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Abstract

Afforestation is an effective method to restore degraded land. Afforestation methods
vary in their effects on ecosystem multifunctionality, but their effects on soil biodi-
versity have been largely overlooked. Here, we mapped the biodiversity and func-
tioning of multiple soil organism groups resulting from diverse afforestation methods
in tropical coastal terraces. Sixty years after afforestation from bare land (BL), plant
species richness and the abundance of plant litter (398 + 85 g m™) and plant biomass
(179 + 3.7 t ha %) in native tree species mixtures (MF) were restored to the level of na-
tive forests (NF; 287 £ 21 g m2and243.0+33tha™, respectively), while Eucalyptus
monoculture (EP) only successfully restored the litter mass (388 + 43 g m™) to the
level of NF. Soil fertility in EP and MF was increased but remained lower than in NF.
For example, soil nitrogen and phosphorus concentrations in MF (1.2 + 0.2 g kg™ and
408 + 49 mg kg™, respectively; p < 0.05) were lower than in NF (1.8 + 0.2 g kg™* and
523 + 24 mg kg%, respectively; p < 0.05). Soil biodiversity, abundance (except for
nematodes), and community composition in MF were similar or greater than those in
NF. In contrast, restoration with EP only enhanced the diversity of microbes and mites
to the level of NF, but not for other soil biota. Together, afforestation with native spe-
cies mixtures can end up restoring vegetation and most aspects of the taxonomic and
functional biodiversity in soil whereas monoculture using fast-growing non-native

species cannot. Native species mixtures show a greater potential to reach completely
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1 | INTRODUCTION

The importance of forests in the global carbon cycle that sustains
life on Earth is undisputable (Malhi, 2012; Moomaw et al., 2020;
Pugh et al., 2019; Stephens et al., 2007). The multifunctional roles of
forests extend to many aspects such as moderating air temperature
and supporting a vast array of biodiversity on Earth (Banerjee et al.,
2020; IPCC, 2007; Makarieva & Gorshkov, 2007). Forests also pro-
vide economic (e.g., timber, food, and fiber) and social benefits (e.g.,
subsistence for local populations and cultures; Gren & Amuakwa-
Mensah, 2020; Montagnini & Jordan, 2005). Among numerous for-
ests, tropical forests sequester 0.4 Pg C year* (Baccini et al., 2017)
and contain over half of the world's terrestrial biodiversity (Myers,
1979). However, global climate change and human activities such as
farming, mining, infrastructure expansion, are causing deforesta-
tion and subsequent degradation of soil properties and functions
(Durén et al., 2015; Lowman et al., 2013; Veldkamp et al., 2020; van
der Werf et al., 2009). So far, more than half of the tropical forests
have been destroyed (Poorter et al., 2016), with the rest being under
threat (Esquivel-Muelbert et al., 2019; Taubert et al., 2018). Over
decades, afforestation has been used as one of the main methods to
restore degraded ecosystems. Afforestation has major positive di-
rect or indirect effects on soil fertility and above- and belowground
communities (Lagniére et al., 2010; Liu et al., 2017; Ren et al., 2016;
Wang et al., 2013, 2017, 2019).

Aboveground community and land-use changes such as defor-
estation and afforestation can directly or indirectly impact below-
ground communities (Bezemer et al., 2010; Biederman et al., 2008;
Farska et al., 2014; George et al., 2019; Szoboszlay et al., 2017). For
example, communities of microorganisms, as the most abundant and
diverse organisms on the planet, change dramatically after deforesta-
tion (Crowther et al., 2014); natural restoration progress also showed
that soil biodiversity becomes more connected and the soil takes up
more carbon (Morrién et al., 2017); afforestation with greater tree
species richness can enhance soil heterogeneity and thus contribute
to soil biodiversity (Dickie et al., 2002; Liu et al., 2018; Strukel;j et al.,
2021). Such effects on soil biota can subsequently affect ecosys-
tem functioning as soil biodiversity is required for ecosystem multi-
functionality and is considered important for ecosystem restoration
(Bardgett & van der Putten, 2014; Guerra et al., 2021; Handa et al.,
2014; Lefcheck et al., 2015; Soliveres et al., 2016). Soil biodiversity in-
cluding connections in the soil food web declines in degraded ecosys-
tems, leading to reduced functioning, with far-reaching consequences

similar levels of soil biodiversity in local natural forests if they are received some more
decades of afforestation. Multifunctionality of soil biotic community should be con-

sidered to accelerate such processes in future restoration practices.

afforestation, degraded land, native tree species mixtures, soil biodiversity, soil biota
functioning, tropical coastal terraces

for restoration efforts (Ekelund et al., 2009; Harris, 2009; Kardol &
Wardle, 2010; Sanchez-Moreno & Ferris, 2007). Increasing evidence
suggests that several parameters of soil biodiversity decline includ-
ing species richness and functional diversity which results in loss of
soil functions (Heemsbergen et al., 2004; Nielsen et al., 2011; Saleem
etal., 2019; Wagg et al., 2014). The abundance of soil biota, especially
those at higher trophic levels, is considered essential for the stability
of the ecosystem (Allesina & Tang, 2012). Previous studies showed
that afforestation positively affects the recovery of the biomass and
diversity of soil biota (Gunina et al., 2017; Zhu et al., 2019). The B:F
ratio, the abundance of arbuscular mycorrhizal fungi, the relative
abundance of eukaryotic plant pathogens and plant parasite nema-
todes, and bacterivorous to fungivorous nematodes can indicate the
functional characteristics of soil biota (Liu et al., 2019). However, af-
forestation effects on soil biodiversity and its functioning, especially
integrated insights on multiple soil biodiversity groups at different
trophic levels including abundance, diversity, community composi-
tion, and functional characteristics are largely unknown.

To investigate the afforestation effects on the recovery of
belowground communities and their functioning, we studied the
linkages between different afforestation practices and soil biodi-
versity in a tropical coastal forest in South China. The afforestation
practices were initiated in the 1960s with no afforestation practices
(bare land) and Eucalyptus exserta rotation monoculture. Later, in
1974, some Eucalyptus forests were clear-cut and reforested with
native tree species. We tested whether afforestation with native
tree mixtures would restore the community composition, diversity,
and abundance of diverse soil biota (bacteria, fungi, actinomycetes,
arbuscular mycorrhizal fungi, protists, nematodes, and mites) to lev-
els of undisturbed native forests, while we expected these effects
to be less in Eucalyptus rotation monoculture forests (Hypothesis 1).
Furthermore, we tested if afforestation with native tree mixtures
would increase functional characteristics of soil biota more than

afforestation with Eucalyptus rotation monocultures (Hypothesis 2).

2 | MATERIALS AND METHODS

2.1 | Site description

The restoration study was initiated at the Xiaoliang Tropical Coastal
Ecosystem Research Station, Chinese Academy of Sciences, in
1959. The site is located in Maoming City, Guangdong Province,
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China (21°27'N; 110°54'E), a region influenced by tropical mon-
soons. The mean annual temperature is 23°C, the mean annual
precipitation 1400-1700 mm, and the soil is laterite developed
from granite (Yao et al., 1984). Until the 1850s, this area was cov-
ered by evergreen broad-leaved seasonal rainforest. By the 1950s,
about 40,000 ha of tropical monsoon forests were cut (Ren et al.,
2007), and the bare land was covered by coarse sand and min-
eral aggregates rich in iron oxides and manganese (Yu & Pi, 1985).
Only a small patch of native forests was preserved. Native forests
herein refer to tropical secondary forests, which were preserved
for over 200 years. Recent vegetation surveys showed that the na-
tive forests were dominated by Cinnamomum camphora, Sterculia
lanceolata, Cryptocarya chinensis, Syzygium levinei, Syzygium hancei,
Schefflera octophylla, Auquilaria sinensis and exhibited a similar com-
munity composition as local climax vegetation (Cao & Yu, 1998).
Therefore, the native forests in our study represent the natural
forests in the region.

In 1959, a long-term restoration experiment was started by es-
tablishing one reference area (3.7 ha) of bare land (BL), and two
sites with restoration treatments (3.9 and 3.8 ha, respectively) in
three geographically similar catchments (Figure 1; Ren et al., 2007),
which have a similar slope (<6°) and initial soil properties (Li et al.,
1996). The initial soil organic matter concentration is 6 mg g™ and
total nitrogen concentration is 0.27 mg g™* (Ren et al., 2007). Both
restored catchments were initially restored with Eucalyptus exserta
seedlings in the early 1960s. In 1974, one catchment was clear-cut
and reforested with several species of native trees to become a
mixed forest (MF), which now still has an average of 14.6 native
tree speciesin 20 x 20 m sample plots. The dominant tree species in
MF are Aphanamixis polystachya, Schefflera octophylla, Carallia bra-
chiate, Symplocos chunii, Acacia auriculaeformis, Photinia benthami-
ana, and Cinnamomum burmanni according to a survey performed
in 2015. The other catchment remained as a Eucalyptus rotation
monoculture (EP) that is harvested every 5 to 8 years. Finally, BL,
MF, EP, and preserved native forests (NF) were used as four study
sites. Five replicated plots (20 x 20 m) at each site were designated
for soil sampling during the wet season (June 2018). The native for-
est site is located about 2 km northeast of BL, EP, and MF, and
shares the same climate, soil type, and topographic conditions. The

plots at each study site were at least 100 m apart and located at an

FIGURE 1 Degraded coastal land
and vegetation restoration in the study
area
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Coastal forests
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equal distance from the high tidal mark at each site. All plots were

inundated and exposed to the same tide effects.

2.2 | Sample collections and analysis

Diversity and biomass of plant community were measured during
the survey in 2015 according to Wen et al. (1999). Plant litter was
collected by three 30 cm x 30 cm trappers, which were randomly
distributed in each plot and then the collected litter was mixed into
one composite sample. Litter samples were dried to constant weight
at 60°C and weighted. Five random soil cores were collected in each
plot by using a corer (5 cm in diameter, 20 cm in depth) and mixed to
obtain one soil sample for each plot. Total organic carbon (TOC) and
total nitrogen (TN) concentrations were analyzed by an elemental
analyzer (Vario EL I, Elementar). Total soil phosphorus (TP) concen-
tration was measured following H,SO,-HCIO,, digestion and using
the molybdenum antimony colorimetric method (Lu, 2000). Soil P
fraction extracting procedures were based on Hou et al. (2014).
Dissolved organic carbon (DOC) was extracted by 0.5 M K,SO,
and measured by a TOC analyzer (TOC-VCSH, Shimadzu). NH4+—N
and NO, -N were measured by a flow injection analyzer (AA3, Bran
Luebbe). Soil pH was measured with a pH meter in a 1:2.5 (w/v) sus-
pension. The activities (umol g™t dry soil h™) of p-1,4-glucosidase
(BG), p-N-acetyl-glucosaminidase (NAG) and acid phosphatase (AP)
were measured following Paz-Ferreiro et al. (2012) and the specific
substrates were p-nitrophenyl-$-D-glucopyranoside, p-nitrophenyl-
N-acetyl-B-D-glucosaminide and p-nitrophenyl-phosphate, respec-
tively (Sigma).

2.3 | Phospholipid fatty acids analysis

Soil microbial communities were characterized by the phospholipid
fatty acid (PLFA) method according to Bligh and Dyer (1959). An in-
ternal standard of 19:0 methyl ester was added to the extract before
derivatization of PLFAs. Fatty acids were analyzed using a gas chroma-
tograph (6890N, Agilent Technologies) with MIDI peak identification
software (MIDI, Inc.). A number of fatty acids, i15:0, a15:0, i16:0, i17:0,
and al17:0, were used as biomarkers for Gram-positive bacteria (GP);

Vegetation restoration

Degraded coastal land
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16:107c, 16:109c, 18:1w7c, cy17:0, and cy19:0 were used as biomark-
ers for Gram-negative bacteria (GN). Saprophytic fungal biomarkers
were 18:2w6c and 18:3wéc. The arbuscular mycorrhizal fungi (AMF)
biomarker was 16:1w5c, and actinomycete biomarkers were 10Me16:0,
10Me17:0, and 10Me18:0. The total microbial PLFA concentration was
also calculated. All PLFA concentrations were expressed as nmol g'1
dry soil. “Microbe” in our study specifically refers to the soil microbial

communities, which include fungi, bacteria, AMF, and actinomycetes.

2.4 | DNA extraction and high-throughput
sequencing of nematodes and protists

Soil samples for high-throughput sequencing were stored at -80°C
before processing. Total soil DNA was extracted from 0.25 g soil using
the PowerSoil DNA kit (MOBIO). The isolated DNA was stored at
-80°C until the PCR stage. lllumina Hiseq sequencing was used to as-
sess the protist and nematode communities through massively parallel
sequencing of 18S rDNA gene. The 18S rDNA gene of protists was am-
plified with the primer pair 1380F (3'-CCCTGCCHTTTGTACACAC-5')
and 1510R (3'-CCTTCYGCAGGTTCACCTAC-5;
et al, 2009). The primer pair used to amplify nematodes was
NF1  (3'-GGTGGTGCATGGCCGTTCTTAGTT-5') and  18Sr2b
(3'-TACAAAGGGCAGGGACGTAAT-5'; Porazinska et al., 2009). PCR
amplification and sequencing were made by MAGIGENE. The OTUs

Amaral-Zettler

of protists were grouped into four feeding groups: phagotrophs, plant
pathogens, parasites, and phototrophs (Xiong et al., 2018), and those
of nematodes were grouped into four feeding groups: bacterivores
(BF), fungivores (FF), plant parasites (PP), and omnivores/predators
(OP; Yeates et al., 1993).

2.5 | Extraction and taxonomic identifications of
mites and nematodes

To obtain abundance and feeding group composition data of nema-
todes, morphological method was used also. Molecular information on
mesofauna is in its infancy, and therefore we only performed stand-
ardized morphological information. Mites were extracted from the soil
and litter samples and visually identified at the genus level using an
inverted microscope (Nikon) at South China Agricultural University.
Individual numbers of fungivorous and omnivorous/predatory mites
(Laliberté et al., 2017) were counted, respectively. Nematodes were
extracted from 100 g fresh soil by Baermann funnel (Whitehead &
Hemming, 1965). The first 100 nematodes were identified using a re-
versed light microscope (Nikon) and individual numbers of four feed-
ing groups (Yeates et al., 1993) were counted. If there were less than
100 nematodes, then all nematodes were identified and counted.
Individual numbers of mites and nematodes per 100 g dry soil were
calculated based on the soil moisture data. Nematode channel ratio
(NCR) was calculated as BF/(BF + FF), where BF and FF are the rela-
tive abundance of bacterial-feeding and fungal-feeding nematodes,
respectively (Yeates, 2003).

2.6 | Bioinformatics and statistical analyses

The sequences were demultiplexed and trimmed with a read quality
score above 30 using FastQC (Andrews, 2012). Sequences with lengths
less than 150 bp and rare sequences were removed. Putative chimeric
sequences were detected and removed using Mothur (Schloss et al.,
2009). High-quality sequences were assigned to OTUs at 297% simi-
larity level. Nematode and protist OTUs were taxonomically assigned
at the genus level by blasting against SILVA v.132 (https:/www.arb-
silva.de) using the classify command in Mothur. Streptophyta, Fungi,
Metazoa, and ambiguous taxa in eukaryotes were removed from the
OTU table. Diversity indices at the OTU level were calculated.

Alpha diversity of microbial groups was calculated based on the
data of PLFA biomarkers (de Vries et al., 2012), and the diversity of
various soil faunal groups was calculated based on OTU or morphol-
ogy data. Statistical analyses were done in SPSSv.23 (SPSS). One-way
ANOVAs were used to analyze differences in soil properties, PLFA
concentrations, diversity, abundance of soil biota among sample
sites with statistical differences considered significant at p < 0.05.
The least-significant difference (LSD) test was used to assess treat-
ment differences in one-way ANOVA analyses. Graphs were created
using GraphPad Prism 7 (GraphPad Software). The PCoA analysis of
soil microbial and animal communities based on OTUs or genera data
was performed using R (version 3.6.1, R Development Core Team,
2016) with the “vegan”, “ggplot2”, and “plyr” package.

The PLFA data of soil bacteria, fungi, actinomycetes, and AMF, the
abundance data of soil nematodes and mites at the genus level, and
the OTU numbers of the 50 most-abundant protists (Table S6) were
used for the co-occurrence network analysis using R version 3.6.1 (R
Development Core Team, 2016). The visualization of the correlation
matrix was created, and network properties were inferred by Gephi
version 0.9.2 (https:/gephi.org). Significant correlations (p < 0.05)
including both positive and negative correlations with values greater
than 0.9 were visualized.

Structural equation models (SEMs) were constructed by AMOS
(SPSS) to analyze the effects of plant resource input by afforesta-
tion on soil fertility, the diversity, and abundance of soil biota, and
further on soil biodiversity functioning. We defined soil biodiversity
functioning by the combination of the B:F ratio, the abundance of
AMF, BF:FF nematode ratio, the relative abundance of plant patho-
genic protists and PP nematodes (Liu et al., 2019). Positive effects
on these represent an increase of these variables which means a
stronger bacterial energy channel and greater relative abundance
of plant pathogens, while negative effects represent a decrease of
these variables which means a stronger fungal energy channel and
lower relative abundance of plant pathogens. Detailed information
about the variables used for SEM analysis is listed in Table S1. Data
of BL were not used for SEM as they cannot be compared with for-
ests. Outliers found in litter biomass data (one in EP and one in MF)
were winsorized (90%) as they would cause spurious correlations.
Maximum likelihood estimation was used to fit the covariance ma-
trix to the model. Chi-square value, associated p-value (p > 0.05),
goodness-of-fit-index (GFI > 0.90), and root mean square error of
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approximation (RMSEA < 0.05) were measured to ensure the model

adequately fitted.
3 | RESULTS
3.1 | Afforestation effects on soil properties and

aboveground community

Soil fertility, as indicated by the concentrations of TOC, DOC,
TN, TP, NH4+-N, and NO,-N was greatly enhanced by affores-
tation, but DOC, TP, TN, and NO; -N concentrations were still
lower than those in NF (p < 0.05; Figure 2; Table S2). TOC con-
centration in MF (19 + 3.1 g kg™%) was restored to the level of NF
(24 + 2.0 g kg™, but not in EP (5.8 + 0.3 g kg™!). DOC concentra-
tion in both EP (137 + 6.0 g kg™") and MF (271 + 18 g kg™!) were
increased but not to the level of NF (552 + 13 g kg'%; p < 0.05).
TN and TP concentration in MF were both increased compared
with BL and EP (1.2 + 0.2 g kg™ and 408 + 49 mg kg}, respec-
tively; p < 0.05), but were lower than in NF (1.8 + 0.2 g kg™* and
523 + 24 mg kg’l, respectively; p < 0.05). The NO;™-N concentra-
tion in both EP (0.1 £ 0.0 mg kg’l) and MF (2.5 + 1.0 mg kg’l) was
not yet restored to the level of NF (8.1 + 0.9 mg kg% p < 0.05),
while the NH,"-N concentration in EP (1.2 + 0.1 mg kg™) was re-
stored to the level of NF (0.8 = 0.3 mg kg™%) and it was even higher
in MF (1.8 + 0.3 mg kg™; p < 0.05). The soil C:N ratio increased to
the same level in EP (15.8 + 0.4) and MF (15.5 * 0.4) and was lower
in NF (13.0 £ 0.2; p < 0.05). Soluble P was low in EP compared with
all other sample sites (0.6 + 0.0 mg kg™%; p < 0.05), while available
P, residual P, and BG did not show significant differences (Table S2)
and the other variables referring to carbon, nitrogen, phosphorus,
and enzyme activity were all increased by afforestation (Table S2).
Soil moisture content (MC) in MF (30.2 + 0.8%) was significantly
increased to the level of NF (29.5 + 0.5%), and pH was significantly
decreased in MF (4.2 + 0.0) to the level of NF (4.1 + 0.1; Figure 1,
Table S2). Plant biomass (including above- and belowground bio-
mass) in MF (179 + 3.7 t ha™) was significantly improved to the
level of NF (243 + 33.0 t ha™). Litter biomass in EP (388 + 43 g m™)

ST i v L

and MF (398 * 85 g m™2) was the same as in NF (287 + 21 g m™2).
Tree species richness in MF (14.6 + 0.9) was also similar as in NF
(12.6 £ 0.4; Figure 3).

3.2 | Afforestation effects on belowground
communities

Following afforestation, the microbial Shannon-Wiener Index in MF
(2.53 £ 0.01) was higher than in BL (2.47 + 0.00) and even higher
than in NF (2.49 + 0.00; p < 0.05; Figure 3). The total microbial
PLFA concentrations in MF (22.4 + 3.1 nmol g™%) were significantly
increased to the level of NF (36.2 + 2.9 nmol g'i), but not in EP
(10.6 + 0.4 nmol g™*; Figure 3). Neither the monoculture nor the mix-
ture had significant effects on the diversity of protists and their rela-
tive abundance among all eukaryote reads (Figure 3). The abundance
of nematodes (per 100 g dry soil) was increased by afforestation, but
MF (20.6 + 3.7) was not yet restored to the level of NF (60.0 + 15.0;
Figure 3). The diversity of nematodes in EP (0.6 + 0.3) was signifi-
cantly lower than that in MF (1.6 + 0.1) and NF (1.7 + 0.4; Figure 3).
Mite diversity increased in MF (2.0 + 0.2) which was even higher
than that in NF (1.4 £ 0.2; p < 0.05), but its abundance showed no
significant variation (Figure 3). The activities of BG (0.4 + 0.1 pmol
g? dry soil h™), NAG (0.2 = 0.0 pmol g™ dry soil h™), and AP
(4.9 £ 0.4 umol g'1 dry soil h™) in MF were increased to the level of
NF (0.6 + 0.1 pmol g tdrysoilh™, 0.2 +0.0 pmol g tdrysoil h™* and
4.2 +0.2 pmol g_1 dry soil h, respectively; p < 0.05) and the activity
of AP in MF was higher than in EP (p < 0.05; Table S2). More detailed
information of the changes of belowground communities is shown in
Tables S3-S5. Detailed information of the high-throughput sequenc-
ing results and identifications of the belowground communities are
shown in supplemental results (Supplemental file S1) and Table S7.
For the changes in feeding groups and community composi-
tion (Figures 3-5), the relative abundance of fungi and actinomy-
cetes in both EP (11.7 + 0.8% and 15.6 + 0.6%, respectively) and
MF (17.1 = 0.9% and 16.2 + 0.3%, respectively) were restored to
the level of NF (13.3 + 1.3% and 15.3 + 0.2%, respectively). The

GP:GN ratio also significantly decreased after afforestation (Table

T
FIGURE 2 Main variation referring %
to soil properties on bare land (BL), 10
Eucalyptus rotation monoculture (EP),
native tree species mixture (MF), and

mg kg™

600

mg kg™

200

native forest (NF). Data are means + SE

(n = 5). Bars with different lowercase 3
letters are significantly different (p < 0.05,
LSD). DOC, Dissolved organic carbon;
MC, Soil moisture content; TN, Total
nitrogen; TOC, Total organic carbon; TP,
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FIGURE 3 Diversity and abundance

of soil biota and plant parameters, and
relative abundance of different trophic
groups on bare land (BL), a Eucalyptus
monoculture (EP), a native tree species
mixture (MF) and a native forest (NF).
Data are means + SE (n = 5). Bars
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with different lowercase letters are

significantly different (p < 0.05, LSD),
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S3), and was lower in EP (1.3 + 0.0) and MF (1.1 = 0.0) than in NF
(1.6 £ 0.0; p < 0.05). The relative abundance of phagotrophic pro-
tists decreased from 89.7 + 0.7% in BL to 78.3 + 6.1% in MF. The

taxonomic data showed no significant changes in nematode feeding
group composition by afforestation (Table S5). The NCR values did
not differ from those in NF (Table S4). The relative abundance of
omnivorous/predacious mites in EP (63.9 + 12.7%) was significantly
greater than that in MF (32.3 + 8.5%) and NF (16.3 + 4.3%). The re-
sults of the PCoA analysis based on OTU/genera data showed that
the community composition of soil biota in MF overlapped with that
of NF, while community compositions in BL and EP were different
from those in MF and NF.

3.3 | Afforestation effects on functional
characteristics of soil biota

The B:F ratio increased in EP (6.1 + 1.0) to the same level as in NF
(5.3 £ 1.1), but was lower in MF (3.7 £ 0.6; p < 0.05). The abundance
of AMF in both EP (0.32 + 0.01 nmol g™}) and MF (0.84 + 0.16 nmol
g'i; p < 0.05) were increased, but it was still lower than that in NF
(1.30 = 0.10 nmol g’%; p < 0.05). The relative abundance of plant
pathogenic protists and plant parasite nematodes did not differ from
that in NF (Table S5). The BF:FF nematode ratio in MF (11 + 0.0) in-
creased and was higher than that in NF (2.3 + 0.8).

The results of the co-occurrence network and SEM (Figures S1-
S3) should be taken with caution due to the low number of replicates,
but we wanted to explore the entire soil food web characteristics
through these results. However, no clear patterns of potentially
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increased network complexity in mixed and natural forests were
found and no significant effects among the diversity, abundance,

and soil biodiversity functioning were found.

4 | DISCUSSION

We provide partial support for our first hypothesis. MF, indeed,
more successfully restored the belowground biodiversity than EP,
but not always to the level of NF. For example, the abundance of
nematodes and soil fertility in MF was higher than that in EP, but it
was not yet restored to the level of NF. Community compositions of
all soil biota in MF resembled that of NF, but fundamentally differed
in EP and BL. Underlying drivers of these patterns could have been
plant resource input and plant species richness as carbon pumps into
soils, as these were greater in MF than in EP, and obviously in BL
(Eissfeller et al., 2013; Schneider et al., 2012). Furthermore, plant
species richness affects soil biota not only through litter input, but
also through other resources such as root exudates (Eisenhauer
et al., 2010; Preece & Pefuelas, 2016; Srivastava et al., 2009).
Mixtures of native tree species might restore soil biodiversity by
providing more niches for soil biota, thereby increasing species
richness. The resulting soil biodiversity might be more like that in
native forests which might be adapted to the local soil biodiversity
(Dassen et al., 2017; Dawud et al., 2017; Lang & Polle, 2011; Leff
etal., 2018; Orwin et al., 2006). The significantly decreased pH value
and increased soil moisture in MF likely further influenced soil bio-
diversity, such as shown for bacteria, protists, and nematodes (Bates
et al., 2013; Delgado-Baquerizo et al., 2018; Hu & Qi, 2010; Rousk
et al., 2010). This emphasizes the positive role of a diverse mixture of
trees in restoration efforts to increase ecosystem multifunctionality
(Di Sacco et al., 2021). The profound difference between MF and EP
including reduced biodiversity in EP can also be explained by con-
stant rotation every 5-8 years in EP that led to the temporary loss of
input of plant resources which might further disturb soil biodiversity

(Pawson et al., 2013). A peculiar finding was the contrasting pattern
observed for protists: unlike most other soil biota, protists showed
a slightly decreased trend in both diversity and relative abundance
among all eukaryotes following afforestation. This pattern might
be caused by the nature of the data as sequence data are relative
(Geisen et al., 2018; Geisen & Bonkowski, 2018). We have shown
a profound total increase of fungal biomass which might be greater
than that of protists, meaning that protists might indeed increase
in absolute terms. The exact meaning of the relative decrease of
protists needs further examination. We assume that protists feed
more on fast-growing bacteria and yeasts, and therefore increase
hyphae-forming fungi (Geisen et al., 2016), which are representative
for later-successional plant communities such as diverse and mature
forests (Hannula et al., 2017). As such, the ratio of fungi to protists
may be a meaningful and easy-to-apply measure to trace successful
restoration.

We confirm our second hypothesis that afforestation with native
tree mixtures increased functional characteristics of soil biota more
than that of a Eucalyptus rotation monoculture. The lower B:F ratio
in MF than in EP indicates a more fully restored status in MF, be-
cause the B:F ratio decreases during secondary succession at a global
level (Fierer et al., 2009; Zhou et al., 2017), and forest degradation
consistently decreases the abundance of fungi (Zhou et al., 2018). It
also suggests that the microbial community in MF was more stable
and more resistant to a lower quality or availability of resources than
those in EP. A possible explanation is that NH4+—N and NO;™-N con-
centrations in EP were lower than those in MF, although soil C:N ratio
did not differ in EP and MF. Fungi require less nitrogen for growth
than bacteria (Bardgett & McAlister, 1999; De Deyn et al., 2008)
which makes them less dependent on high nitrogen availability in the
soil (Fierer et al., 2009). Higher activities of the microbial enzymes
in MF than in EP suggest a more active microbial community, which
could promote the cycling of C, N, and P (Stott, 2019). The increased
abundance of AMF in MF suggests more favorable functional charac-
teristics because AMF are crucial for the deposition of slow-cycling
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organic compounds (Wilson et al., 2009), formation of soil aggregates
that protect organic matter from decomposition (Rillig et al., 2002),
phosphorus uptake, cycling of nitrogen, and protection of plants
against rhizosphere pathogens (Feng et al., 2002; Govindarajulu et al.,
2005). High soil biodiversity supposedly enhances the functioning
of soil biota which might accelerate restoration (Bardgett & van der
Putten, 2014; Kardol et al., 2006; Lefcheck et al., 2015; Liu et al.,
2019; Soliveres et al., 2016). However, even though the diversity and
biomass of aboveground community and the diversity of soil biota in
MF was restored to the level of NF, soil fertility in MF was still lower
than that in NF, whereas the abundance of soil biota showed a similar
restoration trend as soil fertility. Among soil biodiversity, the abun-
dance of higher trophic level organisms is of major importance for soil
food web functions and soil health (Ferris & Bongers, 2006; Ferris
et al., 2004; Sanchez-Moreno & Ferris, 2007) and is closely related to
the increased abundance of microbes and plant resources (Bardgett
& Wardle, 2010; Scherber et al., 2010). Also, intense predator-prey
interactions likely increase ecosystem stability (Allesina & Tang,
2012). However, the abundance of nematodes and mites, which con-
tain consumers and predators at higher trophic levels in MF were still
lower than those in NF. This may lead to reduced predator-prey in-
teractions and cause a further reduction of the transfer of energy,
carbon, and nitrogen, etc., that released from aboveground commu-
nity transferred into and sequestered by the soil food web (Bartley
etal., 2019; Coleman, 2008; Zhang et al., 2021). Thus, insufficient soil
fertility in restored sites may be explained by incomplete restoration
outcomes of soil biodiversity. The results of the co-occurrence net-
work and SEM should be interpreted with caution because of the low
number of replicates, which may explain why no clear patterns of po-
tentially increased network complexity in natural and mixed forests
were found and no significant effects among diversity, abundance,

and functioning of soil biota.

5 | CONCLUSIONS

Our study provides detailed results on afforestation effects on the
restoration of belowground biodiversity and its functioning. We
conclude that afforestation with native tree species mixtures re-
stores soil biodiversity more effectively including its functioning.
Although 60 years afforestation with native species did not reach
the full level of soil fertility, abundance, and functional character-
istics of belowground community of the more than 200-year-old
native forest, certain traits of diversity of soil biota reached simi-
lar levels of the native forest. This indicates that the overall habitat
restoration may take several decades, with likely consequences for
ecosystem functioning. However, the afforestation with native spe-
cies can end up reaching similar levels of diversity of native forests

whereas plantations using fast-growing non-native species cannot.
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