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Seaweed has the potential to deliver more food to an increasing world population. Diseases endanger 
production security and yield of any farm, seaweed farming is no exception, hence crop protection 
plans may be developed that include the use of chemical crop protection either directly or indirectly in 
co-cropping systems. This document reports a first attempt to map the extent to which chemicals are 
being used in seaweed production, which production systems are used, where potential risks of the 
use of chemicals resulting from protection of seaweed production (or co-produced products) against 
diseases can be anticipated, and how this could be taken into account for future work. The 
investigations concerning open sea production systems indicate that for the control of pests and 
diseases in the described cultivation systems only prevention, monitoring and mechanical/physical 
measures are common, at least for Indonesia. In contrast, results from closed pond- or tank-based 
multi-trophic systems where seaweed can be included for example as feed or filter, or for biomass 
production, indicate some reasons for concern. Uptake and sorption of veterinary medicinal products 
and other chemicals can lead to additional input to shrimp and/or fish (via feed) or to the environment 
(via disposal of filter material). The ERA-AQUA model, originally developed for risk assessment of 
aquaculture production of fish and shrimp, was identified as possible means to further explore the fate 
of chemicals used in land-based multi-trophic production systems, for their bioaccumulation and 
biomagnification potential and possible risk for the environment, the produced goods (fish/shrimp), 
and finally human health. 
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Preface 

Ending food shortages is an important aim of the Sustainable Development Goal 2 of the United 
Nations. It aims to make sufficient and nutritious food available to everyone by 2030. In pursuit of this 
goal, to date, the world’s marine environments are utilised only to a limited extent. The overarching 
aim of this ‘Knowledge Base’ (KennisBasis) project is the development of interdisciplinary skills and 
knowledge to benefit the sustainable production of high-value produce and raw materials from the 
marine environment, thus contributing to food security globally. Here, aquaculture systems with 
primary producers like seaweed and micro-algae, potentially as part of multi-trophic systems that 
include, for example, fish or shrimp will have a prominent role in this project. 
 
This report has been produced with input from colleagues at WENR: Mechteld ter Horst for section 2; 
Bas Buddendorf for sections 1,3, and 4; Ivo Roessink for contributions to sections 1 and 4 and 
discussions. Special thanks to Andreas Focks (Osnabrück University, formerly WENR) for vital 
discussions and inputs at the early stages of this work. 
 
This report focusses strictly on environmental risk related aspects of seaweed aquaculture. Further 
details about the Aquatic systems project (running from 2019 – 2022) can be found on the project 
webpage: https://research.wur.nl/en/projects/aquatic-systems-kb-35-004-001, and in Debrot (2020). 
 
 
  

https://research.wur.nl/en/projects/aquatic-systems-kb-35-004-001
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Summary 

This document reports a first attempt to approach the question in how far chemicals are being used 
for seaweed production, which production systems are used, where potential risks of the use of 
chemicals resulting from protection of seaweed production (or co-produced products) against pests 
and diseases can be anticipated, and how this could be taken into account for future work. Two main 
cropping systems are investigated. Firstly, open sea seaweed farming is discussed, using seaweed 
farming in Indonesia, a major seaweed producing country, as an example. Secondly, on-land 
tank/pond systems are addressed. Pond systems are used for the production of, for example, fish and 
shrimp, either in mono-culture or in multi-trophic co-cropping systems.  
 
With respect to open sea seaweed cultivation we conclude that for the control of pests and diseases in 
the described cultivation systems only prevention, monitoring and mechanical/physical measures are 
common in Indonesia. Risks for the marine environment are not expected from treatments with 
chemical pest control products or biological pest control agents as there are no signs these kinds of 
products are authorised and used in seaweed cultivation in open sea. This does not mean that there is 
no potential for environmental risk to the marine environment but this risk is predominantly a result of 
large scale commercial seaweed farming (e.g., introduction of alien species, marine pollution). 
 
There are expected benefits of using seaweed as part of multi-trophic pond/tank production systems, 
like increased water quality, diversification of produced goods, and reduced need for feed. However, 
there remain potential risks to human health and the environment from the use of chemicals (like 
veterinary medicinal products (VMPs) and/or pesticides) in pond aquaculture. The current available 
data to assess the hazard of for example pesticides in seaweed is very limited, and monitoring data is 
not readily available. It remains unclear how integrated multi-trophic systems compare with traditional 
monoculture pond systems, and adding seaweed to pond systems to act as biofilters may involve a 
risk of bioaccumulation of pesticides and/or VMPs. An existing model (ERA-AQUA, https://www.era-
aqua.wur.nl/) can be used to assess the risk for four endpoints: 1) the targeted produce; 2) aquatic 
ecosystems receiving aquaculture effluents; 3) consumers; and 4) the trade of harvested aquatic 
animals. It appears conceptually possible to include a seaweed compartment into the ERA-AQUA 
model. With such an addition, it can be used in the risk assessment of integrated multi-trophic 
aquaculture systems. Given the expected increase in the number of these systems, it would seem a 
good opportunity for development and further research. 
 
 
  

https://www.era-aqua.wur.nl/
https://www.era-aqua.wur.nl/
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1 Introduction 

Seaweed has been harvested globally as direct food source, as staple ingredient in our food and to 
produce derivative chemicals that can be used for various industrial, pharmaceutical or food products, 
with carrageenan and agar as the major derivative products. Seaweed production is seen as one 
particularly interesting method for biomass production, having its anticipated role especially for green 
energy and for protein from sea programs. As such, seaweed has the potential to deliver more food to 
an increasing world population. The most widely cultivated seaweed species include Eucheuma spp., 
Saccharina japonica (Japanese kelp), Gracilaria spp., Undaria pinnatifida (wakame) and Kappaphycus 
alvarezii (elkhorn sea moss) (Table 1). Tropical seaweed species, like e.g., K. alvarezii and Eucheuma 
spp. are used as raw material for carrageenan extraction. Some species (e.g. U. pinnatifida, Porphyra 
spp. and Caulerpa spp., produced in East and Southeast Asia) are produced almost exclusively for 
direct human consumption, although low-grade products and scraps from processing factories are 
used for other purposes, including feed for abalone culture (FAO, 2018). The red 
algae Gracilaria contributes approximately 66% of the total agar production (Pereira and Yarish, 
2008), but is also used for human consumption. S. japonica is a temperate cold water species mostly 
cultivated in the western Pacific (China, Japan, the Republic of Korea and the Democratic People’s 
Republic of Korea) with China being the largest producer by far. S. japonica is popular as "kombu" in 
Japanese cuisine. Pyropia and Porphyra species is used to make Nori to wrap sushi. Other species like 
Spirulina spp. (cyanobacteria) and the micro-algae Chlorella spp. (a freshwater species), 
Haematococcus pluvialis, and Nannochloropsis spp. are cultivated in many countries for the production 
of human nutrition supplements and other uses (FAO, 2018). 
 
After China, Indonesia is the second biggest seaweed producer in the world, contributing to 38% of 
the global seaweed market. Indonesia is currently the world’s largest producer of agar- and 
carrageenan-bearing seaweeds, accounting for 61 percent of world production in 2010. Kappaphycus 
and Eucheuma are the main cultivated species in Indonesia (Valderrama et al., 2013). Almost all of 
the Indonesian islands are currently planted with different strains or varieties of either Kappaphycus 
and Eucheuma using fixed-off bottom, hanging long-line and various raft methods, involving tens of 
thousands of coastal families (Neish 2013; Hurtado et al., 2014). Indonesia is also a major center for 
the production of Gracilaria (agarophytes) (Hurtado et al., 2014).  
 
 
Table 1 World aquaculture production of aquatic plants (thousand tonnes, live weight).  

 
Source: FAO (2018). Note that Laminaria japonica, used by the FAO, is an unaccepted synonym for Saccharina japonica. 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/red-alga
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/red-alga
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Like with any other form of mass-cultivation, also seaweed production systems are susceptible to 
diseases and pests. Both endanger production security and yield of any farm, seaweed farming is no 
exception, hence seaweed producers might develop crop protection plans that may include the use of 
chemical crop protection either directly or indirectly in co-cropping systems.  
 
Two main cropping systems are investigated. Firstly, open sea seaweed farming is discussed, using 
seaweed farming in Indonesia, a major seaweed producing country, as an example. Here challenges in 
pest control are related to the scale of operation of a seaweed farm and to working in an open system 
where pest species may enter the cropped area unhindered. Secondly, on-land pond systems are 
addressed. Pond systems are used for the production of, for example, fish and shrimp, either in mono-
culture or in multi-trophic co-cropping systems. Here, challenges are related to direct or indirect 
exposure of seaweed via pest control that may be intended for other species in the system (e.g., 
against white spot syndrome in shrimp). 
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2 Environmental risks of chemical crop 
protection practices in seaweed 
cultivation in open sea 

2.1 Seaweed farming in open sea in Indonesia 

Eucheuma and Kappaphycus, the most cultivated species in Indonesia, are generally grown within 
coastal areas, submerged in water near the surface for photosynthesis (although these seaweeds can 
be placed in deeper waters, as long as water is clear), thriving in fast moving waters, but without too 
much wave action (Waters et al, 2019).  
 
Eucheuma and Kappaphycus seaweeds are generally farmed in two ways in Indonesia: 1) the off-
bottom line method, which generally occurs in shallow waters or 2) the floating long-line method, 
which is suitable for areas where the currents are weak or the ocean is too deep for the off-bottom 
line method (Figure 1). 
 
With the floating long-line method the lines are anchored in the seabed and seaweed is hung from 
ropes that are suspended by floaters. The off-bottom line method is constructed as follows: i) wooden 
stakes are driven into the seabed at a 5 to 10 meter spacing, ii) monofilament nylon or polypropylene 
ropes are attached and suspended between the stakes. The line sits 20 to 30 centimetres above the 
seafloor, the water needs to be deep enough to ensure that the seaweeds are not exposed during low 
tide.  
 
In both methods, small fragments of seaweed, either cuttings from existing lines, a seed nursery, 
and/or purchased seed, are tied to the lines. Under proper growth and maintenance conditions, the 
seaweeds reach 10 times their original size after 6 to 8 weeks, through either method of farming 
(McHugh, 2003). 
 
 

 

Figure 1 Floating long-line method (left hand side) and the off-bottom line method (right hand 
side). Source: Waters et al., (2019).   

http://www.fao.org/docrep/006/y4765e/y4765e09.htm
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2.2 Pests/ diseases and corresponding control measures  

Occurrence of pests and diseases are observed internationally in seaweed aquaculture (Watkiss et al., 
2012; Hurtado et al., 2017; Quiaoit et al., 2018). Ward et al., (2019) provide a review of diseases 
that have been reported in the scientific literature for species of red (e.g. Eucheuma, Gracilaria, 
Kappaphycus) and brown seaweeds (e.g. Japanese kelp), focusing on the major seaweed crops grown 
in Asia. Table 2 shows the most common diseases and disease agents of Kappaphycus in Asia. Most 
relevant disease affecting Kappaphycus and Eucheuma spp. is ice-ice disease. It is characterized by a 
whitening of the thallus in response to environmental stress and the action of opportunistic pathogenic 
bacteria (Ward et al.,2019). Table 2 shows that several bacterial species and complexes have been 
linked to ice–ice disease, but also marine fungi (Aspergillus spp. and Phoma spp.) may induce ice–ice 
symptoms (demonstrated in both Kappaphycus alvarezii and K. striatum under laboratory conditions 
by Solis et al., 2010). 
 
Another major problem affecting the yields and quality of commercial cultivated seaweed is 
epiphytism. Marine epiphytes may, for example, be other unwanted algal species, bacteria, and fungi. 
Almost all marine epiphytes attract many grazers that feed on them and on the host leading to 
additional yield reduction (Ingle et al., 2018). Different environmental conditions like the temperature, 
salinity, and current of seawater and intensity of light and nutrient availability may be important 
contributors to epiphytism.  
 
One of the main problems of commercially cultivated Kappaphycus and Eucheuma spp. in Southeast 
Asia are epiphytic filamentous algae which are responsible for a significant decrease in both the 
production of biomass and carrageenan quality (Ward et al.,2019). Heavy infections with epiphytic 
algae have also shown to weaken Kappaphycus and Eucheuma, making it susceptible to bacterial 
attack (Vairappan et al., 2008). 
 
 
Table 2 Diseases and disease agents of Kappaphycus in Asia. Source: Table 2 in Ward et al., 
2019. 

 

 
 
 
Several control and mitigation measures have been used to put an end to, or mitigate the impact and 
spread of disease and pest outbreaks on commercially cultivated seaweed. Lately, analogous to 

https://link.springer.com/article/10.1007/s10811-019-02010-5#ref-CR52
https://link.springer.com/article/10.1007/s10811-019-02010-5#ref-CR31
https://link.springer.com/article/10.1007/s10811-019-02010-5#ref-CR45
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Integrated Pest Management (IPM) in terrestrial agriculture, Marine Integrated Pest Management has 
been advocated (MIPM; Ingle et al., 2018). Basically, pest management is done along the lines and in 
the order of prevention, monitoring in order to make decisions on control and direct measures. Direct 
measures can be mechanistically/physically or biologically, with chemical control as a last resort.  
 
Prevention measures like optimal sites in terms of physical, geographic, and pollution parameters for 
seaweed farming, selection of suitable seaweed species and using healthy seedlings are common 
practice. The current technique for decreasing the impact of pest epiphytes is to monitor cultivated 
populations and remove the pests by hand as quickly as possible before they can reproduce and 
spread (Ward et al.,2019). The following quote on current practices for the control of ice-ice disease is 
taken from Ward et al., (2019): “The development of ice–ice symptoms in 
Kappaphycus and Eucheuma is thought to be the result of stress to the host from abiotic conditions, 
such as temperature and salinity (Vairappan et al., 2008) and light intensity and water movement 
(Hurtado & Critchley, 2006) in combination with the action of opportunistic bacteria (Largo 
et al., 1995; Uyenco et al., 1981). The triggers behind disease onset and progression are not well 
understood, and as a result, no effective management protocols that are cost effective have been 
developed to date.” 
 
No findings on the use of biological pest control agents or chemical pest control in seaweed cultivation 
in open sea, other than the use of organic acids or acid ionic(electrolysed) water were found in 
literature. This is in line with Ingle et al., (2018) who state that there is a lack of commercially 
available pesticides that can be used in the seaweed cultivation, particularly in the near shore or 
offshore environments. In the Republic of Korea there are no authorizations for the use of chemical 
pesticides in seaweed cultivation (personal communication Jina Oh, NAS-RDA). Use of such products in 
seaweed cultivation is therefore forbidden. Illegal uses can however not be excluded. In the Republic 
of Korea, there was a case in which the use of pesticides for laver (Porphyra spp.) farming was 
discovered (personal communication Jina Oh NAS-RDA). 
 
Ingle et al., (2018) also state that, at low levels, some chemicals such as copper can be applied for 
the onshore cultivation or nursery level for control of certain epiphytes. 
 
As mentioned before disinfection with acids baths occurs commonly. The washing of Pyropia blades in 
acid solutions is a widespread practice in the Republic of Korea and is often used in an attempt to 
control all diseases, albeit ineffective for some diseases like Olpidiopsis (Kim et al., 2014). A common 
method used to disinfect seaweed cultivated in open sea is to pull the seaweed nets onto a box-
shaped ship carrying containers that store a disinfectant solution, such as acid solution, and then 
immersing the seaweed adhering to the net in the disinfectant solution in the container. It is not clear 
whether this disinfection method is used in cultivation of Kappaphycus and Eucheuma in Indonesia. 
 
 

 

Figure 2 Drivers for environmental change in relation to seaweed farming. Source: Campbell 
et al., 2019. 
 

https://onlinelibrary.wiley.com/doi/full/10.1111/jwas.12649#jwas12649-bib-0071
https://onlinelibrary.wiley.com/doi/full/10.1111/jwas.12649#jwas12649-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1111/jwas.12649#jwas12649-bib-0034
https://onlinelibrary.wiley.com/doi/full/10.1111/jwas.12649#jwas12649-bib-0069
https://onlinelibrary.wiley.com/doi/full/10.1111/jwas.12649#jwas12649-bib-0027
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Compared to other types of aquaculture, seaweed farming has a generally low impact on the 
environment. Nonetheless, there are potential direct or indirect negative effects of especially large-
scale seaweed farming, such as introduction of alien species and changes in local environmental 
conditions (Eggertsen and Halling, 2020). Other risks stemming from non-chemical sources are 
inherently associated with large scale commercial seaweed farming. Campbell et al., (2019) provide a 
systematic review of the ecosystem changes likely to be associated with large scale commercial 
seaweed farming. Although focusing on cultivation of kelp in Europe, many lessons are drawn from 
Asia. Campbell et al., (2019) identified the key drivers for environmental change (Figure 2). 
 
According to Campbell et al., (2019) the three major environmental changes of greatest concern are: 
• facilitation of disease,  
• alteration of population genetics, 
• wider alterations to the local physiochemical environment.  
 
Yet, they also remark that the true extent of some environmental changes are surrounded by high 
levels of uncertainty.  
 
Pest control strategies in marine fish/shell fish aquaculture might contribute to deterioration of the 
marine environment. The use of chemical pest control products in marine fish/shellfish aquaculture, 
especially disinfectants and antibiotics, causes effects in the marine environment. It is not clear 
whether pest control strategies in large-scale seaweed farming have similar impacts on the 
environment. 
 
For now we conclude that for the control of pests and diseases in the described cultivation systems 
only prevention, monitoring and mechanical/physical measures are common in Indonesia. Risks for 
the marine environment are not expected from treatments with chemical pest control products or 
biological pest control agents as there are no signs these kind of products are authorised and used in 
seaweed cultivation in open sea. This does not mean that there is no potential for risk to the marine 
environment but this risk is predominantly a result of large scale commercial seaweed farming. 
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3 Seaweed cultivation in multi-trophic 
pond/tank based systems 

In mariculture there are good examples of integrated systems with seaweed and salmon. These are 
generally open water net pen systems (Petrell and Alie 1996, Chopin et al., 1999) and there are 
expected beneficial effects of integrating these systems that result in increased seaweed production 
and improved water quality (Troell et al., 1997, Chopin et al., 1999). The majority of salmon 
production is sea-based with an annual global export valued of more than 25 billion USD (FAO 
Globefish 2020). Yet the industry is increasingly facing issues linked to sea-lice infestation, 
environmental pollution, escaped animals, and a high carbon footprint (Liu et al., 2016). 
Consequently, the commercial farming of salmon using land-based pond or tank production systems 
could increase in the future (Bjørndal and Tusvik 2019). Whereas the majority of research on 
integrated multi-trophic has been based on seaweed and fish, the shrimp aquaculture industry has 
grown substantially since the 1990s (Copertino et al., 2009), and continues to grow to this day (FAO 
2020a, FAO 2020b). There is an increase in both demand and production losses (FAO 2020b), which 
means more sustainable solutions have to be incorporated.  
 
In 2018, 62.5% of farmed fish is produced by inland aquaculture (i.e., in pond/tank systems), of 
which 91.5% are finfish (FAO 2020a). Although multi-trophic production using filter feeding animals 
and/or seaweed is a common practice in Asia, Central and Eastern Europe and Latin America, farmed 
larger carnivorous fish and shrimp are of higher economic value to the grower (FAO 2020a). Their 
production systems tend to be monocultures (Neori 2009). Typical for monocultures, they have a 
relatively high demand for artificial feed, antibiotics, disinfectants, and chemical pest control. 
Moreover, with increased production demands this could lead to unacceptable levels of excess 
nutrients and chemicals being released into the environment via effluent water and issues with long-
term viability and sustainability of the food production chain. 
 
The application of integrated multi-trophic systems in monoculture systems could help to reduce or 
alleviate some of the issues. There are indications such systems can increase water quality (e.g., 
Evans and Langdon 2000, Viera et al., 2005, Paul and de Nys 2008, Copertino et al., 2009). In turn, 
increasing water quality may reduce the risk of disease and thus the need for antibiotics, disinfectants, 
and chemical pest control. There are indications that product quality can increase while the need for 
artificial feed is decreased (Cruz-Suárez et al., 2010, Rosales et al., 2019). Additionally, seaweed can 
be used as an extra crop for the producer allowing for a further diversification of production systems 
(Neori 2009). 
 
Despite the reported benefits of multi-trophic systems, there are potential risks to human health and 
the environment from the use of veterinary medicinal products (VMPs) in pond aquaculture (Rico 
et al., 2013). The current available data to assess the hazard of for example pesticides in seaweed is 
very limited, and monitoring data is not readily available (Banach et al., 2020). It is unclear how 
integrated multi-trophic systems compare with traditional monoculture pond systems, and adding 
seaweed to pond systems to act as biofilters may involve a risk of bioaccumulation of pesticides 
and/or VMPs. Rico et al., (2013) have developed a model (called ERA-AQUA) that can be used to 
assess the risk from VMPs used in aquaculture in pond systems. The ERA-AQUA model in its current 
form considers four endpoints: 1) the targeted produce; 2) aquatic ecosystems receiving aquaculture 
effluents; 3) consumers; and 4) the trade of harvested aquatic animals (Rico et al., 2013). 
 
Pond or tank-based systems can have different set-ups with a varying degree of connection to open 
surface waters. Pond systems are often directly connected to a canal, stream, river or directly to the 
sea via their irrigation systems and may even experience flooding with tidal cycles. In such cases they 
are likely similar to near shore, open sea farming in terms of potential environmental impacts. For 
tank aquaculture systems there are open, semi open and recirculation aquaculture systems (RAS). 
Open systems, like ponds, generally have a flow-through of water, semi-open systems make use of 
tanks that are refilled and flushed (i.e., are “connected” at intervals), and RAS systems are completely 
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closed off and should have no open connection to surface water. In the following section, we will first 
look at the function of seaweed in pond/tank production systems and what sources of potential risks to 
human health there are, next we will link seaweed to the ERA-AQUA model and discuss the adaptions 
that would be required to incorporate a seaweed-component to the ERA-AQUA model. 

3.1 Seaweed as part of pond/tank based integrated multi-
trophic systems 

A beneficial use of seaweed is as feed for animals integrated in the multi-trophic system. This can 
reduce the need of artificial feed greatly. For example, Cruz-Suárez et al., (2010) show the inclusion 
of Ulva clathrata as a food resource for the shrimp Litopenaeus vannamei can reduce the need for 
artificial feed while leading to increased growth rates, reduce lipid content and increase carotenoid 
content. However, not all seaweed species will be equally nutritious of beneficial, for example Viera 
et al., (2005) showed differing feed intake rates, feed conversion ratios and protein efficiency ratios 
for three red algae (Hynea spinella, H. musciformis, and Gracilaria cornea), which could have 
implications for the optimal choice of seaweed species in a multi-trophic set-up. 
 
Another widely reported reason to include seaweed in integrated multi-trophic systems is the role they 
can play as biofilter. Complex multi-tank semi-recirculation systems using seaweed as biofilter of 
effluent water showed an improved pH balance, a reduced water use, a reduced nutrient load in the 
environment and improved water quality conditions for the system’s fish pond (Schuenhoff et al., 
2003). Others have also demonstrated that seaweed can be highly efficient at removing nutrients from 
effluent waste-water with substantial nutrient (N and P) reductions of 30-82% (Neori et al., 1998, 
Copertino et al., 2009). Not all seaweed species are equally suited to be incorporated in both pond and 
tank systems. For example, Paul and De Nys (2008) show culturing of Caulerpa species is not 
straightforward, but might work well in tank-based systems or can be used to treat effluent of ponds. 
 
Besides the effectiveness of seaweed in filtering out nutrients, and forming an additional source of 
food and/or feed, there are important aspects related to the risk assessment to take into account. 
These are mainly related to uptake, sorption, and degradation rates of e.g., VMPs, heavy metals, and 
other chemicals. Owing to their hydrophobicity seaweeds can easily associate with pesticides (García-
Rodríguez et al., 2012, Lorenzo et al., 2012), which has applications in phycoremediation: for example 
Liminaria digitata was shown to be effective at reducing levels of diflubenzuron, lindane, copper, and 
cadmium (Anacleto et al., 2017). Yet, it obviously also poses a risk to human health through potential 
bioaccumulation and subsequent exposure to contaminated food. Pesticides have even been found in 
wild seaweed (Pavoni et al., 2003, Moreno et al., 2007, García-Rodríguez et al., 2012, Lorenzo et al., 
2012), this seems more likely to happen with seaweed in closed (semi-circulated) pond/tank systems 
that may, in turn, be part of a larger system of interconnected ponds. Yet, monitoring data is scarce 
and thus currently the risk to human health is difficult to assess (Banach et al., 2020). 

3.2 Integration with ERA-AQUA 

Integrated multi-trophic systems can have varying levels of complexity (Figure 3), but given that they 
are modular by design (e.g., Shpigel and Neori 1996, Schuenhoff et al., 2003), the transfer of mass 
between compartments should in principle be quantifiable. 
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Figure 3 Two examples of integrated multi-trophic systems of differing complexity. On the left is 
a two-species system, on the right a four-species unit with processing units. Reproduced from: Shpigel 
and Neori (1996). 
 
 
The ERA-AQUA has a similar modular set-up (Figure 4), which means an in-line seaweed unit can be 
integrated in the model. In the current version of the model the risk of exceeding a threshold value by a 
risk quotient (RQ) is already incorporated for micro-algae. This RQ is based on the ratio between 
maximum Predicted Environmental Concentration (PEC) and the so-called Predicted No Effect 
Concentration (PNEC). Here the PEC is based on the total water concentration from dissolved and sorbed 
fractions and the PNEC is based on a 50% effect concentration divided by safety factors of 100 and 10 
for acute and chronic risk, respectively (Rico et al., 2013). The RQ is used a measure for how far 
removed the concentrations are from any negative effects on a target species. This is usually done for 
both for acute and chronic toxicity, where different assessment factors are applied. If an RQ is below 1, 
the risk is deemed low; between 1 – 10 there is an exceedance of acceptable risk; for RQs > 10 there is 
a large exceedance of acceptable risk. However, the current model does not have a compartment that 
explicitly models the changes in mass fluxes when multiple compartments and/or seaweeds are taken 
into account. 
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Figure 4 Processes describing drug transfer and dissipation included in the ERA-AQUA model. 
Source: Rico et al., (2013). 
 
 
Looking at Figure 3, the ERA-AQUA model can in theory be applied to each of the compartments within 
an integrated system. For each pond and species, one would set up the pond characteristics, cultured 
species characteristics, planned stocking and harvest times, and feed administration regimes (which 
includes a feed conversion rate that could be altered by including seaweed as feed). For the water 
exchange management the water inflow and water outflow from the separate compartments can form 
inputs for irrigation and drainage in ERA-AQUA. Thus each compartment can be modelled as ‘stand-
alone’ unit that receives inputs/outputs at each timestep. Depending on the characteristics of the 
compartment, e.g., some compartments might be earthen ponds, others can be tanks, the parameters 
describing the processes related to substance mass balance can be adjusted accordingly. 
 
In the simplest form a multi-compartment system is linear, i.e., there is no recirculation of water and 
transfer of biomass between them. In such a scenario the only role seaweed would have is as 
bioremediation of effluent water, and the risk would simply be the risk of the cultured species and the 
risk of contaminated effluent water re-entering the environment.  
 
In more complex systems, part of the seaweed yield may be used as feed and/or food. This requires a 
growth model for seaweed, potential reductions in growth/photosynthesis following exposure. 
Additionally, the frequency and amount of harvest needs to be known as well as the additional inputs 
of chemicals (e.g., VMPs and anti-fouling agents) adsorbed to or bioaccumulated in seaweed that is 
moved into the receiving compartments. Additionally, if the system has some form of recirculation, the 
additional inputs of VMPs from the recirculated water need to be taken into account for the receiving 
compartment. These extensions are not currently available in the ERA-AQUA, but could have potential 
in the environmental risk assessment of integrated multi-trophic aquaculture. 
 
A major caveat is a general lack of information in the literature with respect to seaweed and chemical 
risk assessment, with implications for food safety (Banach et al., 2020). Indeed, there is evidence that 
seaweed can take up pesticides and other compounds very efficiently (Lorenzo et al., 2012, Cheney 
et al., 2014, Anacleto et al., 2017), but there is a lack of uptake, bioaccumulation, and effects studies 
under laboratory conditions for seaweed species. 
 
A quick search in Web of Science yielded only five results when using the search:  
• ALL=(seaweed bioaccumulation chemical effect) 
 
Of these five, only one dealt with herbicides (Ojemaye et al., 2020) and the remaining four look at 
metal concentrations (Villares et al., 2005, El-Said 2013, Rangabhashiyam et al., 2016), or C-14 
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bioaccumulation (Begg et al., 1992). Others have detected pesticides in seaweed from samples taken 
from the field (e.g., Pavoni et al., 2003, Polat et al., 2018, Sundhar et al., 2020, Contarini and 
Dromard 2021), whereas only few have studied uptake and bioaccumulation in a laboratory setting 
(Sikka et al., 1976). Such studies, with commonly used pesticides and/or VMPs would be useful for 
parameterisation of a seaweed compartment. Notwithstanding the scarcity of studies looking at 
uptake, bioaccumulation, and effects of chemicals for seaweed species, it appears conceptually 
possible to include a seaweed compartment into the ERA-AQUA model. With such an addition, it can 
be used in the risk assessment of integrated multi-trophic aquaculture systems. Given the expected 
increase in the number of these systems, it would seem a good opportunity for development and 
further research. 
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4 Summary and conclusions 

This document provides a first approach to evaluate the needs and possibilities for an environmental 
risk assessment for chemicals used in seaweed (co-)productions systems. The investigations 
concerning open sea production systems indicate that for the control of pests and diseases in the 
described cultivation systems only prevention, monitoring and mechanical/physical measures are 
common in Indonesia. However, practices may be different in other major seaweed producing 
countries like China and Chili. Notwithstanding the apparent low risk for the environment resulting 
from the use of chemicals, other environmental risks are associated with large scale commercial 
seaweed farming. Campbell et al., (2019) identified three key drivers for environmental change: 
facilitation of disease, alteration of population genetics, and wider alterations to the local 
physiochemical environment. Risk analyses for these aspects are possible, but not within the field of 
ERA for chemicals.  
 
In contrast to the findings from open sea cultivation methods, results from closed, pond- or tank-
based multi-trophic systems where seaweed can be included for example as feed or filter, or for 
biomass production, indicate some reasons for concern. Uptake and sorption of veterinary medicinal 
products (VMPs) and other chemicals can lead to additional input to shrimp and/or fish (via feed) or to 
the environment (via disposal of filter material). Owing to their hydrophobicity pesticides can easily 
associate with seaweeds. This obviously also poses a risk to human health through potential 
bioaccumulation and subsequent exposure to contaminated food. The ERA-AQUA model, originally 
developed for risk assessment of aquaculture production of fish and shrimp, was identified as possible 
means to further explore the fate of chemicals used in land-based multi-trophic production systems, 
for their bioaccumulation and biomagnification potential and possible risk for the environment, the 
produced goods (fish/shrimp), and finally human health.  
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