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Chapter 18

Live-Cell Assessment of Reactive Oxygen Species Levels
Using Dihydroethidine

Sander Grefte and Werner J. H. Koopman

Abstract

Reactive oxygen species (ROS) play an important role in cellular (patho)physiology. Empirical evidence
suggests that mitochondria are an important source of ROS, especially under pathological conditions.
Here, we describe a method for ROS measurement using dihydroethidium (HEt) and live-cell microscopy.
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Abbreviations

FCCP carbonyl cyanide-p-trifluoromethoxyphenylhydrazone
HEt dihydroethidium
HT HEPES-Tris
mito-HEt mito-dihydroethidium
ROS reactive oxygen species
TPP triphenylphosphonium
Δψ mitochondrial membrane potential

1 Introduction

Reactive oxygen species (ROS) can damage cellular biomolecules,
but are also increasingly recognized as signaling molecules [1–
4]. Among other sources, mitochondria are considered to be
important contributors to ROS generation during healthy and
pathological conditions [5]. The primary ROS superoxide (O2

·�)
is produced by membrane-bound parts of the respiratory chain and
a number of soluble mitochondrial proteins. Although O2

·� cannot
traverse membranes and has only limited reactivity with biological
targets, it might function as a redox signal in mitochondria
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[6–8]. Since mitochondrial signaling and cellular function are intri-
cately linked, it is important to measure mitochondrial O2

·� in the
proper context—that is, the living cell. However, it has proven
difficult to develop fluorescent probes or sensors that are specific
for O2

·� and sensitive enough to compete with superoxide dismu-
tase (SOD), which converts O2

·� to hydrogen peroxide at an
extremely high rate [9]. Quantifying the oxidation of dihydroethi-
dium (HEt) is a widely applied strategy to detect O2

·� in living cells.
HEt is membrane-permeable and reacts with O2

·� to form the
specific fluorescent product 2-hydroxyethidium (2-OH-Et+)
(Fig. 1a). In addition, HEt can act as a hydride acceptor, leading
to oxidative formation of the nonspecific fluorescent product ethi-
dium (Et+) [10–12]. Whereas the fluorescence excitation peaks of
2-OH-Et+ (Fig. 1b; upper blue curve) and Et+ (lower blue curve)
overlap at around 500 nm, 2-OH-Et+ has one additional peak at
396 nm which has been used for more specific detection of
2-OH-Et+ [9]. Still, the latter approach should be considered
semiquantitative and not fully O2

·�-specific given the unknown
reactivity of O2

·� with SOD, the possible oxidation of HEt by
cytochrome c and because HEt can catalyze O2

·� dismutation
[9, 13]. Given its lipophilic nature, HEt oxidation can in principle
occur everywhere in the cell. Both 2-OH-Et+ and Et+ are positively
charged and therefore accumulate: (1) in the nucleus where they
intercalate with nucleic acids, and (2) in the mitochondrial matrix
due to the inside-negative membrane potential (Δψ) of this organ-
elle. In an attempt to utilize Δψ , a mitochondria-targeted variant of
HEt was developed (MitoSOX Red®, aka Mito-HEt). The latter
consists of HEt extended with a cationic triphenylphosphonium
(TPP) side group [9]. Below we describe the critical loading proce-
dure for different intact cells and methods to measure
HEt-oxidizing ROS using live cell microscopy.

2 Materials

2.1 General 1. Cells cultured on a glass coverslip (ø24 mm, Thermo Scientific,
Etten-Leur, The Netherlands) placed in a 35-mm CellStar
tissue culture dish (Sigma-Aldrich) or disposable incubation
chamber (Willco Wells BV) (see Note 1).

2. A microscope system with the following setup or similar; a
monochromator (Polychrome IV, TILL Photonics) allowing
for excitation with 405 and/or 490 nm light, a 525DRLP
dichroic mirror (Omega Optical Inc.) and 565ALP emission
filter (Omega Optical Inc) and an image capturing device (e.g.,
a CoolSNAP HQ monochrome CCD-camera (Roper Scien-
tific)). The microscope should be equipped with an environ-
mental control system to sustain cell viability.
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3. 5� HEPES buffer: 662.2 mM NaCl, 50 mM HEPES,
21.06 mM KCl, 6.1 mM MgCl2 (see Note 2).

4. 1� HEPES-Tris buffer: 10 mM HEPES, 132 mM NaCl,
4.2 mM KCl, 1.2 mM MgCl2, 1.0 mM CaCl2, 5.5 mM D-
glucose. Adjust the pH to 7.4 using Tris-base (see Note 3).

2.2 Dihydroethidium

(HEt)

1. HEt stock solution (31.7 mM in DMSO): Dissolve 1 mg of
HEt powder (Invitrogen) in 100 μl DMSO. Prepare 10 μl
aliquots in brown Eppendorf tubes, overlay with N2 gas and
store at �20 �C (see Note 4).

2. HEt working solution (5 mM in DMSO): Thaw an aliquot of
HEt stock solution and add 53.4 μl of DMSO to yield the
5 mM HEt working solution.

2.3 Mito-

Dihydroethidium

(Mito-HEt)

Mito-HEt working solution (500 μM inDMSO): Dissolve 50 μg of
MitoSOXRed® powder (Invitrogen) in 132 μl DMSO. Prepare 4 μl
aliquots in brown Eppendorf tubes, overlay with N2 gas and store
at �20 �C.

3 Methods

3.1 Microscopy

Imaging of

Dihydroethidium (HEt)

Oxidation

1. Seed the cells at such densities that the cells are 70–80% con-
fluent at the time of imaging. This allows for subtraction of the
background signal (see Note 5).
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Fig. 1 Chemical structures and excitation spectra of HEt and mito-Het. (a) HEt and mito-HEt specifically react
with O2

·� to form the reaction product 2-OH-(mito-)Et+ and (mito-)Et+ as a nonspecific by-product. The inset
shows the HEt- and mito-HEt-specific groups. (Figure was adapted from [17]). (b) Fluorescence excitation
(blue) and emission (red) spectra of 2-OH-Et+ (top traces) and Et+ (lower traces) superimposed with the
excitation and emission filters used in our microscope setup. (Figure was adapted from [18]. This figure was
reproduced (with permission) from Ref. 19)
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2. Transfer the cells to an incubator close to the microscope
system at least 1 h prior to imaging (see Note 1).

3. Aliquot 2 μl of HEt working solution in Eppendorf tubes.

4. Take 1 ml of medium from the culture dish, add it to the
aliquoted HEt and vortex for 5–10 s to prepare a final concen-
tration of 10 μM (see Note 6).

5. Replace the rest of the medium from the dish by the medium–
HEt solution.

6. Incubate the cells in a 37 �C, 5% CO2 incubator for exactly
10 min (see Note 7).

7. Wash the coverslip three times with 1 ml PBS.

8. Replace the PBS by prewarmed HT buffer and mount the
coverslip in a Leiden chamber on the microscope [14]. When
using oil-based objectives be careful to remove all excess buffer
from the bottom of the coverslip with a tissue to avoid optical
artifacts.

9. Start loading of a next coverslip as soon as loading of the
current one is complete.

10. Preferably, take images at both 405 and 490 nm excitation. Set
the exposure time to 100 ms.

11. Record at least 10 different images, each containing ~15 cells
(see Notes 8 and 9).

3.2 Microscopy

Imaging of Mito-

Dihydroethidium

(Mito-HEt) Oxidation

1. Seed the cells at such densities that the cells are 70–80% con-
fluent at the time of imaging. This allows for subtraction of the
background signal.

2. Transfer the cells to an incubator close to the microscope
system at least 1 h prior to imaging.

3. Thaw the 4 μl mito-HEt contents of a brown Eppendorf tube.

4. Take 1 ml of medium from the culture dish, add it to mito-HEt
and vortex for 5–10 s to prepare a final concentration of 2 μM
(see Note 10).

5. Replace the rest of the medium from the dish by the medium–
mito-HEt solution.

6. Incubate the cells in a 37 �C, 5% CO2 incubator for exactly
10 min (see Note 7).

7. Wash the coverslip three times with 1 ml phosphate buffered
saline (PBS).

8. Replace the PBS by prewarmed HT buffer and mount the
coverslip in a Leiden chamber on the microscope [14]. When
using oil-based objectives be careful to remove all excess buffer
from the bottom of the coverslip with a tissue to avoid focusing
problems.

294 Sander Grefte and Werner J. H. Koopman



9. Start loading of a next coverslip as soon as loading of the
current one is complete.

10. Preferably, take images at both 405 and 490 nm excitation. Set
the exposure time to 500 ms.

11. Record an image sequence of one field of view, acquiring one
image every 5 or 10 s for a total of at least 2 min (seeNote 11).

3.3 Image Analysis 1. Open the raw images in an image analysis program such as
Metamorph® (Molecular Devices Corporation, Palo Alto,
CA, USA), Image Pro Plus (Media Cybernetics) or the open-
source software FIJI (http://fiji.cs/).

2. Draw circular regions of interest (ROIs) in: (1) a mitochondria-
dense area, (2) surrounding the nucleus, and (3) just outside
each individual cell to correct for background intensity (see
Note 9).

3. Export the average ROI gray value to a spreadsheet program
such as Excel (Microsoft) and calculate the background-
subtracted values of the mitochondria and the nucleus of
each cell.

4 Notes

1. Due to the positive charge of mito-HEt and the reaction
products of HEt oxidation, the fluorescence intensity measured
in the mitochondria is Δψ-dependent (Fig. 2). Since the mito-
chondrial membrane potential is very sensitive to environmen-
tal changes (e.g., temperature, pH), we advise to culture the
cells in separate dishes and to allow for cells to recover in an
incubator close to the microscope system at least 1 h prior to
imaging. In addition, we have noticed that HEt can react with
residues on a number of glass-bottom culture dishes, leading to
fluorescent “spots” in the background. Therefore, always check
background levels for disturbances.

2. We store a large volume of 5� HEPES buffer at 4 �C, which is
stable for at least 6 months.

3. We advise to make the 1�HT buffer supplemented with the
required substrates at the day of imaging. We routinely use
5.5 mM D-glucose for human skin fibroblasts and myoblasts/
fibers, whereas HEK293 cells are imaged in HT buffer contain-
ing 25 mM D-glucose. In addition, one can consider supple-
menting pyruvate and/or glutamine. If necessary, the HT
buffer can be stored for ~1 week at 4 �C.

4. Always keep HEt solutions protected from light and air.
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5. Proper background correction close to the cells is of particular
importance when the fluorescent signal is close to the back-
ground intensity. Such a background correction is challenging
when confluency exceeds 80%. Therefore, adjust the seeding
condition according to the number of days the cells are
cultured.

6. We prefer to load the cells with HEt in the collected cell culture
medium to detect ROS levels in the exact cell culture condi-
tions. However, we have noticed lower fluorescence intensities
in medium-loaded cells as compared to cells loaded with HEt
in the HT buffer. This is possibly caused by binding of the HEt
to proteins present in the medium (i.e., serum), but might also
be due to increased fluorescence levels in HT medium
(Fig. 3a).

7. TheHEt incubation time should be determined experimentally
for each cell line separately. To be able to semiquantitively
measure HEt oxidation, the increase in fluorescence intensity
from oxidation products should be linear. To that end, we
mount unloaded cells onto the microscope system in HT
buffer, start imaging every 10 s and add the required HEt in
HT buffer in 1:1 ratio. We then calculate the maximum time of
incubation in which the increase is still linear. An incubation
time of 10 min is most often used for HEK293 and human skin
fibroblasts (Fig. 3b). However, in some cell types such as
primary mouse myotubes it appears to be safer to use shorter
incubation times because the signal increase deviates from
linearity within 10 min (Fig. 3c).

8. When attempting to image HEt oxidation using 405 nm exci-
tation, we advise to use the 490 nm light to locate cells and find
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Fig. 2 Localization of HEt oxidation products is dependent on the membrane potential. Addition of the
mitochondrial protonophore carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP; 0.5 μM) acutely
induces translocation of fluorescent HEt and mito-HEt oxidation products from the mitochondria to the nucleus
in HEK293 cells and human skin fibroblasts. (This figure was reproduced (with permission) from Ref. 19)
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a good focus, because in our experimental setup fluorescence
intensity is higher at 490 nm than at 405 nm excitation
(Fig. 4a). Moreover, we routinely only measure fluorescence
from 490 nm excitation since, in some cell types, the 405 nm
signal is too low for reliable quantification. However, relative
changes in emission fluorescence observed at 405 and 490 nm
excitation are similar, justifying the use of 490 nm as a measure
of HEt oxidation [15].

9. It is sufficient to have only a portion of the cells in the field of
view, since only part of the cell is analyzed.

10. We advise to use a mito-HEt concentration that is as low as
possible, but still revealing detectable levels of fluorescence. In
theory, the positive charge accumulating in the mitochondrial
matrix might interfere with mitochondrial bioenergetics and
therefore report incorrect HEt oxidation values. In addition, it
was reported that nuclear fluorescence occurred at concentra-
tions as low as 2 μM and therefore to use a concentration of
mito-HEt between 0.1 and 2.5 μM [9].

11. Removing excess HEt after incubation effectively removes all
nonoxidized HEt and therefore the signal remains stable for at
least 10 min of continuous imaging [16]. The TPP moiety of
Mito-HEt induces accumulation of nonoxidized Mito-HEt in
the mitochondrial matrix that is insensitive to washing. Conse-
quently, the fluorescence signal continues to increase after
washing and therefore we advise to measure the slope of the
increase after loading and washing (Fig. 4b).
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Fig. 3 HEt loading procedure in intact cells. (a) HEK293 cells were incubated with HEt for exactly 10 min in the
collected cell culture medium (DMEM) or washed and incubated for exactly 10 min in HT buffer. HEt oxidation
was measured at 490 nm. The data presented represent the mean � SE of two different experiments.
Statistical significance was assessed using a Mann–Whitney test. Numerals within bars indicate the number
of analyzed cells. (b) Representative trace of nuclear HEt oxidation fluorescence intensity at 490 nm excitation
light in HEK293 cells. Up to approximately 10 min the increase remains linear. Note that the mitochondrial
increase occurs faster in these cells than in the nucleus. (c) Representative trace of mitochondrial HEt
oxidation fluorescence intensity at 490 nm in myoblasts. The increase is linear during 4.5 min. (This figure was
reproduced (with permission) from Ref. 19)
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