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The growth and the harvestability of a broccoli crop is monitored by the size of the broccoli

head. This size estimation is currently done by humans, and this is inconsistent and

expensive. The goal of our work was to develop a software algorithm that can estimate the

size of field-grown broccoli heads based on RGB-Depth (RGB-D) images. For the algorithm

to be successful, the problem of occlusion must be solved, which is the partial visibility of

the broccoli head due to overlapping leaves. This partial visibility causes sizing errors. In

this research, we studied the use of deep-learning algorithms to deal with occlusions. We

specifically applied the Occlusion Region-based Convolutional Neural Network (ORCNN)

that segmented both the visible and the amodal region of the broccoli head (which is the

visible and the occluded region combined). We hypothesised that ORCNN, with its amodal

segmentation, can improve the size estimation of occluded broccoli heads. The ORCNN

sizing method was compared with a Mask ReCNN sizing method that only used the visible

broccoli region to estimate the size. The sizing performance of both methods was evalu-

ated on a test set of 487 broccoli images with systematic levels of leaf occlusion. With a

mean sizing error of 6.4 mm, ORCNN outperformed Mask ReCNN, which had a mean sizing

error of 10.7 mm. Furthermore, ORCNN had a significantly lower absolute sizing error on

161 heavily occluded broccoli heads with an occlusion rate between 50% and 90%. Our

software and data set are available on https://git.wur.nl/blok012/sizecnn.

© 2021 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The in-field estimation of the crop size is an important task in

plant phenotyping, growth monitoring and harvesting.

Currently, this crop size estimation is mainly done by

humans, and this can be inconsistent and expensive. A

promising alternative is a sensor system with a software
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algorithm that can autonomously estimate the size of a crop

while it is still on the tree or plant. This system can potentially

increase the accuracy and the frequency of the size estimates,

while reducing labour costs.

Recent studies focused on the in-field size measurement of

apple (Gongal et al., 2018), broccoli (Kusumam et al., 2017),

citrus (Lin et al., 2019) and mango (Wang et al., 2017). These

studies have two similarities. The first similarity is that all
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Nomenclature

Abbreviations

3D three dimensional

AIoU amodal intersection over union

CNN convolutional neural network

COCO common objects in context

Det detection

Diam diameter

Diff difference

DPL depth-pixel loss rate

Est estimation

FN false negative

FP false positive

GT ground-truth

IoU intersection over union

MAD median absolute error

MAE mean absolute error

Mask ReCNN mask region-based convolutional neural

network

NMS non-maximum suppression

OCR occlusion rate

ORCNN occlusion region-based convolutional neural

network

P precision

QR quick response

R recall

RGB red, green and blue

RGB-D red, green, blue and depth

RMSE root mean squared error

ROI region of interest

TP true positive

VIoU visible intersection over union

Symbols (units)

∩ intersection (�)

∪ union (�)bd diameter estimate (mm)

tCNN threshold on the confidence level (�)

tIoU threshold on the intersection over union (�)

tNMS threshold on the non-maximum suppression (�)

a significance level of the pairwiseWilcoxon test (%)ee median diameter error (mm)eemrcnn median diameter error of Mask R-CNN (mm)eeorcnn median diameter error of ORCNN (mm)

e diameter error (mm)

Ad area of depth pixels of the broccoli head in the

registered depth image (pixels)

At area of the visible region of the non-occluded

broccoli head (pixels)

Av area of the visible region of the occluded broccoli

head (pixels)

c confidence level on the object detection of the

convolutional neural network (�)

d ground-truth diameter (mm)

Mgt area of the ground-truth mask (pixels)

Mp area of the predicted mask (pixels)

p p-value of the pairwise Wilcoxon test (�)

r Pearson's correlation coefficient (�)
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researchers used a camera-based system that generated RGB-

Depth (RGB-D) images. An RGB-D image consists of a red,

green and blue colour image (RGB) and a registered depth

image, where each pixel contains the distance measurement

between the image plane and the object. In three of the four

studies, the colour image was used to detect the crop, while

the depth image was used to estimate the crop's size. In

Kusumam et al. (2017), the detection and the size estimation

were done on a three dimensional (3D) image that was created

from the depth image. The second similarity is that all re-

searchers used feature-engineered software algorithms to

process the RGB-D images. In Kusumam et al. (2017) and Lin

et al. (2019), a machine-learning algorithm was used, but

none of the researchers used deep-learning algorithms. Deep-

learning algorithms currently provide state-of-the-art per-

formance in the in-field fruit and crop detection (Blok et al.,

2021; Ge et al., 2019; Kang & Chen, 2020; Nejati et al., 2020;

Yu et al., 2019). In Kamilaris and Prenafeta-Boldú (2018) it was

shown that deep-learning algorithms outperformed feature-

engineered algorithms in all 22 agricultural case studies. In

line with these findings, our research will focus on the crop

size estimation with an RGB-D camera and a deep-learning

algorithm.

A limitation of the crop-sizing studies of Gongal et al.

(2018), Kusumam et al. (2017), Lin et al. (2019) and Wang

et al. (2017), was that the algorithms were tested on crops

that had no or minimal occlusion, meaning that the results
only partially reflected the in-field sizing performance. Usu-

ally, an agricultural image scene is dense and cluttered, with

many forms of crop occlusion. When there is crop occlusion, a

(big) part of the crop is covered by other crop organs, sur-

rounding plants or materials, making it harder for an algo-

rithm to detect and size the crop. This challenge was also

acknowledged by Zhang et al. (2020), who did a literature re-

view on deep-learning algorithms that were tested in dense

and cluttered agricultural image scenes. In Zhang et al. (2020),

it was stated that occlusion is one of the biggest challenges for

a deep-learning algorithm when analysing these complex

image scenes. The goal of our work was to develop a deep-

learning algorithm that can accurately estimate the size of

crops even when they are occluded. In our research, we chose

broccoli (Brassica oleracea var. italica) as our model crop, since

broccoli heads can be heavily occluded by leaves and weeds.

With 3D software algorithms it is possible to detect and

size the occluded broccoli heads. For example, a Frustum

Pointnet algorithm (Qi et al., 2018) can be used to detect

partially occluded 3D objects. A 3D shape-completion algo-

rithm can be used to estimate the shape of occluded crops,

similar to how Ge et al. (2020) estimated the shape of occluded

strawberry fruits. However, 3D algorithms can also have lim-

itations, such as a longer analysis time and a less optimised

transfer-learning, due to the limited availability of 3D agri-

cultural data sets. Another way to deal with occlusions, is to

obtain multi-view images of the same object from multiple

https://doi.org/10.1016/j.biosystemseng.2021.06.001
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cameras or camera positions. This multi-view imaging has

proven its effectiveness in other occluded crop environments,

such as sweet pepper (Barth et al., 2016; Lehnert et al., 2019)

and cucumber (Boogaard et al., 2020), but a multi-view imag-

ing also has its disadvantages, such as higher hardware costs

and a longer image analysis time compared to an analysis on a

single image. Therefore, we will investigate deep-learning

methods that can estimate the size of occluded broccoli

heads from a single RGB-D image of the scene.

Comparable to the algorithms of Gongal et al. (2018),

Kusumam et al. (2017), Lin et al. (2019) and Wang et al. (2017),

the sizing algorithm is expected to execute two different sub

tasks. The first sub task is the image-based detection of the

broccoli head. The second sub task is the size estimation of

the broccoli head in the registered depth image, using the

detection output from the first sub task. The image-based

broccoli detection can be accomplished with a special group

of deep-learning algorithms: convolutional neural networks

(CNN's). Appropriate CNN's for this task are object-detection

algorithms and instance-segmentation algorithms. Object-

detection algorithms, like Faster ReCNN (Ren et al., 2017) or

YOLOv4 (Bochkovskiy et al., 2020), can detect the broccoli

head in an RGB image with a rectangular bounding box,

similar to how Bender et al. (2020) detected broccoli plants.

Other object-detection algorithms were specifically designed

to detect circles (YOLO-Tomato (Liu et al., 2020)) or ellipses

(BubCNN (Haas et al., 2020)), which might better match the

shape of the broccoli head. However, with the bounding box,

circle and ellipse detections it is impossible to specify

whether the pixels that are inside the detected shape belong

to the broccoli head or to objects that occlude the broccoli.

Due to this lack of pixel differentiation, an object-detection

algorithm requires an additional filtering algorithm to

remove the pixels that do not belong to the broccoli head,

because these pixels cannot be used for the size estimation in

the registered depth image. An alternative approach is to use

an instance-segmentation algorithm, like Mask ReCNN (He

et al., 2017) or YOLACTþþ (Bolya et al., 2020). An instance-

segmentation algorithm can segment the broccoli head

pixels inside the bounding box. With this additional pixel

segmentation, the sizing algorithm will be less dependent on

an additional filtering algorithm, making an instance-

segmentation algorithm a more appropriate algorithm for

an autonomous broccoli sizing system.

When an instance-segmentation algorithm is used to

segment an occluded broccoli head, then the pixel segmen-

tation would represent only the visible region of the broccoli

head. When this partially completed segmentation is used for

the size estimation, there is a chance that the actual size is

underestimated. One way to alleviate this problem, is to

extend the instance-segmentation algorithm with an addi-

tional shape-completion algorithm, like Ge et al. (2020) did, to

approximate the bigger shape from the visible region of the

broccoli head. An alternative approach is to estimate the

bigger shape of the occluded broccoli head with an instance-

segmentation algorithm that segments the combined visible

and occluded part of the broccoli head. This segmentation is

called amodal segmentation (Zhu et al., 2017), and this might

better reveal the actual shape of the occluded broccoli head.
However, with an amodal segmentation some of the

segmented pixels would belong to objects that occlude the

broccoli head. Obviously, these pixels need to be removed

with an additional filtering algorithm to assure an accurate

size estimation. In summary, with an instance-segmentation

algorithm that either segments the visible broccoli region or

the amodal broccoli region, there is a need of an additional

shape-completion or filtering algorithm to estimate the size of

the broccoli head. The problem is that these algorithms might

cause additional sizing errors.

A possible solution is to use an instance-segmentation al-

gorithm that can generate two segmentations: one on the

amodal region of the broccoli head and one on the visible re-

gion of the broccoli head. The amodal segmentation can be

used to estimate the bigger shape of the occluded broccoli

head, whereas the visible segmentation can be used to extract

the depth values of the broccoli head that are needed to esti-

mate its real-world size. This dual segmentation makes the

sizing algorithm less dependent on an additional shape-

completion or filtering algorithm, which might improve the

size estimate.

Occlusion Region-based Convolutional Neural Network

(ORCNN) (Follmann et al., 2018) is an instance-segmentation

algorithm that can generate this dual segmentation. ORCNN

is an extended Mask ReCNN network with multiple mask

head branches, of which one can be trained to segment the

visible broccoli pixels and the another one can be trained to

segment the amodal broccoli pixels. Because ORCNN gen-

erates a pixel segmentation for both the visible and the

amodal region, it can be used to predict all kinds of crop

shapes.

In this paper, we hypothesised that the size estimation of

occluded broccoli heads can be improved when using an al-

gorithm that can segment both the visible and the amodal

region of the broccoli head. The objective of our study was to

test this hypothesis by comparing the sizing performance of

ORCNN with a Mask ReCNN sizing method that was only

based on a single segmentation of the visible broccoli pixels.

Our research was conducted on a data set of 2560 broccoli

images with systematic levels of occlusion. The main contri-

bution of our research is a novel size estimation method that

uses a dual image segmentation to better deal with crop oc-

clusions. The secondary contribution is the release of the

crop-sizing software and a data set of broccoli images with

systematic levels of occlusion.
2. Materials and methods

2.1. Image data set

This paragraph highlights how the RGB-D images were ac-

quired in the broccoli fields (section 2.1.1) and how the ac-

quired images were pre-processed and annotated (section

2.1.2). Then, it is explained how the broccoli occlusion rate

was calculated in the RGB image (section 2.1.3) and in the

registered depth image (section 2.1.4). Finally, it is described

how the annotated images were aggregated for CNN training

and testing (section 2.1.5).

https://doi.org/10.1016/j.biosystemseng.2021.06.001
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2.1.1. Image acquisition
To the best of our knowledge, there are currently two online-

available data sets with RGB-D images of field-grown broccoli

(Bender et al., 2019; Kusumam et al., 2016). Unfortunately, the

broccoli images of both data sets had no or minor occlusions.

Also, Kusumam et al. (2016) did not publish the ground-truth

size measurements. Therefore we decided not to use these

images, and to acquire two data sets of broccoli images with

systematic levels of occlusion. The two data sets were ac-

quired with two different cameras on two broccoli fields that

were located in the United States of America (USA) and in the

Netherlands. On these fields, two different broccoli cultivars

were grown in two different growing seasons. The variations

in crop conditions and imaging hardware resulted in a diverse

data set for the training and the testing of the algorithms.

The first data set was acquired in 2018 on a broccoli field in

Santa Maria (USA). On this field, the broccoli plants of the

cultivar Avenger were grown on beds with two crop rows that

were 0.31 m apart. The intra-row spacing was 0.20 m. Before

the image acquisition, we selected two rows in the broccoli

field that were grown on two different beds. In these two rows,

we randomly selected 122 occluded broccoli heads with a

diameter between 85 and 228 mm (the average diameter was

156 mm). The selected broccoli heads were tagged with a

Quick Response (QR) code for visual recognition. Then, the

RGB-D images were acquired with a prototype harvesting

robot. This robot was equipped with an image acquisition

system that acquired top-view RGB-D images of the broccoli

crop, see Fig. 1a. The image acquisition system was con-

structed as an enclosed box for uniform illumination. The

acquisition systemwas equippedwith one RGB colour camera

(IDS UI-5280FA-C-HQ) with a 8 mm lens (Fujifilm HF8XA-5M),

one monochrome stereo-vision camera (IDS Ensenso N35)

and 21 light emitting diode (LED) strips (OSRAM VFP2400S-G3-

865-03) for artificial illumination, see Fig. 1b. The colour

camera was positioned at the centre of the stereo-vision

camera, but with a 52 mm vertical offset, Fig. 1c. The dis-

tance between the two cameras and the broccoli heads was

approximately 0.6 m. At this distance, the camera's field-of-

view was 0.62 m (width) by 0.52 m (height). The two cameras

were levelled before the image acquisition with a bubble level
Fig. 1 e (a) Overview of the image acquisition system that was a

RGB-D images of broccoli heads in a field in Santa Maria (USA). (b

camera, one monochrome stereo-vision camera and 21 LED strip

52 mm between the RGB-camera (upper black camera) and the
instrument, to ensure the horizontal and vertical alignment

between the cameras and the broccoli heads.

The images of the colour and the stereo-vision camera

were simultaneously acquired with a hardware trigger from

an electronic encoder wheel that was attached to the front

wheel of the robot. This encoder generated a hardware trigger

to the cameras for each 0.15 m (þ/� 0.01 m error) of relative

displacement of the robot. The RGB image (produced by the

colour camera) and the depth image (produced by the stereo-

vision camera) were registered, creating one RGB-D image of

1280 � 1024 pixels for each hardware trigger. The robot was

driven with a constant speed of approximately 0.14m s�1 over

the two rows to acquire the images of the 122 selected broccoli

heads with its natural occlusion (leaves). In total 947 RGB-D

images were captured (four to ten frames per broccoli head).

Because the robot moved over the crop, a various range of

natural occlusions occurred in the different frames due to

changes in camera perspective, see three examples in Fig. 2.

After the image acquisition, the leaves that occluded the

broccoli heads were removed and the robot was driven again

over the same rows to acquire four to ten frames from each

broccoli head without any occlusion. Finally, the diameters of

the broccoli headsweremeasuredwith a circular ruler, Fig. 3b.

The second data set was acquired in 2020 on a broccoli field

in Sexbierum (The Netherlands). On this field, the broccoli

plants of the cultivar Ironman were grown in single rows that

were 0.75 m apart. The intra-row spacing was 0.33 m. The

broccoli images were acquired with an Intel Realsense D435

camera that was mounted on a metal frame to acquire top-

view RGB-D images of the broccoli crop, see Fig. 3a. The dis-

tance between the Realsense camera and the broccoli heads

was approximately 0.6 m. At this distance, the camera's field-

of-view was 0.79 m (width) by 0.58 m (height). The Realsense

camera was levelled with a bubble level instrument before

each image acquisition of a broccoli head, to ensure the hor-

izontal and vertical alignment between the camera and the

broccoli heads. The RGB-D images were acquired in daylight

without artificial illumination. Diffuse light conditions were

createdwith an umbrella. The RGB image and the depth image

from the Realsense camera were registered, creating one RGB-

D image of 1280 � 720 pixels for each software trigger.
ttached to a prototype harvesting robot to acquire top-view

) The image acquisition system consisted of one RGB colour

s for artificial illumination. (c) There was a vertical offset of

stereo-vision camera (lower blue camera).

https://doi.org/10.1016/j.biosystemseng.2021.06.001
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Fig. 2 e (a) The prototype harvesting robot drove over the broccoli crop to acquire multiple frames from the same broccoli

head (which were tagged with a QR code). In this example, the first frame was captured when the broccoli head was in the

top of the image. In this frame, the broccoli head was subject to heavy leaf occlusion. (b) Another frame was taken when the

broccoli head was in the centre of the image. In this frame, the broccoli head was subject to moderate occlusion. (c) In the

last frame, the tagged broccoli head was in the bottom of the image and had a low level of occlusion, because of the changed

position of the camera.

Fig. 3 e (a) The Intel Realsense D435 camera was mounted on a metal frame to acquire top-view RGB-D images of broccoli

heads in a field in Sexbierum (The Netherlands). (b) After the image acquisition, the diameter of the broccoli head was

measured with a circular ruler.
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On the field, 250 occluded broccoli heads were randomly

selected from multiple crop rows. The selected broccoli heads

had a diameter between 68 and 239mm (the average diameter

was 137 mm). First, one frame of the broccoli head was ac-

quired with its natural occlusion (leaves and weeds), see

Fig. 4a. Then, additional frames were acquired of the same

broccoli head with different occlusions. The different occlu-

sions were created by cutting a leaf from a neighbouring plant

and then placing this leaf over the broccoli head to create a

human-made, yet natural-looking occlusion, Fig. 4b. This was

repeated for five to ten frames per broccoli head. Afterwards,

all leaves were removed from the broccoli plant and a last

image frame was acquired without any occlusion, Fig. 4c. In

total, 1613 RGB-D images were captured on this broccoli field.

After the image acquisition, the diameters of the broccoli
heads were measured with the same circular ruler that was

used to measure the broccoli heads in the USA, Fig. 3b.

2.1.2. Image pre-processing and annotation
All 2560 RGB-D images from the two data sets were re-scaled

and zero-padded to a resolution of 1280 � 1280 pixels, see

examples in Figures 2 and 4. This zero-padding allowed us to

extrapolate the annotations into the black-coloured regions in

case the broccoli headwas only partially in the field-of-view of

the camera, see an example in Fig. 5. The image annotation

was done with the LabelMe software (version 4.5.6) (Wada,

2016). First, the image frames with no occlusion were anno-

tated. In these frames, each broccoli head was annotated by

two masks: a polygonal mask for the visible broccoli region

and a circular mask for the amodal broccoli region. The

https://doi.org/10.1016/j.biosystemseng.2021.06.001
https://doi.org/10.1016/j.biosystemseng.2021.06.001


Fig. 4 e For each broccoli head in the second data set, five to ten frames were acquired with different occlusions. (a) The first

frame was acquired from the broccoli head with its natural occlusion. (b) Then, a randomly clipped leaf from a neighbouring

broccoli plant was positioned above the broccoli head to create a human-made, yet natural-looking occlusion. This process

was repeated for five to ten different leaf positions to create different occlusions. In this example, the clipped leaf occluded

the bottom part of the broccoli head. (c) The last frame was acquired when all occluding leaves had been removed.

Fig. 5 e The image annotation procedure involved the following steps: (a) First, the non-occluded frame was annotated. For

each broccoli head, a circular mask was drawn for the amodal region (red circle) and a polygonal mask was drawn for the

visible region (blue polygon). The amodal mask of the partially captured broccoli head in the bottom of the image, was

drawn into the zero-padded region of the image (black-coloured region). This amodal annotation was done by means of the

best guess of the image annotator. (b) Then, all amodal masks were copied to the frames of the same broccoli head with

occlusion. The visible masks were independently drawn, because they could not be copied.
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circular mask was drawn along the circumference of the

broccoli head, Fig. 5a. We chose for a circular mask, because

this corresponded to the shape of the circular ruler, whichwas

used to obtain the ground-truth, Fig. 3b. Then, the circular

amodal mask was copied to the frames of the same broccoli

plant with occlusion, Fig. 5b. This procedure allowed us to

precisely annotate the occluded broccoli head with the amo-

dal mask that was drawn in the non-occluded frame. The

position of the amodal mask was then checked and corrected

by another image annotator when necessary. Finally, the
polygonal masks of the visible broccoli regions were anno-

tated for all images. Examples of these visible broccoli anno-

tations are the blue polygons in Fig. 5. The other broccoli

heads that were present in the image but not tagged and

measured in the field, were also annotated by means of the

best guess of the image annotator. Examples of these anno-

tations are visualised in the bottom of the image of Figure 5a

and b. These annotations were used to train the CNN's and to

calculate the detection metrics. The software procedures of

the annotation process can be found on our git repository.

https://doi.org/10.1016/j.biosystemseng.2021.06.001
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2.1.3. Calculation of the occlusion rate in the RGB image
In the RGB image, the pixel area of the visible region of the

occluded broccoli head, Av, was divided with the pixel area of

the visible region of the same broccoli head in the non-

occluded frame, At. This division resulted the occlusion rate

(OCR) in the RGB image (Equation (1)). An example of the OCR

calculation is the division of the area of the blue polygons in

Fig. 5b with the area of the blue polygons in Fig. 5a.

OCR ¼ 1� Av

At
(1)

The occlusion rates were quantified for the broccoli images

that had a natural leaf occlusion and for the broccoli images

that had a human-made leaf occlusion. In total, 1197 of the

2560 broccoli images had a natural occlusion. These were the

images from the first data set and the frames of the second

data set that had a natural occlusion, see an example in

Fig. 4a. The broccoli heads were on average 25.9% occluded by

leaves and weeds in its natural situation (the standard devi-

ation was 23.6%). The remaining 1363 broccoli images had a

human-made leaf occlusion, see two examples in Figure 4b

and c. In this human-made situation, the broccoli heads were

on average 44.9% occludedwith a standard deviation of 30.3%.

Figure 6 shows the distribution of the occlusion rate for the

two situations.

2.1.4. Calculation of the pixel loss in the depth image
Both of the used depth cameras were stereo-vision cameras.

These cameras use a left and a right monochrome camera to

produce a depth image. Due to the different perspective of the

two cameras, some parts of the scene can only be viewed by

one camera due to occlusion. For these image parts, the depth

cannot be calculated. In our data sets, the depth-pixel loss

rate, DPL, was quantified by comparing the area of the broccoli

pixels in the RGB image, Av, with the area of the depth pixels

that were present in the same broccoli region in the registered

depth image,Ad. The depth-pixel loss ratewas calculated with

Equation (2). A visual example of the depth-pixel loss rate is

the difference between the blue region in Fig. 7a and the green

region in Fig. 7b.

DPL ¼ 1�Ad

Av
(2)
Fig. 6 e A box-and-whisker plot showing the distribution of the b

images. n is the number of RGB images that were used to respe

made occlusion rate. The line within the box indicates the medi

ends of the box, which represent the 25th percentile (first quar

indicate the variability outside the first and third quartiles, whe
In all 2560 depth images, the average depth-pixel loss rate

was 20.2% (the standard deviationwas 19.9%). In the 947 depth

images of the Ensenso N35, the average depth-pixel loss rate

was 17.5% (the standard deviation was 17.7%). In the 1613

depth images of the Realsense D435, the average depth-pixel

loss was 21.7% (the standard deviation was 20.9%). Figure 8

shows the distribution of the depth-pixel loss for the two

depth cameras.

2.1.5. Training, validation, and test set
The 2560 annotated images from 372 unique broccoli plants

were divided into a training set, a validation set and a test set.

First, all images of a unique broccoli plant were placed into

separate groups. These groups of images were then placed

into either the training set, the validation set or the test set,

based on a stratified sampling criterion using the measured

diameter of the broccoli head. This stratified sampling

ensured that all images of the same broccoli plant were placed

in either the training set, validation or test set, and that a

various range of broccoli diameters would appear in each of

the three sets. The 372 unique broccoli plants were split into a

training set of 222 plants (60%), a validation set of 75 plants

(20%) and a test set of 75 plants (20%). The images that

belonged to the unique plants were then put into the three

sets, resulting a training set of 1569 images (61.3%), a valida-

tion set of 504 images (19.7%) and a test set of 487 images

(19.0%).

2.2. Size estimation of the broccoli heads

The broccoli size estimation involved two sub tasks: the seg-

mentation of the broccoli head in the RGB image (whichwill be

described in paragraph 2.2.1), and the diameter estimation of

the broccoli head in the registered depth image (which will be

described in paragraph 2.2.2).

2.2.1. Broccoli head segmentation with Mask ReCNN and
ORCNN
ORCNN was compared with a conventional Mask ReCNN al-

gorithm to evaluate the effect of the additional amodal seg-

mentation on the sizing performance. In this paragraph, the

technical details of the two CNN's are described by means of

the network architecture (section 2.2.1.1), the used software
roccoli occlusion rates that were calculated in the 2560 RGB

ctively calculate the natural occlusion rate and the human-

an of the distribution. 50% of the data is present within the

tile) and the 75th percentile (third quartile). The whiskers

reas the dots indicate the outliers.
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Fig. 7 e (a) The blue polygon visualises the visible mask annotation in the RGB image. (b) The green polygon visualises the

pixels with a depth value after copying the visible mask annotation (blue contour) into the registered depth image. The

black pixels inside the blue contour are the pixels of the broccoli head that had no depth value. The grey-scale of the depth

image was based on the depth values: the pixels with a lighter colour are further from the camera.

Fig. 8 e The box-and-whisker plots show the distribution of the depth-pixel loss rate for the two depth cameras that were

used in our experiments. An explanation of the box-and-whisker plot can be found in Fig. 6. n is the number of depth

images per camera.
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and hardware (section 2.2.1.2), the training procedure (section

2.2.1.3) and the image inference procedure (section 2.2.1.4).

2.2.1.1. Network architectures. Mask ReCNN (He et al., 2017) is

a neural network that consists of multiple branches. First,

there is a backbone, which is a neural network that extracts

feature maps at various resolution scales from an image with

a feature pyramid network. In our research, the ResNeXt-101

(32 � 8d) (Xie et al., 2017) residual network was used as

backbone. After the backbone, there is a region proposal

network that proposes regions of interest (ROI) of possible

distinct objects from the feature maps. To avoid duplicate

ROIs for the same object, non-maximum suppression (NMS) is

used that discards the ROIs that overlapwith amore confident

ROI. Then, the remaining ROIs are realignedwith the ROI align

layer and transformed into fix-sized feature maps. These

featuremaps are further processed in two parallel branches in

the so-called network head. The first head branch has two

fully connected layers, of which one performs object classifi-

cation and the other one bounding box detection. The second
branch, which is the mask head branch, has four 3 � 3 con-

volutional layers that segment the object pixels inside the

bounding box, yielding the mask.

Except for the mask head branch, ORCNN (Follmann et al.,

2018) has the same architecture as Mask ReCNN (He et al.,

2017). With ORCNN, the object classification and the bound-

ing box detection are trained on the ground-truth class and

box of the amodal instance, because this is by definition the

largest region. Then, all segmentations are done inside the

same amodal bounding box. ORCNN's original network ar-

chitecture has three mask head branches: one for the visible

mask, one for the amodal mask and one for the occlusion

mask (which is the difference between the amodal and the

visible mask). In our research, the occlusionmask branch was

removed, because this mask head was not needed for our

sizing application. The visible and the amodal mask head

branch that remained, were both based on the mask head

branch of Mask ReCNN, indicating that they both had four

3 � 3 convolutional layers, refer to the schematic represen-

tation of the network architecture in Fig. 9.
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Fig. 9 e Schematic representation of the architecture of the ORCNN network that was used in this research. The part within

the dashed red box represents the conventional Mask ReCNN architecture. ORCNN had two mask head branches: one for

the visible mask segmentation and one for the amodal mask segmentation. The image was adapted from Follmann et al.

(2018) and Shi et al. (2019).
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2.2.1.2. Software and hardware. The software code of the

online ORCNN repository of Lam (2020) was used. This code

was based on the Mask ReCNN code of Detectron2 (Wu et al.,

2019). From the code, we removed all code references of the

occlusion mask. The ORCNN network that remained only

outputted the visible and the amodal mask. The code of this

network can be found at our git repository.

The Mask ReCNN code was implemented from the ORCNN

code. First, the ORCNN code was duplicated. In this duplicated

code, we disabled all software references of the amodal mask

head branch. The software that remained had only one mask

head branch for the visiblemask segmentation, and the rest of

the code was exactly the same as the ORCNN code. This

allowed a fair comparison between the conventional Mask

ReCNN and ORCNN.

Both networks were installed on a computer with an Intel

Core i7 8700K processor (32 GB DDR4 RAM). The computer was

equipped with two graphical processing units (GPU) (one

NVIDIA GeForce GTX 1080 Ti and one NVIDIA GeForce GTX

1070 Ti) to accelerate the CNN training and testing. The

operating system of the computer was Ubuntu Linux (version

18.04). CUDA (version 10.1) was used as the computational

back-end. Both codes were deployed in Python (version 3.8)

with Pytorch (version 1.4) and Torchvision (version 0.5) as the

deep-learning libraries.

2.2.1.3. Training procedure. Transfer-learning was used to

initialise the weights of both networks with the weights of

Mask ReCNN that was trained on the Microsoft Common

Objects in Context (COCO) data set (Lin et al., 2014). Then, the

CNN's were fine-tuned on our own training data. The training

procedures of Mask ReCNN and ORCNN were exactly the

same. Both networks were trained with the stochastic

gradient descent optimiser with a momentum of 0.9 and a

weight decay of 1.0,10�4. The image batch size was two. The

training procedures used the same data augmentations: a

random horizontal flip of the image (with a probability of 0.5)

and an image resizing along the shortest edge of the image

(while maintaining the aspect ratio of the image). Both
augmentations were the default data augmentations of the

Mask ReCNN code of Detectron2 (Wu et al., 2019).

Both networks were trained for 15000 iterations. The first

1000 iterations served as warm-up, where a lower learning

rate of 4.0,10�5 was used that slowly build up to the initial

learning rate of 2.0,10�2. This learning rate build-up was

applied to stabilise the learning process in the initial phase of

the training. Between the 1000th and the 7000th iteration, the

initial learning rate of 2.0,10�2 was used. Then, a 0.1 step-

based learning rate decay became effective, causing the

learning rate to be 2.0,10�3 between the 7000th and the

11000th iteration. The decay was again applied at the 11000th

iteration, causing the learning rate to be 2.0,10�4 between the

11000th and the last iteration.

At every 20th iteration, the training and the validation loss

were calculated (the loss summarises the classification,

localisation and segmentation error). The training loss was

calculated on the 1569 training images and the validation loss

was calculated on the 504 validation images. These validation

images were not used to train the neural network weights, but

to inspect whether the network was overfitting. Network

overfitting occurs when the network weights are too specif-

ically optimised on the training images, making it harder to

generalise on the validation images, leading to an increase in

the validation loss. After the training, the network weights

with the lowest validation loss were selected.

2.1.1.4. Image inference procedure. The selected network

weights were used to either segment the visible mask (when

using Mask ReCNN) or to segment the visible and the amodal

masks (when using ORCNN). The mask segmentation with

Mask ReCNN and ORCNN was done with a fixed threshold on

the confidence level (tCNN ¼ 0.5) and a fixed threshold on the

non-maximum suppression (NMS) (tNMS ¼ 0.01). With this

NMS threshold, all instances were removed that overlapped

with a more confident instance, resulting just one instance

segmentation per broccoli head. This approach was consid-

ered valid since the broccoli heads grew solitary and did not

overlap each other.
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2.2.2. Diameter estimation
The second sub task in the broccoli size estimation, was the

calculation of the real-world diameter in the registered depth

image, using the segmentation output of Mask ReCNN or

ORCNN. In this paragraph, the softwaremethod that was used

for this calculation is described. The diameter estimation

method consisted of three algorithms: a circle fit (section

2.2.2.1), a histogram filtering (section 2.2.2.2), and a pixel-to-

millimetre conversion (section 2.2.2.3).

2.2.2.1. Circle fit on the segmented mask. The first algorithm

involved a circle fit procedure to estimate the diameter of the

broccoli head in pixels. With Mask ReCNN, the circle fit pro-

cedure was applied on the visible mask, Fig. 10. With ORCNN,

the circle fit procedure was applied on the amodal mask,

Fig. 11.

The circle fit procedure involved several sub methods.

First, the pixel contour of the mask was extracted. From that

contour, the convex hull shape was obtained. The convex hull

excluded the concave points of the original mask contour,

which were considered irrelevant for the circle fit. From the

contour points of the convex hull, a circle was fitted with the

least squaresmethod of Kanatani and Rangarajan (2011) using

the software of Klear (2019). From the fitted circle, the centre

point coordinates and the radius were extracted.

One thing we noticed when testing the circle fit algorithm

on our training and validation images, was that the least

squares method sometimes discarded the contour points of

broccoli florets that grew outside the contour of the broccoli

head. This discarding of contour points resulted in an un-

derestimation of the broccoli diameter. To prevent this, an

additional software method was implemented, which

selected the biggest radius from either the least squares circle

fit or the minimum enclosing circle fit. This minimum

enclosing circle was drawn on all contour points of the mask

using the OpenCV software library (version 4.2). With this

enclosing circle fit procedure, the extended broccoli florets

were included in the circle. After the selection of the biggest

radius between the least squares circle and the minimum

enclosing circle, the pixel diameter was calculated by multi-

plying the radius by 2.
Fig. 10 e Schematic representation of the diameter estimation
2.2.2.2. Histogram filtering in the depth image. Before the

pixel diameter could be converted to a real-world diameter, a

histogram filtering was applied on the depth image. This

filtering algorithm removed any mis-segmented pixel from

the visible mask that did not belong to the broccoli head. A

wrong segmentation, even if it represented only a few pixels,

could potentially cause an offset of centimetres or even

decimetres when these pixels are transferred to the regis-

tered depth image (because a mis-segmented pixel can

belong to a leaf that can be decimetres higher than the

broccoli head). A depth offset can cause an inaccurate pixel-

to-millimetre conversion and an inaccurate diameter

estimation.

First, the pixel segmentation of the visible broccoli re-

gion, Fig. 12a, was masked onto the depth image, resulting a

depth mask as visualised in Fig. 12b. All pixels with a depth

value inside the depth mask were put into a histogram with

ten bins, see Fig. 12c. The histogram bin with the highest

number of depth pixels was selected, assuming that this

would represent the majority of the depth pixels of the

broccoli head. From the selected bin, the lowest and the

highest depth value were extracted. These depth values

were averaged, resulting the depth value of the centre of the

bin. From this depth value, 5 cm was subtracted to obtain

the lowest depth value of the broccoli head. Then, 10 cm

was added to this lowest depth value to obtain the highest

depth value of the broccoli head. This addition was based on

the assumption that the maximum depth range of a broccoli

head could not be more than 10 cm. The other depth pixels

that fell outside the selected depth range were removed,

refer to the red-coloured bin in Fig. 12c. The depth pixels

that belonged to that bin(s) were considered as depth

outliers.

Because the broccoli depth range could vary between a

small-sized and a big-sized broccoli head, an additional

filtering method was implemented. This filtering method

started with the creation of another histogram from the

selected depth pixels of the broccoli head, see Fig. 12d. The

histogram was normalised and also consisted of ten bins.

From the ten bins, only the bins with a value of 0.04 or higher

were selected. The other bins were removed, since less than
method using the segmentation output of Mask ReCNN.
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Fig. 11 e Schematic representation of the diameter estimation method using the segmentation output of ORCNN.
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4% of the broccoli depth pixels were within that bin. These

depth pixels were considered as depth outliers, refer to the

red-coloured bins in Fig. 12d. From the selected bins (the blue-

coloured bins in Fig. 12d), the overall lowest depth value was

selected, which was used to calculate the pixel-to-millimetre

conversion.

2.2.2.3. Pixel-to-millimetre conversion. With the third algo-

rithm, the real-world diameter of the broccoli head was esti-

mated in millimetres (mm). This estimation was done with a

pixel-to-millimetre conversion factor. The factor was calcu-

lated from the lowest depth values of the broccoli head, after

the histogram filtering. These lowest depth values were ex-

pected to represent the depth of the contour of the broccoli

head, where also the ground-truth measurement was done,

refer to Fig. 3b. Examples of these lowest depth values are the

grey-coloured circles in the point-cloud of Fig. 13. All pixels

inside the depth mask that had the same depth value as the

lowest depth value were selected. From this sub-selection of

depth pixels, two pixels were randomly selected and the

Euclidean distance between them was calculated (in pixels).

With the use of the camera-intrinsics of the stereo-vision

cameras, the 3D real-world coordinates of the two selected

pixels were calculated (in x, y, z coordinates). Because the

camerawas horizontally levelled and the pixels were sampled

at the same depth, these pixels approximated the same hor-

izontal depth plane of the broccoli head. The Euclidean dis-

tance between the two selected pixels was calculated in

millimetres, see Fig. 13. The pixel-to-millimetre conversion

factor was calculated by dividing the earlier obtained pixel

distance with the real-world millimetre distance. Finally, the

diameter of the broccoli head was estimated in millimetres by

dividing the pixel diameter of the fitted circle with the pixel-

to-millimetre conversion factor, Figs. 10 and 11.

2.3. Evaluation

The performance of Mask ReCNN and ORCNN was evaluated

with three metrics. The first metric was the detection perfor-

mance, which specified the ability of each CNN to detect the

broccoliheadsthatwerepresent intheRGB image (section2.3.1).

The second metric was the segmentation performance, which

specified the ability of each CNN to segment the pixels of the

broccoli head (section 2.3.2). The third metric was the sizing
performance, which specified the ability of each sizing method

to estimate the real-worlddiameterof thebroccoli head (section

2.3.3).

2.3.1. Detection performance
The detection performance was evaluated on the 487 RGB

images of the test set. In total, 637 broccoli heads were an-

notated in these images, which were the 487 broccoli heads

that were tagged and measured in the field, and 150 broccoli

heads that were annotated in the image but not measured in

the field. These 150 broccoli heads were only partially

captured in the image, due to the camera's field-of-view, see

an example of such a broccoli in the bottom of Figure 5a and b.

These 150 broccoli heads were not part of the size experiment,

because they were only partially captured in the image. The

detection results were calculated for the total number of

broccoli heads (637) and for the two subsets (that respectively

consisted of 487 and 150 broccoli heads).

A threshold (tCNN) of 0.5 on the CNN's confidence level (c)

was used to determine whether there was a detection

(c � tCNN) or not (c < tCNN). A threshold (tIoU) of 0.5 on the

Intersection over Union (IoU) was used to determine whether

the visiblemask segmentation was a broccoli head (IoU� tIoU)

or background (IoU < tIoU). The IoU is a measure for the pixel

overlap between the ground-truth mask, Mgt, and the pre-

dicted mask, Mp (Equation (3)), and varies between zero (no

pixel overlap) and one (complete pixel overlap). The IoU was

calculated on the visible mask, because this was the only

common output between Mask ReCNN and ORCNN.

IoU ¼
��Mgt∩Mp

����Mgt∪Mp

�� (3)

where |,| gives the total number of broccoli pixels.

With the thresholds on the confidence level and the IoU,

the number of true positives (c � tCNN and IoU � tIoU), false

positives (c� tCNN and IoU < tIoU) and false negatives (c < tCNN)

were determined. A true positive was a broccoli head that was

segmented as a broccoli head, a false positive was background

that was segmented as a broccoli head, and a false negative

was a broccoli head that was not segmented. With the total

number of true positives (TP), false positives (FP), and false

negatives (FN), the precision P (Equation (4)) and the recall R

(Equation (5)) were calculated for both Mask ReCNN and

ORCNN. The precision indicated the percentage of correct
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Fig. 12 e The histogram filtering procedure explained: (a) The segmentation of the visible mask (green pixels) in the RGB

image. (b) A depth mask was created, by masking the visible mask onto the registered depth image. (c) The depth values of

the pixels inside the depth mask were put into a histogram with 10 bins. The bin with the highest number of depth pixels

was selected from the histogram. Then, the depth value of the centre of the selected bin was determined (see middle black

vertical line in the histogram). From this depth value, 5 cm was subtracted and 5 cm was added to obtain the depth range of

the broccoli head. The bins within this depth range (visualised by the left and right black vertical line in the histogram) were

selected. The other bin, visualised in red, was removed because it fell outside the depth range. In this example, the removed

bin represented the depth values of a higher positioned leaf (refer to the red coloured part of the unfiltered point cloud). (d)

The depth values of the selected bins were put into another normalised histogram with 10 bins. The bins with a value of

0.04 (horizontal black line) or higher were selected (these bins are coloured blue). The other bins were removed (red-

coloured bins). The depth pixels that remained after the filteringwere presumed to belong to the broccoli head (the rainbow-

coloured point-cloud is a representation of the broccoli head after the histogram filtering).
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detections and the recall indicated the percentage of broccoli

heads that were successfully detected by the CNN's.

P ¼ TP
TPþ FP

(4)

R ¼ TP
TPþ FN

(5)
2.3.2. Segmentation performance
The segmentation performance was evaluated on the 487

broccoli heads that were tagged and measured in the field,

because only these heads had an accurate ground-truth

annotation of the amodal region of the broccoli head.

The 487 broccoli headswere assigned into ten groups based

on their occlusion rate, in the range of 0e1 with steps of 0.1.

The segmentation performance of Mask ReCNN and ORCNN
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Fig. 13 e The rainbow-coloured point-cloud is a representation of the broccoli head after the histogram filtering. The colour-

scale of the point-cloud is based on the depth values: the red and orange-coloured points are closer to the camera compared

to the cyan and blue-coloured points. On this point-cloud, the pixel-to-millimetre conversion factor was calculated from two

of the lowest depth values (visualised by the two grey-coloured circles). These two depth values were sampled at the same

depth (same z coordinate) and were expected to represent the depth of the contour of the broccoli head, where the ground-

truth measurement was done. The pixel-to-millimetre conversion factor was obtained from the division of the Euclidean

pixel distance and the Euclidean millimetre distance between these two points.
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was calculated for the broccoli heads that belonged to an oc-

clusion group (and this was repeated for each occlusion

group). The segmentation performance was also calculated

for all broccoli heads, irrespective of their occlusion rate.

The segmentation performance was evaluated with the

IoU (Equation (3)), which was calculated for both the visible

and the amodalmask. BecauseMask ReCNNdid not output an

amodal mask, its amodal IoU was calculated between the

circle that was fitted on the visible mask and the amodal

annotation that was used to train ORCNN. To allow a fair

comparison, the amodal IoU of ORCNN was also calculated

between the circle that was fitted on the amodalmask and the

amodal annotation.

A pairwise Wilcoxon test (Wilcoxon, 1945) with a signifi-

cance level of 5% (a ¼ 0.05) was employed for the visible and

the amodal IoU values to test whether there were statistical

differences between the Mask ReCNN segmentation and the

ORCNN segmentation. We used the Wilcoxon test, because it

can deal with non-normally distributed data, like the IoU.

2.3.3. Size estimation performance
The size estimation performance was also expressed for the

ten occlusion rate groups (in the range of 0e1 with steps of

0.1). The performancemetric was the diameter error (e), which

was the difference between the diameter estimate of the CNN

sizing methods (bd) and the diameter measurement that was

done in the field, (d) (Equation (6)).

e ¼ bd � d (6)

The diameter error was evaluated by means of the median

error (ee), the median absolute error (MAD, Equation (7)), the
mean absolute error (MAE, Equation (8)) and the root mean

squared error (RMSE, Equation (9)).

MAD ¼ medianðjei �eejÞ (7)

MAE ¼ 1
n

Xn

i¼1

jej (8)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

e2

s
(9)

A pairwise Wilcoxon test with a significance level of 5%

(a ¼ 0.05) was applied on the absolute diameter errors, |e|, to

test whether there were statistical differences between the

Mask ReCNN sizing method and the ORCNN sizing method.

Finally, the Pearson correlation coefficient, r, was calculated to

investigate the relation between the amodal segmentation

performance and the absolute diameter error.
3. Results

3.1. Detection results

The detection results of Mask ReCNN and ORCNN are sum-

marised in Table 1 and Table 2. The detection results are

summarised for the two subsets of broccoli heads and for the

total number of broccoli heads in the test images. The first

subset represented the 487 broccoli heads that weremeasured

in the field and that were used for the size experiment. Both

Mask ReCNN and ORCNN detected all broccoli heads without

false positive detections, indicating that both CNN's reached a
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Table 1 e Mask ReCNN detection results on the test
images. The abbreviations indicate the number of
ground-truth annotations (GT), the number of detections
by the CNN (Det), the number of true positives (TP), the
number of false positives (FP), the number of false
negatives (FN), the precision (P) and the recall (R).

Subset GT Det TP FP FN P R

1. Broccoli heads used in

the size experiment

487 487 487 0 0 100.0% 100.0%

2. Broccoli heads not used

in the size experiment

150 143 133 10 17 93.0% 88.7%

All broccoli heads in the test

images

637 630 620 10 17 98.4% 97.3%

Table 2 e ORCNN detection results on the test images.
The meaning of the abbreviations can be found in the
caption of Table 1.

Subset GT Det TP FP FN P R

1. Broccoli heads used in

the size experiment

487 487 487 0 0 100.0% 100.0%

2. Broccoli heads not used

in the size experiment

150 151 136 15 14 90.1% 90.7%

All broccoli heads in the test

images

637 638 623 15 14 97.6% 97.8%

Table 3 e Statistics on the Intersection over Union (IoU)
values for the visible mask segmentations of Mask
ReCNN and ORCNN. The statistics are expressed for the
ten occlusion rate groups. The last row summarises the
IoU statistics for all broccoli heads that were used in the
size experiment.

Occlusion rate
(n ¼ number of broccoli
heads)

Mean IoU on the
visible mask
(standard
deviation)

p-value
Wilcoxon

test

Mask R
eCNN

ORCNN

0.0e0.1 (n ¼ 147) 0.97 (0.01) 0.96 (0.01) 0.00 (****)

0.1e0.2 (n ¼ 60) 0.96 (0.01) 0.95 (0.01) 0.00 (****)

0.2e0.3 (n ¼ 33) 0.95 (0.01) 0.95 (0.01) 0.09 (ns)

0.3e0.4 (n ¼ 35) 0.94 (0.02) 0.93 (0.02) 0.00 (****)

0.4e0.5 (n ¼ 47) 0.93 (0.03) 0.93 (0.03) 0.00 (****)

0.5e0.6 (n ¼ 35) 0.92 (0.03) 0.91 (0.04) 0.00 (****)

0.6e0.7 (n ¼ 65) 0.90 (0.05) 0.88 (0.05) 0.00 (****)

0.7e0.8 (n ¼ 41) 0.87 (0.06) 0.85 (0.07) 0.00 (****)

0.8e0.9 (n ¼ 20) 0.83 (0.08) 0.79 (0.09) 0.00 (***)

0.9e1.0 (n ¼ 4) 0.84 (0.10) 0.75 (0.11) e

All (n ¼ 487) 0.93 (0.05) 0.92 (0.06) 0.00 (****)

- (too few samples), ns ¼ not significant (p > 0.05), * (0.01 < p � 0.05);

**(0.001 < p � 0.01); ***(0.0001 < p � 0.001); ****(p � 0.0001).

Table 4 e Statistics on the Intersection over Union (IoU)
values for the amodal mask segmentations of Mask
ReCNN and ORCNN, expressed for the ten occlusion rate
groups. The last row summarises the IoU statistics for all
broccoli heads that were used in the size experiment.

Occlusion rate
(n ¼ number of broccoli
heads)

Mean IoU on the
amodal mask
(standard
deviation)

p-value
Wilcoxon

test

Mask R
eCNN

ORCNN

0.0e0.1 (n ¼ 147) 0.95 (0.03) 0.95 (0.03) 0.00 (**)

0.1e0.2 (n ¼ 60) 0.93 (0.04) 0.94 (0.04) 0.00 (**)

0.2e0.3 (n ¼ 33) 0.89 (0.06) 0.90 (0.07) 0.17 (ns)

0.3e0.4 (n ¼ 35) 0.86 (0.09) 0.92 (0.04) 0.00 (**)

0.4e0.5 (n ¼ 47) 0.82 (0.11) 0.89 (0.06) 0.00 (****)

0.5e0.6 (n ¼ 35) 0.80 (0.13) 0.87 (0.09) 0.00 (**)

0.6e0.7 (n ¼ 65) 0.75 (0.18) 0.86 (0.11) 0.00 (****)

0.7e0.8 (n ¼ 41) 0.63 (0.22) 0.82 (0.12) 0.00 (****)

0.8e0.9 (n ¼ 20) 0.47 (0.22) 0.80 (0.11) 0.00 (****)

0.9e1.0 (n ¼ 4) 0.28 (0.25) 0.72 (0.14) e

All (n ¼ 487) 0.83 (0.18) 0.90 (0.09) 0.00 (****)

- (too few samples), ns ¼ not significant (p > 0.05), * (0.01 < p � 0.05);

**(0.001 < p � 0.01); ***(0.0001 < p � 0.001); ****(p � 0.0001).
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recall and a precision of 100.0% on these broccoli heads, see

Tables 1 and 2.

The second subset contained the 150 broccoli heads that

were only partially captured in the image, due to the camera's
field-of-view. Of these 150 partially-captured broccoli heads

(which were not used in the size experiment), 133 heads were

detected by Mask ReCNN, Table 1 and 136 heads were detec-

ted by ORCNN, Table 2. Mask ReCNN had 10 false positive

detections and ORCNN had 15 false positive detections. Mask

ReCNN had a precision of 93.0% and a recall of 88.7% on these

150 broccoli heads. ORCNN had a precision of 90.1% and a

recall of 90.7%.

The final calculation was done on the total number of

broccoli heads in the test images.Mask ReCNNdetected 620 of

the 637 broccoli heads, Table 1, and ORCNNdetected 623 of the

637 broccoli heads, Table 2. Mask ReCNN had in total 10 false

positive detections and ORCNN had 15 false positive de-

tections. With Mask ReCNN, the precision was 98.4% and the

recall was 97.3%, Table 1. ORCNN had a precision of 97.6% and

a recall of 97.8%, Table 2.

3.2. Segmentation results

The broccoli segmentation performancewas calculated on the

487 broccoli heads that weremeasured in the field and used in

the size experiment. Table 3 summarises the Intersection over

Union (IoU) values for the visiblemask segmentations of Mask

ReCNN and ORCNN for the ten occlusion rate groups. Table 3

also summarises the statistical results of the pairwise Wil-

coxon test. For eight occlusion rates, ORCNN had a signifi-

cantly lower IoU on the visible region of the broccoli head

compared toMask ReCNN.However, the effect sizewas small,
with IoU differences between 0.01 and 0.09. For the four most

heavily occluded broccoli heads, which had an occlusion rate

between 90% and 100%, the Wilcoxon test could not be

applied, because there were too few test samples.

Table 4 summarises the IoU values for the amodal mask

segmentations of Mask ReCNN and ORCNN for the ten oc-

clusion rate groups. For eight occlusion rates, ORCNN had a

significantly higher IoU on the amodal region of the broccoli

head compared to Mask ReCNN. For the broccoli heads with
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an occlusion rate between 0% and 60%, the effect size was

small, with IoU differences of maximally 0.07. For the broccoli

heads with an occlusion rate between 60% and 90%, the IoU

differences were between 0.11 and 0.33. Again, we could not

apply the Wilcoxon test for the broccoli heads with an occlu-

sion rate between 90% and 100%, because there were only four

samples.

3.3. Size estimation results

In Fig. 14, the diameter errors of the Mask ReCNN sizing

method and the ORCNN sizing method are plotted in histo-

grams. With Mask ReCNN, 323 of the 487 diameter estimates

were underestimated (66.3%) and 164 of the 487 estimates

were overestimated (33.7%). The median diameter error of

Mask ReCNN, eemrcnn, was �2.4 mm, indicating that the ma-

jority of the estimateswere underestimated.With ORCNN, the

diameter estimates were more balanced, as there were 209

underestimations (42.9%) and 278 overestimations (57.1%).

The median diameter error of ORCNN, eeorcnn, was 1.1 mm,

indicating that the majority of the estimates were over-

estimated and that themedian error was smaller than the one

from Mask ReCNN.

Figure 15 shows the cumulative percentages of the abso-

lute diameter errors. Three error margins (10 mm, 20 mm and

30 mm) are marked by the dashed vertical lines. With the

Mask ReCNN sizing method, 342 of the 487 diameter esti-

mates (70.2%) were within 10 mm from the ground-truth

diameter. With the ORCNN sizing method, 406 of the 487

diameter estimates (83.4%) were within 10 mm from the

ground-truth diameter. The number of diameter estimates

that were within 20 mm and within 30 mm from the ground-

truth, were respectively 420 (86.2%) and 443 (91.0%) with Mask

ReCNN, and 466 (95.7%) and 477 (97.9%) with ORCNN. With

Mask ReCNN, 44 of the 487 diameter estimates (9.0%) deviated

more than 30 mm from the ground-truth. With ORCNN, this

number was 10 (2.1%).

Table 5 summarises the median absolute diameter error

(MAD) and the rootmean square diameter error (RMSE) for the

two sizing methods and the ten occlusion rate groups. The

Mask ReCNN sizingmethod had aMAD of 7.9 mm and a RMSE
Fig. 14 e (a) Histogram of the diameter error of the Mask ReCNN

the diameter error of the ORCNN sizing method. n is the numb
of 18.7 mm on all broccoli heads. With the ORCNN sizing

method, the MAD was 6.7 mm and the RMSE was 9.7 mm.

Table 6 summarises the mean absolute diameter error

(MAE) and the statistics of the pairwise Wilcoxon test. The

Mask ReCNN sizing method had a MAE of 10.7 mm on all

broccoli heads. With the ORCNN sizing method, the MAE was

6.4 mm. The Wilcoxon test revealed that the ORCNN sizing

method had a significantly lower absolute diameter error than

Mask ReCNN on 161 broccoli heads with an occlusion rate

between 50% and 90%, Table 6. For these occlusion rates, the

diameter error differences were between 3.5 and 28.4 mm. For

the four most heavily occluded broccoli heads, which had an

occlusion rate between 90% and 100%, theWilcoxon test could

not be applied, because there were too few test samples.

In Fig. 16, the relation between the amodal segmentation

performance and the absolute diameter error is plotted. The

Pearson's correlation coefficient was �0.86, indicating that

there was a negative correlation between the amodal seg-

mentation performance and the absolute diameter error (the

lower the amodal IoU the higher the absolute diameter error,

and vice versa). The effect of the amodal segmentation on the

sizing performance is also visualised in Figs. 17 and 18. On

these two heavily occluded broccoli heads, the ORCNN sizing

method had a higher amodal IoU and a lower absolute diam-

eter error compared to the Mask ReCNN sizing method.

With the Mask ReCNN sizingmethod, the biggest diameter

error was�123.1mm, Fig. 19. The biggest diameter error of the

ORCNN sizing method was �74.2 mm, Fig. 20, and this error

was found on the same image frame as Fig. 19. Themain cause

of both errors was the underestimation of the amodal region

of the broccoli head. Additionally, there was an inaccurate

pixel-to-millimetre conversion, because there were no valid

depth pixels of the broccoli head. All depth pixels in Figures

19b and 20b belonged to an occluded leaf, causing that the

pixel-to-millimetre conversion factor was calculated on the

higher-positioned leaf instead of the broccoli head. With the

Mask ReCNN sizing method, the inaccurate size conversion

contributed 11.3% to the total diameter error.With the ORCNN

sizing method, the contribution was higher: 44.1%. An anal-

ysis on the five biggest diameter errors of ORCNN revealed

that two more errors were primarily caused by such an
sizing method on the 487 broccoli heads. (b) Histogram of

er of diameter estimates.
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Fig. 15 e Cumulative percentages of the absolute diameter errors of the two sizing methods. The three dashed vertical lines

indicate the error margins of 10 mm, 20 mm and 30 mm. The coloured numbers summarise the cumulative percentages of

the absolute diameter estimates that were within 10 mm, 20 mm and 30 mm from the ground-truth diameter.

Table 5 e The median absolute diameter error and the
rootmean square diameter error (RMSE) for the two sizing
methods. Both errors were calculated for the ten
occlusion rate groups and for the total number of broccoli
heads (last row).

Occlusion rate
(n ¼ number of broccoli
heads)

Median
absolute

diameter error
(mm)

RMSE of the
diameter (mm)

Mask R
eCNN

ORCNN Mask R
eCNN

ORCNN

0.0e0.1 (n ¼ 147) 4.3 4.9 4.7 4.9

0.1e0.2 (n ¼ 60) 3.6 3.6 4.1 4.5

0.2e0.3 (n ¼ 33) 6.2 5.6 6.8 6.7

0.3e0.4 (n ¼ 35) 8.9 8 8.4 7.5

0.4e0.5 (n ¼ 47) 7.4 5.6 11.2 7.9

0.5e0.6 (n ¼ 35) 9.6 7.3 12.8 8.9

0.6e0.7 (n ¼ 65) 9.6 7.6 21.3 11.1

0.7e0.8 (n ¼ 41) 23.6 14.1 31.5 15.9

0.8e0.9 (n ¼ 20) 34.2 13.4 49.1 19.9

0.9e1.0 (n ¼ 4) 41.5 6.3 88.5 38.5

All (n ¼ 487) 7.9 6.7 18.7 9.7

Table 6 e Statistics on the mean absolute diameter error
for the two sizing methods, expressed for the ten
occlusion rate groups and the total number of broccoli
heads (last row).

Occlusion rate
(n ¼ number of broccoli
heads)

Mean absolute
diameter error
(mm) (standard

deviation)

p-value
Wilcoxon

test

Mask R
eCNN

ORCNN

0.0e0.1 (n ¼ 147) 3.6 (3.1) 3.9 (2.9) 0.11 (ns)

0.1e0.2 (n ¼ 60) 3.2 (2.5) 3.8 (2.4) 0.05 (ns)

0.2e0.3 (n ¼ 33) 5.4 (4.1) 5.4 (4.0) 0.64 (ns)

0.3e0.4 (n ¼ 35) 7.0 (4.8) 6.1 (4.5) 0.39 (ns)

0.4e0.5 (n ¼ 47) 8.8 (7.0) 6.3 (4.8) 0.06 (ns)

0.5e0.6 (n ¼ 35) 10.1 (7.9) 6.6 (6.0) 0.03 (*)

0.6e0.7 (n ¼ 65) 16.5 (13.5) 7.8 (7.8) 0.00 (****)

0.7e0.8 (n ¼ 41) 25.4 (18.6) 12.2 (10.2) 0.00 (***)

0.8e0.9 (n ¼ 20) 42.9 (24.0) 14.5 (13.6) 0.00 (***)

0.9e1.0 (n ¼ 4) 77.3 (43.2) 27.0 (27.5) e

All (n ¼ 487) 10.7 (15.3) 6.4 (7.3) 0.00 (****)

- (too few samples), ns ¼ not significant (p > 0.05), * (0.01 < p � 0.05);

**(0.001 < p � 0.01); ***(0.0001 < p � 0.001); ****(p � 0.0001).
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inaccurate pixel-to-millimetre conversion. When analysing

these two errors of respectively �46.2 mm and �41.6 mm, the

inaccurate pixel-to-millimetre conversion contributed 82.6%

and 88.7% to the total diameter error.
4. Discussion

Our images were acquired with two different cameras on two

fields where different broccoli cultivars were grown in

different growing seasons. Although there was variation in

our data sets, it is not guaranteed that our algorithms will

generalise sufficiently on broccoli images from other fields

with different cultivars. It is also acknowledged that the image

variation was not as extensive as for example the research of
Blok et al. (2021). In the research of Blok et al. (2021), the

generalisation performance of Mask ReCNNwas evaluated on

600 broccoli images that originated from three cultivars, five

growing seasons and 11 broccoli fields that were located in

three different countries. Despite the lack of such a compre-

hensive evaluation, it is expected that our algorithms can be

efficiently retrained on new data sets to achieve image

generalisation. This expectation is based on the research of

Blok et al. (2021), in which image generalisation was reached

on a new broccoli cultivar by adding 30 images of that cultivar

into the training set. To further enhance the retraining pro-

cess on other data sets, we have made our software, data set

and trained algorithms available.
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Fig. 16 e A scatter plot showing the relation between the amodal IoU and the absolute diameter error for all 974 estimates of

the two CNN sizing methods. The orange line visualises the regression line between the two outputs. The Pearson's
correlation coefficient (r) was ¡0.86, indicating that there was a negative correlation between the amodal IoU and the

absolute diameter error.

Fig. 17 e (a) The diameter estimation (Est) of the Mask ReCNN sizing method was 108.1 mm on a broccoli head with a

measured diameter (Diam) of 136 mm. The diameter error (Diff) was ¡27.9 mm. The amodal IoU (AIoU) between the circle fit

and the amodal annotation was 0.70. The visible IoU (VIoU) was 0.87. The broccoli head had an occlusion rate (OCR) of 74%.

(b) On the same image, ORCNN had an amodal IoU of 0.86 and a diameter error of ¡13.8 mm. In image a & b, the blue pixels

visualise the visible mask segmentation. The green pixels are the pixels that had a depth value and that remained after the

histogram filtering. The red circle visualises the circle that was fitted on either the visible or the amodal mask. (c) The same

broccoli head after removal of all leaves (no occlusion). The amodal mask annotation is visualised by the red circle and the

visible mask annotation is visualised by the blue polygon.
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In our data sets, 1363 of the 2560 broccoli images (53.2%)

had a human-made leaf occlusion. These leaf occlusions were

created by the same person, indicating that they may have

been subject to some degree of subjectivity. Nevertheless,

these human-made occlusions provided natural-looking ex-

amples of different levels of leaf occlusion, allowing the sys-

tematic evaluation of the algorithms on different occlusion
rates. An additional advantage of the leaf modification was

that it allowed an accurate annotation of the amodal region of

the occluded broccoli head. A similar annotation method can

also be used on other occluded crops, which could solve the

problem of incorrect annotation of occluded image scenes (a

problem that was identified in the research of Zhang et al.

(2020)).
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Fig. 18 e (a) The diameter estimation (Est) of the Mask ReCNN sizing method was 60.1 mm on a broccoli head with a

measured diameter (Diam) of 109 mm. The diameter error (Diff) was ¡48.9 mm. The amodal IoU (AIoU) between the circle fit

and the amodal annotation was 0.31. The visible IoU (VIoU) was 0.84. The broccoli head had an occlusion rate (OCR) of 89%.

(b) On the same image, ORCNN had an amodal IoU of 0.85 and a diameter error of ¡6.6 mm. (c) The same broccoli head after

removal of all leaves (no occlusion). The amodal mask annotation is visualised by the red circle and the visible mask

annotation is visualised by the blue polygon.

Fig. 19 e (a) The biggest diameter error (Diff) of the Mask ReCNN sizing method was ¡123.1 mm. The main cause of this

error was the underestimation of the amodal region (the amodal IoU was 0.09) of the heavily occluded broccoli head (the

occlusion rate (OCR) was 94%). (b) In the registered depth image, all depth pixels belonged to a higher-positioned leaf. This

ultimately caused an inaccurate pixel-to-millimetre conversion, which contributed for 11.3% to the total diameter error. (c)

The RGB image of the same broccoli head after removal of all leaves (no occlusion). The amodal mask annotation is

visualised by the red circle and the visible mask annotation is visualised by the blue polygon.
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On both of our data sets, Mask ReCNN and ORCNN detec-

ted all broccoli heads that were tagged and measured in the

field. For the other broccoli heads that were annotated (but not

measured in the field) the detection results were atmost 11.3%

lower. This is acceptable, asmost of these broccoli heads were

only partially captured in the field-of-view of the camera.

These broccoli heads are likely to be detected in a subsequent

frame when the image acquisition device moves further.

When comparing our detection results to other broccoli-

detection studies (Blok et al., 2021; Kusumam et al., 2017), it

can be concluded that both of our CNN's reached a state-of-

the-art detection performance, especially since the majority

of our broccoli heads were (heavily) occluded.
ORCNN had a significantly lower segmentation perfor-

mance on the visible region of the broccoli head for eight oc-

clusion rates, although the absolute IoU differences were

small. The lower IoU might have been caused by the expan-

sion of the loss function of ORCNN with the additional loss

component for the amodal mask. The addition of this extra

loss component may have resulted in a reduced minimisation

of the other loss components, such as the visual mask. Still,

the less optimised visible mask of ORCNN did not seem to

negatively affect the overall sizing performance.

ORCNN had a significantly higher segmentation perfor-

mance on the amodal region of the broccoli head for eight

occlusion rates. Especially for the broccoli heads with an

https://doi.org/10.1016/j.biosystemseng.2021.06.001
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Fig. 20 e (a) The biggest diameter error (Diff) of the ORCNN sizing method was ¡74.2 mm. This error was found on the same

image as Fig. 19. The main cause of this error was the underestimation of the amodal region (the amodal IoU was 0.49) of

the heavily occluded broccoli head (the occlusion rate (OCR) was 94%). (b) In the registered depth image, all depth pixels

belonged to a higher-positioned leaf. This ultimately caused an inaccurate pixel-to-millimetre conversion, which

contributed for 44.1% to the total diameter error. (c) The RGB image of the same broccoli head after removal of all leaves (no

occlusion). The amodal mask annotation is visualised by the red circle and the visible mask annotation is visualised by the

blue polygon.

b i o s y s t em s e ng i n e e r i n g 2 0 8 ( 2 0 2 1 ) 2 1 3e2 3 3 231
occlusion rate higher than 60%, there were large differences

between the amodal IoU of ORCNN and Mask ReCNN. For

similar amodal predictions with a circle, it could have been

sufficient to alter the Mask ReCNN network so that it could

detect a circle instead of a bounding box (and then do the pixel

segmentation inside the estimated circle). Yet, the flexibility

of ORCNN to predict all kinds of crop shapes makes it a more

versatile algorithm for use on a variety of crops.

ORCNN significantly improved the diameter estimate of

161 broccoli heads with an occlusion rate between 50% and

90%. Therefore, the ORCNN sizingmethod should be preferred

over theMask ReCNN sizingmethod, especially when the size

estimation has to be done in broccoli fields where there is

more vegetative growth or where the broccoli plants are more

densely planted (causing more occlusion).

With the ORCNN sizing method, there was an increase of

13.2% on the number of broccoli heads that were estimated

within 10 mm from the ground-truth diameter. Additionally,

there was an increase of 9.5% of estimates that were within

20 mm from the ground-truth. The more accurate size esti-

mate of ORCNN could potentially result in less food waste and

a higher financial return when the algorithm is used for ro-

botic harvesting. In future research, we want to evaluate the

performance of a broccoli harvesting robot that is equipped

with the ORCNN sizing method.

The ORCNN sizing method had a median absolute diam-

eter error of 6.7 mm. This error was respectively 2.7 mm and

6.1 mm lower than the median absolute diameter error of the

convex hull and the bounding box estimator of Kusumam

et al. (2017), who also investigated the in-field size estima-

tion of broccoli heads. A difference is that both estimators of

Kusumam et al. (2017) only used the visible part of the 3D

point cloud, which ultimately resulted in an underestimated
diameter estimate. In our research, ORCNN did not under-

estimate the broccoli size, as we found a positive median

diameter error of 1.1 mm on all broccoli heads. In a similar

crop-sizing study by Lin et al. (2019), the diameters of 80

citrus fruits were estimated with the same 3D sizing method

as Kusumam et al. (2017) (unfortunately Lin et al. (2019) did

not specify whether they used the convex hull or the

bounding box estimator). On the relatively smaller citrus

fruits, the median diameter error and the median absolute

diameter error were respectively �1.0 mm and 4.0 mm,

indicating that the estimates of Lin et al. (2019) were slightly

better than our ORCNN estimates. An important difference is

that Lin et al. (2019) did their evaluation on a lower number of

citrus fruits with minimal occlusions, whereas our results

were obtained on a test set with heavier occlusions and more

broccoli heads.

Despite the promising results of the ORCNN sizing

method, there is still room for improvement. An analysis on

the five biggest diameter errors of ORCNN revealed that three

of the errors were primarily caused by an inaccurate pixel-to-

millimetre conversion. This problem was caused by the lack

of valid depth pixels of the broccoli head, which in turn was

caused by the loss of depth pixels due to the leaf occlusion

and the stereo-vision principle of the RGB-D cameras. In all

2560 depth images, on average one fifth of the broccoli depth

pixels were lost compared to the broccoli region in the

registered RGB image. A way to alleviate this depth pixel loss

is to use a camera with a different depth perceiving tech-

nique, such as Laser Imaging Detection And Ranging (LIDAR)

or Time-of-Flight (ToF). While the depth pixel loss of our

stereo-vision cameras sometimes negatively influenced the

sizing performance, the main cause of the diameter errors

remained the inaccurate estimation of the amodal region of
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the broccoli head (this observation was also supported by the

negative correlation between the amodal segmentation per-

formance and the absolute diameter error).
5. Conclusions

With ORCNN, the segmentation of the amodal region of the

broccoli head significantly improved. ORCNN provided a bet-

ter estimate of the shape of an occluded broccoli head

compared to Mask ReCNN, which estimated the amodal re-

gion with a circle fit on the visible broccoli region. With the

significantly better amodal segmentation, the ORCNN sizing

method achieved a 4.3 mm lower mean absolute diameter

error on 487 broccoli heads. Furthermore, with ORCNN there

was a 13.2% increase on the number of broccoli heads that

were estimated within 10 mm from the ground-truth diam-

eter. The ORCNN sizing method had also a significantly lower

absolute diameter error on 161 broccoli heads with an occlu-

sion rate between 50% and 90%. We conclude that ORCNN

improved the size estimation of the heavily occluded broccoli

heads in our data sets. We encourage other researchers to use

our software and data set to further develop methodologies

that can deal with crop occlusion.
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