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a b s t r a c t

The global livestock sector, particularly ruminants, contributes substantially to the total anthropogenic
greenhouse gases. Management and dietary solutions to reduce enteric methane (CH4) emissions are
extensively researched. Animal breeding that exploits natural variation in CH4 emissions is an additional
mitigation solution that is cost-effective, permanent, and cumulative. We quantified the effect of includ-
ing CH4 production in the Dutch breeding goal using selection index theory. The current Dutch national
index contains 15 traits, related to milk yield, longevity, health, fertility, conformation and feed efficiency.
From the literature, we obtained a heritability of 0.21 for enteric CH4 production, and genetic correlations
of 0.4 with milk lactose, protein, fat and DM intake. Correlations between enteric CH4 production and
other traits in the breeding goal were set to zero. When including CH4 production in the current breeding
goal with a zero economic value, CH4 production increases each year by 1.5 g/d as a correlated response.
When extrapolating this, the average daily CH4 production of 392 g/d in 2018 will increase to 442 g/d in
2050 (+13%). However, expressing the CH4 production as CH4 intensity in the same period shows a reduc-
tion of 13%. By putting economic weight on CH4 production in the breeding goal, selective breeding can
reduce the CH4 intensity even by 24% in 2050. This shows that breeding is a valuable contribution to the
whole set of mitigation strategies that could be applied in order to achieve the goals for 2050 set by the
EU. If the decision is made to implement animal breeding strategies to reduce enteric CH4 production, and
to achieve the expected breeding impact, there needs to be a sufficient reliability of prediction. The only
way to achieve that is to have enough animals phenotyped and genotyped. The power calculations offer
insights into the difficulties that will be faced in trying to record enough data. Recording CH4 data on 100
farms (with on average 150 cows each) for at least 2 years is required to achieve the desired reliability of
0.40 for the genomic prediction.
� 2021 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Implications

The global livestock sector, particularly ruminants, contributes
substantially to the total anthropogenic greenhouse gases. Man-
agement and dietary solutions to reduce enteric methane emis-
sions are extensively researched. Animal breeding that exploits
natural variation in methane emissions is an additional mitigation
solution that is cost-effective, permanent, and cumulative. By add-
ing methane production to the Dutch breeding goal, selective
breeding can reduce the methane intensity by 24% in 2050. This
shows that breeding is a valuable contribution to the whole set
of mitigation strategies that could be applied in order to achieve
the goals for 2050 set by the EU.
Introduction

Livestock production is a significant contributor to greenhouse
gas emissions globally at 5.6–7.5 Gigatonne of carbon dioxide
equivalent (GtCO2e) (Herrero et al., 2016). Methane (CH4) pro-
duced via enteric fermentation by ruminants is the largest contrib-
utor to agricultural greenhouse gases at 1.6–2.7 GtCO2e (Herrero
et al., 2016). In the Netherlands, dairy cattle are the largest contrib-
utor to enteric CH4 with 49% of the total (Van der Maas et al., 2009).

Genetic selection of low CH4 emitting cows is a potential
method to reduce the contribution of the dairy sector (Knapp
et al., 2014). Unlike management and diet strategies which have
been extensively researched (Beauchemin et al., 2008), genetics
has the benefit that the effects of selection are additive and perma-
nent. Selection experiments in other ruminants, including beef cat-
tle (Bird-Gardiner et al., 2015), and sheep (Pinares-Patiño et al.,
le, Ani-
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2013; Jonker et al., 2017), have shown a decrease in CH4 produc-
tion when selecting for low CH4 lines.

Breeding programmes use selection index theory to ensure
maximum gains and that trait changes are in the desired direction.
The current selection indexes for the Dutch national breeding goal
include 15 traits from the following categories; milk production,
milk components, feed efficiency, health, reproduction, longevity,
calving, and conformation (CRV, 2018). It is possible to add CH4

as another category of traits to such selection indexes. Before a
CH4 trait can be added to a selection index, it needs to be: clearly
defined, recordable, affordable, have phenotypic variation, be her-
itable, and the genetic correlations between other traits in the
index need to be known (Hazel, 1943).

Methane intensity is a promising CH4 trait to be included in a
selection index (Lassen and Løvendahl, 2016; Kandel et al., 2018).
The definition of CH4 intensity is the amount of CH4 produced
per unit of milk produced (g CH4/kg milk). It is more advantageous
to have fewer cows that produce more milk per g of CH4 (possible
with selection for reduced CH4 intensity), than to have more cows
that produce less CH4 but less milk, which could occur if selecting
on CH4 production alone (g CH4/day). It has already been shown
that, when assuming a fixed total milk production, selection for
CH4 intensity or increased productivity will increase an individ-
ual’s total CH4 but the overall CH4 of the farming system is reduced
(Van der Maas et al., 2009; Kandel et al., 2018).

Methane from cow’s breath, recorded with non-dispersive
infrared units or ‘sniffers’, have been investigated in small studies
as an accurate method of recording CH4 intensity (Lassen et al.,
2012; Lassen and Løvendahl, 2016; Difford et al., 2018; Van
Engelen et al., 2018). The sniffer method is more affordable, can
be scaled up, and easily incorporated with current milking tech-
nologies, compared to other methods of recording CH4 (Lassen
and Løvendahl, 2016). Methane concentration recorded with snif-
fers has a phenotypic SD of between 65 and 137 ppm (Difford
et al., 2018; González-Recio et al., 2020; López-Paredes et al.,
2020; Olijhoek et al., 2020), and heritability ranges between 0.10
and 0.26 (Difford et al., 2020; López-Paredes et al., 2020;
Olijhoek et al., 2020). Some genetic correlations have been pub-
lished for CH4 production and intensity, and traits already included
in the Dutch national breeding goal selection index (Lassen and
Løvendahl, 2016; Breider et al., 2019; Difford et al., 2020).

The effect of including CH4 intensity in the selection index of
the Dutch national breeding goal is not known. Recent literature
suggests that if current selection indexes are used with no selec-
tion on CH4 traits, then CH4 production will increase and CH4

intensity will decrease (González-Recio et al., 2020). With active
selection for CH4 intensity, CH4 production will continue to
increase but the rate of genetic improvement will be faster in
reducing CH4 intensity (Kandel et al., 2018; Flay et al., 2019). This
would reduce the total contribution of dairy cattle to global green-
house gas production (Van der Maas et al., 2009).

So far, sniffer devices have measured CH4 for short periods of
time, under experimental conditions, or with a limited number of
animals or farms. Before a trait can be included in a selection index,
there needs to be reasonable confidence in the accuracy of esti-
mated breeding values (EBVs) (Mrode, 2014). With an increasing
rate of genotyping and the difficulty in recording CH4 at an individ-
ual cow level, it is probable that any future CH4 trait will rely on
genomic prediction. Genomic prediction will facilitate a shorter
time until adoption, assuming there is sufficient accuracy. There
is a gap in the literature in regards to how many animals and
farms, sniffer recorded CH4 would need to be measured on, before
an acceptable accuracy for genomic prediction is reached, and for
the trait to be included in a selection index.

Our objective for this study was to determine the potential
effects of including CH4 production as a trait in the selection index
2

of the Dutch national breeding objective. Preliminary results of this
objective have been published in an abstract form (de Haas et al.,
2019). Furthermore, determine howmany cows and sniffer devices
would be needed to achieve an accuracy suitable to include CH4 as
a trait in such an index.
Material and methods

Dutch national breeding goal

Breeding programmes use selection index theory to ensure
maximum gains and that trait changes are in the desired direction.
The current selection indexes for the Dutch national breeding goal
include 15 traits from the following categories; milk production,
milk components, feed efficiency, health, reproduction, longevity,
calving, and conformation (CRV, 2018). Table 1 shows the correla-
tions between the traits in the Dutch breeding goal, as well as the
heritabilities and the number of daughters with records for that
trait.

Genetic parameters for methane production

There are not many papers that have published correlations
between CH4 production and other traits in the breeding goal,
but from the literature we obtained a heritability of 0.21 for enteric
CH4 production (Lassen and Løvendahl, 2016), and genetic correla-
tions of 0.4 with milk lactose, fat, protein and DM intake (DMI)
(Lassen and Løvendahl, 2016; González-Recio et al., 2020). Correla-
tions between enteric CH4 production and other traits in the breed-
ing goal were set to zero. Phenotypic SD for CH4 production was set
to 50 g/d.

The Dutch population means were 392 g/d for enteric CH4 pro-
duction (Niu et al., 2018), and 9 000 kg milk in 305 days (CRV,
2019). This corresponds to a CH4 intensity of 15.9 g/d per kg of
milk.

Selection index calculations

The spreadsheet with desired gains of Van der Werf (2020) was
used to add enteric CH4 production to the Dutch breeding goal,
with six scenarios:

1) Adding CH4 production to the breeding goal with no weight
and no records on daughters of sires (=current trend);

2) Adding CH4 production to the breeding goal with no eco-
nomic weight and increasing number of records on daugh-
ters of sires;

3) Adding CH4 production to the breeding goal with an eco-
nomic weight based on the carbon price and increasing
number of records on daughters of sires;

4) Adding CH4 production to the breeding goal with the restric-
tion of no genetic gain in the CH4 produced per cow;

5) Adding CH4 production to the breeding goal with an active
selection on reducing the CH4 production per cow;

6) Simulating a breeding goal that only focusses on reducing
the enteric CH4 production per cow, using a maximum
amount of available information.

Scenarios 4 and 5 were achieved by adjusting the economic
weights that were put on CH4 production per cow.

Genetic trend
From the spreadsheet with desired gains of van der Werf

(2020), genetic gains for all traits, including the enteric CH4 pro-
duction, were obtained. Based on the annual overviews that are



Table 1
Heritabilities of (on diagonal) and genetic correlations (below diagonal) between the traits in the Dutch national breeding goal for dairy cattle and number of daughters (#daughs)
with records for that trait (adapted from: https://www.crv4all-international.com/wp-content/uploads/2018/06/E_20-NVI_apr2018_en.pdf).

Traits 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 #daughs

1. Lactose 0.43 125
2. Fat 0.38 0.58 125
3. Protein 0.88 0.58 0.50 125
4. Longevity 0.36 0.35 0.42 0.12 125
5. Udder Health �0.03 �0.02 �0.06 0.36 0.09 125
6. Int-first-last1 �0.34 �0.24 �0.29 0.25 0.27 0.08 125
7. Calving Interval �0.44 �0.33 �0.37 0.11 0.21 0.85 0.15 100
8. Udder conformation �0.08 �0.04 �0.10 0.11 0.27 �0.05 0.00 0.34 75
9. Feet_Leg 0.02 0.04 0.05 0.25 0.21 0.00 0.00 0.35 0.17 75
10. direct_calving_ease 0.07 0.15 0.11 0.24 0.15 0.20 0.24 0.00 0.00 0.07 200
11. maternal_calving_ease 0.00 0.00 0.00 0.16 0.09 0.25 0.24 0.10 0.10 0.19 0.05 75
12. direct_vitality 0.05 0.09 0.02 0.14 0.05 0.10 0.14 0.00 0.00 0.60 0.14 0.04 400
13. maternal_vitality �0.04 �0.07 0.03 0.16 0.07 0.32 0.24 0.00 0.00 0.11 0.34 �0.16 0.09 140
14. Claw health 0.00 0.15 0.07 0.33 0.09 0.10 0.14 0.15 0.65 0.16 0.06 0.03 0.10 0.18 15
15. saved feed costs 0.20 0.35 0.30 0.50 �0.03 �0.10 �0.30 �0.09 �0.29 0.41 �0.20 0.17 �0.05 0.11 0.25 20

1 Int-first-last: interval between first and last insemination.
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provided by the national herdbook CRV, Arnhem, the Netherlands
(CRV, 2020), the achieved gains per year are known, and based
on the obtained and achieved gain for kg fat production, we scaled
the obtained gain for the enteric CH4 production back to yearly
genetic trend.
Carbon price
The economic value of CH4 production used for the selection

indexes was based on the shadow price of carbon dioxide (CO2).
The economic value was based on the expected shadow price for
CO2 for 2025 obtained from literature (DBEIS, 2017). The shadow
price for CO2 used for the calculation of the shadow price of CH4

production was obtained from the UK Government report on
‘‘Updated short-term traded carbon values used for modelling pur-
poses” (DBEIS, 2017). This was €36.19/tCO2e, current exchange rate
at the time of analyses.

The following formula was then used to calculate the economic
values of CH4 production;

Economic value ¼ �1 � shadow price of CO2 � 28=1000000ð Þ � 365

where the multiplication by �1 was due to the direction of selection
on CH4 production being negative, shadow price of CO2 was as
described above, 28 represents the global warming potential of
CH4 and was used to convert from CO2 shadow price to CH4 shadow
price, division by 1 000 000 converts from grams to tonnes, and
multiplication by 365 was because the index calculates gain per
year and CH4 data are in grams per day, in order to align the eco-
nomic value of CH4 production with those for the other traits in
the breeding goal that are also expressed on an annual basis. This
resulted in an economic value of �€0.37 g/d for a year.
Genomic prediction
For scenarios 3 to 6, where there is a desire, or financial incen-

tive, to limit or reduce CH4 intensity, selection with genomic pre-
diction was tested. To include genomic selection in the index, a
pseudo-trait was added. This trait had a heritability of 0.99, and
a genetic correlation with CH4 production of 0.63. This genetic cor-
relation was used based on the requirement that for a trait to be
included in the national breeding goal, the reliability of prediction
should be equal to or greater than 0.40 (Koenen E., Personal com-
munication, 2019). For selection with genomic prediction, we
assumed no daughters were phenotyped for the CH4 production
trait, but genotyped cows had their own performance for enteric
CH4 emission recorded.
3

Power calculations for recording enteric methane

The parameters for a typical dairy cow population were used to
determine the number of animals, farms, sniffer devices, and the
number of measurements recorded with the sniffer devices,
required for a suitable reliability of genomic prediction. The
parameters included; the number of markers (60 000), effective
population size (Ne, 120), average chromosome length (L,
100 cM), number of chromosomes (k, 30). The effective number
of chromosome segments (Me, 7 200) was calculated as 2NeLk.
The total number of individuals with CH4 recorded in the reference
population (T) ranged between 1 000 and 15 000 cows. The accu-
racy of genomic prediction (r

gbg ) was estimated following the first

equation of Daetwyler et al. (2008):

r
gbg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh2

o

kh2
o þ 1

vuut

where h2
o is the observed heritability (0.21), and k is the ratio of the

number of phenotypic observations and the number of loci associ-
ated (Me/T). Reliability of genomic prediction was then estimated
as r2

gbg .
Different recording scenarios were considered over 3 years of

recording, with 100 or 50 sniffer devices available (Table 2). For
both 100 and 50 sniffer devices, the units were installed for either
3 years of repeated records on the original farm, 1 year of recording
on one farm and then 2 years of recording on a second farm, or
every year, the unit is moved to a new farm. Each farm was
assumed to have a herd size of 150 genotyped cows with a replace-
ment rate of 0.3. Only one automatic milking station was equipped
with a sniffer device per farm, but all 150 cows would have access
to the sniffer.

Depending on the manufacturer, sniffer devices provide a CH4

measurement approximately every 10 s. It was assumed that the
measurements during one visit to the milking robot would be used
to calculate a CH4 record for that visit. Due to the lower accuracy of
sniffers compared to other devices, it is unlikely that fitting CH4 for
each visit or even daily would be useful. A trait could be calculated
from the available recorded visits, the simplest would be a mean of
these visit records over some period of time. As the sniffer devices
are installed inside milking robots, the longest period for one phe-
notypic observation would be one full lactation period. This would
provide one phenotypic observation per year. There are biological
differences during lactation stages which affect CH4 production
(Van Engelen et al., 2018), therefore, calculating one phenotypic

https://www.crv4all-international.com/wp-content/uploads/2018/06/E_20-NVI_apr2018_en.pdf


Table 2
Summary of scenarios tested and the predicted reliability of an individual’s genotype based on the mean number of repeated records per cow.

Number of

Sniffer installation Repeated
records

Unique
farms

Unique cows
per farm

Mean records
per farm

Cows on all
farms

Total records on
all farms

Records per
cow

Reliability of
GEBV1

Three years of repeated
records per farm
100 sniffer devices
Year 1 No 100 150 150 15 000 15 000 1.0 0.20
Year 2 Yes 100 195 300 19 500 30 000 1.5 0.26
Year 3 Yes 100 240 450 24 000 45 000 1.9 0.29

50 sniffer devices
Year 1 No 50 150 150 7 500 7 500 1.0 0.20
Year 2 Yes 50 195 300 9 750 15 000 1.5 0.26
Year 3 Yes 50 240 450 12 000 22 500 1.9 0.29

Device moved once after first
year
100 sniffer devices
Year 1 No 100 150 150 15 000 15 000 1.0 0.20
Year 2 No 200 150 150 30 000 30 000 1.0 0.20
Year 3 Yes 200 195 225 34 500 45 000 1.3 0.24

50 sniffer devices
Year 1 No 50 150 150 7 500 7 500 1.0 0.20
Year 2 No 100 150 150 15 000 15 000 1.0 0.20
Year 3 Yes 100 195 225 17 500 22 500 1.3 0.24

Device move to a new farm
every year
100 sniffer devices
Year 1 No 100 150 150 15 000 15 000 1.0 0.20
Year 2 No 200 150 150 30 000 30 000 1.0 0.20
Year 3 No 300 150 150 45 000 45 000 1.0 0.20

50 sniffer devices
Year 1 No 50 150 150 7 500 7 500 1.0 0.20
Year 2 No 100 150 150 15 000 15 000 1.0 0.20
Year 3 No 150 150 150 22 500 22 500 1.0 0.20

1 GEBV: genomic estimated breeding value.

Fig. 1. Simulated genetic trends in enteric methane production (solid line) and
methane emission intensities (methane emission per kg milk; dashed line) with the
current breeding goal for dairy cattle.
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observation per lactation period (i.e., early, mid, late) could be
useful, this would provide three repeated records per year (as-
suming lactation stage was fitted as a fixed effect and not a sep-
arate trait). It was assumed that at least 100 days per period
would be used in the calculation of one observation, allowing
for: errors, days where the sniffer device needs maintenance,
potential that the cow does not visit the robot with the device
installed, and reproductive management. Shorter periods could
be more useful and provide more repeated records, with two
observations per lactation period, six trait observations per year
would be available with at least 50 days included in the calcula-
tion of each observation. Finally using observations of just
10 days, which is in line with the previous sniffer studies
(Lassen and Løvendahl, 2016; López-Paredes et al., 2020), would
provide at least 30 observations per year.

Recording on the same farm for multiple years, or using shorter
recording periods per phenotypic observation, has the potential to
improve the reliability of prediction. With repeated records, the
reliability of prediction for an individual’s genotype was estimated
following the method of Van Vleck (1993), as implemented by
Tenghe et al. (2018):

Reliability of individual0s phenotype ¼ mh2

m� 1ð Þt þ 1

where m is the number of records per cow, h2 is the heritability
(0.21) used in the selection index calculations, and t is the repeata-
bility (0.35, 0.50, or 0.65). Reliability of genomic prediction was
then estimated as previously with the Daetwyler et al. (2008) equa-

tion with h2
o replaced with the reliability of the individual’s

phenotype.
4

Results

Selection index theory

Selection index calculations show how much the traits are pre-
dicted to change per year. This is plotted in Fig. 1 for both CH4 pro-
duction (g/d) and CH4 intensity (CH4 production expressed per kg
of milk). It shows that average annual CH4 production per cow will



Y. de Haas, R.F. Veerkamp, G. de Jong et al. Animal xxx (xxxx) xxx
steadily increase by 1.5 g/d as a correlated response to selection for
the current breeding goal. However, the CH4 intensity drops. When
extrapolating these, the average daily CH4 production of 392 g/d
will increase to 442 g/d in 2050 (+13%). However, in the same per-
iod, the CH4 intensity will reduce by 13%.

Further reductions can be achieved when actively selecting
lower methane-emitting cows, by adding more weight on CH4 in
the national breeding goal (Fig. 2). By putting economic weight
on CH4 production in the breeding goal, selective breeding can
reduce the CH4 intensity by 24% in 2050. This shows that breeding
is a valuable contribution to the whole set of mitigation strategies
that could be applied in order to achieve the goals for 2050 set by
the EU. Selecting actively against CH4 would result in healthy, fer-
tile, long-living cows that emit less CH4. Actively selecting against
CH4 emission, however, requires large-scale recording of individual
CH4 emissions.

Comparison of the scenarios (Table 3) shows that when no eco-
nomic weight is put on CH4 production, adding 10, 20, 50 or 100
daughters with CH4 records does not have a large impact on the
genetic trend. Any small impact on the genetic trend in this sce-
nario (no economic weight) is probably due to small changes in
selection pressure caused by the traits that do have an economic
value and are correlated with CH4, and the small amount of extra
information the daughters provide. For the proceeding scenarios
where there is an incentive for selecting CH4, genomic prediction
provided similar results as sires with 20 progeny. Adding an eco-
nomic weight on CH4 production based on the carbon price does
slow down the increase in CH4 production as a correlated response
with ~1 g/d (i.e., difference scenario 1 (5.79 g/d) and scenario 2
(4.72 g/d) in Table 3) in 3.75 years, but still, the CH4 production
will increase per year, and the CH4 intensity will decrease. With
a breeding goal aiming for no gain in CH4, the genetic trend for
milk production drops by 70–130 kg, depending on the number
of daughters with records for CH4 production per sire. Achieving
no gain in CH4 can only be realized with high economic values of
�1 to �1.8, which corresponds to carbon prices between 100 and
175€/tCO2e. With a breeding goal aiming for a reduction in CH4

production, but still taking into account the other breeding goal
traits; i.e., selecting for healthy, fertile, long-living cows that emit
less CH4, the genetic trend for milk production drops by 170–
280 kg, depending on the number of daughters with records for
CH4 production per sire. The economic values will have to be �2
to �3.6, which corresponds to carbon prices between 195 and
350€/tCO2e. Finally, an unrealistic breeding goal was assumed with
Fig. 2. Simulated genetic trends in methane emission intensities (methane
emission per kg milk) of dairy cattle in three situations: current trend (solid),
combined selection for methane and other relevant breeding goal traits (small
dash), theoretical maximum when exclusively focussing on methane (large dash).
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only a focus on CH4 reduction, to show what breeding could poten-
tially achieve. This maximal reduction in CH4 production was
determined based on a scenario with no negative genetic trend
in milk production when sires had at least 100 daughters with
records. A genetic trend of �12.75 g/d CH4 production in 3.75 years
can then be achieved, resulting in a 29% reduction in 2050 (Fig. 2).

Power calculations

To achieve a reliability of genomic prediction above 0.40 (Fig. 3)
would require approximately 25 000 genotyped cows to have a
CH4 record. When considering using sniffer devices over multiple
years, the same number of measurements is recorded regardless
of the strategy (22 500 records for 50 sniffer devices and 45 000
records for 100 sniffer devices), but the number of cows recorded
is different. Capturing repeated records by leaving 50 sniffer
devices on the same 50 farms for 3 years limits the number of cows
recorded (12 000 cows), and extends the time until the required
threshold would be reached. Only if the 50 sniffer devices were
moved to new farms each year (150 total), would there be close
to enough cows with a CH4 record (22 500), even with a high trait
repeatability of 0.65, the reliability of prediction (0.39) is still only
approaching the required 0.40. With 100 sniffer devices, a reliabil-
ity of 0.40 is achieved in the second year regardless of whether
sniffer devices are moved or not. Having repeated records on 100
farms is the only scenario where the number of cows recorded
(19 500) is fewer than 25 000 but still offers sufficient reliability
(0.41).

So far only one observation per cow per lactation was consid-
ered. Reducing the observation period increases the number of
repeated records per cow, thereby increasing the reliability of
genomic prediction (Fig. 3). With a trait repeatability of 0.35 or
0.50, the scenarios with 100 sniffer devices achieved the threshold
in the first year when using observations from three lactation peri-
ods, 50 days, or 10 days (3, 6, and 30 observations in a year, respec-
tively). At the higher trait repeatability of 0.65, only three lactation
periods required an additional year of recording before reaching a
reliability of 0.40. When considering the 50 farms and a trait
repeatability of 0.35, both observation periods of 50 and 10 days
achieved the 0.40 reliability threshold after 2 years of recording,
and three observations approached the threshold (0.37) but did
not achieve it until the third year. However, this is a considerable
improvement compared to the scenario with only one observation
a year. Similar results were observed with the higher trait
repeatabilities.
Discussion

In this study, we showed that with the current Dutch breeding
goal, the genetic trend in CH4 production is increasing, but the
genetic trend in CH4 intensity is decreasing. Actively selecting on
lower emitting dairy cows will decrease this trend even further.
In order to actively select on lowering the enteric CH4 emission
of dairy cattle by breeding, data on 100 farms (with on average
150 cows each) need to be collected for at least 2 years, in order
to achieve the desired reliability of the genomic prediction.

Impact of breeding

Technical solutions to reduce enteric CH4 emissions have been,
and continue to be, extensively researched. Animal breeding
exploits natural animal variation in CH4 emissions, and we have
shown that it is an additional mitigation strategy that is cost-
effective, permanent, and cumulative. A continuous reduction in
CH4 intensity through breeding for low(er) emitting cows will help



Table 3
Genetic trends per generation interval of 3.75 years in enteric methane (CH4) production (g/d) and in milk production (kg), of dairy cattle with the implicit economic value of CH4

and the maximal reduction in methane intensity (g CH4/kg milk) that could be achieved in 2050 compared to 2017 with this scenario.

Scenario Genetic trend CH4

production (g/d)
Genetic trend milk
production (kg)

Economic
value CH4

Max reduction in
CH4 intensity (%)

1 current breeding goal: no weight, 0 daughters 5.79 307.06 0.00 13
2a no weight, records on 10 daughters 5.66 306.85 0.00 13
2b no weight, records on 20 daughters 5.58 306.72 0.00 13
2c no weight, records on 50 daughters 5.47 306.54 0.00 14
2d no weight, records on 100 daughters 5.39 306.41 0.00 14
3 economic weight of carbon price (0 daughters) 4.72 285.25 �0.37 14
3a economic weight of carbon price (10 daughters) 4.33 284.37 �0.37 14
3b economic weight of carbon price (20 daughters) 4.08 283.82 �0.37 15
3c economic weight of carbon price (50 daughters) 3.70 282.98 �0.37 15
3d economic weight of carbon price (100 daughters) 3.43 282.39 �0.37 16
3e economic weight of carbon price (genomic prediction) 4.29 284.99 �0.37 14
4 no genetic gain (0 daughters) 0.00 178.55 �1.82 15
4a no genetic gain (10 daughters) 0.00 202.93 �1.47 17
4b no genetic gain (20 daughters) 0.00 214.28 �1.30 17
4c no genetic gain (50 daughters) 0.00 227.72 �1.10 18
4d no genetic gain (100 daughters) 0.00 235.06 �0.99 19
4e no genetic gain (genomic prediction) 0.00 212.83 �1.36 17
5 active selection on CH4 reduction (0 daughters) �5.79 26.65 �3.65 15
5a active selection on CH4 reduction (10 daughters) �5.79 75.16 �2.98 19
5b active selection on CH4 reduction (20 daughters) �5.79 98.22 �2.66 21
5c active selection on CH4 reduction (50 daughters) �5.79 126.03 �2.27 23
5d active selection on CH4 reduction (100 daughters) �5.79 141.37 �2.06 24
5e active selection on CH4 reduction (genomic prediction) �5.79 97.52 �2.73 21
6 selection on maximal CH4 reduction (0 daughters) �12.75 �197.76 �7.85 11
6a selection on maximal CH4 reduction (10 daughters) �12.75 �114.72 �5.93 20
6b selection on maximal CH4 reduction (20 daughters) �12.75 �75.61 �5.15 23
6c selection on maximal CH4 reduction (50 daughters) �12.75 �25.64 �4.27 27
6d selection on maximal CH4 reduction (100 daughters) �12.75 1.58 �3.81 29
6e selection on maximal CH4 reduction (genomic prediction) �12.75 �74.69 �5.26 23

Fig. 3. Reliability of genomic prediction as a predictor of the true breeding value for
methane emission of dairy cattle with 50 or 100 sniffer devices available (left or
right, respectively), and different recording scenarios, estimated following Daet-
wyler et al. (2008). Circle; Repeated records with the same farms recorded on each
year, Triangle; Repeated records with the same farms in the first and second year
but sniffer devices are moved to new farms in the third year, Square; Sniffer devices
are moved to a new farm every year with no repeated records.
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in reaching the targets set at the Paris COP meeting in 2015
(Framework Convention on Climate Change - United Nations.,
2015).
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The calculated impact of breeding depends on the chosen
parameters. For Dutch data, no parameter estimations exist yet,
so we collated information from the literature. A heritability of
0.21 is well within the range of reported heritabilities in dairy cat-
tle, sheep or beef cattle (Pickering et al., 2015b; Brito et al., 2018). A
recent review of Lassen and Difford (2020) collated genetic corre-
lations between CH4 emission traits and existing selection index
traits in dairy cattle. The genetic correlations with milk production
traits ranged between 0.37 and 0.61, with a low sSE (0.07) on the
lowest estimate large SE on the highest estimate (0.32) (Lassen
and Løvendahl, 2016; Difford et al., 2018; Breider et al., 2019).
Genetic correlations with feed efficiency traits were estimated by
Difford et al. (2020) for two populations, and shown to be inconsis-
tent across both countries and trait definitions for feed efficiency,
ranging between �0.69 and 0.69 with large SEs up to ~0.4. Our
assumed correlations on 0.4 with milk production traits and �0.4
with saved feed costs fit well within the range of published results.
Lassen and Difford (2020) reviewed also the genetic correlations
with other breeding goal traits, such as reproduction and health,
and concluded that selection for reduced CH4 emissions has mini-
mal consequences on these traits, but analyses of larger datasets
are needed to confirm or deny the genetic correlation structure
of other traits. This is also confirmed in a Spanish study on data
from 1 500 animals from 14 commercial farms (López-Paredes
et al., 2020). Assuming a genetic correlation of zero, as we did, does
therefore fit with the current knowledge.

When looking at a dairy system level, however, Wall et al.
(2010) showed that selection for improved fitness traits (e.g., lifes-
pan, health, fertility) will help to reduce emissions by reducing
wastage of animals. Improving lifespan in dairy cows will reduce
greenhouse gas emissions of the system by reducing the number
of followers required to maintain the herd at a given size. Also,
Van Middelaar et al. (2015) showed that improving the longevity
of cows with one genetic SD is important when aiming for mini-
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mizing the greenhouse gas emissions. Garnsworthy (2004) esti-
mated, via modelling, that if cow fertility was restored to 1 995
levels from 2 003 levels, CH4 emissions from the dairy industry
would reduce by 10% to 15%. Therefore, correlated responses of
national breeding goals can be expected, but the genetic correla-
tion structure still has to be confirmed (or denied) in large studies.
Breeding goal

Breeding has the potential to reduce enteric CH4 emissions from
dairy cows, but how it should be placed in the context of breeding
goals is still under debate. Breeding goal traits to genetically
reduce CH4 emissions in dairying are (1) CH4 production as a mass
flux rate per day (in litres or grams per day), (2) methane yield,
which is CH4 production divided by feed intake (e.g., CH4 produc-
tion per kg DMI, (3) methane intensity per unit product (e.g., CH4

production per kg milk yield), and (4) residual methane production
(e.g., CH4 regressed on DMI, BW and milk yield) (de Haas et al.,
2017). The European climate goals are to reduce the overall green-
house gas emission, and therefore, CH4 production is the most
appropriate breeding goal trait, and not any of the ratio traits.
Expressing it as a ratio, is, however, a useful metric to describe
groups of animals; e.g. per breed, per herd, per country (Gerber
et al., 2013), but the goal should be to lower the CH4 emission
per animal.

Current international dairy breeding goals involve the improve-
ment of multiple traits simultaneously, usually compiled in a total
merit index to ensure balanced breeding. Total merit indices con-
sist of many traits, and enteric CH4 might in the (near) future be
one of them. Selecting based on a total merit index avoids estab-
lishing extreme divergent selection lines for e.g. low and high
methane emitters. Selecting one trait can result in unforeseen,
and possibly unwanted, correlated effects, like the rumen differ-
ences shown in two divergent selection lines of sheep in New Zeal-
and (Bain et al., 2013). They showed that the rumen content,
volume and surface area differed significantly between high and
low emitting sheep, with low emitting sheep having a smaller
rumen than high emitting sheep.

Traits in a total merit index are weighed to maximize economic
gain, and those weights are either based on economic values or on
desired gains. At this moment, however, no carbon-pricing scheme
exists for dairy cattle farming in the Netherlands. We therefore
used the expected shadow price for CO2 for 2025 obtained from lit-
erature (DBEIS, 2017) as a proxy economic value for enteric CH4

emissions. It was shown that this carbon price was not enough
to realize a negative genetic trend for enteric CH4 emissions of
dairy cattle; in fact, the carbon price had to be 10 times higher
(36€ vs 350€). It is therefore questionable whether carbon pricing
alone is sufficient to mitigate climate change (Rosenbloom et al.,
2020). The economic value was not only based on the expected
shadow price for CO2, but also on the global warming potential
(GWP) of CH4. For this, the GWP100 was used, which refers to
the GWP over 100 years. However, recent studies have modified
the use of GWP so that it accounts for the differences between
short- and long-lived gases, which is referred to as GWP* (Cain
et al., 2019; Lynch et al., 2020). Enteric CH4 emissions of cattle
are classified as short-lived gases, these gases do not build up in
the atmosphere, so their warming potential is shorter lived than
of long-lived gases (like fossil CO2). This results in a much higher
GWP for CH4 than 28 CO2-equivalents in the short term, and a
lower GWP after that (Lynch et al., 2020). On average, the GWP*
of CH4 will be lower than the GWP100. When using GWP*, the cal-
culated economic value for CH4 production will be lower with the
same expected shadow price for CO2, which will reduce the impact
of genetic selection.
7

Large-scale recording of enteric methane

Genomic prediction offers the shortest period of time and sim-
ilar rates of gain (compared to progeny testing) before selection for
lower CH4 production can begin. If the decision is made to imple-
ment genomic breeding strategies to reduce enteric CH4 produc-
tion, and to achieve the expected breeding impact, there needs to
be a sufficient reliability of prediction. The only way to achieve that
is to have enough animals in a reference population phenotyped
and genotyped. The power calculations offer insights into the diffi-
culties that will be faced in trying to record enough data, but also
provide optimism with potential methods of increasing the relia-
bility of prediction and reducing the time period before selection
can begin. Importantly, it is possible to obtain sufficient reliability
within a relatively short period of time.

Before a trait is included in national evaluations, the reliability
of prediction needs to be sufficiently high for accurate predictions
and confidence in the values. In this example, we assumed a trait
would not be included unless a threshold of 0.40 was achieved.
By recording CH4 on 100 farms, this threshold could be achieved
in just 2 years, with phenotypic information on 19 500 cows col-
lected in that time period. Of course, there are many factors that
increase or decrease the required cows, farms, and time periods,
but this is a useful indicator as no matter which parameters are
used, a very large number of cows and farms will need to be
measured.

There are now many methods of recording CH4 at a cow level,
but the options for recording at such a large scale are limited. Res-
piration chambers, while the most accurate method, have a low
throughput, and a high cost (Hammond et al., 2015). The use of
devices that measure CH4 and flux, such as GreenFeedTM

(Hammond et al., 2015), has been very beneficial for increasing
the number of cows recorded and providing a reliable measure-
ment. However, on such a large scale, they would not be logisti-
cally or economically viable. In most scenarios, such devices
record 30 cows during a 2 week period (Hammond et al., 2015;
Sorg et al., 2018). Therefore, multiple devices would be required
per farm, or management strategies and infrastructure changes
implemented to record on all cows. The use of handheld lasers
would provide a means of increasing the number of cows recorded,
however, they only offer a spot sample, require a large amount of
labour, and have a lower accuracy (Pickering et al., 2015a; Sorg
et al., 2018). It is unlikely that the use of reference gases such as
SF6 would be used at a large scale, due to animal welfare concerns
caused by the invasive nature of the current methods (Deighton
et al., 2014).

Sniffers are currently the only device that provides the conve-
nience required for large-scale recording, at a reasonable cost
point, while maintaining sufficient reliability of measurements,
but there are still concerns regarding the limited validation of
the method (Difford et al., 2018; Sorg et al., 2018; Garnsworthy
et al., 2019). Sniffer devices could provide the largest amount of
cows with CH4 records, but there is a possibility of supplementing
them with the other devices. It would be easiest to combine data
sources that provide CH4 measurements with the same units, for
sniffers that would be CH4 concentration (in ppm). The largest dif-
ficulty would be ensuring that the same trait is being measured.
Sniffers offer a method of long-term recording, capturing data at
all points of the lactation curve. While it would be possible to com-
bine data sources from different methods, they do not capture the
variation caused by various fixed effects, it is unknown what effect
this will have on the reliability of prediction.

If other data from different devices are considered, a national
breeding programme could also be supplemented with interna-
tional data. This is already done with other traits, but relies on
the fact that countries have a good genetic linkage, and enough
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animals recorded with similar reliabilities of genomic EBVs (Dürr
and Philipsson, 2012; Van Eenennaam et al., 2014). At the moment,
CH4 recording across countries is a patchwork of recording meth-
ods, data set sizes, and production systems. No country currently
has enough data to meet the requirements that would be needed
for sharing. This could be overcome if countries decided to collab-
orate in a large-scale recording programme and combining
resources. At the moment, no such programme exists and countries
continue to work independently. It is most likely that a small num-
ber of national breeding programmes implement some form of
large-scale recording and connections are made between them at
a later date.

If data sources from other methods, or countries, are not used to
obtain a sufficient reliability of prediction, there are still ways that
the amount of recording can be reduced. One method to achieve a
0.40 reliability of prediction is to increase the reliability of an indi-
vidual’s recorded breeding value. One method of doing this is add-
ing repeated records. So far, we have only discussed a conservative
one record for a full lactation period, or one potential repeated
record per year. The test period could be reduced to the lactation
period, to 50 days, or even shorter to 10 day periods, which would
align with other recording methods and other traits.

Increasing the number of repeated measurements is the most
convenient method to increase reliability of prediction, a larger
increase can be achieved by recording on more cows and farms.
With the conservative test period of one record per lactation,
recording on new farms is beneficial if the number of sniffer
devices is limited by availability. With 50 sniffer devices available
and recording on a new farm each year, the threshold is almost
reached within 3 years. If it is appropriate to reduce the test period,
and there was an ability to record on new farms after each period,
the threshold would be reached after four recording periods, or
within 2 to 3 years. If the number of sniffer devices is above 100,
there is no need to move the sniffers and repeated records are
sufficient.

The uncertainty regarding test periods is just one limitation of
the power analysis. Other assumptions were also made, such that
all animals recorded were also genotyped. The rate of genotyping
continues to increase, for these results to be relevant, the farms
selected for measuring would need to be targeted based on if the
herd is genotyped, otherwise an additional cost is required to have
them genotyped. That would be achievable with the current sys-
tems; otherwise, the time to the threshold would be extended.
Another assumption was farm size, 150 cows per farm were used
for this analysis, more important is the total number of cows
recorded. Assuming the mean herd size is at least 150, this would
not be an issue and could be used as another target alongside geno-
typing when selecting farms to be included in recording.

There are some assumptions in the index and power calculation
that could underestimate the rate of gain when using genomic pre-
diction. With a sufficient reference population, genomic selection
can begin earlier and would have shorter generation intervals
without a need for daughters to mature. Importantly, we did not
consider that some sires could still have progeny tested daughters
with genomic selection.

The relevance of this work is a demonstration of the fact that,
for an enteric CH4 trait to be included in a national breeding goal,
there needs to be a large and targeted recording scheme. The
parameters used were either means or a range of values. For exam-
ple, a lower or higher heritability could have been used instead of
the literature mean. However, the effect of selecting other values
within the range of published estimates would have a limited
impact on the final outcome, a very large number of farms and
cows would still need to be recorded.
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Conclusions

The global livestock sector, particularly ruminants, contributes
substantially to total anthropogenic greenhouse gas emissions.
Management and dietary solutions to reduce enteric CH4 emissions
are extensively researched. Animal breeding that exploits natural
variation in CH4 emissions is an additional mitigation solution that
is cost-effective, permanent, and cumulative. By adding CH4 pro-
duction to the Dutch breeding goal, selective breeding can reduce
the CH4 intensity by 24% in 2050. This shows that breeding is a
valuable contribution to the whole set of mitigation strategies that
could be applied in order to achieve the goals for 2050 set by the
EU. If the decision is made to implement animal breeding strate-
gies to reduce enteric CH4 production, and to achieve the expected
breeding impact, there needs to be a sufficient reliability of predic-
tion. The only way to achieve that is to have enough animals phe-
notyped and genotyped. The power calculations offer insights into
the difficulties that will be faced in trying to record enough data.
Recording CH4 data on 100 farms (with on average 150 cows each)
for at least 2 years is required to achieve the desired reliability of
0.40 for the genomic prediction.
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