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Nutritional strategies for mucosal health: the

interplay between microbes and mucin glycans

Clara Belzer '

Many aspects of the mechanisms underlying the symbiosis between humans
and gut microbes remain unknown and encompass some of the most intriguing
questions in microbiome research. An important factor in this symbiosis is the
interplay between microbes and human-produced glycans in mucin and breast
milk. In this Opinion paper, | propose a synergy between the structural diversity
of human mucin glycans and the enzymatic repertoire of the gut microbiome.
The contribution of microbes to mucosal health is discussed, and the role of
breast milk glycans in mucosal colonization by microbes is explained. The use
of prebiotic mucin glycans in general, and specialized infant and medical
nutrition in particular, should be considered as the field of interest to modulate
the microbiota and improve mucosal health.

The gut microbiome and mucin glycans

Over the past decades changes in birth mode and infant feeding, antibiotic use, and overall nutrition
have impacted the establishment of host microbial symbioses (see Glossary) and this is
hypothesized to be associated with the dramatic global rise in immune-related disorders.
The gut mucosa plays a crucial role in host microbial interactions. Mucin glycans are impor-
tant drivers of the composition and functionality of the gut microbiota. In turn, the mucosal mi-
crobiota has a pervasive impact on mucus composition and thickness as well as immune and
metabolic health (Figure 1, Key figure). In this Opinion paper | propose that synthetic glycans
can be used as nutritional ingredients to promote a healthy mucosa through the microbiota.
The role of breast milk and mucin glycans for a healthy mucosal colonization is discussed. |
postulate how mucosal colonizers can play a key role in the intestinal microbial ecological
network and how | think mucosal colonizers may offer powerful tools to modulate health. |
also describe how a possible optimum could be reached between the structural diversity of
mucin glycans and the gut microbiome. Finally, | present new insights on how prebiotic
mucin-like glycans can be used for nutritional strategies to foster mucosal microbes and to
modulate mucosal health.

The sugar code of human mucin glycans

The gut mucosa forms a protective barrier for epithelial cells but also serves as an ecological
niche for specific members of the microbiota. Mucins are glycoproteins that provide mucus
with functional properties [1]. Human glycosyltransferases assemble these polysaccharides
that comprise a broad range of structurally diverse sugar chains [2]. The sugar code of mucin
is composed of N-acetylgalactosamine (GalNAc), N-acetylglucosamine GIcNAc, galactose,
fucose, and sialic acid linked through different types of bond [3,4] (Figure 2). The oligosaccharide
chains contain approximately 2—20 monosaccharides in both linear and moderately branched
structures, and the expression of combinations of the glycosyltransferases with different
substrate specificities leads to an immense diversity of glycan chains [1]. The composition of
mucin glycans differs even along the length of the gut [5], and between individuals, because it
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barrier for epithelial cells but also serves
as an ecological niche for specific
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The degradation of mucin glycans by the
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metabolic responses.
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is partly determined by genetic factors. For example, the presence or absence of fucosylated
oligosaccharides depends on secretor status (Se) and Lewis (Le) genes [1]. These individual dif-
ferences can impact health outcomes and microbiota composition both during infancy and adult
life. As such, fucose nonsecretors have an increased risk for diseases such as Crohn's disease
and celiac disease [6,7], and they have gut microbial communities that are distinct from those
of fucose secretors [8]. The absence of fucosylated oligosaccharides in breast milk is related to
the reduced abundance of Bifidobacterium spp. in the infant gut and a higher risk of diarrhea
and allergic disease [9-11]. Some members of the human gut microbiota are highly adapted to
the mucosal niche within the intestine. This microbial niche is especially present at the mucosal
interface in the colon, where the mucus layer is the thickest and is, in turn, divided into an inner
and outer layer. The inner mucus layer is described to be devoid of microbes while the outer
mucus layer of the colon harbors a stable community of mucosa-colonizing microbes that form
an ecological network based on niche-specific conditions, such as low levels of oxygen and
the availability of mucin proteins and glycans [12]. Apart from the mucus that covers the gut
epithelial cells, fecal pellets are coated with a layer of mucus that creates an additional barrier
for microbes to reach epithelial cells by entrapping them in the fecal pellet [5].

An increase in knowledge about the mucin sugar code has enabled us to decipher more precisely
the interplay between human physiology, mucosal health, and the microbiota. Insight into the
enzymatic capacity of the microbiota to utilize host-produced mucin glycans is essential to
understand how microbes have adapted to specific niches in the human intestinal glycan
landscape. This knowledge allows us to predict how these glycans contribute to the assembly
of the microbiota and to host—-microbe symbiosis, and how we might be able to use them to
our advantage in innovative nutritional strategies using synthetic prebiotic glycans aimed at
improving mucosal health.

Microbial adaptation to mucin glycans

Microbes interact with host-secreted mucin glycans, and this interaction drives the composition
and functionality of the gut microbiota [13]. The microbiome encodes numerous carbohydrate-
active enzymes (CAZymes) with the potential to degrade the complex polysaccharide chains of
mucin glycans [14]. To degrade the sugar code of mucin glycans, a sequential action of different
microbial enzymes is needed [15,16]. As only short glycans can be transported into the microbial
cell, it requires several extracellular secreted and membrane-bound enzymes to predigest the
large mucin glycans. The main enzymatic activity needed is that of glycosyl hydrolases
(GHs), such as endo-p3-N-acetylgalactosaminidase, fucosidases, N-acetyl--hexosaminidases,
[3-galactosidases, and sialidases [17] (Figure 2). The complete degradation of mucin polysaccha-
rides can be done by a combination of enzymes that can be expressed by a diverse range of gut
microbes [15,16]. The highly diverse gut microbiota expresses different enzymes with similar
mucus-degrading capabilities. Available genomes from gut microbiota members indicated that
a majority of the organisms have the capability to cleave, and catabolize, at least one of the
mucin O-glycan monosaccharides [13,18], and more data are becoming available on the char-
acterization of mucin-degrading CAZymes from gut mucosal microbes [13,19-22]. For example,
the large and diverse glycoside hydrolase 16 (GH16) family were recently characterized as
endoacting enzymes and were described to target the polyLacNAc structures within the oligo-
saccharide side chains of mucins. When expressed by prominent mucin-degrading microbes,
the GH16 enzymes can thus be involved in the initial step in mucin breakdown [23]. The fact
that microbes use extracellular degradation enables microbial communities to share carbon
sources and collaboratively break down mucin glycans. The first targets for GH enzymes are
the terminal residues on the O-glycans such as sialic acid, fucose, and glycosulfate. This can
be done by microbes expressing fucosidases, sialidases, and mucin-desulfating sulfatases or
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Glossary

CAZymes: carbohydrate-active
enzymes which can break down a
complex and diverse range of glycan
structures from both dietary and host
sources. These enzymes can be
produced by the gut microbiome —
for example, to facilitate food and
mucin degradation and contribute to
microbial growth in the gut mucosal
environment.

Commensal microbes: microbes that
colonize the gut without benefitting or
harming the human host.

Ecological network: the complex
network of living organisms, their
physical environment, and their
interactions in a particular unit of space.
In this article: a host, its associated
microbiome, and all potential
interactions between microorganisms
and their interactions with the gut
environmental conditions.

Ecological niche: in the present
context, a region providing a specific set
of conditions in the gut environment.
Fucosylated: refers to the presence of
fucose residue(s) in a mucin glycan.
Glycan: a chain of mono-sugar
residues. Such chains can consist of
similar mono-sugars or a diversity of
mono-sugars. In the context of this
article, the chains contain a sugar code
that is typical for the host's gut mucin
glycans or human milk glycans.
Glycoproteins: proteins that contain
oligosaccharide chains (glycans)
covalently attached to amino acid side-
chains.

Glycosyl hydrolases (GHs): enzymes
that catalyze the hydrolysis of glycosidic
bonds in complex mucin sugars chains.
Host microbial symbioses: the
associations, of any type, between
microbes that reside in the gut and the
human host; such associations involve
close and long-term biological
interactions (mutualism, commensalism,
or parasitism).

Human milk oligosaccharides
(HMOs): also called human milk
glycans, these are sugar molecules that
are a part of a group of oligosaccharides
of which the sugar code can be found
exclusively in human breast milk.
Metagenomic: refers to genetic
material recovered directly from
samples — in the context of this article,
from a fecal sample that contains mainly
the DNA of microbes.

Microbial cross-feeding: the use, by
a microbe, of a metabolic product
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glycosulfatases [19]. Interestingly the terminal sugars are not always used as substrates by the
microbial species that release them [24]. As an example, a limited group of gut microbes are
able to express sialidases, which enables the release of sialic acid from mucin. However, not
all of these microbes are able to catabolize the released sialic acid [25] (Figure 2). Interestingly,
sequential removal of released sialic acid from mucin by cross-feeding microbes can protect
against an infection caused by microbial pathogens that use these sugar groups as binding sites
[18]. This might also explain the protective effect of sialidated human milk oligosaccharides
(HMOs) [24,26-28]. This opens up possibilities for synthetic sialidated glycans for treating
infectious diseases. Furthermore, the release of this terminal sialic acid can lead to the sequential
degradation of the mucin glycans by other microbes, and sialidase activity might therefore be a
key feature within the ecological network [25]. When peripheral residues have been removed, the
core of the O-glycan chains can be further hydrolyzed by the microbiota. This can result in the
release of monosaccharides, such as N-acetylglucosamine, N-acetylgalactosamine, and galactose,
used by the microbial degrader itself or by other resident microbes [29,30]. Hence, cross-feeding
actions enhance the ecological fithess of a specific species and often also have a disproportionate
effect on overall microbiota function and metabolism. Mucin degradation by specific
microbes is essential for building a stable microbial network [30-32]. The adaptation of
specialized microbes that are capable of digesting host mucin glycans, and the dynamic
expression of mucin glycans by the host upon microbial stimuli, implies coevolution of a
symbiotic relationship [15,17]. As the degradation of synthetic glycans by a microbial network
will lead to a pool of host modulatory products, | believe that proper seeding of the gut and
mucosa with microbes will positively stimulate host immune and metabolic health in early and
later life [33,34].

Breast milk and mucin glycans for a healthy mucosal colonization

The development of the intestinal microbiota in the first 1000 days of life is a dynamic process
influenced by early-life nutrition [35]. Pioneer bacteria colonizing the infant gut and gradual
diversification towards a stable ecosystem play a crucial role in establishing stable host—
microbe interactions and an optimal symbiosis between them [6]. Immediately after birth, infants
consume an exclusive diet of breast milk or infant formula or a combination of those two. The
glycan landscape presented in human milk offers protection to the neonate, either by directly
blocking binding of pathogens to intestinal cells, or indirectly, serving as an energy source for
microbes that can protect against infection [36]. Therefore, milk serves as both infant and micro-
bial nutrition, which, in concert, promote host-microbe symbiosis. Although HMOs are among
the most abundant components in breast milk, they do not have any direct energetic value for
the nursing infant. Instead, they are described to act as prebiotics selecting for specific microbial
populations in the infant gut and have been postulated to exert antiadhesive or anti-inflammatory
effects [36]. Human milk and mucin glycans show similar molecular characteristics as both are
composed of comparable monosaccharide building blocks and linkages, which together comprise
their sugar code. HMOs consist of a lactose core, which may be elongated by N-acetylglucosamine
(GIcNAC), galactose, fucose, and/or sialic acid. Both HMOs and mucin glycans have large structural
diversity with over 200 glycan structures identified in a single donor [37,38]. Due to the chemical
similarity of HMOs and O-linked mucin glycans, microbes have developed homologous strategies
for degrading these complex carbohydrates [24,26,39,40]. For example, Akkermansia muciniphila
uses similar GHs to degrade glycan structures in either milk or mucin [24]. In my perspective, the
ability of mucin-degrading microbes to forage on milk glycans present in the infant gut may have a
role in early colonization of the mucosal layer with beneficial microbes [24,41]. Examples of such
early seeding of the mucosal layer include Bifidobacterium spp., Bacteroides spp., and
A. muciniphila. These microbes can use their mucus-utilization pathways for survival within the infant
gut, which is rich in HMOs that contain mucin-like structures [24,26,41]. Microbial glycan

¢? CellPress

produced by a different microbe. Also
termed metabolic cross-feeding.
Microbiome: a community of
microbes, including their molecules and
products, that are active and inhabit a
particular environment.

Microbiota: a community of microbes
that inhabit a particular environment.
Mucin glycans: sugar side-chains
attached to a mucin protein backbone.
Mucin O-glycan: a sugar molecule
attached to the oxygen atom of serine or
threonine residues in a mucin protein.
Mucins: glycoproteins that can form a
gel.

Mucosa: a region that provides
physical separation between the lumen
and the body. It consists of physical,
biochemical, and immune elements.
Mucosal barrier: the physical barrier
that separates the lumen and the bodly.
It consists of physical, biochemical, and
immune elements.

Pili: long, thin surface appendages
found on many bacteria. They play major
roles in colonization by facilitating
adhesion, motility, DNA exchange, and
protein uptake and secretion.
Prebiotics: compounds, such as
glycans, that induce the growth or
activity of beneficial microorganisms in
the gut.

Probiotics: live microorganisms that
provide health benefits when
consumed.

Secretor status: refers to the presence
or absence of blood-group antigens in,
for example, mucus. People who
secrete these antigens in their bodily
fluids are referred to as secretors, while
people who do not are termed
nonsecretors. Secretor status is
controlled by the FUT2 gene (also called
the Se gene).

Sialidated: in the present context,
refers to a mucin glycan containing the
residue of a sialic acid sugar.

Sugar code: in a glycan, the pattern of
glycosylation made up of different
mono-sugars combining the parameters
anomeric status, linkage positions, ring
size, and addition of branches.
Synbiotics: food ingredients or dietary
supplements combining probiotics and
prebiotics.
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Key figure
The interplay between microbes and mucin glycans
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Figure 1. A healthy outer mucosal layer in the colon is colonized by a diverse set of microbes that feed on mucin glycans to form a stable ecological network. The mucosal
microbiome stimulates host cells towards a healthy immune and metabolic response. Host goblet cells respond to microbial stimuli by modifying glycan expression
patterns, and this leads to an increase in mucus thickness and a modified mucin sugar composition. In an unhealthy state, in which the mucosal layer is thin and
compromised, microbes can reach the gut epithelial cells and evoke an inflammatory response. Restoration of the mucosal imbalance could be established through
the addition of prebiotic mucin-like glycans that are catabolized by microbes so that these microbes can boost the host to restore mucus thickness and stimulate a
beneficial immune and metabolic response.

degradation results in the generation of metabolites that help to modulate mucosal health,
making these glycan-degrading microbes good markers of a healthy gut during later life. In
addition, the benefits of mucus-colonizing commensals have also been described for mucosal,
immune, and metabolic health throughout life. Glycans added to infant formula will therefore
promote the growth of beneficial glycan-degrading microbes that can colonize the infant gut.
| envision that their presence and activity will promote a healthy microbial network that can
benefit mucosal health in later life.
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Figure 2. Microbial adaptation to mucin glycans. (A) Sugar monomers present in mucin structures. (B) A hypothetical complex mucin glycan structure with a range of
bonds; arrows represent hydrolyzing enzymes encoded in the gut microbiome. (C) Left. Well-characterized mucin glycan structures and their residue bonds. Middle.

Microbial carbohydrate-active enzymes (CAZymes) involved in the catabolism of each glycan structure. Right. Representative genera of the major bacterial phyla in the
human gut encoding these CAZymes in their genomes.

Structural redundancy of mucin glycans and microbial enzyme versatility
Complete dismantling of mucin glycans and mucin proteins demands a series of enzymes respon-
sible for the transportation of glycans and the hydrolysis of their residue bonds. Cross-feeding is an
essential component of microbial community development [30,42,43]. Microorganisms are not
simply divided into mucin degraders and mucin nondegraders. Most gut microbes encode and ex-
press different combinations of CAZymes, the set of enzymes that determine the mucin-degrading
properties and which are thus strain- or subspecies-dependent [16] (Figure 2). Together, the highly
diverse gut microbiota encode several enzymes with a homologous function for mucus degrada-
tion among different microbial species, enabling microbes to hydrolyze a mucin glycan structure
using a similar or even a different enzyme. Examples include the diversity of sialidases and
fucosidases within the human gut microbiome [13] (Figure 2). Several studies have attempted to
pinpoint those genes involved in mucin glycan degradation, and this has led to the identification
of several characterized GH enzymes involved in mucin degradation from a range of gut microbial
species [19]. Furthermore, the presence of mucin glycan-degrading enzymes within gut
metagenomic databases showed enrichment in commensal microbes compared to
pathogens [39].

| would like to propose that the patterns of hydrolytic bonds within mucin glycan structures can
be used to deduce a synergy between mucus structure and certain mucin-degrading microbes.
The difficulty lies in the fact that the presence and activity of microbes also induces regulation of
host mucus glycan expression and composition, increasing diversification of mucin structures
[5,31,44-48]. It has been shown that host-microbe interactions can change fucosylation and
sialidation patterns [49]. The high diversity of mucin glycans could be an essential component
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in stimulating a diverse microbial network that can, in turn, stimulate mucosal expression and,
together, form the basis for the host microbial symbiosis. However, given the recurring patterns
within mucin glycan structures, and the functional homologies of microbial glycan-degrading
enzymes in the gut, | hypothesize the existence of a theoretical optimum in which a minimal
structural redundancy of mucin glycans can support a maximal microbial diversity (Figure 3).
This hypothesis can be used to design microbial synthetic communities that can express all the
enzymes to degrade a set of synthetic glycans to reach an optimal pool of host mucosal
modulatory components. As such, this can result in functional glycan-based food ingredients
with highly advanced synbiotics that can improve mucosal health through synthetic glycans
and microbial activity.

New nutritional strategies for microbiota modulation

New microbiota based therapeutic strategies hold great potential for the treatment of infectious,
immune and metabolic diseases and disorders. An approach would be to use synthetic prebiotic
glycans as microbiome modulators to stimulate mucus barrier, immune and metabolic properties.
Current examples of glycans added to nutrition already show their potential to resolve mucus-layer
defects associated with inflammatory bowel diseases and metabolic disorders [50-54]. The best
instances of the effectiveness of adding prebiotic glycans to nutrition come from infant feeding.
Infant formula containing glycan-based prebiotics — such as disialyllacto-N-tetraose, sialylated
galacto-oligosaccharides, disialyllacto-N-tetraose, and 2'-fucosyllactose — have been shown to al-
leviate diseases such as necrotizing enterocolitis (NEC) [39,55-58]. Apart from prebiotic glycans
expressed by a microorganism or derived from plant materials, the use of mucin glycans has
also become a field of interest to modulate the microbiota and human health. Animal studies
have shown that mice that received orally administered porcine mucin glycan exhibit a reduction
in C. difficile, a delay in the onset of diet-induced obesity, and an increase in the relative abundance
of A. muciniphila [39]. Animal studies have also revealed how commensal microbiota members that
target mucosal sialidases can protect against C. difficile infections [18]. Scientists are now exploring
how engineered mucus can prevent pathogen infections [59]. | think that the protective role of the
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gut microbiota in the modulation of gut mucosal health can be extended to a range of mucosal-re-
lated disorders. | postulate that synthetic prebiotic glycans can, and will, be used in nutrition to tar-
get beneficial microbes in the gut and exert their role in modulating mucosal health through being
anti-infection, evoking a beneficial immune and metabolic host response, and regulating improved
mucus expression and barrier function.

Glycans that improve mucosal health through the microbiota

An increasing number of studies have shown that the intestinal mucus acts as a major modulator
of human health by increasing intestinal barrier function and decreasing inflammatory responses
[69,60]. Maintenance of a healthy gut through normal mucus encapsulation of fecal pellets can
even prevent inflammation and hyperplasia [5]. There are also a few examples of a causative re-
lationship between mucin-degrading microbes and host immune and metabolic health, such as
the discovery that the outer-membrane pili of A. muciniphila can evoke a healthy host metabolic
response and increase in intestinal barrier function [61-63]. The use of non-living microbial mate-
rials (postbiotics), such as the pili proteins of A. muciniphila, instead of viable microbial cells
(probiotics), has many advantages in the upstream production and application possibilities of
products that can be added to nutrition. As mentioned previously, mucin glycans added to the
food of mice resulted in a higher abundance of A. muciniphila and a delay in the onset of diet-
induced obesity.

The ratio between simple sugars versus fibers in a diet plays a role in the activity and abundance
of microbes with mucin-degrading abilities, with low fiber consumption being correlated with the
onset of intestinal inflammation. In mice, the intake of simple sugars enhances pathogenesis via
modulation of gut microbiota and predisposes them to colitis [64]. Mice that were administered
a low-fiber diet had an altered microbiota that resulted in mucus defects [60,65]. On top of this,
the host makes unfavorable changes in its mucus expression and sugar code in response to
an inflammatory type of microbiota, creating a positive feedback loop towards an even more in-
flammatory state [47]. As such, along-term low-fiber, high-sugar diet can create a microbiota that
is active on mucus degradation, leading to changes in mucus composition and gut barrier func-
tion and, subsequently, inflammation. In the case of NEC, inflammatory bowel disease (IBD), and
colorectal cancer, the role of the mucosal microbiota has been shown to be associated with the
(corresponding) diseased state [55]. Promising results are reported for HMOs and blood type an-
tigens as prebiotic glycans, being effective as microbiota modulators to improve gut and immune
health [66-69]. Furthermore, apart from currently available glycans, the use of new synthetic
glycans has also been suggested, with the possibility of using not only the glycan chains but
also the backbone of the mucin structures in combination with glycan chains [59,70]. | think
that the next steps in this field of research should be to apply new glycan structures that improve
host health and ameliorate the outcome of to a range of disorders through the microbiota.

Concluding remarks and future perspectives

Glycans have profound effects on the assembly and function of the human gut microbiome.
| think that glycans have high potential to be applied in truly new therapeutic nutrition for chronic
inflammatory diseases as well as enteric infections in which patients suffer from gut microbial
imbalance and impaired mucus integrity. Therefore, | argue that the next phase in the field of
gut microbiome research should be focused on the design of nutritional strategies that target
the microbes which colonize the mucosal layer in order to improve human mucosal health (see
also Outstanding questions). Thus far, the interplay between host mucus production and the
role of microbes herein is lacking sufficient mechanistic insights. Knowledge about which micro-
bial components play a role in regulating mucus secretion, and how mucus glycans determine
microbiome composition, will elucidate how a symbiosis between the host and microbe is
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Outstanding questions

How do different microbiota members
stimulate mucin production?

How do microbiota members influence
mucin composition?

Which sugars and hydrolytic bonds
between sugars are sufficient to
stimulate diverse microbial action in
the gut?

What prebiotic mucin-like glycans
stimulate microbes that, in turn, modu-
late host mucin production?

How could glycan structures be used
as next-generation prebiotics?

Can nutrition steer the mucosal
colonization of microbes in early life?
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reached and how a disbalance could be treated to overcome dysbiosis. Understanding how in-
teractions between the gut microbiome, dietary glycans, and host glycans regulate gut epithelial
function, the immune response to pathogens, and transitions to adaptive tolerogenic immunity
will offer windows of opportunity to shape lifelong gut, immune, and metabolic health and
enhance our knowledge of the causality between microbes and human health.
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