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Abstract: It is vital for farmers to know if their land is suitable for the crops that they plan to grow.
An increasing number of studies have used machine learning models based on land use data as an
efficient means for mapping land suitability. This approach relies on the assumption that farmers
grow their crops in the best-suited areas, but no studies have systematically tested this assumption.
We aimed to test the assumption for specialty crops in Denmark. First, we mapped suitability for
41 specialty crops using machine learning. Then, we compared the predicted land suitabilities with
the mechanistic model ECOCROP (Ecological Crop Requirements). The results showed that there was
little agreement between the suitabilities based on machine learning and ECOCROP. Therefore, we
argue that the methods represent different phenomena, which we label as socioeconomic suitability
and ecological suitability, respectively. In most cases, machine learning predicts socioeconomic
suitability, but the ambiguity of the term land suitability can lead to misinterpretation. Therefore, we
highlight the need for increasing awareness of this distinction as a way forward for agricultural land
suitability assessment.

Keywords: maxent; ECOCROP; specialty crops; Denmark; soil; climate; topography; socioeco-
nomics; ecology

1. Introduction

Farmers face many risks in the form of adverse weather, pests, diseases, and changes in
crop prices, laws, and regulations [1–3]. A first step in managing and minimizing many of
these risks is often to select appropriate crops for the cultivated areas. Therefore, knowing
if the land is suitable for a specific crop can decide the success or failure of agricultural
strategies. As farmers are subject to climate change and a globalized economy, where
frameworks for agriculture change at unprecedented speed, it is vital for them to be able to
adapt to new trends [4–6]. Increasing the availability of land suitability information for
agricultural crops would be a valuable aid for farmers to devise new agricultural strategies.
At the same time, growing computational capabilities and the increasing availability of
geographic data have made it quicker and easier to conduct land suitability assessments.

Conventional land suitability assessment, also known as land evaluation, is mainly a
tool for land use planning in local or national governments [7]. As such, in most cases, it
has relied on qualitative evaluation of the societal benefits of different land uses [7,8], and
in recent years, it has increasingly incorporated environmental aspects [9]. The Food and
Agriculture Organization of the United Nations (FAO) developed a formalized approach to
land evaluation [7], and ref. [10] elaborated a theoretical framework for land evaluation. In
practice, land evaluation has made use of widely different methods. Studies may focus on
the climate [11,12] or the soil [13,14], and they may include socioeconomic variables [15,16].
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Other approaches to land suitability assessment include crop growth models [17–19]
and human–environment land systems models [20]. Land systems models mainly serve to
explore and predict the socioeconomic dynamics of land use change [21,22], but they can
also produce maps of land suitability for specific crops [23]. Land evaluation, crop growth
models, and land systems models share a strong reliance on expert knowledge and large
investments of time. This has created a growing interest in automatable methods, such as
mechanistic crop models [24]. One of the most frequently applied mechanistic methods
used in land suitability assessment is the ECOCROP (Ecological Crop Requirements)
model [25–32], which is based on the ECOCROP database [33].

Machine learning (ML) models based on land use patterns are another widespread
automated method for land suitability assessment. ML is a sub-field of computer science,
closely related to statistics, which aims to make computers learn from data without explicit
programming [34]. As such, ML uses data-driven inductive models, unlike the previously
mentioned deductive approaches. ML has gained widespread use in soil mapping [35,36],
species distribution modeling [37,38], land use mapping, and land cover classification [39].
The most common ML approach to land suitability assessment relies on models trained
with the Maxent algorithm using all the available land use data with no socioeconomic
covariates [40–46]. This approach builds on the assumption that farmers cultivate crops
in the areas where they have the best growing conditions [47]. Some studies have shown
results that contradict this assumption [48,49], but no studies have systematically tested it.
Furthermore, ML differs very much from ECOCROP. While ECOCROP focuses on ecologi-
cal crop requirements, ML can potentially use any variable that researchers deem relevant,
including socioeconomic variables [23,48,50]. In addition, ML is a data-driven approach
that aims to reproduce observed patterns, whereas ECOCROP defines the suitable growing
conditions a priori. Despite these dissimilarities, comparisons between the methods are
rare, and the relationship between the suitabilities that they produce remains unclear. In
this study, we aim to elucidate and discuss this connection by comparing land suitability
maps produced with Maxent to maps based on ECOCROP for different specialty crops
in Denmark. We use specialty crops because a substantial number of earlier studies have
focused on this category [44–46,51–53]. Furthermore, yield data are often not systematically
available for specialty crops, and the quality of the produce may be more important than
the yield [54,55]. Therefore, yield does not always reflect the value of the produce, which
makes ML an attractive alternative for land suitability assessment. We will compare the
ML models, their accuracies, and covariate usage to ECOCROP suitability maps. We will
use these results as a basis for exploring and discussing the meaning of the term land
suitability, its relationship to land use, and how this affects ML as a means to map land
suitability. As ML and ECOCROP are radically different approaches to land suitability
assessment, we hypothesize that the two methods will yield different results and elucidate
different aspects of land suitability. Where possible, we will also compare the results to
the land use in 1896 to see how the suitabilities mapped with the two different methods
relate to land use changes. Danish agriculture underwent radical changes in the 20th
century, with increased mechanization, larger, more specialized farms, increased livestock
densities, and larger amounts of external inputs in the form of fertilizers, pesticides, and
imported feedstuffs [56]. Therefore, we also hypothesize that the land suitabilities based on
ecological crop requirements will align more closely with land use in 1896 than the present
land use. Finally, based on these comparisons, we will delineate possible ways forward for
agricultural land suitability assessment.

2. Materials and Methods
2.1. Overview

We aimed to compare land suitability maps for all specialty crops with sufficient land
use data using the ML algorithm Maxent and the mechanistic model ECOCROP (Figure 1).
Supplementary Table S1 lists the investigated crops. Firstly, we trained Maxent models
based on farmers’ crop registrations and various ancillary information and used these mod-
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els to predict land suitability for the crops. Secondly, we produced ECOCROP suitability
maps based on values from the ECOCROP database. We calculated accuracies for both sets
of maps using the same holdout land use observations. We also calculated the rank correla-
tions between the maps for each crop and compared the correlation with the predictive
accuracies of the maps. Lastly, we conducted a visual comparison between the suitability
maps for potatoes and carrots as well as historic land use maps for these two crops.
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Figure 1. Block diagram showing an overview of the methods and data applied in the study.

2.2. Study Area

Denmark, located in northern Europe, consists of the Jutland peninsula (29,778 km2)
and several islands, the largest of which is Zealand (7031 km2) (Figure 2). Agricultural areas
cover 61% of the country [57]. The country has a temperate coastal climate with tempera-
tures ranging from 1 ◦C in January to 17 ◦C in July [58]. Mean annual precipitation ranges
from 650 mm in the eastern parts of the country to 850 mm in the western parts of the coun-
try [58]. In the western parts of the country, the naturally occurring soils are mainly Podzols
formed on sandy glaciofluvial outwash plains and Saalian moraines [59]. In the eastern
parts, the most common natural soil types are Cambisols and Luvisols formed on loamy
Weichselian till [59]. However, continued agricultural additions of calcium carbonates and
animal manure have transformed many of these soils into Phaeozems [60,61].



Agronomy 2021, 11, 703 4 of 21

Agronomy 2021, 11, x FOR PEER REVIEW 4 of 21 
 

 

the country [58]. In the western parts of the country, the naturally occurring soils are 
mainly Podzols formed on sandy glaciofluvial outwash plains and Saalian moraines [59]. 
In the eastern parts, the most common natural soil types are Cambisols and Luvisols 
formed on loamy Weichselian till [59]. However, continued agricultural additions of cal-
cium carbonates and animal manure have transformed many of these soils into Phaeo-
zems [60,61]. 

 
Figure 2. Areas in Denmark with farmers’ registrations for the Common Agricultural Policy of the European Union in the 
years 2011–2019. The inset shows the location of Denmark in northern Europe. 

2.3. Maxent Models 
2.3.1. Training Data 

We used farmers’ crop registrations for the Common Agricultural Policy of the Eu-
ropean Union as training data for Maxent models to map land suitability [62]. We used 
registrations from the years 2011–2019, which are available as polygon data, showing the 
crops grown in individual fields. The combined area of the data was 28,077 km2. We used 
the definition of specialty crops of the US Department of Agriculture [63] to select 63 spe-
cialty crops from the farmers’ registrations. Next, we omitted specialty crops that did not 
have at least 30 registrations in at least one year. This narrowed our selection to 41 target 
specialty crops (Supplementary Table S1). Within this set of crops, we chose to emphasize 
two crops as examples to illustrate differences in land use and land suitability: Table po-
tatoes (Solanum tuberosum) and carrots (Daucus carota subsp. Sativus). However, we used 
all 41 specialty crops for the overall analyses. 

We converted the polygons from each year to rasters with 30.4 m × 30.4 m resolution 
to match existing soil maps and covariates for spatial predictions [61,64–68]. We randomly 
sampled raster cells with the crop for each year and for each target crop. We limited the 
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2.3. Maxent Models
2.3.1. Training Data

We used farmers’ crop registrations for the Common Agricultural Policy of the Eu-
ropean Union as training data for Maxent models to map land suitability [62]. We used
registrations from the years 2011–2019, which are available as polygon data, showing the
crops grown in individual fields. The combined area of the data was 28,077 km2. We
used the definition of specialty crops of the US Department of Agriculture [63] to select
63 specialty crops from the farmers’ registrations. Next, we omitted specialty crops that
did not have at least 30 registrations in at least one year. This narrowed our selection to
41 target specialty crops (Supplementary Table S1). Within this set of crops, we chose to
emphasize two crops as examples to illustrate differences in land use and land suitability:
Table potatoes (Solanum tuberosum) and carrots (Daucus carota subsp. Sativus). However,
we used all 41 specialty crops for the overall analyses.

We converted the polygons from each year to rasters with 30.4 m × 30.4 m resolution
to match existing soil maps and covariates for spatial predictions [61,64–68]. We randomly
sampled raster cells with the crop for each year and for each target crop. We limited the
number of training points for each crop to a maximum of 1500 cells per year in order to
make the datasets computationally manageable. We also selected a matching number of
absence points as a random sample of areas with other crops for each target crop in each
year. In principle, Maxent can function without explicit absence data. However, Maxent
achieves this by extracting a random background sample from the covariate layers [69].
Our covariates comprised the full area of Denmark, so we used an explicit background
sample to avoid occurrences of urban areas and natural vegetation in the background data.
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Furthermore, our target crops were all relatively rare (<1% of the agricultural area in any
given year), so there was only little difference between a background sample and absence
data. Lastly, the absence data were useful for model evaluation, as researchers should
evaluate their data in a presence/absence framework when it is possible [70].

2.3.2. Covariates

We employed 30 soil-related covariates, 14 climatic, 9 topographical, and 2 socioeco-
nomic covariates (Supplementary Table S2). The soil-related covariates included contents
of clay, silt, fine sand, coarse sand [65], and soil organic matter [64] in three depth intervals
(0–30 cm, 30–60 cm, 60–100 cm). They also included plant-available water, pH, and bulk
density [66] in the same three intervals, the phosphorus sorption capacity in four 25-cm
depth intervals [71], the soil drainage class [68], and the geology at 1 m depth [72]. The
climatic variables included eight bioclimatic variables from the WordClim 2 dataset [73],
the number of degree days above 5 ◦C calculated from the same dataset, four agrocli-
matic variables from [74], and potential incoming solar radiation calculated based on a
DEM. The topographical variables included a digital elevation model (DEM) [75], and
derived variables including the slope gradient, the sine and cosine of the surface aspect,
the topographical wetness index, the SAGA GIS wetness index, the relative slope posi-
tion, the valley depth, and a map of landscape elements [76]. Lastly, the socioeconomic
covariates comprised the Euclidean distances to cities with populations sizes of at least
10,000 and 100,000, respectively, based on data from the GeoDanmark data collection [77].
We converted the categorical variables geology and landscape elements to binary indicator
variables, with one variable for each class in the original layers. This gave a final number
of 74 covariates. Although we used land use observations from several years, we used the
same covariates for the whole period. Some of the covariates, such as climatic covariates,
may vary over the period, but we regarded them as static for the purpose of this study, as
we mainly aimed to map general geographic patterns.

2.3.3. Models and Predictions

The used Maxent to produce maps of land suitability for each crop. We chose Maxent,
as it is the most frequently used ML algorithm for mapping land suitability [40–49,53,78–80],
although a few studies have applied other algorithms [49,50,52,80]. Researchers in ecology
originally developed Maxent as a species distribution model, using environmental variables
as inputs [81]. In land suitability assessment, most studies using Maxent have adopted
similar methodologies.

Maxent is an additive algorithm that aims to model a logistic probability distribution.
The algorithm sequentially adds features to the model, starting with the features with
the largest information gain. Feature types include linear, quadratic, product (combin-
ing two covariates), threshold, hinge (combining linear and threshold), and categorical
features [81,82]. The available feature types depend on the number of presence points,
but with more than 100 presence points, all feature types are available [83]. Maxent also
includes built-in regularization to reduce overfitting. The regularization includes penaliza-
tion for complex features with penalization parameters (β) that depend on the feature type
and the number of presence points [81]. With more than 100 presence points, the default β
is 0.05 for linear, quadratic, and product features, 0.25 for categorical features, 0.50 for hinge
features, and 1.00 for threshold features [83]. Furthermore, Maxent divides β by the square
root of the number of presence points, allowing larger complexity with larger sample sizes.
Users can specify which feature types to include and choose to modify regularization by
multiplying the default β with a factor [82]. By default, Maxent will add features to the
model until there is no information gain or until a maximum of 500 features [83].

We trained a Maxent model for each target crop using the function maxent from the
R package dismo [84]. In all cases, we used the default parameters decided by Maxent
based on the number of training observations. In practice, this means that all feature types
were available, we did not modify β, and the models contained up to 500 features. While



Agronomy 2021, 11, 703 6 of 21

adjusting the parameters can potentially increase predictive accuracies, Maxent can often
achieve acceptable accuracies with the default settings [81]. Then, we used the resulting
models to produce maps of land suitability for each crop. Maxent treats suitability as a
continuous variable from 0 (fully unsuitable) to 1 (optimally suited).

We assessed model accuracy for the Maxent models with a spatiotemporal cross-
validation scheme. We chose this scheme for two reasons: Firstly, we wanted to avoid
situations wherein observations from the same farm were present in the training dataset
as well as the dataset for accuracy assessment. Secondly, we aimed to map general geo-
graphic patterns in land suitability, producing only one map with each model for each
crop. Therefore, the predictions based on data from one year should also be accurate
in other years. The scheme randomly selected 100 observations from a given year for
accuracy assessment. Then, it eliminated all training observations from the same year and
all training observations within a 10-km radius. Therefore, the accuracy assessment used
models trained on observations from different years than the holdout observations and
from locations substantially removed from them in geographic space. We repeated the
process four times for each year for each crop. The accuracy assessment scheme is generally
similar to the Leave-Location-and-Time-out cross-validation scheme proposed by [85], with
an addition of buffers around the hold-out observations in a manner similar to the function
represampling_disc_bootstrap from the R package sperrorest [86]. We developed the specific
code used in this study to combine these approaches.

We evaluated the accuracy of the predicted suitability values based on the overall
accuracy (fraction of observations correctly predicted, OA) and the area under the receiver
operator characteristic curve (AUC). We calculated AUC using the function roc from the R
package pROC [87]. We calculated OA and AUC separately for all repetitions and used the
mean value for each metric across all repetitions.

The maxent function automatically calculates the importance of the covariates by
perturbation. The function randomly permutes the covariates one at a time and calculates
the resulting decrease in AUC. We scaled importance to 100 for the most important covariate
in each model and calculated the mean importance across all models.

2.4. ECOCROP

In order to compare the land suitabilities mapped with Maxent to land suitabilities
based on ecological crop requirements, we used ECOCROP to produce maps of land
suitability. We mainly chose ECOCROP due to its frequent application in land suitability
assessment [25–32]. ECOCROP works by comparing maps of climatic variables to the
temperature and precipitation thresholds listed for the crops in the database [26]. Although
ECOCROP by default uses thresholds from the database as inputs, some studies have
calibrated the values based on land use data [26,28]. Furthermore, while the default method
includes only temperatures and precipitation, some studies have modified it to include soil
properties [25,28–30] and topography [29,30]. Most studies using ECOCROP have focused
on changes in land suitability under climate change scenarios [25–29,31,32].

ECOCROP calculates a suitability index between 0 and 1 for temperature and precipi-
tation based on the optimal and absolute listed ranges for the crop [26]. Values inside the
optimal range give an index of 1, values outside the absolute range give an index of 0, and
values between the absolute and optimal ranges give a value interpolated between 0 and 1.
ECOCROP calculates the temperature index on a monthly basis, excluding months where
the minimum temperature is below the killing temperature for the crop, and it calculates
a mean index for different potential growing seasons, taking into account the minimum
and maximum lengths of the growing season required for the crop. Then, it calculates
the precipitation index based on the total precipitation in each of the potential growing
seasons and calculates the suitability as the product (multiplication) of the temperature
and precipitation indices. The final suitability score is the highest score obtained for the
potential growing season.
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The ECOCROP database [33] lists crop requirements for a long list of environmental
properties, but we focused on temperature, precipitation, soil pH, texture, and drainage, as
experience has shown that these are some of the most important properties for crop yields in
Denmark, e.g., [88]. Supplementary Table S1 lists the corresponding crops in the ECOCROP
database for the target crops. The match between the Danish farmers’ registrations and the
ECOCROP database is sometimes imperfect. For example, the database lists only one crop
for cabbages (Brassica oleracea), whereas the farmers’ registrations list several varieties.

For each of the crops selected from the ECOCROP database, we first calculated climatic
suitability (SC) using minimum and mean monthly temperatures and mean monthly
precipitation from the WorldClim 2 dataset [73] using the function ecocrop from the R
package dismo [84]. Then, we calculated suitabilities based on soil pH (SpH), texture
(ST), and drainage (SD) for the crops based on maps of soil pH [66], the FAO soil texture
classes [61], soil drainage classes [68], and artificially drained areas [67]. For soil pH, the
ECOCROP database provides optimal and absolute ranges for suitability in a manner
similar to temperature and precipitation. Therefore, we interpolated pH-related suitability
between 0 for unsuitable areas and 1 for optimal areas. However, for soil texture and
drainage, the database uses a number of classes that are either unsuitable, suitable, or
optimally suited. In these maps, we assigned suitability values of 1 to optimally suited areas,
0.5 to suitable areas, and 0 to unsuitable areas. Table 1 gives examples of these suitability
values as well as the optimal and absolute ranges for temperature, precipitation and soil
pH listed in the database for the two focus crops: potatoes and carrots. Supplementary
Tables S3 and S4 list the climatic and soil-related requirements for each crop in the study,
according to the ECOCROP database.

Table 1. Minimum and maximum values for optimal and suitable growing conditions for potatoes
and carrots, according to the ECOCROP (Ecological Crop Requirements) database. For soil texture
and drainage, the table indicates the suitability value (0 = unsuitable; 1 = optimal) associated with
each class.

Crop Potato Carrot

Growing season (days)
Minimum 90 40
Maximum 160 150

Temperature (◦C)
Killing −1 −1

Minimum, range 7 3
Minimum, optimal 15 15
Maximum, optimal 25 24
Maximum, range 30 30

Precipitation (mm)
Minimum, range 250 400

Minimum, optimal 500 600
Maximum, optimal 800 1200
Maximum, range 2000 4000

Soil texture
Light 0.5 0.5

Medium 1 1
Heavy 0.5 0.5

Organic 1 1
Soil drainage

Insufficient drainage 0 0
Well-drained 1 1

Soil pH
Minimum, range 4.2 4.2

Minimum, optimal 5.0 5.8
Maximum, optimal 6.2 6.8
Maximum, range 8.5 8.7
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We produced ECOCROP suitability maps for each crop, which were calculated as the
product of the climatic, soil pH, textural, and drainage suitabilities:

SE = SC · SpH · ST · SD, (1)

where SE is the ECOCROP suitability.
Elder (Sambucus nigra) and rosehip (Rosa rogusa) had no corresponding crops in the

ECOCROP database, and we therefore produced no suitability maps for these two crops.
We compared the ECOCROP suitability maps to the maps produced with Maxent by
calculating Spearman’s rank correlation coefficient ρ between the maps for each crop.
We also calculated OA and AUC for the ECOCROP suitability maps using the same
observations that we used for assessing the accuracy of the Maxent models.

2.5. Historic Land Use Data

We compared the suitability maps produced with Maxent and ECOCROP to historic
land use for the two focus crops (table potatoes and carrots). Specifically, we used land use
data collected at the parish level for the year 1896. We obtained the land use data from a
historical tabular work [89] and the historical extent of parishes from an atlas of historic
administrative units [90]. The data do not include the southern part of Jutland, as this area
was part of Germany at the time.

3. Results
3.1. Model Accuracies

For the Maxent models, OA varied from 0.49 to 0.86 depending on the crop, with
a mean value of 0.70 (Supplementary Table S5). AUC was highly similar to OA, with a
range of 0.49–0.86 and a mean of 0.70. The Maxent accuracies were generally higher for
annual crops than for permanent crops, and the accuracies generally increased with the
areas covered by the crops. As such, the most common crops (potatoes, carrots, peas (Pisum
sativum), apples (Malus domestica), and onions (Allium cepa var. cepa)) all had high predictive
accuracies, while the least common crops (cucumbers (Cucumis sativus), tomatoes (Solanum
lycopersicum), and elder (Sambucus nigra)) had low predictive accuracies.

ECOCROP generally did not accurately predict land use patterns. OA varied from
0.45 to 0.63 with a mean value of 0.50, and AUC varied from 0.36 to 0.76 with a mean value
of 0.56 (Supplementary Table S6). As the holdout datasets for the accuracy assessments
contained equal numbers of presence and absence points, an OA and AUC of 0.50 would
be on par with a random guess. Furthermore, the accuracies for ECOCROP had a slight
negative relationship with the Maxent accuracies for the same crops (r = −0.28).

Spearman rank correlation between the Maxent and ECOCROP suitabilities ranged
from moderately negative (−0.38 for potatoes) to moderately positive (0.60 for gherkin
(Cucumis sativus)) with a mean of 0.12 and standard deviation of 0.22 (Supplementary
Table S7). Therefore, correlation between the Maxent and ECOCROP suitabilities was
generally slightly positive, but only very generally, as the range of variation was very large.
Furthermore, there was a slight negative relationship between OA for the Maxent models
and their rank correlation with ECOCROP (r = −0.27) (Figure 3). Therefore, the most accu-
rate Maxent models generally had the weakest correlation with the ECOCROP suitabilities.
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Figure 3. Scatter plot of the overall accuracy (OA) of Maxent models for predicting land suitability
for specialty crops and their rank correlation with the suitability for the same crops mapped with
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the two variables.

3.2. Covariate Importance

Climatic and socioeconomic covariates were the two most important categories in the
Maxent models (Figure 4). In the extreme cases, climatic and socioeconomic covariates were
several times more important than the topographic and soil-related covariates. The number
of growing days and annual precipitation from [74] and precipitation in the wettest month
from the WorldClim 2 dataset [73] were the three most important covariates. Furthermore,
elevation was the most important terrain-related covariate with a mean importance of 13
(rank 12). The most important soil-related covariate was silt contents in the depth interval
60–100 cm, with a mean importance of 8 (rank 17).

The high importance of growing days and precipitation conforms to existing knowl-
edge on the factors that affect crops in Denmark. For example, ref. [88] found that these two
factors were highly important for predicting winter wheat yields in Denmark. However,
it is surprising that climatic and socioeconomic covariates superseded nearly all terrain
and soil-related covariates. The low importance of terrain-related covariates may be due to
the relatively flat terrain in Denmark, which reduces effects from topography. However,
previous studies have shown that soil properties have a strong effect on growing conditions
in Denmark. Ref. [76] reported that differences in soil texture had large effects on rooting
depth and plant-available water. Likewise, ref. [88] found that clay contents in the topsoil
were the second most important covariate for predicting winter wheat yields. Furthermore,
Denmark is a relatively small country, and many of the crops in this study have ranges far
outside the boundaries of Denmark. Therefore, it is unlikely that climate explains as much
of the variation in land use patterns inside Denmark as the covariate importance would
indicate. Therefore, growing conditions cannot fully explain why climate-related covariates
have a much higher importance than soil-related covariates in the Maxent models.
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3.3. Examples
3.3.1. Table Potatoes

The Maxent model for table potatoes had a high OA (0.78) and AUC (0.78). Meanwhile,
the ECOCROP suitabilities did not align with the presence or absence of potatoes, with
an OA and AUC of 0.49, which is roughly on par with a random guess. Furthermore,
the suitabilities predicted with Maxent had a negative rank correlation of −0.38 with the
ECOCROP suitabilities.

The Maxent suitabilities followed the present land use, as the sandy glaciofluvial
plains of western Denmark contained most of the highly suitable areas (Figure 5C). They
also showed smaller areas with high suitability on organic soils in the northern part of
the country. Suitabilities were generally low in the eastern part of the country, with an
exception in a large reclaimed area in Zealand and a few other areas. Therefore, the parent
materials in the areas with high suitabilities were highly variable, including glaciofluvial
sand, loamy till, organic soils, and marine deposits. In addition, the soil texture and climate
of these areas were also very different.

The ten most important covariates in the Maxent model included eight climatic
covariates and two soil-related covariates (Table 2). The most important climatic covariates
were solar radiation from [74], the risk of frost, and the mean annual precipitation. The
two soil-related covariates were the post-glacial marine landscape type and silt contents in
the depth interval 60–100 cm.
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Table 2. Ten most important covariates in the Maxent models for mapping land suitability for table
potatoes and carrots based on land use data.

Rank Table Potatoes Carrots

1 Solar radiation a Growing days a

2 Risk of frost a Risk of frost a

3 Mean annual precipitation b Precipitation in wettest month b

4 Mean annual precipitation a Degree days above 5 ◦C
5 Temperature in coldest quarter b Precipitation in driest month b

6 Landscape (post-glacial marine) Solar radiation a

7 Precipitation in wettest month b Mean annual precipitation a

8 Minimum annual temperature b Distance to cities; population >10,000
9 Precipitation in driest month b Minimum annual temperature b

10 Silt (60–100 cm) Phosphorus sorption capacity (25–50 cm)
a From Roell et al. (2020); b From the BioClim 2 dataset.
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In contrast to the Maxent suitabilities, the most highly suitable areas according to
ECOCROP were the loamy soils in the eastern part of the country (Figure 5D). According
to the ECOCROP database, medium-textured soils are more suitable for potatoes than
light-textured soils. Furthermore, the relatively dry climate and higher temperatures in the
eastern part of the country should favor potatoes, according to the ECOCROP database.
The only condition that favors potatoes in the western part of the country is the relatively



Agronomy 2021, 11, 703 12 of 21

low soil pH, as the ECOCROP database lists an optimal pH range of 5.0–6.2 for potatoes
(Table 1). However, the soil pH maps had a scaled importance of <1 in the Maxent model
and a rank of 54 or lower. Therefore, soil pH only had a minimal influence on the Maxent
suitabilities.

The historic land use in 1896 was generally in agreement with the land use in the
years 2011–2019, with a large presence of potatoes on the sandy soils of western Denmark.
This shows that the general land use patterns for potatoes have remained mostly stable
over time.

3.3.2. Carrots

The Maxent model for carrots had a high OA (0.84) and AUC (0.84). Meanwhile, the
ECOCROP suitabilities did not accurately predict land use for carrots, with an OA of 0.50
and an AUC of 0.42. In addition, the Maxent suitabilities had a negative rank correlation
with the ECOCROP suitabilities for carrots (−0.22).

The Maxent model mainly predicted a high suitability for carrots on sandy soils in the
western and northern parts of the country (Figure 6). These soils, including mainly sandy
till and glaciofluvial outwash plains, are generally well drained. There was also a small
presence of highly suitable areas in and around the reclaimed area in the eastern part of the
country, which also had a high Maxent suitability for potatoes.
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For the Maxent model, eight of the ten most important covariates were climatic
variables (Table 2). Furthermore, the distance to cities with populations >10,000 was
the eighth most important covariate, and the phosphorus sorption capacity in the depth
interval 25–50 cm was the 10th most important covariate. There were generally fewer
carrot fields near cities, but it is not clear what caused this trend. At the same time, most
carrot fields coincided with strongly leached sandy soils in western Denmark, which have
a high phosphorus sorption capacity at 25–50 cm [71].

The ECOCROP suitabilities mostly contrasted with the Maxent suitabilities, as ac-
cording to the ECOCROP database, light-textured soils are less suitable for carrots than
medium-textured soils. Therefore, the sandy soils in western Denmark had low suitability
for carrots according to ECOCROP. Warmer temperatures in eastern Denmark also con-
tributed to this trend. Precipitation in some parts of Zealand was below the optimal range
of 600–1200 mm listed in the ECOCROP database (Table 1). However, most of eastern
Denmark was still highly suitable for carrots, according to ECOCROP.

The historic land use for the year 1896 agreed mostly with the ECOCROP suitability,
as most of the parishes with a large presence of carrots were located in areas with loamy
soils in eastern Denmark. In contrast, most of the areas with high Maxent suitability and
a large presence of carrots in the years 2011–2019 had a low fraction of carrots in 1896.
Therefore, the land use patterns for carrots have mostly reversed between 1896 and the
years 2011–2019.

4. Discussion
4.1. Differences between Maxent and ECOCROP

The accuracies for Maxent were generally higher than the accuracies for ECOCROP.
However, the accuracies mainly showed the ability of the models to predict the observed
land use patterns. A fully accurate suitability map would simply replicate the land use and
have no additional value relative to a land use map. Therefore, the higher accuracies of
Maxent mainly show that they align more closely with the observed land use, but it does
not necessarily show that they give a better indication of land suitability.

Furthermore, there was no general relationship between the Maxent and ECOCROP
suitabilities. Correlation between the suitabilities were both positive and negative, and in
most cases, correlation was close to zero. Moreover, the accuracies of the Maxent models
give no indication of their correlation with the ECOCROP suitabilities. At the same time,
neither Maxent nor ECOCROP suitabilities show any general relationship with historic
land use data. For carrots, ECOCROP suitabilities agreed most closely with the historic
land use data, but for potatoes, the Maxent suitabilities showed the highest agreement with
the historic data.

It is possible that some of the discrepancies between the Maxent suitabilities, ECOCROP
suitabilities, and the historic land use are due to errors in the models. For example, ac-
cording to ECOCROP, the climate in Denmark should be fully unsuitable for apples, as
the climatic suitability was 0 for the entire study area. However, there are about 1500 ha of
apple orchards in Denmark, which makes apples one of the most common specialty crops
in the country (Supplementary Table S1). Therefore, it is possible that the thresholds listed
in the ECOCROP database are not appropriate for Denmark. Likewise, many of the fields
with potatoes or carrots were located in areas that should be nearly or fully unsuitable for
these crops, according to ECOCROP.

It is also possible that some of the discrepancies are due to low predictive accura-
cies in the Maxent models, as some of the models had very low accuracies. However,
even when the models had high predictive accuracies, there was no general relationship
with ECOCROP.

Furthermore, some of the discrepancies may have arisen from the way that we con-
ceptualized this study. We tested the accuracies of the ECOCROP suitabilities using both
presence and absence observations. However, the fact that an area fulfills the ecological
requirements for one crop does not preclude the cultivation of other crops in the same area.
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For some crops, e.g., beets (Beta vulgaris var. conditiva), the ECOCROP suitabilities were
high in most of the country. In these cases, the observed land use does not necessarily
contradict ECOCROP, but neither does ECOCROP explain the observed land use patterns.

In this regard, it is also relevant that both soil pH and drainage, which we used in
ECOCROP, are managed soil properties in Denmark [66,67]. Through liming, fertilization,
and artificial drainage, farmers have changed the properties of Danish soils to improve
their fertility. In this way, farmers have overcome limitations to cultivation in many
areas of Denmark, and the soils therefore no longer reflect the natural environmental
conditions. This reduces the usefulness of ECOCROP as a means for explaining observed
land use patterns.

4.2. Effects of Socioeconomic Variables

While the points mentioned above may explain the lack of a relationship in individ-
ual cases, the complete lack of a general relationship is highly conspicuous. Notwith-
standing the issues mentioned, it is clear that (1) ECOCROP does not account for spe-
cific land use patterns, and (2) Maxent suitabilities show no general relationship with
the ecological crop requirements. The most likely reason for these two findings is that
ECOCROP accounts only for environmental growing conditions, whereas ML can incorpo-
rate socioeconomic variables.

One previous study [48] found that socioeconomic variables were highly relevant for
mapping land suitability, but only a small number of ML studies have employed them
since then [50,80]. In this regard, it is important to emphasize that the widespread omission
of socioeconomic variables in ML models for mapping land suitability does not mean that
socioeconomic factors do not affect the resulting maps. Two studies [91,92] showed that
ML models can successfully use inappropriate covariates for mapping spatial patterns, as
long as the covariates contain spatial autocorrelation. In fact, ML models can predict spatial
patterns from covariates that account only for spatial position [93–95]. In land suitability
studies, this question has received relatively little attention, although [48] suggested that
some variables might be proxies for unmeasured social phenomena.

In the present study, we used only two socioeconomic covariates, but we found that
both of them had a high importance in the Maxent models. Furthermore, unaccounted-for
socioeconomic variables may explain some of the many discrepancies between ECOCROP
and Maxent. The importance of the climatic covariates was generally unexpectedly high in
this study. A reason for this may be that the climatic variables to some extent act as proxies
for socioeconomic trends with similar geographic range. Additionally, some environmental
conditions, such as soil pH and drainage in Denmark, may reflect human actions and
thereby socioeconomic trends.

Lastly, ECOCROP does not account for market prices and competition between crops,
although they play a large role in shaping land use patterns. Therefore, a different approach
is necessary in order to explain and predict land use patterns. [23] provided an example in a
study comparing ML and socioeconomic land systems models for mapping land suitability
in a 25,000-ha area in the Philippines. In this example, maize occupied flat areas, whereas
bananas dominated steeper slopes. The authors argued that the higher economic returns
from maize influenced this pattern, as both crops had good growing conditions in flat areas.
Therefore, bananas occupied the slopes because slope gradient was a limiting factor for
maize, not because the steep areas had optimal growing conditions for bananas. In the
present study, a similar explanation may apply to the high Maxent suitabilities for table
potatoes and carrots on the sandy soils in western Denmark. According to ECOCROP,
both crops have optimal growing conditions in eastern Denmark, but farmers in eastern
Denmark may prefer other crops with higher economic returns. For example, [88] showed
that eastern Denmark had the highest yields for wheat, and the region also holds the highest
concentration of wheat cultivation in Denmark [62]. In the less fertile areas of western
Denmark, there is less competition from other crops and a higher presence of potatoes and
carrots. Therefore, ML models may not explicitly account for competition between crops,



Agronomy 2021, 11, 703 15 of 21

but competition still affects land use patterns and thereby the land suitabilities predicted
by the models.

4.3. Ecological and Socioeconomic Suitability

Based on these considerations, we suggest that researchers should apply different
labels to the land suitabilities that they map, depending on the method. We suggest that
suitability maps based on ECOCROP and other mechanistic models display ecological
suitability, whereas suitability maps based on land systems models or ML models trained
on land use data display socioeconomic suitability. While ecological suitability focuses on
crop requirements, socioeconomic suitability is mainly concerned with the benefits for the
farmer. Crop requirements still affect socioeconomic suitability, but the term also comprises
socioeconomic factors and competition between crops. Conventional land evaluation can
account for both forms of suitability, depending on the factors that researchers choose to
include in the analysis.

Most previous studies have not made a clear distinction between ecological and
socioeconomic suitability. This lack of clarity can potentially lead to misunderstandings,
inappropriate choice of methods, and false conclusions. For example, the assumption
that land use reflects ecological suitability may lead researchers to omit socioeconomic
variables from the analysis. Then, the interpretation of the resulting model would give
a false impression of the factors that affect the crop, their effects, and the areas where
growing conditions are optimal. The consequences could include poor crop choices and
agricultural management or inadequate policy decisions. It is always important to be
cautious when interpreting ML models [91,92]. However, when it is unclear what the
mapped variable represents, interpretation becomes even more hazardous, with a large
risk of misinterpretation.

The risk of misinterpretation is especially relevant when researchers aim to map
temporal shifts in land suitability. Studies aiming to map climate-induced changes in land
suitability using ML have generally focused on growing conditions [41–46,52], implicitly
aiming to map ecological suitability, omitting socioeconomic variables. Therefore, they
could not identify important socioeconomic variables, their effects, and their interactions.
This is problematic when aiming to map temporal trends, as socioeconomic variables
are subject to changes over time. In fact, socioeconomic changes, such as technological
developments and market dynamics can have larger effects than changes in environmental
variables. For example, the acid soils of the Brazilian Cerrado biome were largely unsuitable
for agriculture until technological developments including soil improvement and the
development of new crop varieties made cultivation possible [96]. In the present study,
the land use for carrots in Denmark showed a near reversal since 1896. This change is not
due to changes in any environmental variable. On the contrary, agricultural developments,
such as the increased use of fertilizer and irrigation, have enabled carrot cultivation on
the previously infertile soils of western Denmark. Therefore, it is also highly likely that
socioeconomic changes will strongly affect future land use. Moreover, future developments
may also change interactions between the variables that decide socioeconomic suitability,
which would invalidate the use of ML models.

Furthermore, while the land use patterns for carrots changed drastically over the
course of the 20th century in Denmark, the land use patterns for potatoes were more
stable. However, this stability does not mean that the land use reflected the ecological crop
requirements. On the contrary, the land use for potatoes in both periods conflicted with
the ecological crop requirements. This suggests that land use patterns are likely to reflect
socioeconomic suitability, even when the land use is mostly stable.

4.4. Ways Forward for Future Studies

We acknowledge that our findings may not be fully representative and have some
limitations. Firstly, the study area that we used was relatively small and strongly affected
by human actions. In contrast, some studies using ML for land suitability assessment have
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worked at the global level [42,45]. With larger study areas, environmental variables, such as
the climate, are more likely to affect land use patterns, and therefore, the relative effects of
socioeconomic variables may be smaller. However, no studies have tested this assumption,
so it should be a goal for future studies to address this question.

Secondly, some previous studies calibrated the thresholds found in the ECOCROP
database [26,28]. We did not calibrate the thresholds in this study, which probably ex-
plains some of the observed discrepancies between the land use and the ECOCROP suit-
abilities. However, our results also indicate that researchers should be cautious when
calibrating the thresholds found in the ECOCROP database, as the land use may reflect
socioeconomic trends.

Thirdly, our validation datasets comprised only land use observations. Therefore,
the predictive accuracies did not indicate the abilities of the models to assess the actual
land suitability. However, this is a common shortcoming in land suitability assessment.
Furthermore, a necessary step in resolving this issue is to define the type of the suitability
that the map should reflect, as we pointed out in the previous section.

Methodological adaptations can alleviate some of the issues that we have raised. For
example, the inclusion of socioeconomic variables in the analysis can enhance ML as a
tool for explaining the observed land use. Alternatively, a smaller number of studies
have used a subset of observations with high yields or produce quality for mapping land
suitability [49,53,79]. One study [49] compared land suitability maps produced in this
way with maps produced with all available land use observations as well as observed
and modeled yields for maize (Zea mays) in South Africa. They found that the Maxent
suitabilities based on the full dataset correlated poorly with observed and modeled yields,
but models trained on the high-yielding subset correlated more closely with observed
yields. Therefore, the selection of training locations based on yield or crop quality can
increase the likelihood that the maps reflect ecological suitability.

However, the most urgent need in future studies is an increased awareness that land
suitability can have different meanings depending on the context. Researchers should
explicitly state whether they aim to map ecological or socioeconomic suitability, and they
need to ensure that the methods are appropriate for the purpose. Preferably, researchers
should conduct analyses to determine if it is possible to isolate ecological suitability from
socioeconomic suitability and, if so, how. For example, researchers could compare ML
suitabilities to land suitabilities based on crop requirements. If the ML suitabilities align
with the ecological suitabilities, it is likely that ecological crop requirements are the main
driver behind the land use. Otherwise, if the suitabilities deviate from each other, it is likely
that socioeconomic variables have a strong influence on the land use. Furthermore, the
analyses should include ML setups with and without socioeconomic variables, with a full
set of locations and with a subset of locations. Finally, researchers should consider if ML is
the best choice for their purposes.

It may also be necessary to elaborate on socioeconomic suitability as a term. As
mentioned, conventional land suitability assessment focuses on the societal benefits from
different land uses and in some cases environmental issues. However, the land suitability
mapped with ML mainly reflects the choices of farmers. Societal and environmental
considerations may affect cropping choices, for example through policies and regulations,
but economic returns play a dominant role in shaping land use patterns at the farm
level. Therefore, it is important to consider if land suitability should reflect societal,
environmental, or farmers’ perspectives, or a compromise between these views. Moreover,
researchers should determine how their methods could optimally reflect this choice.

In summary, ML does not obviate the need for expert evaluation in land suitability
assessment. In fact, the need for expert knowledge may be greater than ever before.

5. Conclusions

In this study, we aimed to compare maps of land suitability produced by machine
learning (ML) models trained on land use data with maps based on the mechanistic crop
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requirements model ECOCROP. The results showed that ML could often identify the
areas where farmers typically grow specific crops. This was especially true for the most
common specialty crops, such as potatoes, carrots, peas, apples, and onions. In two specific
examples (potatoes and carrots), the predictive accuracies were high. However, the ML
and ECOCROP suitabilities showed contrasting patterns. The ML suitabilities were highest
on sandy soils in the western part of the country, where ECOCROP suitabilities were
low. In fact, there was no general relationship between suitabilities predicted by ML
and ECOCROP. In addition, ECOCROP suitabilities generally did not align with land
use patterns.

Based on these discrepancies, we have argued that the meaning of the term land
suitability is not sufficiently clear. We proposed instead that researchers should use the
terms ecological suitability and socioeconomic suitability to avoid confusion and ensure that
methods align with the purposes of the research. Furthermore, we argued that in most
cases, ML models based on land use data predict mainly socioeconomic suitability. Even
without the inclusion of socioeconomic variables, the patterns predicted by ML models are
likely to reflect socioeconomic trends, as ML models can use other covariates as proxies.

Therefore, it is vital that researchers consider the purposes of their research and
the form of suitability that they aim to map before they decide which methods to use.
Specifically, if researchers aim to predict ecological suitability, they should use a subset
of locations with high yields or produce quality. Alternatively, if the aim is to predict
socioeconomic suitability, the analysis should also include socioeconomic variables.
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10.3390/agronomy11040703/s1, Tables S1–S7. The tables list the crops investigated in the study
(Table S1), the covariates used (Table S2), the climatic requirements for each crop according to
ECOCROP (Table S3), the soil requirements for each crop according to ECOCROP (Table S4), the
accuracies of the Maxent models (Table S5), the accuracies of ECOCROP (Table S6), and the rank
correlations between the Maxent and ECOCROP suitabilities for each crop (Table S7).
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