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Abstract

Adoption of new plant varieties has played a significant 

role in eradicating global hunger. Previous research has 

mainly focused on farmer adoption and impact of new crop 

varieties, although upstream adoption of technologies in 

plant breeding can generate substantial multiplier effects 

on downstream impacts. This study moves upstream in the 

innovation system to generate policy advice on adoption 

and transfer of accelerated rice breeding technologies. 

More specifically, we assess the determinants of global 

adoption of rapid generation advance (RGA) through a 

sample of 158 rice breeders operating in various research 

institutes worldwide. Moving upstream in the innovation 

system has important theoretical and empirical implica-

tions due to the smaller number of decision- making units 

in the adoption process and the increasing role of institu-

tional and managerial factors that may overrule individ-

ual adoption motivations. We revisit multi- stage models 

and devise the most robust estimation method that can be 

used in this situation. To generate insights on the impact 

of individual versus institutional adopter characteristics 

on upstream technology adoption, we juxtapose the re-

sponse curves of the determinants of RGA adoption in 

rice breeding among alternative adoption stages, levels 

of conditionality and model specifications. Our findings 
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1 |  INTRODUCTION

Adoption of new crop varieties by farmers is one of the most widely studied topics in agri-
cultural economics (Besley & Case, 1993; Feder et al., 1985; Kafle, 2010; Marra et al., 2003; 
Sunding & Zilberman, 2001). Although most adoption studies focus on farmers, farm- level 
adoption of varieties crucially hinges on the quality and speed of plant breeding programmes 
upstream in the innovation system. Previous technology adoption studies have almost solely 
been focused on farmers. The question of technology adoption by crop breeders is mostly 
unaddressed in the present literature. For example, Rogers’ (2003) seminal work, ‘Diffusion 
of Innovations’, only mentions the word ‘breeder(s)’ twice in contrast to mentioning the word 
‘farmer(s)’ no less than 84 times. Sunding and Zilberman’s (2001) handbook chapter on this 
topic does not mention breeders while referring to farmers 73 times. Similarly, a recent special 
issue in Applied Economic Perspectives and Policy on ‘Adoption of Agricultural Innovations’ 
focuses entirely on downstream farm- level adoption, while upstream adoption is not addressed 
(Pannell & Zilberman, 2020).

Among agricultural scientists, breeding is considered a principal activity in improving ag-
ricultural performance (such as improving yield), especially in the face of emerging challenges 
(abiotic and biotic stresses). Breeding of new varieties was one of the cornerstones of the Green 
Revolution in wheat, rice, and maize (Evenson & Gollin, 2003) and even today, production 
increases can in no small degree be attributed to genetic innovation (Khush, 2005; Tester & 
Langridge, 2010). However, plant breeding is typically characterised by long production pro-
cesses that dramatically reduce its responsiveness to unpredictable changes in crop production 
environments, climate or markets (Lenaerts et al., 2019a). Challenges such as increasing de-
mand and climate change will determine the future state of food security and might even— if 
no action is taken— hold back or reverse progress toward a world without hunger (Beddington, 
2010; Wheeler & Von Braun, 2013). Due to their interaction and mutual reinforcement, these 
factors are expected to amplify the overall burden of food insecurity and the consequent need 
to transform food systems (Reardon & Timmer, 2014). Therefore, rapid breeding and cultivar 
delivery systems can be an important driver of climate change adaptation and global food 
security (Atlin et al., 2017). In many cases, however, especially in the developing world, devel-
opment, as well as dissemination and adoption, of new technologies are severely hampered, 
limiting their potential to improve food security.

The International Rice Research Institute (IRRI)— a leading global public breeding in-
stitute— is currently accelerating its breeding programme through a method named ‘rapid 
generation advance’ (RGA) (Atlin et al., 2017; Collard et al., 2019). Accelerated breeding 
has the potential to increase adoption benefits due to earlier release (Lenaerts et al., 2018b), 

confirm the importance of institutional and managerial 

factors and suggest that adoption and transfer of breed-

ing technologies require breeding institutes to provide an 

enabling environment in which breeders are encouraged 

to take risks and are given sufficient freedom to experi-

ment with and implement new technologies.
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reduced operational costs (Collard et al., 2017) and an overall increase in breeding efficiency 
(Bonnecarrere et al., 2019). Despite being developed in the 1960s, this technology remains 
vastly underused in breeding institutes (Lenaerts et al., 2018a). Understanding why accelerated 
breeding methods such as RGA remain underused is an essential step in accelerating global 
crop breeding through technology transfer, especially in public innovation systems.

Our first objective is to address the literature gap on technological change in crop breeding 
institutes and to formally examine technology adoption in plant breeding. Improving tech-
nology adoption upstream has significant multiplier effects on downstream impacts such that 
even small technological changes can add up to several billion US dollars of benefits accruing 
to farmers and consumers (Lenaerts et al., 2018b). Moving upstream has important theoretical 
and empirical implications. First, institutional factors such as the employment contract and 
the level of operational freedom increasingly play a role in technology adoption decisions when 
one moves from self- employed actors (farmers) to employees operating in private or public 
organisations (breeders). To capture the diffusion of innovations in organisations, one needs 
to study both the organisation's internal and external characteristics and individual (leader) 
characteristics (Rogers, 2003). Lenaerts et al. (2018a) and the corresponding published dataset 
(Lenaerts et al., 2019b) adapted Rogers’ (2003) general organisational innovation framework 
to the case of technology adoption in plant breeding institutes (Figure 1). They conducted the 
first global online survey with 189 rice breeders from 51 rice- growing countries worldwide to 
assess rice breeders’ and breeding institutes’ readiness to adopt alternative breeding methods. 
Whereas Lenaerts et al. (2018a) provide valuable descriptive information on breeders’ stated 
(that is, willingness or intention to adopt) and revealed (that is, actually implemented) adop-
tion of accelerated breeding, more in- depth insights into the complicated adoption process— 
from intentions to real behaviour— can be gained by analysing the data provided by Lenaerts 
et al. (2019b) through a more formal econometric approach. If institutional factors overrule 
individual preferences, revealed adoption models would deviate markedly from stated adop-
tion models in the effects of individual breeder characteristics. For example, rice breeders with 
no intentions to adopt a technology may eventually do so because of managerial adoption 
decisions at the institutional level and not because of personal motivations. Understanding in-
dividual versus institutional adoption motivations is important since breeders in public breed-
ing institutions are responsible for generating public goods. This top- down view is in line with 

F I G U R E  1  Framework for the adoption of new technologies in plant breeding. Source: Adapted from Lenaerts 
et al. (2018a)
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Rogers’ (2003, p. 402) statement that ‘an individual cannot adopt a new idea until an organi-
sation [to which it belongs] has previously adopted it’. The reverse situation could hold when 
an individual breeder decides to adopt accelerated breeding before the technique becomes the 
norm within the company (thus acting as an innovation champion within the breeding institute 
(Rogers, 2003)). As a second objective, we contrast the determinants of stated and revealed 
adoption, in particular, to generate insights into the role of institutional factors in individual 
technology adoption decisions upstream in the innovation system.

Secondly, this article contributes some brief discussion on the estimation of multi- stage 
models by comparing different approaches from the literature (Burke et al., 2015; Cappellari & 
Jenkins, 2006; Carreón & García, 2011; Cooper, 1997; Holm & Arendt, 2013).

Our article proceeds as follows. In the next section, we present some background on accel-
erated rice breeding. The second section presents our multi- stage adoption model, while the 
third section discusses different econometric approaches to estimate multi- stage models with 
a focus on three- part models. We then briefly describe our variables and data. Next, we report 
and discuss our results and end by summarising our findings and reflecting on some policy 
implications.

2 |  BACKGROU N D ON ACCELERATED RICE BREEDING

Accelerated rice breeding can be accomplished through various approaches, including mo-
lecular or conventional techniques (Forster et al., 2014). Although molecular breeding methods 
often lead to improved accuracy, cost or time savings, such methods are technically complex 
and expensive to set up. Therefore, rapid generation advance (RGA) is advocated as a feasi-
ble alternative for accelerating breeding in public- sector breeding programmes in developing 
countries in the short term (Collard et al., 2017, 2019). RGA is a plant breeding technique first 
proposed by Goulden (1939) to address the problem of poor response to early generation selec-
tion due to high levels of heterozygosity. RGA essentially separates the selection for traits and 
breeding for homozygosity by taking only a single seed from each plant while progressing from 
one generation to the next (Collard et al., 2017). Since its development, RGA has been success-
fully implemented to breed different crops like barley, soybean and oats. However, it was only 
in 1963 that Nippon- bare, the first rice variety bred by RGA, was released (Maruyama, 1989). 
Despite its early development, RGA adoption for rice breeding during the last two decades was 
shallow and limited mainly to Asia (Collard et al., 2017; Lenaerts et al., 2018a). Low adoption 
of RGA might be explained by breeding traditions rooted in low land and labour costs com-
bined with little incentive in public breeding to adopt faster breeding. Despite low adoption 
rates, Lenaerts et al. (2018a) found rice breeders worldwide to be highly aware of RGA and its 
benefits, confident about the method itself and willing to adopt RGA. Yet, the lack of a green-
house and no certainty about the benefits were the main constraints given by non- adopters. We 
go beyond descriptive evidence and quantify the impact of different variables reflecting these 
hypothesised drivers of (non- )adoption.

Compared to the conventional pedigree breeding method— which is still prevalent in rice 
breeding (Lenaerts et al., 2018a)— the advantages of RGA as a breeding method include 
technical simplicity, reduced operational costs (mainly land and labour) and time savings 
of around 1– 3  years, depending on the number of growing seasons (Collard et al., 2017, 
2019). Accelerating breeding is a proven method to increase the public benefits generated by 
breeding (Lenaerts et al., 2018b). Although RGA requires a greenhouse, it produces signif-
icant cost savings by lowering land and labour use intensities; the initial investment cost of 
a greenhouse repays itself within a few years. In terms of food security, the quicker release 
of new, improved varieties could help future generations escape lasting negative impacts 
from undernutrition such as stunting and mental impairment, improving their economic 
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status (Lenaerts et al., 2019a)— assuming no bottlenecks in the dissemination of improved 
varieties downstream.

3 |  M U LTI-  STAGE A DOPTION MODEL

Given relatively low current adoption rates of accelerated rice breeding worldwide, Lenaerts 
et al. (2018a) and Lenaerts et al. (2019b) surveyed both revealed adoption and stated adoption 
intentions. This leads to a two- stage model where the first or participation stage determines 
actual adoption (stage 1 in panels I and II in Figure 2), and the second stage determines adop-
tion intentions for non- adopters only (stage 2A in panel II).1 Positive revealed adoption and 
positive stated adoption intentions can be further decomposed into two levels of adoption in-
tensity: (i) an ‘entry’ level where the technology is adopted as a secondary method; and (ii) an 
‘advanced’ level where the technology is ‘mainstreamed’ as the primary method practised by 
the adopter in the adopting institute. The intensity of revealed adoption is captured by stage 
2B in panel I of Figure 2 and the intensity of stated adoption by stage 3 in panel II.

For each breeder, we have binary information on different stages in the adoption pathway 
(that is, adoption, adoption intentions and the intensity of both adoption and adoption inten-
tions). Because information on adoption intentions is only available for non- adopters (and 
similarly for the intensity of adoption intentions), the stages differ in sample size. Figure 2 
represents the stages considered in order of estimation (that is, from adoption over intention 
to intensity, or in descending order of sample size) (see the Appendix S1 for more details). Our 
econometric modelling approach visualised in Figure 2, however, cannot be interpreted as a 
sequential behavioural model; visual representations of the latter can be obtained through 
‘adoption pathway analysis’, an approach recently developed by de Oca Munguia et al. (2021) 
to better represent and analyse the dynamics and diversity of adoption. Moreover, contrary to 
prevalent belief, multi- stage model estimation cannot be used to infer sequential versus simul-
taneous decision- making behaviour (Burke, 2019).

A three- stage adoption model involving both real and stated behaviour is often reduced to a 
two- stage model (a so- called one- way- up model of adoption) by combining revealed adoption 
and stated adoption intentions (Cooper, 1997; Hubbell et al., 2000; Qaim & de Janvry, 2003). 
This reductionist approach, however, makes the implicit assumptions that (i) there is no selec-
tion present; (ii) actual users and intended users have the same utility function and associated 
coefficients (Cooper, 1997); and (iii) data on adoption intentions are not truly ‘missing’ for 
adopters as the latter can be assumed to be willing to adopt, which may not always hold, par-
ticularly in institutional settings where employees (e.g., breeders) report to management. The 
latter assumption reflects the premise that adopters are necessarily willing to adopt and people 
with adoption intentions have done so and are removed from our sample of people stating their 
adoption intentions— two assumptions that may not hold in upstream, institutional adoption 
settings. Advantages of the reduced model are increased efficiency in parameter estimation 
due to an increased number of observations (Hubbell et al., 2000), and less (hypothetical) bias 
from using stated instead of actual preferences (Cooper, 1997) at the cost of not fully exploiting 
the available information.

To indicate the bias introduced by the reductionist approach's assumptions, we estimate 
two reduced models. First, a two- stage model is estimated where the participation stage distin-
guishes positive from negative adoption status (stated or revealed) (stage 1ʹ in panel III), and 

 1Our two- stage model consists of a participation or selection equation determining the revealed adoption status, and an outcome 
equation determining the stated adoption status for those breeders who have not yet adopted. If the unobserved factors 
determining actual adoption and stated intentions are correlated— which might occur if breeders act as innovation champions, 
leaving the subsample of non- adopters less willing to adopt alternative breeding methods— the (higher- level) response equation 
determining stated intentions will be biased.
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F I G U R E  2  Graphic illustration of (I) two- stage adoption model, (II) three- stage willingness to adopt model, 
(III) reduced two- stage adoption model, and (IV) reduced one- stage adoption model
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the outcome stage determines the adoption intensity for positive adoption levels (stage 2ʹ in 
panel III). The second models distinguishes positive from negative adoption status for RGA as 
primary method (stated or revealed) (stage 1ʹ in panel IV).

Finally, upstream in the innovation system, the first ‘adopt or not adopt’ stage in multi- 
stage adoption decisions is increasingly governed by managerial and other institutional fac-
tors. As a result, we need to compare conditional and unconditional effects— that is, the effect 
on adoption intentions for non- adopters, versus the effect for all sample members (Hoffmann 
& Kassouf, 2005). Since we are interested in understanding the fundamental drivers of up-
stream technology adoption (that is, representative of all breeders) instead of merely optimis-
ing an extension programme (that is, for non- adopters), we will focus on unconditional rather 
than the commonly reported conditional effects.

4 |  MODEL ESTIM ATION

Moving upstream in the innovation system inevitably leads to a smaller number of decision- 
making units in the adoption process; from millions of farmers to hundreds of plant breed-
ers operating under a few dozens of breeding institutes worldwide. Given this naturally low 
sample size (reflecting a limited population size) and evidence from simulation studies that 
instrumental variable analysis is only useful for either powerful instruments or an extensive 
sample (Boef et al., 2014; Crown et al., 2011), we refrain from such analysis and instead attempt 
to reduce endogeneity caused by omitted variable bias by including a broad set of covariates 
controlling for leader, institutional and external characteristics.

From a theoretical point of view, a Heckman selection model is appropriate when unob-
served values are truly missing— that is, the latent value is unknown but might be observed 
under different circumstances— and we want to model potential behaviour rather than actual 
behaviour (Dow & Norton, 2003; Madden, 2008). In that case, measured behaviour is only 
capturing part of the population of interest, where both the outcome and selection process are 
correlated. A two- part (subsample) model, on the other hand, looks at actual behaviour. Here, 
a zero outcome represents a utility maximising option.

In terms of estimation, the two- part model is preferred under high collinearity2 due to its 
robustness, efficiency and simplicity to calculate, although its estimates will always be biased 
in the presence of selection (Bushway et al., 2007; Kennedy, 1998; Puhani, 2000). A small sam-
ple size (Hartman, 1991) and a lack of proper exclusion restrictions (Kennedy, 1998; Puhani, 
2000) must be taken as a warning sign that collinearity might be problematic. Otherwise, the 
Heckman model can be estimated by the Heckit estimator (or Limited Information Maximum 
Likelihood, LIML)3 or the Full (Information) Maximum Likelihood estimator (FIML). Since 
the tri- Heckit approach always represents a type of ‘forbidden regression’ and is never better 
than FIML, especially for small samples (Holm & Arendt, 2013), the FIML estimator should 
be attempted for three- stage models, albeit at the risk of non- convergence.

Inter- stage correlation can be tested for using the likelihood- ratio or a variable addition test 
relying on the original Heckit estimator, which has the advantage that no estimate of the infor-
mation under the alternative hypothesis (unrestricted model) is required.4 Although they are 

 2This refers to collinearity between the regressors in the outcome and selection equation, or equivalently, the correlation between 
the inverse Mills ratio and the other regressors in the outcome equation.

 3Despite the logical or ‘natural’ appeal of adding an inverse Mills ratio to a discrete outcome equation, there is no justification for 
this approach as a selection correction (Dubin and Rivers, 1989; Greene, 2012, p. 920; Terza, 2009; Wooldridge, 2010, pp. 596– 597, 
814). Wooldridge (2010) compares this approach to the so- called forbidden regression from 2SLS estimation.

 4Again, although testing using correction terms such as the inverse Mills ratio is valid for detecting correlation involving discrete 
outcome equations, it is not a valid procedure to correct for selection bias (Wooldridge, 2010, p. 814).
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technically not required for identification,5 it is more convincing to impose at least one within- 
equation exclusion restriction for the second and third stages (Wooldridge, 2010, p. 702).

For three- stage models, the literature offers two procedures to test for inter- stage correla-
tion (see the Appendix S1 for notation). A first approach is the full model, which assumes that 
correlation is possible between all stages without restrictions (Cappellari & Jenkins, 2006; 
Carreón & García, 2011; Holm & Arendt, 2013; Jensen et al., 2015; Maddala, 1983). Burke et al. 
(2015) propose a second, simplified approach, which assumes that any correlation between 
stages one and three can only occur through stage two.6

5 |  VARIA BLES A N D DATA

To study the case of multi- stage technology adoption decisions upstream in the innovation 
system, we use data from a global online survey among rice breeders, featuring 158 cross- 
sectional observations. The survey is described in detail in Lenaerts et al. (2018a), and the 
dataset is published and available online (Lenaerts et al., 2019b). The population of interest 
was carefully determined with help from the International Rice Research Institute and the 
Africa Rice Center and consists of active, non- molecular rice breeders at national and inter-
national breeding institutes worldwide. Weighting adjustment was applied using the area of 
paddy rice harvested in 2015 to assess the sample's geographic representativeness. Only the 
share of Asian institutes shows signs of misrepresentation (we have a relatively low number of 
non- Asian breeders, taking into account that 90% of rice production takes place in Asia). No 
outliers were removed. Breeders who used RGA only for testing were considered non- adopters; 
breeders who used RGA as secondary or primary method were considered adopters.

Table 1 reports some descriptive statistics of the variables used in our model.7 Various indi-
vidual leader characteristics were included in the analysis. The terms of the employment con-
tract can affect both breeders’ risk and time preferences. First, indeterminate contracts provide 
more job security and could boost breeders’ confidence in adopting and experimenting with 
new, potentially more risky technologies. Second, under a fixed- term contract, breeders may 
have less incentive to adopt technologies whose benefits do not accrue immediately. However, 
there is an increased urgency to deliver results within a fixed contract term, increasing interest 
in technologies that accelerate processes. Breeders’ perceptions were measured on several 7- 
point scales. These variables were treated as continuous variables in the remainder of the anal-
ysis, since ordinal variables with at least five categories produce unbiased results, especially 
when the underlying concept is continuous and the intervals between points are approximately 
equal (Glass et al., 1972; Lubke & Muthén, 2004). Time preference was measured by asking 
breeders to what extent they consider the length of the breeding cycle to be an obstacle for 
improving farmers’ livelihoods (1 = not an obstacle, 7 = severe obstacle). Improving farmers’ 
livelihoods can be considered an implicit motivational incentive for public breeders (see below). 
Scores ranged from 3 to 6 with a median value of 5. Risk preference was measured as breeders’ 
stated likelihood of taking risks when choosing breeding methods (1 = avoids taking risks, 7 = 
likes taking risks) and ranged from 5 to 6 with a median value of 5. Awareness about the RGA 
breeding method was relatively high (88%), as was their stated credibility of the benefits of 
RGA (1 = not credible, 7 = very credible), which ranged from 5 to 7 with a median of 6. 
Credibility of benefits is the opposite of uncertainty about benefits, a driver of non- adoption 

 5In lieu of exclusion restrictions, identification relies on the nonlinearity of the inverse Mills ratio (Puhani, 2000).

 6Although this approach simplifies calculations considerably, it remains a strong assumption for which the authors provide no 
justification.

 7Because the dataset was reduced due to missing values, some of the descriptive statistics in Table 1 may not exactly match the 
ones reported by Lenaerts et al. (2018a).
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according to Lenaerts et al. (2018a). The benefits in question represented operational cost re-
ductions as obtained by IRRI and were briefly described in a scenario included in the online 
survey (Lenaerts et al., 2018a). This realistic scenario with cost- benefit estimates combined 
with follow- up questions for corroboration helped reduce potential hypothetical bias in stated 
adoption intentions (sample of non- adopters).

Institutional characteristics include the presence of a greenhouse (70% of the cases)— the 
absence of which was a stated reason for non- adoption (Lenaerts et al., 2018a)— whether the 
institute employing the breeder is private (that is, a commercial firm) (6% of the respondents) 

TA B L E  1  Descriptive statistics for model variables

Variable Description Mean SD

Adoption intentions (non- adopters)

WTA (n = 115) 1 = willing to adopt RGA (either as secondary 
or primary method); 0 = otherwise

0.74 0.44

WTA intensity (n = 85) 1 = willing to adopt RGA as primary method; 
0 = willing to adopt RGA as secondary 
method

0.32 0.47

Revealed adoption

Adoption (n = 158) 1 = adopted RGA (either as secondary or 
primary method); 0 = otherwise

0.27 0.45

Adoption intensity (n = 43) 1 = adopted RGA as primary method; 0 = 
adopted RGA as secondary method

0.19 0.39

Individual breeder characteristics

Age Years 45.72 9.31

Male 1 = male; 0 = female 0.82 0.39

PhD 1 = has PhD degree; 0 = otherwise 0.64 0.48

Indeterminate contract 1 = has indeterminate- term contract; 0 = has 
fixed- term contract

0.90 0.30

Time preference 1 = breeding cycle not an obstacle, …, 7 = 
severe obstacle

4.75 1.70

Risk preference 1 = avoid risk, …, 7 = like taking risks 5.16 1.54

Awareness 1 = aware of RGA; 0 = not aware 0.88 0.33

Credibility 1 = benefits of RGA not credible, …, 7 = very 
credible

5.47 1.41

Internal characteristics of the organisation

Greenhouse 1 = greenhouse present; 0 = no greenhouse 0.70 0.46

Labour intensity 1 = above average; 0 = below average 0.27 0.45

Formalisation 1 = has opportunity to implement new 
techniques; 0 = otherwise

0.93 0.26

Inbred 1 = breeds inbred varieties only; 0 = otherwise 0.70 0.46

Private 1 = private institute; 0 = public institute 0.06 0.24

External characteristics of the organisation

Asian 1 = institute located in Asia; 0 = otherwise 0.63 0.49

Seasons Number of seasons (1, 2, 3) 1.62 0.55

Sample size n 158

Notes: Lenaerts et al. (2018a) surveyed 189 rice breeders. However, due to missing values in the variables listed, a reduced dataset 
with 158 breeders was used instead. As a result, some of the descriptive statistics in Table 1 may differ from Lenaerts et al. (2018a).

Source: Lenaerts et al. (2018a, 2019a).
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or public (94%) and the varieties that are being bred, that is, only inbreds (70%), only hybrids 
(7%) or both (23%). The dummy variable ‘private’ captures institutional differences that might 
affect adoption, such as the hypothesised lack of explicit incentives to adopt faster breeding 
in the public sector. The ‘level of formalisation’ was captured by asking breeders whether they 
have the opportunity to implement new techniques in their breeding method, and was rela-
tively high (93% responded positively). This validates our framework's implicit assumption 
that breeders consider that they have sufficient agency to make adoption decisions. Labour in-
tensity was measured as the ratio of seasonal workers employed during seeding and harvesting 
over the area of land used. To deal with extreme values and uneven distribution, we recoded 
above- average values to one (27%) and zero otherwise (73%). Labour intensity captures the 
labour costs breeders face in their field operations, and hence their financial incentives for the 
adoption of labour- saving technologies like RGA.

Finally, external characteristics of the organisation were captured through two variables, 
that is: (i) whether the institute is located in Asia (excluding the Middle East and Russia) (63%) 
or outside Asia (27%), since the majority of the world's rice is produced in Asia; and (ii) the 
number of breeding seasons per year (one, two or three), averaging 1.62, to capture the time- 
specificity of the breeding programme.

6 |  RESU LTS A N D DISCUSSION

In this section, we first test the null hypothesis of no inter- stage correlation and check the con-
ditions of the selection test. We then present results for a three- part probit model.

6.1 | Model selection

A first step in testing for inter- stage correlation is to identify exclusion restrictions in order to 
generate credible model estimates. When testing for inter- stage correlation between adoption 
and adoption intentions, we imposed the exclusion restriction on age and age squared. Between 
adoption intentions and intended adoption intensity, we imposed the exclusion restriction on 
credibility. Between stated or revealed adoption and stated or revealed adoption intensity, we 
imposed the exclusion restriction on labour intensity. These variables are statistically signifi-
cant in the selection equation and, if included, would not be significant in the outcome equa-
tion (Burke et al., 2015). To deal with the problem of separation or perfect prediction, we used 
the most common practical solution of omitting the offending variable from the analysis (Zorn, 
2005). However, since the global population of rice breeders is limited— and correspondingly, 
any sample drawn from it— we attempted to exploit our dataset to the fullest extent possible. 
Therefore, despite the absence of estimates for the magnitude of the coefficients and standard 
errors, we treated cases of perfect predictability as valid evidence of correlation and reported 
and discussed the sign of the relationship in the remainder of the discussion accordingly.

Table 2 contains the condition index and the p- values for the Heckit and LR test for inter- 
stage correlation in our multi- stage models, including the reduced models. For the three- stage 
model, we included both the simplified (Burke et al., 2015) and full approach (Holm & Arendt, 
2013). Given the exclusion restrictions, we found no significant correlation between adoption 
on the one hand, and adoption intention and adoption intensity on the other hand at the 5% 
level (stages 2A and 2B, respectively). For both the simplified and full approach, we found no 
correlation between adoption intention and adoption intention intensity (stages 2A and 3, re-
spectively) using the Heckit test. The LR test becomes problematic as both the full and simpli-
fied approaches do not converge. Lastly, there is no evidence of any inter- stage correlation for 
the reduced two- stage model. Given our limited sample size, high collinearity levels, and lack 
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of inter- stage correlation (Table 2), we estimate all stages for the three- stage model separately 
as a three- part probit model.8

A possible explanation for the lack of selection are institutional enabling factors overruling 
individual drivers. We should not routinely expect that people with strong intentions to adopt 
are automatically shifted to the category of people stating their adoption intentions. Non- 
adopters may have strong personal intentions to adopt but may be unable to do so because of 
lack of managerial support and freedom to implement and experiment with new techniques 
(Lenaerts et al., 2018a), an important enabling factor for technology adoption in the internal 
characteristics of an organisation.

6.2 | Parameter estimates

The coefficient estimates of the two-  and three- part model are reported in Table 3 and the 
conditional and unconditional average marginal effects (AMEs) in Tables 4 and 5. The first 
and second data columns report the estimates for the determinants of the stated adoption in-
tentions (stage 2A) and intended adoption intensities (stage 3) for the three- part model, while 
the third and fourth data columns report the estimates for the determinants of the revealed 
adoption (stage 1) and adoption intensities of RGA (stage 2B) for the two- part model. Tables 6 
and 7 report the coefficients and conditional and unconditional average marginal effects of the 
reduced two- part and one- part adoption models.9 In the remainder of the analysis, we will 
juxtapose Tables 3– 7 and discuss the results ‘horizontally’ by comparing the results, determi-
nant per determinant, across different stages (see Figure 2), among different adoption catego-
ries (stated and revealed), among two levels of conditionality (conditional and unconditional) 
and between the full and reduced- order forms. The conditional effect is the expected effect for 
those observed, whereas the unconditional effect represents the effect for all members of the 
sample (see the Appendix S1 for more details). We will pay particular attention to three types 
of inter- stage, inter- conditionality and inter- model comparisons of the response curves of the 
determinants of the adoption models: (i) carry- over, (ii) reversal, and (iii) bias. Carry- over oc-
curs when factors are significantly correlated with stated or revealed adoption across different 

 8We would like to thank an anonymous reviewer for pointing out that the lack of strong evidence of correlations across error terms 
should not be taken to weaken the case for multi- stage estimation. Without conducting these tests, one would be in the dark 
regarding the biases and inconsistencies that might have been present.

 9Standard errors for the unconditional effects were calculated by bootstrapping following Burke (2009). We set the number of 
replications to 1000 (to end up with at least 618 successful ones) to obtain bootstrapped standard errors.

TA B L E  2  Indices for inter- stage correlation testing

Stages considereda ρ n
Condition
index

p- value
Chi- square test

p- value
LR- test

Stages 1–  2B ρ12 43 29 0.051 – b 

Stages 1–  2A ρ12 115 42 0.587 0.744

Stages 1–  2A–  3 ρ13, ρ23 85 44 0.226 – b 

Stages 1–  2A–  3 ρ23 85 42 0.796 – b 

Stages 1'–   2ʹ ρ1’2’ 128 59 0.325 0.544

Notes: p- values based on robust standard errors.
aSee Figure 2.
bNon- convergence.
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TA B L E  3  Coefficient estimates for three- part willingness to adopt and two- part adoption models

Stated adoption intentions of non- adopters Revealed adoption by adopters

WTA WTA intensity Adoption Adoption intensity

Individual breeder characteristics

Age 0.092 – 0.485* 0.322*** 0.249

(0.13) (0.25) (0.12) (0.30)

Age squared – 0.001 0.006** – 0.003*** – 0.003

(0.00) (0.00) (0.00) (0.00)

Male – 0.846* – 0.053 0.225 +a 

(0.45) (0.50) (0.38)

PhD 0.243 – 0.580 – 0.321 – 0.220

(0.38) (0.52) (0.27) (0.86)

Indeterminate 
contract

– 0.191 +b 0.072 – 2.627**

(0.57) (0.38) (1.13)

Time preference 0.144 0.304** – 0.020 0.437**

(0.09) (0.12) (0.06) (0.19)

Risk preference 0.204* 0.571*** 0.016 – 0.184

(0.10) (0.15) (0.08) (0.17)

Awareness 0.743* – 1.438** +c +c 

(0.44) (0.57)

Credibility 0.245** 0.139 0.198** 1.072***

(0.11) (0.15) (0.10) (0.40)

Internal characteristics of the organisation

Greenhouse – 0.372 – 1.341*** 0.638** +d 

(0.35) (0.47) (0.26)

Labour intensity 1.167*** – 0.743 0.067 – 2.612***

(0.45) (0.49) (0.27) (0.93)

Formalisation 1.658*** 0.820 0.450 +e 

(0.51) (0.59) (0.63)

Inbred 0.309 1.482** 0.512* 1.488

(0.35) (0.70) (0.29) (0.97)

Private – 1.662** +f 1.490*** – g 

(0.75) (0.51)

External characteristics of the organisation

Asian – 0.027 1.947*** – 0.395 – 1.446**

(0.38) (0.50) (0.25) (0.71)

Seasons – 0.600* 0.019 0.056 0.059

(0.31) (0.35) (0.20) (0.52)

Constant – 5.190* 3.359 – 10.488*** – 11.674

(2.80) (5.02) (3.04) (7.62)

n 115 85 158 43

Notes: Column 1 represents stage 2A, column 2 stage 3, column 3 stage 1 and column 4 stage 2B. Note that in stage 2A, non- 
adopters were coded as 1 whereas the reverse is true for stage 2B. Robust standard errors in parentheses.

*p < 0.10; ** p < 0.05; *** p < 0.01.
aMale = 1 predicts success perfectly.
bIndeterminate contract = 1 predicts success perfectly.
cAwareness = 1 predicts success perfectly.
dGreenhouse = 1 predicts success perfectly.
eFormalisation = 1 predicts success perfectly.
fPrivate = 0 predicts failure perfectly.
gPrivate = 0 predicts success perfectly.
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TA B L E  4  Conditional average marginal effects for three- part willingness to adopt and two- part adoption 
models

Stated adoption intentions of non- adopters Revealed adoption by adopters

WTA WTA intensity Adoption Adoption intensity

Individual breeder characteristics

Age 0.004 0.004 0.003 – 0.003

(0.00) (0.01) (0.00) (0.01)

Male – 0.165** – 0.010 0.061 +a 

(0.08) (0.09) (0.10)

PhD 0.055 – 0.112 – 0.092 – 0.035

(0.09) (0.10) (0.08) (0.14)

Indeterminate 
contract

– 0.041 +b 0.020 – 0.420***

(0.12) (0.10) (0.11)

Time preference 0.032 0.058*** – 0.006 0.070**

(0.02) (0.02) (0.02) (0.03)

Risk preference 0.045** 0.109*** 0.004 – 0.029

(0.02) (0.02) (0.02) (0.03)

Awareness 0.185 – 0.290*** +c +c 

(0.12) (0.11)

Credibility 0.055** 0.027 0.056** 0.171***

(0.02) (0.03) (0.03) (0.05)

Internal characteristics of the organisation

Greenhouse – 0.078 – 0.265*** 0.169*** +d 

(0.07) (0.08) (0.06)

Labour intensity 0.224*** – 0.132* 0.019 – 0.226***

(0.07) (0.08) (0.08) (0.07)

Formalisation 0.433*** 0.144 0.113 +e 

(0.12) (0.09) (0.14)

Inbred 0.071 0.226*** 0.134* 0.189**

(0.08) (0.08) (0.07) (0.09)

Private – 0.440** +f 0.465*** – g 

(0.19) (0.13)

External characteristics of the organisation

Asian – 0.006 0.341*** – 0.114 – 0.214**

(0.08) (0.07) (0.07) (0.09)

Seasons – 0.134* 0.004 0.016 0.009

(0.07) (0.07) (0.06) (0.08)

n 115 85 158 43

Notes: Average Marginal Effects for variables are the discrete change from the base level. Robust standard errors in parentheses.

*p< 0.10; ** p < 0.05; *** p < 0.01.
aMale = 1 predicts success perfectly.
bIndeterminate contract = 1 predicts success perfectly.
cAwareness = 1 predicts success perfectly.
dGreenhouse = 1 predicts success perfectly.
eFormalisation = 1 predicts success perfectly.
fPrivate = 0 predicts failure perfectly.
gPrivate = 0 predicts success perfectly.
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TA B L E  5  Unconditional Average Marginal Effects for Three- Part Willingness to Adopt Adoption Model

Stated adoption
Revealed 
adoption

WTA WTA intensity
Adoption 
intensity

Individual breeder characteristics

Age 0.002 0.004 −0.001

(0.01) (0.01) (0.02)

Male −0.171 −0.052 0.011

(0.11) (0.08) (0.04)

PhD 0.109 −0.023 −0.024

(0.10) (0.08) (0.09)

Indeterminate contract −0.045 −0.013 −0.097

(0.14) (0.04) (0.10)

Time preference 0.027 0.037 0.013

(0.03) (0.03) (0.06)

Risk preference 0.029 0.064* −0.005

(0.03) (0.04) (0.03)

Awareness 0.118 −0.096 +a 

(0.09) (0.09)

Credibility −0.005 0.012 0.045

(0.03) (0.03) (0.04)

Internal characteristics of the organisation

Greenhouse −0.192** −0.206*** 0.030

(0.09) (0.07) (0.03)

Labour intensity 0.140 - 0.037 - 0.050

(0.10) (0.07) (0.07)

Formalisation 0.263** 0.125** 0.021

(0.12) (0.06) (0.04)

Inbred −0.051 0.115* 0.056

(0.09) (0.06) (0.06)

Private −0.488*** −0.153*** 0.068

(0.1) (0.04) (0.07)

External characteristics of the organisation

Asian 0.085 0.201*** −0.070

(0.09) (0.06) (0.07)

Seasons −0.108 −0.028 0.005

(0.08) (0.07) (0.08)

n 115 85 43

Notes: Average Marginal Effects for dummy variables are the discrete change from the base level. Bootstrapped standard errors in 
parentheses.

*p < 0.10; ** p < 0.05; *** p < 0.01.
aAwareness = 1 predicts success perfectly.
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TA B L E  6  Coefficient estimates for reduced two- part and one- part adoption models

Reduced two- part Reduced one- part

Stated or revealed 
adoption

Stated or revealed adoption 
intensity

Stated or revealed 
adoption intensity

Individual breeder characteristics

Age 0.193* 0.171 0.201*

(0.10) (0.14) (0.11)

Age squared −0.002* −0.002 −0.002*

(0.00) (0.00) (0.00)

Male −0.654 0.311 0.173

(0.42) (0.35) (0.33)

PhD 0.054 −0.641** −0.499*

(0.33) (0.31) (0.29)

Indeterminate contract 0.081 0.108 0.159

(0.49) (0.43) (0.40)

Time preference 0.105 0.145** 0.145**

(0.09) (0.07) (0.07)

Risk preference 0.168* 0.216** 0.209***

(0.09) (0.09) (0.08)

Awareness 0.892** −0.457 0.073

(0.40) (0.37) (0.37)

Credibility 0.205** 0.112 0.144

(0.09) (0.11) (0.10)

Internal characteristics of the organisation

Greenhouse −0.095 −0.090 −0.073

(0.31) (0.27) (0.25)

Labour intensity 0.944** −0.249 −0.074

(0.39) (0.28) (0.25)

Formalisation 1.480*** 0.639 0.922**

(0.44) (0.56) (0.46)

Inbred 0.505* 0.697** 0.671**

(0.30) (0.32) (0.27)

Private −0.257 0.249 0.096

(0.57) (0.60) (0.50)

External characteristics of the organisation

Asian −0.118 0.345 0.289

(0.32) (0.29) (0.26)

Seasons −0.504* 0.003 −0.115

(0.26) (0.23) (0.22)

Constant −7.200*** −7.324** −9.047***

(2.35) (3.35) (2.58)

n 158 128 158

Notes: Robust standard errors in parentheses.

*p < 0.10; **p < 0.05; ***p < 0.01.
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TA B L E  7  Conditional and unconditional average marginal effects for reduced two- part and one- part adoption 
models

Conditional effects Unconditional effects

Reduced two- part Reduced one- part Reduced two- part

Stated or 
revealed adoption

Stated or revealed 
adoption intensity

Stated or revealed 
adoption intensity

Stated or revealed 
adoption intensity

Individual breeder characteristics

Age 0.003 0.004 0.005 0.005

(0.00) (0.01) (0.00) (0.00)

Male −0.111* 0.104 0.054 0.047

(0.06) (0.11) (0.10) (0.11)

PhD 0.011 −0.211** −0.155* −0.166*

(0.06) (0.09) (0.09) (0.09)

Indeterminate 
contract

0.016 0.036 0.049 0.035

(0.10) (0.14) (0.12) (0.12)

Time preference 0.021 0.049** 0.046** 0.047**

(0.02) (0.02) (0.02) (0.02)

Risk preference 0.033* 0.073*** 0.066*** 0.071***

(0.02) (0.03) (0.02) (0.03)

Awareness 0.215* −0.152 0.023 −0.054

(0.11) (0.12) (0.11) (0.13)

Credibility 0.040** 0.037 0.045 0.046

(0.02) (0.03) (0.03) (0.03)

Internal characteristics of the organisation

Greenhouse −0.018 −0.031 −0.023 −0.032

(0.06) (0.09) (0.08) (0.08)

Labour 
intensity

0.158** −0.084 −0.023 −0.013

(0.05) (0.09) (0.08) (0.09)

Formalisation 0.387*** 0.204 0.251*** 0.270***

(0.12) (0.16) (0.10) (0.10)

Inbred 0.104 0.227** 0.204*** 0.218***

(0.06) (0.09) (0.08) (0.08)

Private −0.054 0.083 0.030 0.041

(0.13) (0.20) (0.16) (0.16)

External characteristics of the organisation

Asian −0.023 0.116 0.090 0.084

(0.06) (0.10) (0.08) (0.09)

Seasons −0.099* 0.001 −0.036 −0.038

(0.05) (0.08) (0.07) (0.07)

n 158 128 158 158

Notes: Average marginal effects for dummy variables are the discrete change from the base level. Robust standard errors for the 
conditional effects and bootstrapped standard errors for the unconditional effects in parentheses.

*p < 0.10; ** p < 0.05; *** p < 0.01.
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stages. Reversal points to effects switching sign between stages. Bias refers to differences be-
tween the full and reduced- order models.

When comparing Tables 3– 7, we can make some general observations. We generally observe 
a heterogeneous mix of carry- over and reversal between stated and revealed adoption in our 
multi- stage model (Tables 3 and 4). However, as soon as the conditionality of positive adoption 
intentions is removed, all determinants in the revealed adoption stage become statistically 
insignificant, and almost none of the individual breeder characteristics in the adoption inten-
tion stage are carried over (Table 5). We further observe substantial deviations between our 
multi- stage model and the reduced- form models, providing insights into the bias generated by 
mixing stated and revealed adoption preferences (Tables 6 and 7). In contrast with our multi- 
stage model, we see, for example, that the response curves detected by the reduced models are 
usually carried over from conditional to unconditional adoption.

The variable age features a U- shaped relationship with the intended adoption intensity. 
However, this effect is not carried over to revealed adoption, where a statistically significant 
(1%) inverted U- shaped relationship is found in the first adoption stage with a peak at around 
45 years of age (Table 3). The inverse U- shaped relationship is consistent with many adoption 
studies (e.g., Fernandez- Cornejo, Hendricks & Mishra, 2005; Gine, Klonner & Finance, 2005) 
and is also captured by the reduced- form two- part and one- part models. Female breeders 
are found to be 16.5% more likely to be willing to adopt RGA; however, this gender effect is 
reversed in the adoption stages (that is, all eight adopters who mainstreamed RGA as their 
primary method were male) (Tables 3 and 4). The unconditional average marginal effect is 
not significant; this suggests that if we consider the first adoption stage— which we hypothe-
sise to be governed by institutional and managerial factors— adoption intentions of RGA are 
not expected to be different among all female or male breeders. The reduced two- part model 
indicates that female breeders are 11.1% more likely to adopt, either through stated adoption 
intentions or revealed adoption (Table 7). A PhD degree is not a determining enabling factor in 
any of the adoption stages of our multi- stage model (Tables 3– 5). However, both reduced- form 
models show how this factor is successfully carried over from conditional to unconditional 
adoption (intention) leading to the counterintuitive and potentially biased conclusion that a 
PhD degree hampers breeders in mainstreaming RGA (Tables 6 and 7).

Our empirical evidence suggests that job security through indeterminate contract terms 
boosts prospective users’ confidence in mainstreaming RGA as the primary method (that is, 
all 27 breeders willing to mainstream RGA as their primary method have an indeterminate 
contract) (Tables 3 and 4). However, this ambition was reversed in real adoption behaviour, 
where adopters with a fixed- term contract were found to be 42% more likely to mainstream 
RGA, relative to breeders with a permanent contract (Tables 3 and 4). However, as soon as we 
remove the conditionality of adoption, the effect disappears in all stages (Table 5), suggesting 
that the contract terms are not a significant enabler of adoption for the full sample of breeders. 
The reduced- form models do not pick up the role of the employment contract. Adoption inten-
tions seem to be consistent with the behaviour predicted by the ‘reverse principal- agent’ prob-
lem in public scientific research, in which, according to the Arrow and Lind (1978) theorem, 
the principal (research manager) is risk- neutral and the agent (scientist) is risk- averse (Bardsley, 
1999). When eliciting their adoption ambitions, prospective adopters predictably responded 
like risk- averse agents, whereas we observe the opposite in reality. The latter may suggest that 
the principal may have overruled real adoption decisions.

Risk and time preferences have often been found to be strong predictors of technology adop-
tion (e.g., Bocqueho & Jacquet, 2010; Khanna, Louviere & Yang, 2017; Liu, 2013). Time pref-
erence is expected to drive the adoption of technologies that accelerate processes. Although 
adopters’ perception of urgency significantly increases the likelihood of mainstreaming of 
RGA in both adoption intensity stages by 5.8– 7.0% per one- point increase in the 7- point scale of 
time preference (Tables 3 and 4), this effect disappears as soon as we remove the conditionality 
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of adoption (Table 5). Reduced- form models would have maintained that time preferences sig-
nificantly drive mainstreaming of RGA at the rate of 4.6– 4.9% per unit increase along the time 
preference scale, for both conditional and unconditional effects (Tables 6 and 7).

As expected, self- identified risk- takers express more ambitious adoption intentions and in-
tensities. For every one- point increase in the 7- point scale of risk preferences, they are 4.5% 
more willing to adopt and 10.9% more willing to mainstream RGA— however, uncondition-
ally, this driver mostly does not carry over (Tables 3– 5). In the reduced- form models the effect 
is carried over to all adoption stages, including the unconditional effects (Tables 6 and 7).

As expected, all breeders who have adopted RGA were aware of the technology. Although 
awareness has a significantly positive effect on breeders’ adoption intentions, breeders who 
were aware of RGA were more hesitant to mainstream the technology (Tables 3– 5). This hes-
itance may suggest that awareness does not necessarily imply that breeders perceive the ben-
efits of the technology to be credible enough to warrant full adoption. Therefore, we need to 
look at perceived credibility, which was the only factor that positively and significantly affects 
adoption throughout almost the entire adoption pathway, without becoming insignificant be-
tween stated and revealed adoption stages. Credibility was found to increase the likelihood of 
stated and revealed adoption by 5.5– 5.6% and mainstreaming RGA by 17.1% per unit increase 
along the 7- point scale (Tables 3 and 4). However, similarly to awareness, these effects dis-
appear as soon as conditionality is removed (Table 5). This suggests that making individual 
breeders aware of the technology and demonstrating its credibility are not sufficient condi-
tions for successful technology transfer of RGA worldwide; it might be more important that 
management is aware of the benefits of the technology in the first place. Reduced- form models 
miss this reversal of awareness before adoption and would have concluded that the likelihood 
of adoption increases by 21.5% when breeders are made aware and by 4.0% for every unit in-
crease in perceived credibility (Tables 6– 7).

A greenhouse is expected to be an essential enabling factor for RGA adoption (Collard 
et al., 2017). Indeed, greenhouse availability significantly predicts whether breeders have ad-
opted and mainstreamed RGA; a greenhouse increases the likelihood of adoption by 16.9% 
and all eight adopters who have mainstreamed RGA are employed in a greenhouse- endowed 
institute. However, this effect is reversed before adoption, as intended users with a greenhouse 
have a 26.5% lower probability to mainstream the technology. When we remove the condition-
ality of affirmative stated and revealed adoption intentions, the effect is not carried over to 
the revealed adoption stage. Moreover, the effect is reinforced in the adoption intention stage. 
We find that breeders in an institute with a greenhouse have a 19.2% lower likelihood to state 
willingness to adopt the technology and intended adopters have a 20.6% lower likelihood to 
intend to mainstream the technology. The unconditional adverse effects might point to the 
fact that institutes endowed with a greenhouse have relatively more financial resources and, 
therefore, would prefer more accurate but costly breeding methods (such as marker- assisted 
breeding) over RGA. The reduced- form models do not show significant effects of a greenhouse 
on (intended) adoption or adoption intensity (Tables 6 and 7).

Labour intensity significantly determines adoption intentions, which may be explained by 
the fact that RGA is a labour- saving technology. Breeders deploying labour rates above the 
average are found to be 22.4% more likely to be willing to adopt RGA. Once RGA is adopted, 
lower labour intensity is associated with mainstreaming the technology, as adopters deploying 
below- average labour rates are 22.6% more likely to mainstream RGA. These effects do not 
carry over to the first stage of revealed adoption (Tables 3 and 4) or any of the unconditional 
effects (Table 5), suggesting that labour- saving may not have been breeders’ primary incentive 
for the adoption of RGA in 2015 when the survey was carried out and may not be the most 
potent argument in encouraging adoption of the technology. This preference may change in 
the future as labour costs are rising steeply in many rice- growing countries, especially in Asia 
(ILO, 2018; Wiggins & Keats, 2014). The reduced two- part model presents labour intensity as 
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a driver of stated or revealed RGA adoption (conditional only), but not of adoption intensity 
(Tables 6 and 7).

The level of formalisation was found to affect all adoption stages positively, and the effect 
was significant in the adoption intention and revealed adoption intensity stages, where breed-
ers with perceived opportunities for implementing new technologies are 43.3% more willing 
to adopt RGA and all eight adopters who mainstreamed the technology perceive to have the 
freedom to experiment. When we remove the conditionality, this agency effect persists in the 
adoption intention phase but disappears in the revealed adoption stage. The latter indicates a 
substantial number of breeders with positive adoption intentions and institutional flexibility 
who did not eventually adopt and were captured in the sample of stated adopters. This lack 
of adoption may imply that institutional flexibility is only an enabling factor and not a driver 
for RGA adoption and that other factors overrule it. In contrast, the reduced two- part and 
one- part models would have concluded that formalisation is a reliable driver, boosting the 
probability of adoption or mainstreaming RGA by 25.1%– 38.7%.

A pure focus on inbred varieties tends to facilitate the adoption of RGA by 13.4% and main-
streaming of RGA by 18.9%– 22.6% (Tables 3 and 4), which is consistent with hybrid rice breed-
ing programmes lagging behind inbred programmes in terms of adoption and implementation 
of RGA in 2015.10 Once we remove the conditionality, the effect disappears in revealed adop-
tion (Table 5). Both reduced two- part and one- part models would have concluded that inbred 
varieties are reliable drivers for adopting and mainstreaming RGA for both conditional and 
unconditional effects (Tables 6 and 7).

Since private breeding institutes are profit- driven, it is not surprising to find 46.5% higher 
adoption rates of labour- saving technologies like RGA in these institutes, although all eight 
breeders who have mainstreamed RGA as their primary method worked in public institutes 
(Tables 3 and 4). The results are reversed when moving from revealed adoption to adoption 
intentions (private breeders are 44% less willing to adopt RGA and all 58 breeders unwilling 
to mainstream RGA are public breeders) and from conditional to unconditional adoption in-
tentions (Tables 4 and 5). An argument similar to the greenhouse effect applies here: private 
institutes might have relatively more financial resources and, therefore, prefer more accurate 
but costly breeding methods over RGA. Still, these results have to be interpreted with care 
as private breeders represent only a small minority (6%) of the total sample, as they were not 
explicitly targeted by the global survey (Lenaerts et al., 2018a).

Breeders operating in Asia were 34.1% more likely to express intentions of mainstreaming 
RGA. This effect is maintained (20.1%) when we remove conditionality— most likely due to the 
proximity to and visible presence of IRRI as a key adopter and promotor of accelerated breed-
ing (Atlin et al., 2017; Collard et al., 2019). In reality, we observe significantly more (21.4%) 
mainstreaming of RGA outside Asia, but only conditionally (Tables 3– 5).11 Since the adoption 
of RGA outside Asia is limited (Collard et al., 2017), this effect needs to be interpreted with 
caution.

Although the annual number of breeding seasons is not found to significantly predict adop-
tion, we find that the higher the time- specificity of the breeding programme, the more rice 
breeders express their interest in a technology that can accelerate rice breeding, RGA in this 
case (Tables 3 and 4). This effect is not carried over to the unconditional effects (Table 5) but is 
similarly captured in the reduced two- part model (Tables 6 and 7).

 10According to rice breeders, there are no real technical limitations for the adoption of RGA in hybrid rice programmes (Bert C.Y. 
Collard, Joshua N. Cobb and Jauhar Ali, personal communication).

 11One could argue that the fact that IRRI conducted the survey within its global rice breeding network (Lenaerts et al., 2018a) 
could have induced some social desirability bias.
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7 |  CONCLUSION

Given future challenges related to climate change and the inadequacy of current crop yield 
trajectories to nourish the world's population by 2050, accelerated crop improvements are 
critical (Bailey- Serres et al., 2019). Consequently, breeding institutes worldwide are currently 
considering redesigning and promoting the adoption of accelerated breeding in their breeding 
programmes. To provide policy advice in technology transfer from international to national 
agricultural research and extension systems (NARES), we move upstream in the agricultural 
innovation system and study the determinants of adoption of accelerated rice breeding using 
a published dataset from a survey of 158 rice breeders worldwide. Since the adoption of ac-
celerated breeding is generally low, we consider both stated and revealed adoption decisions 
along the adoption pathway. We estimate a multi- part (subsample) probit model that explicitly 
incorporates individual breeder characteristics and the organisation's internal and external 
characteristics, which is particularly important as breeders are involved with the creation of 
a public good. The lack of correlation between adoption and adoption intentions observed is 
consistent with adoption by institutions and managers rather than individual breeders. For 
comparison purposes, we also considered a reduced version of the three- stage model, similar 
to Cooper (1997), and we examined the different results between the two approaches.

Juxtaposing the results among different adoption stages (stated intentions and revealed ac-
tions) and levels of conditionality (conditional and unconditional) generates useful insights in 
the role of institutional and managerial factors governing and overruling individual breeders’ 
adoption decisions. Comparing the results between our multi- stage model and the reduced- 
order models provides a measure of the magnitude of the bias that the latter would generate 
in the context of upstream technology adoption, caused by their strong assumptions and by 
contaminating revealed with stated adoption preferences, which could translate into mislead-
ing policy recommendations.

Reduced- order models would have sent the signal to policy- makers that individual breeders 
are sufficiently empowered such that their individual preferences can drive adoption decisions 
in rice breeding programmes worldwide. Our multi- stage model does not confirm this evi-
dence; that is, whereas individual breeder characteristics drive willingness to adopt the breed-
ing technology for breeders who have not yet adopted, they do not seem to drive adoption 
intentions for the sample of breeders as a whole. Risk and time preferences could affect adop-
tion more at management level than at the individual breeder level.

Regarding the organisation's internal characteristics, the presence of a greenhouse, breed-
ers’ level of formalisation, and the private or public nature of the institute seem to matter most. 
Breeders who have the opportunity to implement new techniques are more willing to adopt 
accelerated breeding, which points to the importance of the managerial level in technology 
adoption by breeders. Breeders operating in institutes with a greenhouse and private institutes 
seem less interested in adopting accelerated breeding techniques. Budgetary differences can 
explain this as these institutes are likely to have substantial financial resources and, hence, 
might prefer more accurate but costly breeding methods over RGA. The reduced- form models, 
however, do not pick up the greenhouse and private institute effect.

We do not find much evidence along the adoption pathway in support of the idea that the 
adoption of accelerated rice breeding is unconditionally determined by the organisation's ex-
ternal characteristics such as the location and proximity to technology promotors like IRRI 
and the time- specificity of the breeding programme. In terms of policy implications, it means 
that there is no real evidence that structural hurdles prevent the transfer of accelerated rice 
breeding to research institutes worldwide, as long as the relevant decision- makers in manage-
ment are convinced of the technology's value.

Our results point towards the hypothesis that the adoption of accelerated breeding tech-
nologies by research organisations is influenced by institutional factors, not all of which are 
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captured in our multi- stage model. Our conclusion is that the decision still primarily lies 
with management. This management effect may explain the absence of correlation between 
the adoption and willingness to adopt stages, and the complete silence of our individual 
and external determinants when conditionality to the first decision stage is removed. The 
effect of managers making the final decision or even overruling their employees’ prefer-
ences and intentions can explain the lack of carry- over in the models. The findings in our 
paper provide evidence of the potential bias in the context of upstream technology adoption 
originating from the omission of factors related to the organisation's internal and external 
characteristics and the use of reduced- order models to capture behaviour along the adop-
tion pathway.

If adoption decisions are ultimately made at the institutional and managerial level, tech-
nology transfer programmes should target institutions and managers, rather than direct users. 
In turn, managers could then survey and study what drives direct users’ adoption and main-
streaming intentions in their programmes to identify unconditional (rather than conditional) 
drivers, enablers, and barriers to adoption. In the case of adoption of accelerated breeding, our 
multi- stage model suggests that managers should provide an enabling environment in which 
breeders are encouraged to take risks— an important factor— and are given sufficient freedom 
to experiment with and implement new technologies— a major enabler.

Future work should focus on the adoption pathway within organisations to further uncover 
the potential constraints or stimulants of the adoption of accelerated breeding. Moving from 
individual adoption, over between- organisational adoption, towards the within- organisational 
pathway follows the trend identified by Rogers (2003) in the diffusion of innovations litera-
ture. This final stage of the innovation process could be further uncovered through analys-
ing organisational power structures and identifying potential frontrunners versus laggards of 
accelerated breeding (preferably over time) within an organisation. Although our survey ques-
tionnaire was designed to reduce hypothetical bias in stated adoption intentions, some bias 
may have remained and may have affected our results. Another limitation of this study is the 
exclusion of additional reasons for non- adoption, such as cultural effects and breeding mind-
sets. Lastly, it is important not to overstate the impact of adopting RGA. Accelerated breeding 
is only one— albeit a significant— step upstream in the food system. Other areas of the innova-
tion system that can benefit from acceleration are germplasm transfer and variety registration. 
Moreover, speed of varietal dissemination to farmers and breeders’ ability to incorporate real- 
time producer, industry and consumer feedback into their product profiles are crucial factors 
that determine breeding programme success in improving food security (Custodio et al., 2016, 
2019; Lenaerts et al., 2019a).
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