
way. This is also not described before in literature. The difference with 
Koyama et al. (2019) is the use of the Weibull model instead of the log- 
linear model and the use of multilevel modeling. At the end of the 
article, the question raised in the title: “to pool or not to pool” will be 
discussed. 

2. Material and methods 

Both case studies investigate thermal inactivation of strains of Sal-
monella serovar Typhimurium DT104, described in Mattick et al. (2001), 

Fig. 1. Schematic overview of a common experimental design to determine microbial survival in which several isothermal experiments (T1…Tk) are done with 
repetitions (trial 1…j) and 1…n measurements in each repetition. The three levels that can be distinguished form an example of a nested, hierarchical design. 
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for experiments at several temperatures, aw and pH values, all in broth. 
They are archived in the database Combase. The first case study used an 
isothermal dataset at T = 65∘C, aw = 0.8, pH = 6.5 containing 18 rep-
etitions The second case study used data about the same Salmonella 
strain studied at 9 different temperatures at pH = 7, aw = 0.75. The 
detailed IDs for the data extracted from Combase are provided in the 
Supplement. 

R version 4.0.3 (R Core Team, 2020) was used from within RStudio 
version 1.4.1103 (RStudio Team, 2020). A list of all R packages used is in 
the Supplement. 

Bayesian regression was done with the R package brms (Bürkner, 
2017, 2018), version 2.14.4, using tidyverse R extensions for data 
handling as described by Kurz (2020). brms is an interface between R 
and the language Stan, which is state-of-the-art software for Markov 
Chain Monte Carlo (MCMC) calculations (Gelman et al., 2015). MCMC 
performance needs to be checked for convergence with diagnostics 
described in, for instance, McElreath (2020). An example of such checks 
is shown in the Supplement; in all cases reported here, these checks were 
found to be OK. All R codes and data used can be found at the author's 
Github repository https:://github.com/TinyvanBoekel/IJFM. 

3. Results and discussion 

3.1. Multilevel analysis of 18 isothermal repetitions 

Fig. 2 shows the dataset of 18 similar experiments with the same 
strain at 65 ◦C, aw = 0.8, pH = 6.5. With reference to Fig. 1, one tem-
perature is considered (k = 1), with number of trials j = 18, and number 
of measurements in each trial n = 10. The experimental conditions were 
similar for each experiment but between-strain and within-strain vari-
ability could not be distinguished because information on which days 
experiments were done, and whether or not the same stock culture was 
used is not available. The variability depicted in Fig. 2 is therefore 
assumed to be within-strain. Despite similar experimental conditions, 
considerable variation between experiments exists, commonly observed 
with microbial counts. Many factors may cause such variation, some can 
be controlled (like temperature, pH and aw, kept constant in this case) 
but not all factors affecting inactivation can be controlled completely. 
For instance, bacteria were perhaps grown in the same media but at 
different points in time, causing small variations in behaviour. The 
question is also whether the data can be considered statistically inde-
pendent, a necessary assumption when doing regression. Probably, the 
data in one heating experiment were not independent, if samples were 
taken from the same batch during one experiment. Such data lend 
themselves well to multilevel modeling, provided that there are enough 

repetitions available (a minimum of 5–6 experiments is usually indi-
cated, though there is no clear-cut limit; in this case 18 repetitions were 
available, more than enough for multilevel analysis). The case study is 
analyzed step by step, from pooled and pooled-averaged, to completely 
pooled, and finally to partially pooled analysis with multilevel 
modeling. 

3.1.1. Regression settings 
Bayesian regression needs a likelihood function representing the data 

generating process, for which the Weibull model was chosen, and an 
assumption of how the data are distributed. When microbiological 
counts are expressed logarithmically, log10N values are assumed to be 
distributed normally (counts themselves are distributed log-normally). 
This implies that each measured log10N is supposed to be centered 
around a mean μ with a dispersion characterized by a constant standard 
deviation σe. The Weibull model in Eq. (3) contains three parameters: 
log10N0 (dimensionless), parameter β (dimension time) and α (dimen-
sionless). Since N0 was measured, it is subject to variation and therefore 
estimated (as log10N0). Including σe, four prior distributions are thus 
needed (note that priors describe expert knowledge before data are 
analyzed, they do not describe actual variation in the real world). 
Normal distributions were assumed for parameters α, β as this is the 
most natural expression of uncertainty (McElreath, 2020). For σe a half- 
cauchy distribution is often used, where ‘half’ means: bounded at zero, 
thus forcing the standard deviation to be positive, with rather ‘fat’ tails 
characteristic for a Cauchy distribution, allowing for unlikely but not 
impossible large values. See Van Boekel (2020) for more details on 
priors in relation to kinetics. An exponential distribution could be an 
alternative prior for σe, which is also strictly positive but has less fat tails. 
This leads to the statistical model in Eq. (5): 

log10N ∼ N (μ, σe)

μ = log10N0 − 1/2.303⋅(t/β)α

log10N0 ∼ N (7, 1)
α ∼ N (1, 1) (lb = 0)

β ∼ N (0.03, 0.03) (lb = 0)
σe ∼ half − Cauchy(0, 10)

(5) 

Expert knowledge tells that log10N0 varies around 7 (set by the re-
searchers). For parameter β, a very crude rule of thumb is that (1/β) ⋅ tend 
≈ 1 − 10 leading to a value of 0.03 but it is given a large standard de-
viation to indicate uncertainty about the actual value. The lower bound 
at zero (lb = 0) makes this a truncated normal distribution because this 
parameter cannot be negative. Parameter α has usually values between 
0.1 and 2 and so its average is expected to be around 1 but again with a 
large standard deviation and a lower bound of zero. These probability 
distributions are available in the software; they are coded via the 
package brms and then transferred to the software Stan. Prior predictive 
checks (McElreath, 2020) comprise simulations with the model and 
priors without involving the data yet, to see whether the settings make 
sense. The result with the settings in Eq. (5) is shown in the Supplement 
(Fig. S1); a wide range of model outcomes appears to be possible without 
impossible outcomes such as increasing numbers of micro-organisms 
with time. 

3.1.2. Regression of pooled and averaged data of the 18 repetitions 
Results obtained at each heating time from each trial were 

completely pooled and will be compared with multilevel modeling re-
sults later on. The posterior distributions of the parameters are shown in 
Fig. 3, along with a pairs plot and parameter correlation coefficients. 
The posterior distributions look well behaved, but correlation between 
parameters α and β is substantial, a known problem with the Weibull 
model. This parameter correlation did not hamper estimation as such 
because the model converged without problems. Strong parameter 
correlation needs to be taken into account when parameters are used in 
further calculations such as decimal reduction times based on the Wei-
bull parameters α and β, an example of which is given below. In the 

Fig. 2. Overview of the 18 experimental repetitions (trials) of heat inactivation 
of Salmonella at 65 ◦C, aw = 0.8, pH = 6.5. 
Source: Mattick et al. (2001), data extracted from Combase. 
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frequentist framework, covariances are then needed with complicated 
formulas but if that is done, correct uncertainty estimates can be ob-
tained even in the presence of strong collinearity (De Levie, 2012). In the 
Bayesian framework, however, further calculations with parameters 
take this correlation automatically into account leading to correct un-
certainty estimates of the calculated result, a big advantage of having a 
posterior distribution available. 

The numerical summary of the posterior in terms of the mean, 
standard error and credible intervals is given in Table 1. Bayesian 95% 
credible and prediction intervals indicate with 95% probability mean 
and future values, respectively, conditional on the model and the data. 
In the frequentist interpretation, 95% confidence and prediction in-
tervals mean: if the experiment is repeated 100 times, values are in the 
interval 95 times (and 5 times not). The result 0.67 < α < 0.84 indicates 
that log-linear behaviour is not happening with this dataset as α = 1 is 
not in the credible interval. Least-squares estimates reported by Mattick 
et al. (2001) using Eq. (4) were α = 0.73 and (recalculated from kr) β =
0.019 h, in the same range as found here. The fit based on the 
completely-pooled data is shown in Fig. 4A; such a fit is called ‘retro-
diction’ by McElreath (2020) because it shows how the model matches 

with the data in retrospect, it is not a prediction. Note that the regression 
line is not the result of minimizing least squares, but of the combination 
of the most likely values for the parameters in the posterior distribution, 
conditional on the model and the data. The 95% credible interval for the 
mean in Fig. 4A is seen to be quite narrow, suggesting that it can be 
estimated precisely (as a preliminary note, this credible interval is 
strongly underestimating variation in the mean as shown when 
discussing the multilevel modeling results). Prediction intervals refer 
to the ability of the model to predict future, not yet observed values; this 
calculation adds, besides the uncertainty of the parameters, also the 
uncertainty due to sampling, for which σe is used. Obviously, the pre-
diction interval is much larger than the credible interval for the mean 
because of the large scatter in the data. 

Sometimes, data are averaged; doing that per heating time over all 
the trials leads to pooled-and-averaged data. Bayesian regression of 
these data led to a similarly looking pairs and correlation and posterior 
parameter distributions plot as in Fig. 3 (shown in Supplement Fig. S3), 
while the fit is shown in Fig. 4B. The numerical results of the averaged 
data are also presented in the Supplement (Table S1) and are virtually 
the same compared to Table 1, except for σe = 0.09 in the pooled- 
averaged case whereas it was σe = 0.41 for the non-averaged pooled 
data. The result of σe = 0.09 is strongly underestimating the true vari-
ability. Comparison between Fig. 4A and B shows the difference to be 
consequently in the 95% prediction interval, which is much wider in the 
case of the completely pooled data. The error bars (representing 
experimental standard deviations in the data, hence variation in the real 
world) are much wider than what the model predicts with 95% proba-
bility for future values, so this pooled-and-averaged data based model is 
definitely not useful to predict variability in future data. This is clearly a 
case of underfitting because the information in the data is not fully used. 
Averaging is, in general, not good practice because it removes 

Fig. 3. Pairs plot, parameter posterior distributions and Pearson correlation coefficients resulting from the nonlinear regression of the completely pooled Salmo-
nella data. 

Table 1 
Numerical summary of the posterior resulting from Bayesian regression of the 
Weibull model to the completely pooled data of Salmonella case study 1with 18 
repetitions. SE = standard error, lower and upper bounds represent 95% credible 
intervals.   

Mean SE Lower bound Upper bound 

log10N0  7.03  0.09  6.86  7.21 
α  0.75  0.04  0.67  0.84 
β (h)  0.016  0.003  0.011  0.022 
σe  0.41  0.02  0.37  0.46  
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information. A possible remedy in this case could, perhaps, be weighted 
regression. However, a different route is taken in the next sections. 

3.1.3. Regression of the 18 individual datasets: the case of no-pooling 
In the previous section, all data were pooled (and after that aver-

aged) and analyzed in one go. Alternatively, each experiment could be 
analyzed separately, resulting in 18 regression results. The fits to the 
individual datasets do not look bad at all per experiment (shown in 
Supplement Fig. S4) but they are very different from each other. The 
between-experiment variation appears to be much larger than the 
within-experiment variation. The posterior distributions of the three 
parameters resulting from the individual regressions are summarized in 
Fig. 5 in so-called forest plots. The large variation in the estimates as 
well as in the posterior distributions is clear; these are the most likely 
values for the most optimal fit to the data per experiment. The disad-
vantage of these individual regressions is that nothing is shared between 
them. When the next regression is done, it is “ignorant” about the 

outcome of the previous one. Moreover, if the data are correlated within 
one run, this may inflate the regression procedure. The question is how 
to interpret these regression results overall. Should they be averaged to 
know what is happening on the population level? The subsequent 
question would then be how to weigh the results, some parameters are 
much better estimated in one run (e.g., trial 1) than in another (e.g., trial 
4). This is the point where multilevel modeling comes into play by 
acknowledging, characterizing and exploiting the observed variation, 
which can be accomplished by sharing information between regressions. 
This sharing of information is based on partially pooled data, as dis-
cussed in the next section. 

3.1.4. Bayesian regression of the partially pooled data from the 18 
repetitions: multilevel modeling 

With multilevel modeling, the 18 repetitions are allowed to be 
different, while similarities between experiments are also acknowledged 
so that information can be shared. As a bonus, statistical dependencies 

Fig. 4. Fit resulting from Bayesian nonlinear regres-
sion of the Weibull model to the completely pooled 
Salmonella data (A) and to the completely pooled- 
and-averaged data (B). The dark blue ribbon repre-
sents the 95% credible interval for the mean and the 
light blue ribbon the 95% prediction interval for 
future data. The error bars in panel B represent the 
standard deviations of the data at each heating time 
(n = 18). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web 
version of this article.)   

Fig. 5. Forest plots showing posterior parameter densities for the Weibull parameters log10N0, α, β, resulting from the individual regression per trial dataset. The dot 
represents the mean of the distribution. 
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are taken into account that are more often present than realized, 
possibly leading to the earlier mentioned phenomenon of ‘pseudor-
eplication’, meaning that data are assumed to be independent when they 
are not. Statistical dependencies in the data may lead to serious bias in 
the estimates of parameters. A way to achieve that regressions inform 
each other is by postulating that the parameters are connected to each 
other via a multivariate normal distribution. The parameters are 
assumed to vary around a common value with variation characterized 
by a variance/standard deviation and a covariance matrix that makes 
the parameters dependent on each other. Mathematically, parameters in 
each cluster/group level are allowed to deviate from the population 
mean by a certain positive or negative amount ui, vi, wi as expressed in 
Eq. (6) as an expansion of the Weibull Eq. (3): 

log10N =

(

(log10N0 + ui) −
1

2.303
⋅
(

t
β + vi

)α+wi

(6) 

On average, ui, vi, wi are assumed to be zero, i.e., their mean corre-
sponds to the population mean of the corresponding parameter, with 
variation around that mean characterized by standard deviations σu, σv, 
σw, respectively. This is the same reasoning as for residuals ϵi: their mean 
is also assumed to be zero with variation characterized by standard 
deviation σe. The distribution of the parameters is assumed to be char-
acterized by a multivariate normal distribution (MVN): 
⎡

⎣
ui
vi
wi

⎤

⎦ ∼ MVN

⎛

⎝

⎡

⎣
0
0
0

⎤

⎦,Σ

⎞

⎠ (7) 

Σ is a covariance matrix and can be rewritten as in Eq. (8): 

Σ =

⎛

⎝
σu 0 0
0 σv 0
0 0 σw

⎞

⎠R

⎛

⎝
σu 0 0
0 σv 0
0 0 σw

⎞

⎠ (8) 

R holds the symmetric correlation matrix with the correlation co-
efficients ρ: 

R =

⎛

⎝
1 ρuv ρuw
ρvu 1 ρvw
ρwu ρwv 1

⎞

⎠ (9) 

Upon modeling these equations, the population parameters log10N0, 
α, β, the standard deviations σu, σv, σw, σe and the correlation coefficients 
ρuv, ρuw, ρvw form the output. Note that ui, vi and wi are not directly given 
as model output, but they can be calculated as deviations from the grand 
mean, as shown below. Covariances are directly related to the correla-
tion coefficient and can be calculated from it; for instance, for correla-
tion coefficient ρuv and covariance σuv: 

ρuv =
σuv
̅̅̅̅̅̅̅̅̅

σ2
uσ2

v

√

σuv = ρuv⋅σu⋅σv

(10) 

As always, Bayesian regression needs priors for every estimated 
parameter. A commonly used one for the correlation matrix is the LKJ 
prior (McElreath, 2020); with a value = 1, it gives equal probability for 
the correlation coefficient to be between − 1 and +1, which seems 
reasonable because there is no way of knowing correlation beforehand 
(remember that priors are not describing real word variation but prior 
knowledge). The resulting statistical model with likelihood function and 
priors is: 

log10N ∼ N (μi, σe)

μi = log10N0 −
1

2.303
⋅
( t

β

)α

log10N0 ∼ N (7, σu)

α ∼ N (1, σw) lb = 0

β ∼ N (0.03, σv) lb = 0

σu ∼ half − cauchy(0, 10)

σv ∼ half − cauchy(0, 10)

σw ∼ half − cauchy(0, 10)

σe ∼ half − cauchy(0, 10)

R ∼ LKJ(1)

(11) 

Note that the priors for the parameters α, β and log10N0 contain now 
so-called hyperpriors for their standard deviation instead of a number, 
while these hyperpriors have priors on their own. The numerical sum-
maries of the posteriors are in Table 2 (the pairs and correlation plots are 
in Supplement Fig. S5). In comparison to Table 1, the extra parameters 
characterize variation between trials on group-level and population- 
level effects (completely pooled data only provide information on pop-
ulation effects because groups are considered equal). The population 
level effects are the values for parameters logN0, α and β. Their means 
shifted a little bit compared to the completely pooled data, while their 
standard errors decreased a bit. This is a typical consequence of multi-
level modeling: some of the variance has shifted from population level to 
group-level effects. Note, however, that the experimental standard de-
viation σe has decreased considerably in the multilevel approach (σe =

0.26) as compared to the model based on the pooled data (σe = 0.41) 
because of this shifting of variance. The multilevel approach thus gives a 
more detailed picture of the factors that cause variation. The group- or 
cluster-level effects σu, σv, σw, ρuw, ρuv, ρvw, σe characterize the variation 
in parameters between trials and how they are correlated. This is the 
within-strain variability described by Garre et al. (2020) for their Listeria 
monocytogenes case. Note that the point estimates of the correlation 
coefficients are not very high but also that their estimates are quite 
uncertain, reflecting the information that is present in the data, infor-
mation that apparently does not allow a more precise estimation. To 
clarify possibly confusing terminology in literature where random and 
fixed effects are mentioned, in the Bayesian framework parameters are 
never considered fixed but random. Better terms would be ‘varying ef-
fects’ instead of ‘random effects’ and ‘population effects’ instead of 
‘fixed effects’ (Gelman et al., 2013). In the Bayesian framework, co-
efficients can be common across groups (the population level) but de-
viations in the coefficients are also allowed so that they vary across 
groups (the varying effects). Furthermore, note the difference between 
standard deviations and standard errors (SE) in numerical outputs. 
Standard deviations characterize variation in the real world. With 

Table 2 
Numerical summary of multilevel modeling of the 18 repetitions of Salmonella 
inactivation in case study 1. SE = standard error, lower and upper bounds 
indicate 95% credible intervals. Standard deviations and correlation coefficients 
are reported for parameters u, v, w defined in Eq. (6).   

Mean SE Lower bound Upper bound 

log10N0  7.01  0.07  6.87  7.15 
α  0.77  0.03  0.71  0.84 
β (h)  0.017  0.002  0.01  0.02 
σu  0.13  0.08  0.01  0.29 
σw  0.06  0.03  0.003  0.13 
σv  0.004  0.002  0.001  0.009 
ρuw  0.09  0.47  − 0.81  0.91 
ρuv  − 0.23  0.42  − 0.88  0.70 
ρvw  0.50  0.43  − 0.64  0.94 
σe  0.26  0.02  0.23  0.29  
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completely pooled data, σe represents the variance/standard deviation 
not explained by the predictor variables; with partially pooled data real 
world variation is also attributed to grouping factors, thereby decreasing 
unexplained variance. SE refers to uncertainty in the estimates present in 
the posterior after combining priors with data. Although the same metric 
is used, standard deviations and standard errors refer to different en-
tities, namely variation as a property of the real world and uncertainty 
about their values as a property of the researcher. The variation in pa-
rameters u, v, w at the group level (see Eq. (7)) as deviations from their 
respective population level is shown in Fig. 6. This variation is much 
smaller than the one shown for the no-pooled data in Fig. 5. This is 
because in the multilevel procedure, the regressions have ‘informed’ 
each other giving a much more consistent picture. This sharing of in-
formation leads to a phenomenon called ‘shrinkage’, which guards 
against under- and overfitting, also discussed by Garre et al. (2020). The 
term shrinkage indicates that the results from the individual regressions 
are drawn (“shrunk”) towards the grand mean. Shrinkage can be illus-
trated in more ways, for instance, by comparing fits obtained from 
partial pooling at the population level, partial pooling at the trial level 
and no-pooling (Supplement Figs. S6 and S7 show this in detail). 
Multilevel modeling takes away extremes, narrows down the variation 
and prevents thereby under- or overfitting. This is obviously useful when 
making predictions as in risk analysis. In addition, a realistic quantita-
tive impression of the variability in parameter estimates is obtained that 
did account for dependencies in the data. Of course, results are condi-
tional on the data and the model used. The analysis as given in Fig. 6 
shows, by the way, that there are some individual experiments with a 
rather wide and skewed posterior distribution (e.g., trials 1 and 4, see 
also Supplement Fig. S7). The individual fit with trials 1 and 4 was quite 
good but appears to deviate considerably from the “grand mean.” 

3.1.4.1. Retrodiction, model comparison and prediction. Fig. 7 displays 
the overall regression plot resulting from multilevel modeling (partial 
pooling), with 95% credible and prediction bands, and is compared to 
results from completely pooled data. This is retrodiction, checking in 
how far the model matches with the data on which it is based in retro-
spect. Fig. 7A shows the 95% credible interval for the multilevel model 
to be wider than for the one based on pooled data, illustrating the 
remark made earlier with Fig. 4 that the uncertainty in predicting the 

regression mean is underestimated with completely pooled data. In 
contrast, Fig. 7B shows the opposite where the multilevel model gives a 
narrower prediction band than the model based on the completely 
pooled data. This is because the multilevel model “borrows strength” 
from all the experiments, thereby increasing confidence in model pre-
dictions. This is, once again, illustrating that multilevel modeling 
counteracts over- and underfitting that may occur with single-level 
modeling (McElreath, 2020). Another way of retrodiction is to do so- 
called posterior predictive simulations. It indicates how well pre-
dictions made from the posterior distribution match the densities of the 
actual measured data. A graphical impression of that is given in the 
Supplement (Fig. S8), showing a slightly better match for the multilevel 
model, especially in the range 3 < log10N > 6. However, fitting is one 
thing, prediction another, as shown next. Several models have been 
tested above and comparing them should be part of a kinetic workflow 
(Van Boekel, 2021). The goal is not to select the best performing one and 
to throw away the rest, but rather to compare them in their performance. 
A well-known selection criterion in the frequentist world is the Akaike 
Information Criterion (AIC) but that is not suitable for Bayesian models 
(McElreath, 2020). For Bayesian models the Widely Applicable Infor-
mation Criterion (WAIC) can be used and/or equivalently the ‘leave- 
one-out-cross-validation’ (loo-cv) method (Vehtari et al., 2017). It 
leaves one observation out, refits the model and checks how well the 
model is able to predict the observation that was left out; this is then 
repeated for other observations (there are procedures in the software to 
speed up this process). The software package brms used here has that 
option incorporated from the R package loo. The loo-cv method is really 
about predictive performance of a model. Note that loo-cv values have 
no meaning in absolute sense, they become valuable in comparing. The 
model with the highest loo-cv value performs the best and is put to zero, 
less performing values then get a negative value. An additional feature 
of loo-cv (and also of WAIC) is that also an uncertainty measure about 
the value can be provided from the posterior, something that is not 
possible with frequentist model comparison methods such as AIC. The 
loo-cv results for this case study are in Table 3, showing that the 
multilevel model based on partially pooled data performs considerably 
better. This is not model discrimination but rather model comparison: it 
does not mean that the single level model based on completely pooled 
data is not performing well, it only indicates that the multilevel model is 
performing better in predicting future results. It demonstrates the value 

Fig. 6. Variation per trial of parameters u (deviation from the population value of parameter log10N0), v (deviation from the population value of parameter β) and w 
(deviation from the population value of parameter α); the population mean is given the value = 0. The circle indicates the mean, the thick line the 50% probability 
range, the thin line the 95% probability range. 
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of not only judging fits (“retrodiction”) but also to study predictive 
performance. While posterior predictive checks of the model with 
complete pooling differ only slightly from the one with partial pooling 
(Fig. S8 in the Supplement), the predictive capacity of the multilevel 
model is considerably better (Table 3). 

This concludes the first case study. All analyses indicated that the 
Weibull shape parameter consistently indicated nonlinear behaviour 
with upward curvature. The point estimates obtained from averaged and 
pooled data were not that different from those from multilevel 
modeling, but their estimated variation was. If the objective is only to 
obtain insight which model is suitable to describe observed or measured 
behaviour, multilevel modeling is less relevant. However, when the 
objective is to also obtain insight in sources of variation, multilevel 
modeling is very useful. The biggest advantage is that a more realistic 
impression of variation is obtained. It counteracts thereby under- and 
overfitting, as was found to be the case when data were averaged or 
completely pooled, respectively. When the goal is prediction, partial 
pooling is shown to be very useful. Moreover, multilevel modeling 
avoids possible bias in parameter estimation by taking into account 
dependencies in the data. The disadvantage is of course that more 
experimental data are needed that can be grouped. There is some debate 
among statisticians whether or not a minimum of 5 or 6 levels is needed 
to be able to apply multilevel modeling. According to Gelman and Hill 
(2007), however, such advice is misguided; they acknowledge that 
estimation of variance parameters is a concern with small sample sizes, 
but they maintain that it should work as well as classical regression. In 
food microbiology, two or three repetitions are common. The dataset 
with 18 repetitions as used in this paper is in that sense not represen-
tative but was useful for illustration purposes. The reward of doing more 

repetitions will be a much better characterization of the variation 
involved and unbiased parameter estimates, which is of particularly 
high value when the goal is to make predictions, especially in risk 
analysis. Having explored the possibilities of multilevel modeling for 
analyzing repetitions done in food microbiology with two levels, the 
next case study investigates its use in exploring temperature effects in 
which also repetitions were done, which calls for a three level analysis. 

3.2. Multilevel analysis of temperature effects 

The data reflecting the various isothermal treatments are shown in 
Fig. 8: log10N decreases as a function of time, the more so at higher 
temperature. With reference to Fig. 1, the number of temperature ex-
periments is k = 9, the number of trials per temperature varied from j =
3–4, and the number of measurements at each trial varied from n =
2–10. The data are quite scattered, as is common in such experiments. 
The decrease does not seem to be log-linear in time overall, but that will 
be investigated. The same dataset was used by Koyama et al. (2019) who 
imposed a linear relation without testing that assumption. 

Bayesian regression was again applied with this dataset. The pro-
cedure is the same as with the first case study: proposing a likelihood 
function (the same Weibull model as above) and priors for the param-
eters. Since this workflow was already explained in detail in the first case 
study, it is not reported in detail again for the second case study but of 
course it was adhered to. Where relevant, additional information is 
provided in the Supplement. The difference with the first case study is 
the number and the nature of levels. 

3.2.1. Single level modeling at each temperature (no pooling) 
Each temperature experiment consisted of several trials. In the first 

analysis, data were not pooled at the group level of temperature but they 
were pooled within each temperature experiment at the trial level 
(without applying averaging). The proposed likelihood function and 
priors are in Supplement Eq. (2). While the resulting fits look good 
(Supplement Fig. S9), posterior parameter distributions are displayed in 
Fig. 9 in a forest plot. Shape parameter α shows quite some variation per 
temperature, while variation in log10β is seemingly erratic as a function 
of temperature. The shape parameter values reported by Mattick et al. 
(2001) for the same data, but obtained by single-level least-squares 
regression, ranged from α = 0.24–1.06, while here a range from 

Fig. 7. Regression line + 95% credible interval (CI) for the multilevel model with partially pooled data (red ribbon) as compared to the model based on completely 
pooled data (blue ribbon) (A). 95% prediction interval (PI) for the multilevel model (red ribbon) as compared to the model based upon completely pooled data (blue 
ribbon) (B). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Results of the leave-one-out-cross-validation (loo-cv) method applied to the 
model based upon partially pooled data (multilevel) and the completely pooled 
data (single level) for the Salmonella case study 1 with 18 repetitions. The best 
performing model is put to 0.   

loo-cv value SE 

Multilevel partially pooled  0.0  0.0 
Single level completely pooled  − 68.3  9.5  
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0.47–1.43 was found. There is, as usual with Weibull parameters, a 
rather strong parameter correlation between α and β, as shown before in 
Fig. 3 (an example is shown in Supplement Fig. S10, for the 55 ◦C 
experiment). The effects shown in Fig. 9 result from two correlated 
temperature effects: variation of shape factor α and of rate parameter β, 
the latter one obviously depending on temperature. When the temper-
ature dependence of rate parameter β needs to be calculated, parameter 
α should be constant, otherwise there are two sources of variation. The 
question is which constant value for α is then suitable. Couvert et al. 
(2005) made observations about the shape parameter variation per 
temperature. André et al. (2019) also studied this via individual 
regression at various temperatures, be it at higher temperatures and for 
spores. They also found variation in the shape parameter per tempera-
ture experiment but concluded that it could be fixed at a sort of average 

value. They then went on to estimate the dependence of the individually 
estimated rate parameters as a function of temperature in a subsequent 
regression procedure, hence a two-step analysis. Here, a different route 
is taken as explained in the next section. A comparison of this different 
route with a two-step approach will be done later on, in the section on 
prediction of decimal reduction times. 

3.2.2. Single-level global modeling of completely pooled temperature- 
dependent data 

The different route taken here consists of letting the data decide 
about the most likely value of parameter α by regressing all data in one 
step, while integrating the temperature dependence of rate parameter β 
in the primary model. This is global modeling when using completely 
pooled data to estimate an overall value for α. The global aspect is that a 

Fig. 8. Overview of the data describing isothermal inactivation of Salmonella for temperatures 55–80 ◦C. 
Source: Mattick et al. (2001), data extracted from Combase. 

Fig. 9. Forest plots showing posterior parameter distributions for the parameter log10N0 (A), α (B) and log10β (C) resulting from individual regression with the 
Weibull model per temperature studied. 
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model connects the various temperature experiments with temperature 
as predictor. Pooling all the data implies statistically that data are 
considered to come from one identical probability distribution, regard-
less of the temperature at which they were collected; it also implies that 
the data are considered completely independent and uncorrelated. This 
last assumption may not be true if data are collected from one batch at a 
certain temperature treatment (depending on how the measurements 
were done). Rate parameter β needs to be replaced by a model in which 
its temperature dependence is made explicit to make it a global model, 
so that parameter α can subsequently be estimated as a global param-
eter. Several models are proposed in literature that describe temperature 
dependence of a rate parameter like β. A recent overview and evaluation 
can be found in Gil et al. (2017) and Milkievicz et al. (2021). The well- 
known Bigelow model, normally used to capture the temperature 
dependence of D-values, is also proposed for rate parameter β: 

β = βref ⋅10
Tref − T

Z (12) 

A reference temperature Tref is introduced with the corresponding 
parameter βref, the value of β at the reference temperature. According to 
Schwaab and Pinto (2007), the choice for Tref is not arbitrary; the un-
certainties in Z and βref depend on it when applying regression. If 
calculated according their guidelines, Tref = 67.25 ◦C for the present case 
study. The temperature coefficient Z expresses the increase in temper-
ature needed to reduce β by a factor 10, as with the traditional D − Z 
model (but note that parameter β is not the same as a D-value!). An 
alternative model could be the log-logistic model suggested by Peleg 
(2006), which may be suited for the Weibullian model Eq. (4). To 
enhance MCMC convergence, parameter values should preferably be in 
the same range numerically; for that reason, βref, which has a value in the 
order of 10− 3, was expressed as βref = 10bref; the exponent bref is then 
estimated and has a value in the order of − 2 to − 3. In the results re-
ported below βref was calculated back from that exponent, which is 
easily done from the posterior distribution, a clear advantage of the 
Bayesian approach; in the frequentist approach this would require more 
complicated propagation of error calculations. 

The proposed likelihood function and priors are shown in the Sup-
plement, Eqs. (3) and (4). Since showing individual fits was not the first 
goal of this analysis, the resulting fits with their 95% prediction intervals 
are also shown in Supplement Fig. S11, with the pair plots, posterior 
parameter densities and correlation coefficients in Fig. S12. It all looks 
well-behaved; the resulting fits with the global Weibull model show 
overall, sort of average fits, looking much better than the global log- 
linear model fits reported in Fig. 2 in Koyama et al. (2019). The nu-
merical parameter summaries of the global Weibull model are reported 
in Table 4, with α = 0.62 showing convincingly again log-nonlinear 
behaviour and a Z-value of 10.8 ◦C (note that this was derived using 
the β parameter, not a D-value). 

Single-level completely pooled modeling does not allow individual 
fits to deviate from the average, it considers each experiment to be the 
same with the temperature dependence of parameter β accounted for by 
the Bigelow-type model in this case. These results will be compared to 
the multilevel outcome, which is the next analysis step. 

3.2.3. Multilevel global modeling of partially pooled temperature-dependent 
data 

The previous section showed the regression result for an overall, 
population value of parameter α. Multilevel modeling allows to inves-
tigate if and how parameter α varies per group level (temperature in this 
case) while still capturing the temperature effect on the rate parameter β 
with the Bigelow-type model. This will yield, again, an overall value of α 
at the global, population level, a “fixed” level, but it also allows to 
capture variation of α at the group level temperature, a “random” effect. 
The question here, however, is also: to pool or not to pool? The number 
of trials (repetitions) available at each temperature is limited (3–4 per 
temperature): it is questionable whether or not there is enough infor-
mation in the data to extract a varying α at the trial level next to the 
temperature level. When it is done nonetheless, the results are as 
follows. 

The likelihood function and priors for this case of Bayesian regres-
sion are shown in the Supplement (Eq. (5)), as is the pairs plot, posterior 
parameter distributions and correlation coefficients (Fig. S13). The 
research question was specifically about the random variation of the 
parameter α per temperature, so that is shown here in Fig. 10. This 
variation appears to be rather small at the level of temperature experi-
ments but larger at the level of trial within each temperature group. The 
large variation of α at the temperature level found with the no-pooled 
analysis (Fig. 9), is now much smaller due to sharing information be-
tween the groups (i.e., temperature experiments). The individual fits 
(“retrodictions”) obtained when the data are partially pooled per tem-
perature, and per trial within the temperature groups, are shown in 
Supplement Fig. S14, and the fits look remarkably well, also per trial 
nested in each temperature experiment. The overall fit resulting from 
the population parameters only is in Fig. 11, which does not differ much 
from the fit obtained with single-level global modeling with completely 
pooled data shown in Supplement Fig. S11. But, as already discussed in 
the first case study, fits should not be the point where the analysis stops. 
There is a notable difference in partitioning of variance, which has its 
consequences for predictions. The 95% prediction intervals are nar-
rower than with the completely pooled results (Table 5). Note that there 
is a small difference in the population parameters (α = 0.67 and β =
0.007 resulting from partial pooling, Table 5) as compared to complete 
pooling (α = 0.62 and β = 0.006, Table 4). The parameters σα− T and 
σα− trial confirm what also can be seen in Fig. 10: most of the variation in 
parameter α comes from the variation due to the group effect of trial, 
much less from a temperature effect. 

3.2.3.1. Model comparison. As with the first case study, model com-
parison was also done for the second case study by comparing the model 
based on completely pooled data with the one based on partially pooled 
data using loo-cv. Results are in Table 6, showing convincingly that the 
partially-pooled model, with trials nested in temperature clusters, per-
forms much better than the model using completely pooled data, even 
though the differences in fits were hardly noticeable. Keep in mind, 
though, that this is a comparison, it does not state that the other model is 
not performing well; as can be seen in the fits obtained they do perform 
well in retrodiction but much less so in prediction. 

3.2.4. Prediction of decimal reduction values 
An important goal of modeling is to test the capacity of a model to 

predict new, not yet observed values, indicated by prediction bands 
around the observed values. An important parameter to predict is the 
heating time needed to cause a certain number of decimal reductions of 
micro-organisms. With the classical decimal reduction time D for log- 
linear reduction (if that applies), this is an easy job. With the log- 
nonlinear dataset analyzed here with the Weibull model, it is also 
possible to calculate the time needed to reach a predefined number of 
decimal reductions d provided parameters α and β are known. The 
general formula is (Van Boekel, 2008): 

Table 4 
Numerical summary of the parameter estimates from the global completely 
pooled Salmonella data in case study 2, using the Bigelow model to capture the 
temperature dependence of rate parameter β.   

Mean SE Lower bound Upper bound 

log10N0  6.50  0.01  6.48  6.52 
Z (◦C)  10.77  0.13  10.51  11.03 
βref (h)  0.006  0.0007  0.005  0.007 
α  0.62  0.02  0.58  0.67 
σe  0.48  0.02  0.44  0.53  
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Fig. 10. Plot of the variation of parameter α per temperature (left panel) and per trial (right panel), expressed as deviation from the population mean that is given the 
value 0. The circle indicates the mean, the thin line the 95% credible interval and the thick line the 50% interval. 

Fig. 11. Fits on the population level with 95% prediction intervals resulting from global multilevel (partial pooling) modeling of the Salmonella data using the 
Bigelow-type model to capture the temperature dependence of β. 

Table 5 
Numerical summaries of the parameters resulting from the global multilevel 
partial pooling regression of the Salmonella data in case study 2, using the 
Bigelow model to capture the temperature dependence of parameter β.   

Mean SE Lower bound Upper bound 

log10N0  6.50  0.001  6.50  6.50 
Z (◦C)  11.04  0.33  10.47  11.78 
βref (h)  0.007  0.0004  0.006  0.008 
α  0.67  0.001  0.67  0.67 
σα− T  0.02  0.02  0.001  0.07 
σα− trial  0.07  0.012  0.05  0.10 
σe  0.30  0.01  0.27  0.33  

Table 6 
Results of ‘leave-one-out-cross-validation’ for the multilevel partially-pooled- 
temperature-trial model and for the completely pooled data single level model 
for the heat inactivation of Salmonella in case study 2. The best performing 
model is put to 0.   

loo-cv-value SE 

Multilevel partially pooled  0.00  0.00 
Single level completely pooled  − 106.12  14.00  
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td = β⋅
(

− ln
(
10− d)1

α

)

(13) 

For a 6D reduction, for instance, this would be: 

td = β⋅
(

− ln
(

10− 6
)

1
α

)

= β⋅6⋅ln
(

10
)

1
α

)

= βref 10
Tref − T

Z ⋅6⋅ln
(

10
)

1
α

)

(14) 

In the previous section, values for α, βref and Z were obtained, so 
decimal reduction times can be calculated at any desired temperature 
with these parameters, on the assumption that the models hold at the 
conditions specified, and, of course, the uncertainty that goes with it. 
This can be done directly from the posterior parameter distribution. The 
grand mean population estimates can be used for this, but it could also 
be done for a specific temperature cluster with its own α parameter, if so 
desired. Such calculations were done for 6D reduction of the Salmonella 
data analyzed here, by way of example. It might be interesting to 
compare this result with the two-step method, which consists of first 
deriving parameters by applying a primary model, followed by subse-
quent regression of the rate parameter in a secondary model; this was, 
for instance, done recently by André et al. (2019). To obtain such a two- 
step result, the data were also analyzed per temperature by fixing the 
shape parameter at α = 0.67 (the grand mean for α) to derive rate 
parameter β at this fixed value at each temperature, still using the 
Bayesian approach. The logarithm of this rate parameter was subse-
quently regressed versus temperature according to the logarithmic 
version of Eq. (12) to find parameters logβref and Z (a TDT curve, see 
Supplement Eq. (6) and Fig. S15 and Table S2 for detailed results). The 
point estimates resulting from this two-step method were βref = 0.007 
(h) and Z = 12.5 ◦C (the values from the global multilevel regression 
were βref = 0.007 (h) and Z = 11.0 ◦C, Table 5). Decimal reduction times 
and their uncertainties were subsequently calculated according to Eq. 
(14), one with the global multilevel model parameters and another with 
the two-step single level model parameters. By using the posterior 
parameter distributions, correlations and propagation of uncertainties 
are automatically taken into account. The time needed for 6 decimal 
reductions calculated in these two ways are shown in Fig. 12, by way of 
example at 75 ◦C. A small difference appeared in the estimate for a 6D 
reduction time, but more striking is that the global multilevel method 
shows much less uncertainty as its density distribution is considerably 
narrower. Also, the density resulting from the two-step single-level 
modeling approach is skewed to the right, making confidence/credible 

intervals non-symmetric. Conditional on the model and dataset used 
here, global multilevel modeling with partial pooling is therefore pref-
erable from the point of view of reducing uncertainty in predicting 
inactivation. It would be interesting to investigate this finding further 
with other datasets and models. 

4. Conclusion 

The possibilities of multilevel modeling in kinetic analysis of heat- 
induced microbial inactivation were investigated. The findings are ex-
pected to be applicable to other datasets, as well as to other models than 
the Weibull model, but that needs further work. Whether multilevel 
modeling can be used for non-isothermal processes needs also further 
investigation. Provided that the data structure allows it, the conclusion 
is that multilevel modeling is a very powerful and promising method. 
The following arguments apply in favour of multilevel modeling:  

• it connects individual regressions by partial pooling of the data so 
that an overall impression of the variation of inactivation parameters 
can be obtained rather than the variation of parameters per indi-
vidual regression  

• the shrinkage phenomenon leads to realistic parameter estimation at 
the population level suitable for prediction  

• it compensates for the possible correlations in data and thereby gives 
a more realistic impression of the variability involved, which may be 
underestimated with single level regression  

• the prediction capabilities of a multilevel model appear to be (much) 
better than from single level modeling  

• lower parameter uncertainty is not a goal to strive for in selecting 
models if it means that a model does not describe variation in a 
system properly; multilevel models are the preferred ones as they 
guard against over- and underfitting  

• Predictive capacities of models should get more attention than their 
retrodictive capacities and multilevel models appear to be better in 
that 

In addition, it is shown that global modeling of the rate parameter in 
the Weibull model via a Bigelow-type relation is well possible in a global 
regression procedure, making traditional separation of primary and 
secondary models in food microbiology not really necessary for 

Fig. 12. Probability densities calculated for the time needed for 6 decimal reductions at 75 ◦C using the parameters from the one-step multilevel model (red fill) and 
the two-step single level model (turquoise fill). The vertical dashed lines indicate the mean of the distribution. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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parameter estimation. Global modeling reduces uncertainty in pre-
dictions such as decimal reduction times as compared to the common 
two-step approach. Other secondary models such as the log-logistic 
model may also be suitable to be incorporated in primary models. 
However, testing primary and secondary models as a first step may still 
be valuable if the goal is to check what type of model is most applicable 
to the data at hand. As mentioned in the introduction, the Weibull model 
is not a panacea for every inactivation experiment. The current analysis 
is definitely not limited to the Weibull model, it should be applicable to 
other models as well. This paper used Bayesian regression because it is 
well suited for multilevel modeling with varying effects for parameters, 
but it also allows interesting visualizations of how parameters behave. 
The posterior parameter distribution is a rich source of information for 
further calculations, as shown here for calculations of decimal reduction 
times and their uncertainties. Multilevel modeling is also possible in the 
frequentist framework but subsequent calculations are less straightfor-
ward. It is perhaps an investment in time to learn Bayesian regression 
but it will be worth the effort. 

The question posed in the title of this paper: “to pool or not to pool” 
can be answered as follows. Averaging data should never be done 
because that removes useful information. Also, analyzing data per in-
dividual group may lead to huge variation in parameters and between- 
group comparison may give a wrong impression about interpretation 
of what is happening at the population level; no-pooling does therefore 
not seem to be a good idea either. As for complete pooling or partial 
pooling, it depends on the goal of the research. The point estimates of 
parameters appeared to not differ that much between completely-pooled 
and partially pooled data. However, complete pooling tends to under-
estimate variation and partition of variance is not possible. If the goal is 
to get a realistic impression of the variability involved, and especially to 
make predictions, multilevel modeling using partially pooled data is the 
way to go. Such a conclusion, however, has its bearings on experimental 
design because it does require an experimental setup that allows to 
analyze the data with multilevel modeling, and not unimportantly, it 
will require more experimental work in the form of more repetitions. 
The benefits, however, seem very worthwhile in order to be able to deal 
with the inevitable variability in food microbiology. 
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Appendix A. Supplementary data 

The supplemental material contains additional analyses as well as 
references to the R packages used. The raw data and the R scripts can be 
found at the author's Github repository https:://github.com/Tiny-
vanBoekel/IJFM. Supplementary data to this article can be found online 
at https://doi.org/10.1016/j.ijfoodmicro.2021.109283. 

References 
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