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A B S T R A C T   

In this work, we show two different routes to synthesize polymer-dendrimer hybrids by the coupling of poly(L- 
lysine) and zwitterionic dendrimers (ZIDs). Poly(L-lysine) (PLL) is used because of its advantageous self-assembly 
properties onto silicon oxide by charged-based interactions between the lysine groups and the negatively charged 
surface, whilst the coupled ZIDs provide antifouling properties. The first route yields network-like structures in 
which PLL and ZIDs are crosslinked by multiple amide bonds. By using different ratios of PLL and ZID, we vary 
the size of the formed networks. A more defined, linear PLL-ZID macromolecule is formed via coupling of 
multiple ZIDs to PLL in a controlled way by a copper-catalyzed azide/alkyne cycloaddition (CuAAC) “click” 
reaction. Following synthesis and characterization of the two different types of PLL-ZID macromolecules, they 
are self-assembled on silicon oxide surfaces from aqueous solutions in a single step, to form thin, hydrophilic 
coatings. Their potential use as antifouling coatings is tested by fluorescence microscopy and quartz crystal 
microbalance (QCM) with foulants such a single proteins and diluted human serum. Finally, by performing an 
on-surface biofunctionalization step by biotin we demonstrate it is possible to use these polymer-dendrimer 
hybrids for selective detection of target analytes (here: streptavidin), while the underlying coating maintains 
its antifouling properties. 

This method presents a new, straightforward approach for the manufacturing of PLL-ZID based coatings that 
can be pre-synthesized partly or fully and applied as coating in a single self-assembly step. Both steps can take 
place in aqueous solution and under ambient conditions, and result in stable coatings that not only display 
antifouling properties but also maintain the possibility of further functionalization.   

1. Introduction 

Most synthetic polymers are linear or only moderately branched. In 
contrast, dendrimers are a class of macromolecules with precisely 
defined, highly branched structures and are obtained by sequential re-
actions through divergent or convergent synthesis [1–5]. As a result, 
they possess a distinct molecular architecture with a core, branches and 
terminal functional groups. The high level of control over dendritic ar-
chitectures, the presence of internal cavities and the possibility for 
multivalent binding have, for example, focused attention on dendrimers 
as potential carriers in biomedical applications [3,4,6]. While den-
drimers modified with charged groups have found use for in vivo drug 
delivery, the presence of a high density of charged groups on the 

dendrimer structure also enables an entirely new application that has so 
far been largely overlooked. That is, highly charged dendrimers with no 
net charge, i.e. zwitterionic dendrimers (ZID) are potentially very 
interesting for surface chemistry applications since zwitterionic coatings 
have been shown to drastically reduce (bio)fouling of surfaces when 
applied as a coating [7,8]. Previously, charged dendrimers have been 
used as coating, although mainly in layer-by-layer approaches where 
alternating layers of positively and negatively charged dendrimers were 
assembled on a surface [2,9,10]. In contrast, the use of a fully and 
permanently zwitterionic dendrimer-based coating has not been re-
ported in literature. So far, only the use of (partially) zwitterionic den-
drimers has been reported for use in other biomedical applications such 
as drug delivery, sensing and MRI contrast agents [11,12,21,13–20]. 
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Building blocks for a new type of zwitterionic antifouling coating 
should have a high density of opposite charges, creating a strong zwit-
terionic character, while remaining overall neutral [22]. We chose to 
work with zwitterionic dendrimers as building blocks as they uniquely 
combine a well-defined and monodisperse nature with a relatively large 
size, and the possibility for multivalent coupling towards surface 
immobilization, crosslinking or eventually biofunctionalization. In our 
lab, fully zwitterionic, carboxybetaine dendrimers were previously 
developed [21]. Additionally, also zwitterionic dendrimers (ZID) that 
contain a variable number of alkyne and azide groups that allow 
coupling by click chemistry were synthesized [21]. In search for a 
method to strongly bind these ZIDs to a surface as a coating, we selected 
poly(L-lysine) (PLL) to covalently couple the ZID to. PLL is known for its 
affinity towards, e.g., silicon oxide, metal oxide and polymeric surfaces 
[23–28]. The polymer self-assembles to silicon oxide at pH > 2, driven 
by multiple electrostatic attractions between the negatively charged 
surface and the positively charged pendant amine groups present in PLL 
[29,30]. For example, a well-known and widely used combination of PLL 
with antifouling side groups is poly(L-lysine)-graft-poly(ethylene glycol) 
(PLL-g-PEG) [23–28]. In other studies, also the coupling of different 
antifouling polymers to a PLL backbone was shown to result in coatings 
with antifouling properties [25,31].However, to the best of our knowl-
edge, no combination of linear polymers and zwitterionic dendrimers 
has been investigated before for use as antifouling coating. 

For other applications, the unique combination of linear and den-
dritic copolymers was first described in the beginning of 1990s by the 
group of Fréchet [32–34]. Subsequently, other research groups have 
developed block [35–37], star [38,39], linearly alternating linear- 
dendrimer hybrid architectures [34], crosslinked superstructures [40], 
and brush-like polymers with dendritic side chains [41–43]. These 
resulting linear-dendritic hybrids showed very interesting properties in 
terms of self-assembly, enhanced solubility and reduced toxicity and 
immunogenicity [33,44]. 

Here we report the synthesis of two different architectures of 
dendrimer-PLL hybrids that were connected in two different ways 
(Fig. 1). First we explored the random cross-coupling of the carboxylic 
acid groups of the carboxybetaine ZIDs and the terminal amine groups 

on the PLL in three different ZID:PLL ratios. This should create a large 
polymer network in which the ZID acts as crosslinking agent of the linear 
PLL chains. Next to this, a more controlled way of coupling the ZID to 
PLL was investigated. Namely, via the creation of specific covalent 
bonds to obtain a well-defined, non-networked macrostructure. The 
coupling between the ZID and PLL was established by a copper- 
catalyzed azide/alkyne cycloaddition (CuAAC) reaction [45] between 
a single terminal alkyne group on the ZID [21] and terminal azide 
groups on a commercially available azide-modified PLL. These two PLL- 
ZID macromolecules were first synthesized and characterized in solution 
(by techniques including NMR, DOSY and IR) prior to surface immobi-
lization. In this study, silicon oxide was used as a model substrate 
because of its relevance in, e.g., biosensors [46] and microfluidic devices 
[47]. After self-assembly on silicon oxide surfaces, the formed coatings 
were investigated using water contact angle (WCA) measurements and 
X-ray photoelectron spectroscopy (XPS). 

To investigate the potential perspective of the use of such PLL-ZID 
macromolecular coatings for antifouling purposes, we performed an 
investigation of the antifouling performance obtained for these hybrid 
PLL-ZID copolymer approaches. Quantitative protein adsorption onto a 
surface has been investigated by a variety of techniques, such as surface 
plasmon resonance (SPR), optical waveguide devices, atomic force mi-
croscopy (AFM) and ellipsometry [25,48–51]. Here, we first used fluo-
rescence to study the protein repellence of fluorescently labeled 
proteins. The antifouling properties of selected PLL-ZID coatings against 
single proteins and human serum were subsequently studied in more 
detail with quartz crystal microbalance (QCM) studies. Finally, an on- 
surface biofunctionalization step by biotin was performed by activa-
tion of the carboxylate groups and reacting them with amino-biotin for 
the selective detection of streptavidin, while maintaining antifouling 
properties. 

2. Results and discussion 

We will first discuss the synthesis, characterization and surface 
immobilization of the poly(L-lysine)-zwitterionic dendrimer (PLL-ZID) 
networks. After that, the linear PLL-ZID macrostructures will be 

Fig. 1. Molecular structure of ZID and PLL (left), and (schematically) their coupling into hybrid PLL-ZID macromolecules (as network or linear structure) and 
subsequent surface immobilization to create antifouling coatings. 
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discussed in a similar fashion. Subsequently, the antifouling studies on 
the formed coatings as measured by fluorescence and QCM will be dis-
cussed and evaluated. 

2.1. Synthesis and characterization of poly(L-lysine)-zwitterionic 
dendrimer (PLL-ZID) networks 

To obtain the poly(L-lysine)-zwitterionic dendrimer (PLL-ZID) net-
works, a suitable coupling reaction between the zwitterionic dendrimer 
and the PLL polymer backbone was needed. The presence of a carboxylic 
acid group on the former, and an amine group on the latter, prompted us 
to achieve the coupling via amide bond formation, as this is a widely 
used for the bioconjugation of carboxybetaine zwitterionic polymers 
(Fig. 2) [52–55]. 

The amide bond formation was performed by activation of the 
carboxylate groups on the dendrimer using N-hydroxysuccinimide 
(NHS)/1-ethyl-3-[3-dimethylaminopropyl]-carbodiimide hydrochloride 
(EDC) chemistry [53]. As both reactants in this coupling reaction 
contain a high number of (potentially) reacting groups (i.e. ~100 lysines 
on PLL and ~30 carboxylate groups on the dendrimer), it was antici-
pated that depending on the ratio between the two reactants different 
network structures could be formed. Therefore, three different ratios of 
ZID:PLL were explored to form the networks, which we labelled as 
Netw_A, Netw_B and Netw_C (see Table 1 for their feed ratio). 

After letting the NHS-mediated amide coupling reaction run for 24 h, 
the mixture was extensively dialyzed against water to remove all low- 
molecular weight species (unreacted EDC and NHS, buffer salts, etc.). 
After freeze-drying, the obtained product was first of all characterized 
by 1H NMR spectroscopy, revealing the presence of both the ZID and PLL 
component in the product. The ratio between the ZID and PLL signals 
showed an expected trend in line with the different ratios in starting 
materials (Fig. 3). The shift of peaks e, b and g to e*, b* and g*, respec-
tively, in Fig. 3 indicates binding of ZID to PLL via amide bonds. 
Although all PLL-ZID networks were extensively dialyzed, especially in 
Netw_A, there seems to be more ZID present than can be explained by 
the amide bond formation. This suggests that, apart from the formed 
covalent bonds, most likely also charged-based interactions contribute 
to binding between PLL and ZID, which is not unsurprising given the 

highly charged nature of both components. Apart from the newly formed 
signals e*, b* and g*, also the original signals were still present, implying 
that not all available amide and carboxylate groups reacted, which can 
be understood considering the steric clash that would occur at high or 
full conversion. The incomplete conversion can be further attributed to 
the fact that this reaction was performed at pH 6, meaning that not all 
reactive groups are in the correct protonation state (pKa

LYS ~ 10 and 
pKa

COO− ~2; the latter low pKa value is due to the short distance between 
the carboxyl group and the cationic site [56,57]), whereas the NHS 
coupling reaction is unsuccessful at both acidic and alkaline pH [58]. 
Such incomplete conversion is, however, in this case desirable, as for the 
surface binding it is essential to still have unreacted lysine groups 
available. Additionally, infrared (IR) spectroscopy on the three networks 
also showed the expected varying in signals origination from PLL and 
ZID (see SI). However, no newly formed amide signals could be observed 
since PLL as one of the starting materials already is a polyamide. 

Diffusion-ordered spectroscopy (DOSY) allowed us to assess the di-
mensions of the three formed networks. The PLL-ZID networks with 
Netw_B and Netw_C yielded hydrodynamic volumes of 1.5 × 103 and 
1.2 × 103 nm3

, respectively, whereas the PLL starting material had a 
hydrodynamic volume of 8.6 × 102 nm3 (see SI, Table S1). An individual 
ZID molecule has an estimated volume of 20 nm3 [21]. Based on the 
increase in hydrodynamic volume, we infer that –on average– some tens 
of dendrimers are linked to the PLL backbone. Unfortunately, for 
Netw_A the 1H spectrum was dominated by residual unbound ZID in 
such a way that no DOSY trace for the PLL-ZID network signals could be 
obtained. 

Fig. 2. Schematic depiction of the formation of the PLL-Z8ID networks via NHS/EDC mediated amide bond formation.  

Table 1 
Different ratios of ZID : PLL used in the formation of PLL-ZID networks expressed 
in molar, reactive group and mass ratios.   

Molar ratio Reactive group ratio Mass ratio  

PLL ZID LYS COO− PLL ZID 

Netw_A 1 5000 1 1500 1 720 
Netw_B 1 500 1 150 1 72 
Netw_C 1 50 1 15 1 7.2  
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2.2. Surface immobilization of the PLL-ZID networks 

In order to form an antifouling coating by PLL-ZID networks, this 
crosslinked polymer network was self-assembled onto the surface by 
charged-based interactions between the free (protonated) terminal 
amine moieties of the lysine groups of PLL and the negatively charged 
silicon oxide surface, according to established protocols (Fig. 4) [28,59]. 

Once immobilized, the ZIDs should provide antifouling properties to 
the surface. To this end, PLL-ZID networks were self-assembled by 
overnight immersion of freshly cleaned, negatively charged silicon oxide 
surfaces in a 0.1 mg/mL solution of PLL-ZID in HEPES buffer, followed 
by washing with HEPES buffer and MilliQ water (following previously 
reported procedures [25,31]). XPS analysis of the coatings made by 
Netw_A, Netw_B and Netw_C was performed. Additionally, coatings 
with unfunctionalized PLL were made as a reference and also charac-
terized by XPS. All the obtained coatings showed signals for N (N1s at 
400 eV) and C (C1s at 285 eV) on the silicon oxide surfaces, which is in 
agreement with the presence of the polymer network (Fig. 5). 

Furthermore, the three PLL-ZID network coatings have a higher signal 
for O (O1s at 530 eV), which can be ascribed to the carboxylate groups in 
ZID. The layer thickness of the PLL and PLL-ZID network coatings were 
calculated using the Si/C ratio in the XPS wide scan to calculate the 
average thickness of the layers,[60,61] and was found to be 0.7 nm for 
PLL and approximately 0.8 nm for all the networks. Such a low layer 
thickness for a surface-immobilized polymer is in agreement with other 
types of surface-immobilized PLL-based bottlebrushes reported in liter-
ature [23–25], and typically attributed to the ultra-high vacuum con-
ditions of XPS thickness measurements that yield a collapsed polymer 
layer that will expand upon immersion in solution. 

The N1s narrow scan of the coating made by PLL revealed peaks at 
399.8 eV and 402.0 eV, which originated from non-protonated and 
protonated lysine amine moieties, respectively. The ZID-PLL networks 
showed an additional peak at 403.0 eV, which can be attributed to the 
dendrimer’s quaternary N+. Similar to the trend observed by 1H NMR 
spectroscopy for the three networks, the N1s narrow scans also showed 
an increase in the amount of incorporated ZIDs via an increased fraction 

Fig. 3. 1H NMR spectrum of the PLL-ZID networks and starting materials. From top to bottom: ZID, Netw_A, Netw_B, Netw_C and PLL (in D2O, 400 MHz, 298 K). 
The inset for Netw_A is a zoomed-in fraction of the Netw_A spectrum to show the presence of the small PLL signal d. 

Fig. 4. Schematic depiction of the self-assembly of a PLL-ZID network onto a silicon oxide surface.  
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Fig. 5. XPS wide spectra of the surface-immobilized PLL and PLL-ZID networks Netw_A, Netw_B and Netw_C.  

406 404 402 400 398 396

C
PS

Binding Energy (eV)

 PLL

86%
N

14%
N+

406 404 402 400 398 396

C
PS

Binding Energy (eV)

 Netw_A

29%
N

81%
N+

406 404 402 400 398 396

C
PS

Binding Energy (eV)

 Netw_B

78%
N

22%
N+

406 404 402 400 398 396

C
PS

Binding Energy (eV)

 Netw_C

78%
N

22%
N+
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of the ZID-based quaternary nitrogen atoms (Fig. 6). 
Additionally, the water contact angle (WCA) of all coatings made by 

Netw_A, Netw_B and Netw_C displayed full wetting, compared to the 
WCA of the PLL coating being <20◦, but remaining a droplet on the 
surface. By eye, a clear difference in hydrophilicity was observed but 
unfortunately the difference could not be quantified due to the lower 
limit of angle detection of the WCA setup. The high hydrophilicity can 
be ascribed to the ZIDs which are attached to the PLL. 

Combining all data shows that a macromolecular PLL-ZID network is 
formed via a combination of covalent amine bonds and charge-based 
interactions. These PLL-ZID networks can be applied as coatings that 
will self-assemble onto silicon oxide. While possible, the presence of 
charge-based binding of additional ZID units reduced the degree of 
definition of the resulting coatings. In order to find a more defined 
macromolecular structure, a second type binding strategy was studied. 
This strategy involved the incorporation of a defined number of com-
plementary functional groups on PLL and ZID, respectively that will 
react to form a covalent bond, which should lead to linear PLL-ZID 
macrostructures. 

2.3. Synthesis and characterization of linear PLL-ZID macrostructures by 
click chemistry 

To obtain poly(L-lysine)-zwitterionic dendrimer (PLL-ZID) macro-
structures with a well-defined, linear macrostructure, we set out to form 
covalent bonds by a Cu-catalyzed azide/alkyne cycloaddition (CuAAC) 
reaction between a single terminal alkyne group on the ZID and terminal 
azide groups on a commercially available azide-modified PLL (one out of 
five lysines contains an azide group) [45]. Since we used ZIDs containing 
one alkyne group, as previously reported by our group [21]. This system 
leads to a better defined product compared to the more random net-
works that have multiple possible interactions between PLL and a single 
ZID (Fig. 7). 

After letting the CuAAC reaction run overnight at 40 ◦C, the mixture 
was extensively dialyzed against water to remove the copper sulfate and 

sodium ascorbate. After freeze-drying, the presence of both the ZID and 
PLL in the product was confirmed by 1H NMR spectroscopy (Fig. 8). 
Direct evidence for the success of the reaction is the triazole proton 
signal at δ 8.02 ppm. While this is a relatively small signal as a result of 
the large overall hybrid macromolecular structure, it could definitely be 
discerned in the 1H NMR spectrum. When normalizing the integrals to 
the ZID signal e (δ 2.14 ppm), the integral ratio of this signal compared 
to a (triazole, δ 8.02 ppm) and f (PLL, δ 1.34 ppm) would imply a con-
version of approximately 90% of all PLL-based azide groups in the 
CuAAC reaction. Since the integration of peaks a and f is rather difficult, 
we treat this value only to mean that a significant fraction of the azide 
groups has reacted (see XPS-based data below for a more precise 
determination). Unfortunately, the 1H spectrum was dominated by re-
sidual unbound ZID in such a way, that no DOSY trace for the Lin_A 
signals could be obtained. 

Additionally, infrared (IR) spectroscopy showed the disappearance 
of the characteristic azide signal (at 2108 cm− 1) upon reaction with the 
ZID’s alkyne moiety in the CuAAC reaction, next to the expected signals 
for the ZID and PLL (Fig. S10 in the SI). 

2.4. Surface immobilization of linear PLL-ZID 

The linear PLL-ZID Lin_A was self-assembled onto silicon oxide in a 
similar fashion as described for the PLL-ZID networks (see Fig. 9). Upon 
washing and drying, the coating made by Lin_A was analyzed using XPS. 
Again, the XPS wide scan showed signals for N (at 400 eV) and C (285 
eV) on the silicon oxide surfaces, which confirms the formation of the 
polymer network (Fig. 10). The layer thickness of the Lin_A PLL-ZID was 
calculated based om the Si/C ratio in the XPS wide scan and was found 
to be approximately 1.0 nm. Also here, the relatively thin layer is due to 
the collapsed polymer layer in the ultra-high vacuum within the XPS 
machine. The observed dry thickness was in line with the thicknesses of 
the PLL (0.7 nm) and the PLL-ZID networks Netw_A, Netw_B, Netw_C 
(all approximately 0.8 nm). 

The XPS N1s scan showed the characteristic peaks for neutral (400.0 

Fig. 7. Schematic depiction of the formation of the linear PLL-ZID macrostructure Lin_A via copper(I)-mediated triazole ring formation.  
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eV), and quaternary (403.0 eV) amines with a ratio of 53:47. Since the 
theoretical ratio at full conversion is 17:25, the conversion of the click 
reaction was estimated to be roughly 60%. While this value is somewhat 
lower than the value obtained from the NMR integrations, this might be 

explained by the relatively small (and hence difficult to reliably inte-
grate) azide signal needed for the NMR integration; in addition it means 
that loss of the IR azide signal does not imply full reaction, which can be 
partially attributed to peak broadening of the azide peaks due to the 

Fig. 8. 1H NMR spectrum of the linear PLL-ZID macrostructure Lin_A (in D2O, 400 MHz, 298 K).  

Fig. 9. Schematic depiction of the self-assembly of linear PLL-ZID Lin_A on silicon oxide.  
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Fig. 10. XPS wide (left) and N1s narrow (right) spectra of surface-immobilized PLL-ZID Lin_A.  
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interaction of the polar azide groups with the highly polar ZID units.[62] 
Additionally, the coating made by linear PLL-ZID Lin_A was extremely 
hydrophilic and fully wetting when applying a droplet of water in order 
to determine the WCA. This extreme hydrophilicity is in line with the 
properties found for the PLL-ZID networks. In summary, we conclude 
the click conversion to have occurred with moderate to good yields. 
Given the size of the dendrimers that should click to the PLL backbone, 
and the concomitant steric hindrance, it is not surprising that the click 
reaction stopped before full conversion. 

2.5. Antifouling properties of the PLL-ZID based coatings 

2.5.1. Fluorescence microscopy 
Having successfully synthesized and immobilized the different PLL- 

ZID coatings on silicon oxide surfaces, a preliminary investigation of 
their antifouling properties was performed. Firstly, the degree of fouling 
was related to the amount of protein adsorption by fluorescence mi-
croscopy, by exposing the coatings to fluorescently labelled single- 
protein solutions [55,63–65]. In this study, lysozyme (LYS), bovine 
serum albumin (BSA) and fibrinogen (FIB) were used as model proteins 
at concentrations of 1 mg/mL in phosphate-buffered saline (PBS) and 
contacted with the surfaces for 15 min before washing with PBS. BSA 
was chosen since it is one of the most common proteins in blood plasma 
with an overall negative charge at pH 7.4 (PBS buffer) [66]. LYS is a 
relatively small, hydrophilic protein and was used because of its overall 
positive charge at pH 7.4 (PBS buffer)[67]. FIB was used as a more 
challenging fouling model protein since it plays a major role in clotting 
of the blood due to formation of fibrin networks, and platelet plug for-
mation [68]. 

As controls for our single-protein adsorption experiments, we used 
bare silicon oxide surfaces and surfaces modified with commercially 
available PLL-PEG, which is known to have good single-protein anti-
fouling properties [24]. In the fluorescence study, the unmodified blank 
silicon oxide surface showed higher fluorescence intensities from all 
protein solutions (Fig. 11), indicating significant fouling compared to all 
coated silicon oxide surfaces. Furthermore, the coating made by Netw_C 
(which contains the least ZID) showed most fouling of all the coated 
surfaces, especially in the case of BSA and FIB, though it still performed 
better than the blank surface. The other coatings Netw_B, Netw_A and 
Lin_A performed very similar to coatings made by commercially avail-
able PLL-PEG. It should be noted, however, that these data are close to 
the limit of detection for this method and close to the autofluorescence 
intensity as measured for an unexposed, blank silicon oxide surface. 
Therefore, using this method, we could not further differentiate between 
the antifouling performance of our synthesized coatings, in relation to 
the PLL-PEG coating. 

2.5.2. Quartz crystal microbalance 
To overcome these limitations, both type of coatings were further 

tested by an additional, more quantitative method: quartz crystal mi-
crobalance with dissipation monitoring (QCM-D) [69]. Recently, QCM- 
D has emerged as a precise and reliable method to monitor and quantify 
surface adsorption from aqueous solutions onto a broad variety of sur-
faces [48,70–77]. QCM-D measures real-time resonating frequency and 
dissipation shifts of a quartz crystal resonator. These shifts can provide 
information on mass (frequency related) and physical properties 
(dissipation related) of an adsorbed layer on the quartz surface [69]. The 
recorded data can be modelled to further calculate viscoelastic proper-
ties (i.e. viscosity, elastic modulus) as well as wet thickness of the 
adsorbed layer using the Sauerbrey equation [78]. Hence, QCM-D offers 
a suitable and convenient tool to investigate protein adsorption on sil-
icon oxide surfaces [70]. Netw_A was chosen as a representative for the 
PLL-ZID networks and measured alongside linear PLL-ZID Lin_A – which 
showed promising initial results – to compare to blank silicon and PLL- 
PEG. 

Starting from QCM-D sensors with a silicon oxide top layer, we were 
able to use the previously described protocol to coat these sensors with 
Lin_A, Netw_A or PLL-PEG. The frequency change of the QCM-D crystal 
upon passing of a solution of foulant through the QCM-D cell was 
monitored and compared to the response of non-modified, blank silicon 
oxide. The surface adsorption of bovine serum albumin (BSA), lysozyme 
(LYS), fibrinogen (FIB) and diluted human serum (HS) foulant solutions 
were monitored and quantified (Fig. 12). 

All four tested foulant solutions showed a very similar response 
pattern. The sensor surface showed a stable baseline when being flushed 
with PBS buffer (0–500 sec). Upon switching to the foulant solution, a 
distinct change in frequency was observed, that could be related to 
binding of foulant to the surface. After 2400 sec, when the medium was 
switched back to PBS buffer, the frequency dropped, which can be 
explained by the release of weakly bound protein. After equilibration, a 
certain fraction of protein was still bound, which was referred to as the 
level of fouling. As expected –and in line with the fluorescence micro-
scopy results– all modified sensors (Lin_A, Netw_A and PLL-PEG) 
showed clearly less adsorption compared to the blank silicon oxide 
sensor. Furthermore, Lin_A outperformed Netw_A consistently by 
adsorbing less protein mass upon contact with all fouling solutions. We 
attribute this to the less defined system and limited flexibility of Netw_A 
coatings: whereas the system in Lin_A is free to self-organize at the 
surface – meaning the lysines pointing towards the surfaces while the 
ZIDs having an upward orientation – the random 3D networks in 
Netw_A might not have this freedom, leading to a coating with a top- 
layer that possesses a lower density of ZID. 

The low adsorption of BSA (10 mg/mL, isoelectric point: 4.7, MW: 

Fig. 11. Fluorescence intensities of uncoated and coated silicon oxide surfaces after exposure to solutions containing BSA-AF488, LYS-FITC or FIB-AF488.  
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66 kDa) on all modified sensors compared to the (less hydrophilic) un-
modified silicon oxide sensor can be explained by the effective resistance 
of the coatings to fouling mediated by hydrophobic interactions. Espe-
cially the fact that the newly developed Lin_A outperforms the 
commercially available PLL-PEG (WCA = 31◦), could be due to the more 
hydrophilic character of the Lin_A-based coating (WCA < 20◦). Lyso-
zyme (10 mg/mL, isoelectric point: 11, MW: 14 kDa) was selected due to 
its net positive charge, in contrast to the negative charge of the other 
proteins tested, in order to assess the influence of electrostatic in-
teractions. Both PLL-ZID-based coating showed increased adsorption in 
LYS fouling tests compared to BSA, but in both cases still lower than the 
uncoated silicon oxide surface. On the other hand, PLL-PEG showed very 
similar fouling as observed for BSA. Fouling by FIB (10 mg/mL; iso-
electric point 5.7, MW: 340 kDa) was strongly reduced by Lin_A and 
PLL-PEG coatings. The excellent antifouling by PEG is in agreement with 
previous works showing resistance to fouling from FIB [79,80]. 
Compared to Lin_A and PLL-PEG, a higher fouling was observed on 
Netw_A, probably due to the less defined system, which might under-
standably also lead to less defined coatings. Amongst the tested single- 
protein solutions, FIB showed to be most fouling, especially on the un-
coated blank surface, which was previously observed in literature by 
SPR [81]. Next to testing the antifouling behavior of the coatings against 
single protein solutions, we also tested human serum (5% in PBS) to 
more closely mimic the protein adsorption that would occur in biolog-
ical fluids [82]. Both coatings by Netw_A and Lin_A showed clearly 
decreased fouling compared to the blank silicon oxide sensors. The 

newly developed Lin_A even performed equally well as the commer-
cially available PLL-PEG, probably due to the more hydrophilic char-
acter of the Lin_A-based coating. 

The newly developed PLL-ZID macrostructures – particularly Lin_A – 
exhibited a decent resistance to fouling from single-protein solutions as 
well as diluted human serum, as revealed by fluorescence and QCM-D 
data. While the linear ZID-PLL platform does not yet meet the ultra-
low fouling levels as described in literature for the currently best per-
forming coatings [54,55,83–89], the results are obtained with 
physiologically relevant protein concentrations (10 mg/mL) and contact 
times (30 min) on a platform that involves only a single self-assembly 
step from an aqueous solution in an ambient atmosphere. Specifically, 
the low antifouling levels of <1 ng/cm2 in single protein solutions such 
as BSA, LYS and FIB have frequently been shown for relatively thick 
(>30 nm) zwitterionic polymer brush coatings using lower concentra-
tions of proteins, such as 0.1 mg/mL and 1.0 mg/mL [90] and shorter 
fouling exposure times (<30 min) [65,88,90,91]. In addition, those 
coatings were obtained by multiple-step surface-initiated controlled 
radical polymerizations usually in an inert atmosphere, which makes it 
–in contrast to our approach– difficult to scale up [7]. 

2.6. Biofunctionalization 

To further develop the concept of PLL-ZID complexes as coatings, we 
also tested their potential for use as bio-interactive coatings which may 
find their application towards selective binding in, e.g., biosensors and 
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Fig. 12. QCM-D protein adsorption of three protein solutions (BSA, LYS and FIB at 10 mg/mL in PBS) and human serum (5% in PBS) measured in duplo. Absolute 
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tissue engineering [54,92,93]. Since one of the most studied bio- 
interactions is that between biotin and streptavidin, biotin was chosen 
as a functional group to be immobilized on the surface of the coating to 
selectively capture streptavidin. The binding between biotin and strep-
tavidin is rapid and robust and therefore and ideal candidate to test bio- 
selective interactions on our newly developed platform [94–96]. We 
selected the Lin_A-based coating to functionalize with biotin to be tested 
for bio-selective interactions with streptavidin, with the hypothesis that 
it would maintain its antifouling properties against BSA (1 mg/mL). 
After immobilizing Lin_A on a surface, free carboxylates on the den-
drimer are still present on the surface. These carboxylate groups, allow 
for activation by NHS/EDC –in a manner similar to what we used for 
synthesis of the PLL-ZID networks– to couple a commercially available 
amino-functionalized biotin (Fig. 13) [55,97,98]. 

After functionalizing the Lin_A based coating on the QCM-D sensor 
with biotin, the coating was tested for bio-selective interactions with 
streptavidin whilst maintaining its antifouling properties against BSA (1 
mg/mL). As controls, blank silicon oxide, non-biotinylated Lin_A and 
PLL-PEG were also monitored for their response towards streptavidin 
(Fig. 14). The sensors showed stable baselines when being flushed with 
PBS buffer (0–500 sec). Upon switching to a streptavidin solution (0.1 
mg/mL), a distinct and very fast response was observed for only the 
biotinylated Lin_A. This indicated selective (and rapid) binding of 

streptavidin to the biotinylated Lin_A, whereas the other surfaces 
showed no clear signs of adsorption. After switching to PBS buffer, the 
signal remained stable, which indicates no release of streptavidin due to 
the strong binding of biotin-streptavidin [99]. To test if the Lin_A based 
coating maintained its antifouling properties after biotinylation and 
binding with streptavidin, a second test was performed by flushing a 
BSA solution (from 4100 to 5900 sec), followed by flushing with PBS for 
another 1500 sec. As anticipated, a similar response to the initial anti-
fouling test (Fig. 12) was observed: a distinct change in frequency, 
related to binding of BSA to the surface, followed by a drop in signal 
upon switching back to PBS buffer caused by release of weakly bound 
protein. A quantitative comparison between the unfunctionalized and 
biotin-functionalized Lin_A coatings yielded a BSA adsorption of 
approximately 6 and 10 ng/cm2, respectively. This indicates that the 
antifouling properties of the biotinylated Lin_A were maintained, also 
after binding of streptavidin. 

3. Conclusions 

In this work we developed two different routes to synthesize 
polymer-dendrimer hybrids by the interconnection of PLL and ZID. The 
first route lead to network-like structures in which PLL and ZIDs were 
crosslinked by multiple amide bonds. By using different ratios of PLL and 

Fig. 13. Biotinylation of Lin_A PLL-ZID coated silicon oxide.  
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ZID, we could vary the size and PLL:ZID ratio in the formed networks. 
The second route lead to a more defined, linear PLL-ZID macromolecule, 
which was formed via click coupling of multiple ZIDs to a single PLL 
backbone. These two different types of PLL-ZID systems were then self- 
assembled onto silicon oxide surfaces from aqueous solutions in a single 
step, to form thin, hydrophilic coatings, which could be further bio- 
functionalized using the remaining carboxylate moieties in the 
coating. Especially the linear variant yielded good antifouling coatings 
towards single-protein solutions and diluted human serum, as shown in 
detail by using quartz crystal microbalance (QCM) for both the original 
as well as the biofunctionalized coatings. Given the ease with which 
these hybrid structures can be synthesized and surface-immobilized 
(single step, just immersing in aqueous solution under ambient condi-
tions), these hybrid linear structures could be further studied, e.g., by 
focusing on different (lengths of) polymer backbones and/or different 
dendrimer (generations). 
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