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Introduction

1. Background information and aim of the present thesis

Traditionally, risk assessment and safety evaluation for chemicals, including both non-
pharmaceuticals and pharmaceuticals, has heavily relied on in vivo toxicity data obtained from
animal studies which, however, have some inherent restrictions. One of the major limitations is
the potentially poor correlation with the human effects due to inter-species differences in
toxicodynamics and toxicokinetics (Bailey et al. 2014; Perel et al. 2007; Van Norman 2019).
On the other hand, to better protect human health and the environment legislation and regulatory
initiatives on the safety of industrial chemicals, food additives, cosmetics and pharmaceuticals
have developed and point at the requirement on safety information of these compounds
(European Commission (EC) 2007; EC 2008; EC 2009; EC 2010b; National Research Council
(NRC) 2006). To fulfil the demand on toxicity testing for a large number of compounds,
millions of animals are required to generate toxicity data, which is increasingly considered
unacceptable from both ethical and economic perspectives (Rovida and Hartung 2009;
Strikwold 2016). Due to these scientific and societal concerns, there is a significantly increased
effort and interest in studying alternative approaches for animal testing. Already in the late
1950s Russel and Burch postulated the principle of the replacement, reduction and refinement
of animal use, known as the 3Rs (Russell and Burch 1959). This had important implications in
toxicological, biochemical and biological research for more than 60 years. In line with the 3Rs
principles, the development of alternative testing strategies has become increasingly important,
especially during the past decades, in toxicology testing for the risk assessment and safety
evaluation of compounds (Andersen et al. 2019; European Medicines Agency (EMA) 2017;
Taboureau et al. 2020). Over the past decades, many efforts from the academic and industrial
setting as well as from regulatory authorities aimed at promoting the use of non-animal testing
methods. The European Commission implemented the REACH Regulation for Registration,
Evaluation, Authorization and restriction of CHemicals (2007/2006) (EC 2007), the Cosmetics
Regulation (1223/2009) (EC 2009) and Directive (2010/63) (EC 2010a) which all include
considerations to reduce the use of animals for scientific purposes and to enforce or strongly
encourage the replacement of animal use. In the United States the Toxicology in the 21st
Century program initiated by four government authorities proposed a paradigm shift in
chemical risk assessment and testing strategies which encourages the use of human-related
biological materials and the application of alternative animal methods enabling high-throughput
toxicity screening for a diverse range of compounds and endpoints (Andersen et al. 2019; NRC

2007). The U.S. Environmental Protection Agency (EPA) officially announced a plan to
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eliminate all the requests for live mammal studies by 2035 (Grimm 2019). More recently, the
term new approach methodology (NAM) is being proposed, which expands the concept of
alternative methods for toxicity testing and includes more newly developed approaches such as
organoids and omics approaches (ECHA 2016, ICCVAM 2018).

In light of the ongoing research on alternative methods or NAMs, a wide range of in vitro
biological assays has been developed to screen a chemical of interest for different toxicity
endpoints or to study the modes of action underlying the toxicity (Bernauer et al. 2005). The in
vitro toxicity data generated by these assays provide useful information for hazard
characterization. Clearly many in vitro experiments do not (yet) capture the information on the
absorption, distribution and excretion (ADME) of chemicals (i.e. toxicokinetics), and thereby
do not fully reflect the in vivo situation. To enable the use of in vitro assays in human risk
assessment and safety evaluation of chemicals, a translation is required to convert the obtained
in vitro concentration-response data to in vivo human dose-response data, taking into account
toxicokinetics (Bell et al. 2018; Blaauboer 2010). Generally, toxicokinetics refers to the fate of
chemicals and their metabolites within the body upon exposure. Toxicokinetic data on ADME
of chemicals can be obtained using NAM including in vitro and in silico approaches (Punt et
al. 2020). Collectively these ADME processes can be expressed using a set of mathematical
equations in a method called physiologically based kinetic (PBK) modelling, quantitatively
describing the time course of chemicals within the different compartments of a body upon
exposure to a certain dose. PBK models link the external exposure doses of a chemical to the
internal concentrations of that chemical in the systemic circulation or target organs (Lin and
Fisher 2020). The PBK modelling approach could be especially powerful for the risk
assessment and safety evaluation when integrated with biological data obtained from in vitro
assays for the critical toxicological endpoint of interest. One good example of such an
integration is so-called PBK modelling-based reverse dosimetry in which the in vitro effective
concentrations are set equal to the internal concentrations in the blood or target organs and are
subsequently converted to the corresponding external doses. By repeating the same procedure
for each effective concentration obtained in the in vitro toxicity assay the concentration-
response curves can be translated to predicted in vivo dose-responses curves from which points
of departure (PoDs) can be derived to define the safe exposure level of a chemical (Louisse et
al. 2010; Rietjens et al. 2011). To date this quantitative in vitro in vivo extrapolation (QIVIVE)
has shown to adequately predict the in vivo toxicity of chemicals for various toxicity endpoints

including developmental toxicity (Louisse et al. 2010; Strikwold et al. 2013, 2017),
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nephrotoxicity (Abdullah et al. 2016), liver toxicity (Ning et al. 2019, Gilbert-Sandoval et al.,
2020) and neurotoxicity (Algharably et al. 2021; Omwenga et al. 2021; Zhao et al. 2019).

To further promote the use of this new approach methodology for human risk assessment
and safety evaluation it is essential to explore its potential applicability for a broader range of
toxicity endpoints and for the human situation. The human heart has been shown to be the target
organ when exposed to a wide range of chemicals including heavy metals, natural alkaloids,
pesticides (organophosphate) and pharmaceuticals, and cardiotoxicity has been considered as
one of the most important toxicity endpoints in the safety testing of chemicals (Kratz et al. 2017;
Krishna et al. 2020). Especially for drug development cardiotoxicity is reported to be the major
cause of drug failure and withdrawal, accounting for 27% of drug failure during the early stage
of drug development, and 16% of drug withdrawals from the market in Europe and the United
States (Ovics et al. 2020; Pang et al. 2019; Siramshetty et al. 2016). Additionally, because of
the severe health consequences of pro-arrhythmic drugs, in vivo electrophysiological
cardiotoxicity studies using whole animals are compulsory for all drug candidates (The
International Council for Harmonization of Technical Requirements for Pharmaceuticals for
Human Use (ICH) 2005). Clearly this has resulted in a need to use a large number of
experimental animals to exclude this unintended side effect. A recent report from the European
Union Reference Laboratory for alternatives to animal testing (EURL ECVAM) revealed that
around 382,000 animals were used for cardiovascular related research in Europe in 2017 (Zuang
et al. 2021). Furthermore, proofs-of-principle for in vivo dose-response curves for toxicity
predicted by PBK modeling-based reverse dosimetry obtained so far often relate to predicted
toxicity in experimental animals, because for experimental animals predicted data could be
evaluated based on comparison to existing animal toxicity data. This leaves the need to obtain
proofs-of-principle for application and evaluation of the PBK modeling-based reverse

dosimetry approach to predict human toxicity.
1.1  Aim of the present thesis

The present thesis aims to provide proofs-of-principle for using PBK modeling-based reverse
dosimetry of in vitro data for the prediction of cardiotoxicity in humans, thereby providing a
novel testing strategy for cardiac safety studies. Methadone and ibogaine, two anti-addiction
drugs with known in vivo cardiotoxicity, were selected as model compounds. The developed
QIVIVE approach could contribute to alternatives of animal testing/ non-animal based NAMs

for risk assessment and safety evaluation of chemicals.

11
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2.  Chemical-induced cardiotoxicity

Potential cardiotoxicity including electrical and contractile dysfunction of cardiomyocytes can
be attributed to different mechanisms (Ovics et al. 2020). Chemicals can interfere with the ion
channels and receptors involved in the maintenance of membrane potentials, resulting a change
in cardiac electrophysiology (Priest and McDermott 2015). Furthermore, chemicals such as
doxorubicin can influence both the electrical and contraction function via disrupting the
intracellular Ca?" signaling (Burridge et al. 2016; Hanna et al. 2014), while chemicals such as
several anti-cancer reagents are reported to induce aberrant contraction due to their cytotoxic
effects on cardiomyocytes (Doherty et al. 2013; Zhao and Zhang 2017). Particularly, the
electrophysiological alterations including ventricular arrhythmias are the most noticeable
chemical-induced forms of cardiotoxicity (Ovics et al. 2020) and thus electrophysiological

cardiotoxicity was chosen as the toxicity endpoint in the present thesis.

Normal cardiac contractions are triggered by the electrical signals called action potentials,
which are generated by the changes of inward and outward ion fluxes across the cell membrane.
More than 60 ion channels, ion pumps, ion exchangers and membrane receptors are involved
in the initiation of action potentials in human cardiomyocytes (Hondeghem and De Clerck 2012;
Tripathi et al. 2011). Figure 1 shows the major ion channels and ion fluxes involved in the
initiation of action potentials in human ventricular cardiomyocytes. The action potential starts
with an upstroke induced by inward sodium currents (Ina) through voltage-gated sodium (Na®)
channels (phase 0). Then a rapid repolarization occurs (phase 1) driven by transient outward
potassium (K*) currents (Iv), which is followed by a plateau phase (phase 2) resulting from the
balance between potassium efflux mainly mediated by rapid and slow delayed rectifier K*
channels (corresponding to currents Ik: and Iks, respectively) and calcium (Ca?") influx through
Ca?" channels. The plateau ends with the inactivation of the Ca?" channels, while delayed
rectifier K™ channels remain open leading to repolarization (phase 3). At the end of phase 3,
intracellular Na* and Ca?" are transported out of cells by Na*/ K* ATPase and Na'/ Ca?*
exchangers. The membrane potential finally returns to the resting potential (phase 4) mainly
driven by K* efflux through the inward rectifier K* channel (corresponding to current Iii)
(Huang 2017; Jeevaratnam et al. 2018; Rougier and Abriel 2016). The sum of depolarization
and repolarization is defined as the action potential duration (APD). The phases of the action
potential can be detected by using electrodes placed on the skin of a person and is reflected by
the electrocardiogram (ECG). As illustrated in Figure 1, the QRS complex is generated in phase

0 and corresponds to ventricular depolarization. The ST interval and T wave represent the
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plateau and repolarization phase of the action potential, respectively. The QT interval is defined
as the duration from the beginning of the QRS complex to the end of the T wave, reflecting the
ventricular depolarization and repolarization (Fermini and Fossa 2003; Hondeghem and De
Clerck 2012). Additionally, the QT interval is usually corrected for heart rate (QTc¢) in order to
minimize the influence of heart rate variability and allow a better comparison of individual
values with refence values in the clinic (Postema and Wilde 2014). Bazett’s correction
(QTc=QT/ RR 2, where RR is defined as the interval between two QRS complexes and
expressed in milliseconds) and Fridericia’s correction (QTc=QT/ RR 3) are two of the most
commonly used formulae for the correction of the QT interval for heart rate (Postema and Wilde

2014).

Chemical-induced cardiac adverse effects are often caused by undesired interactions with
above-mentioned ion channels or receptors involved in the regulation of action potentials
(Hondeghem and De Clerck 2012). A decrease in repolarization (outward) currents and/or an
increase in depolarization (inward) currents will prolong the ventricular APD (Fermini and
Fossa 2003; Ovics et al. 2020; Roden 2008). In the human ECG, a delayed ventricular APD is
reflected by a prolonged QT interval, which is associated with increased incidences of torsade
de pointes (TdP), a life-threatening polymorphic ventricular tachyarrhythmia (rapid heart
rhythms) with rapid and twisting QRS complexes around the isoelectric baseline (Ewart et al.
2012; Fermini and Fossa 2003; Kannankeril et al. 2010). Such QT prolongation and arrhythmia
can also be caused by drugs, which has been the main reason for the discontinuation and
withdrawal of several drugs (Hondeghem and De Clerck 2012). It is generally considered that
the rapid delayed rectifier K™ channels encoded by the human ether-a-go-go-related gene
(hERGQG) play an important role in repolarization, as the blockage of the hERG channel is
associated with prolonged APD and QT intervals (Martin et al. 2004; Sanguinetti et al. 1995;
Thomas et al. 2006). Therefore, regulators require to evaluate the potential for delayed
repolarization for all drug candidates using an in vitro hERG channel inhibition assay in the

preclinical stage (ICH 2005).
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Figure 1 Comparison between action potentials in human ventricular cardiomyocytes and the
human electrocardiogram (ECG). The upper part of the figure shows the major ion channels and
fluxes involved in the initiation of action potentials in human ventricular cardiomyocytes. Phase 0: the
rapid depolarization is induced by inward sodium current (Ina) through the voltage-gated sodium (Na")
channels. Phase 1: the rapid repolarization caused by the activation of the transient outward potassium
currents (I,). Phase 2: the plateau phase is the result of the balance between potassium (K*) efflux
mainly mediated by rapid and slow delayed rectifier K channels and calcium (Ca*") influx through Ca®*
channels. Phase 3: the repolarization is caused by the inactivation of the Ca** channels and the ongoing
K* efflux via delayed rectifier K* channels. At the end of phase 3, intracellular Na" and Ca®" are
transported out of cells by Na'/ K* ATPase and Na'/ Ca?" exchanger. Phase 4: the membrane potential
returns to the resting potential mainly driven by K efflux through the inward rectifier K™ channel
(Rougier and Abriel, 2016; Huang, 2016; Jeevaratnam et al., 2018). The bottom part of the figure shows
the human ECG where the QRS complex, ST interval, and T wave represent the depolarization, the
plateau and the repolarization phase of ventricular action potentials, respectively (Fermini and Fossa

2003; Hondeghem and De Clerck 2012). APD, action potential duration.
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3. Model compounds

To provide proofs-of-principle for using PBK modeling-based reverse dosimetry of in vitro
data for the prediction of cardiotoxicity in humans, two anti-addiction drugs were used in the
present thesis as model compounds. The model compounds were chosen based on the following
criteria 1) available evidence showing that exposure to the compound is associated with QT
prolongation or arrythmia in human and 2) the presence of both in vivo human kinetic and QT
data on the compound, which enable the evaluation of the developed PBK models and of the
predicted dose-response curves for cardiotoxicity against observed data. The model compounds

thus selected were methadone an ibogaine.
3.1 Methadone

3.1.1 Cardiotoxicity of methadone

Methadone (Figure 2) is a synthetic opioid agonist prescribed for pain relieve and used as a
substitute to reduce the withdrawal syndrome induced by other opiates (Alinejad et al. 2015;
Behzadi et al. 2018). As a high-efficacy and low-priced anti-addiction drug, methadone is
extensively used in the clinic, which however has been reported to induce QTc prolongation
and TdP in patients receiving opioid maintenance treatment (Fareed et al. 2013; Justo et al.
2006; Wedam et al. 2007). Several in vitro studies employing electrophysiological-based
techniques or heterologously transfected cell models revealed that methadone-induced QTc
prolongation can be explained by the inhibitory effects of methadone on hERG channels (Eap
etal. 2007; Kuryshev et al. 2010). Methadone is administered as the racemate with a 1:1 mixture
of the R- and S-enantiomer (Eap et al. 2002). The two enantiomers have different potencies for
both pharmacological effects and cardiotoxicity with mainly S-methadone being responsible

for the cardiac adverse effects (Ansermot et al. 2010; Eap et al. 2007).
3.1.2 ADME of methadone

Methadone is a lipophilic basic drug that can be rapidly absorbed following oral administration
with detectable blood concentrations occurring within 15 to 45 min (Eap et al. 2002; Inturrisi
et al. 1987; Wolff et al. 1997). After the oral dosing the time to reach peak plasma
concentrations is 2.5 h on average and varies from 1 to 5 h, being not dependent on the dose
(Lugo et al. 2005; Wolff et al. 1997). The oral bioavailability of methadone is generally high
with an average value of 82% but shows large variability among individuals (ranging from 41

to 99%) (Dale et al. 2004; Kharasch et al. 2009). Following absorption in the gastrointestinal
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tract, methadone is well distributed throughout the body as reflected by a volume of distribution
amounting to 4 I/kg (de Vos et al. 1995; Lugo et al. 2005). As methadone is a highly lipophilic
compound, it preferably distributes and accumulates in tissues such as brain, gut, kidney, liver
and lung (Barbosa Neto et al. 2015). Methadone is extensively bound to plasma protein with a
mean unbound fraction of 0.14, which shows variation (i.e. ranging between 0.034 to 0.22) (Eap
et al. 1990; Olsen 1973; Romach et al. 1981; Wilkins et al. 1997). As a basic drug methadone
is primarily bound to alphal-acid glycoprotein (AAG) and the level of AAG could increase in
certain pathologic conditions such as cancer and opioid addiction (Abramson 1982; Lugo et al.
2005; Romach et al. 1981). This variability may partly explain the variation in the methadone

plasma binding.

The metabolism of methadone mainly occurs in the liver where methadone is N-
demethylated followed by spontaneous cyclisation resulting in formation of its primary
metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) which is subsequently
metabolized to a secondary metabolite, 2-ethyl-5-methyl-3,3-diphenylpyrroline (EMDP) via N-
demethylation (Moody et al. 1997; Verebely et al. 1975) (Figure 2). In vitro and human studies
revealed that the major enzymes mediating the conversion of methadone to EDDP are
cytochromes P450 (CYP)2B6, CYP3A4 and to a lesser extent CYP2C19. CYP2C19 and
CYP2B6 are reported to be stereoselective towards the conversion of R- and S-methadone,
while CYP3A4 appeared to be non stereoselective (Eap et al. 2007; Foster et al. 1999; Gerber
et al. 2004; Totah et al. 2007). It is important to note that an up to 17-fold variation in methadone
blood concentrations has been observed in subjects exposed to a certain dose of methadone,
which could partly be attributed to the inter-individual variability in the CYP enzymes involved
in its metabolism (Eap et al. 2002; Li et al. 2008). After oral dosing, methadone and its
metabolites can be excreted via both urine and feces with a percentage of the oral dose up to

57% and 45%, respectively (Barbosa Neto et al. 2015; Dean 2004).
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Figure 2 Metabolic conversion of methadone to 2-ethylidenel,5-dimethyl-3,3-diphenylpyrrolidine
(EDDP), and 2-ethyl 5-methyl-3,3-diphenylpyrroline (EMDP) by cytochromes P450 (CYPs). The

asterisk indicates the chiral centre.
3.2 Ibogaine

3.2.1 Cardiotoxicity of ibogaine (and noribogaine)

Ibogaine (Figure 3) is a natural alkaloid derived from the root bark of the West African shrub
Tabernanthe iboga. Originally it was used as a spiritual ceremony agent by West African tribes
given its potential psychoactive and hallucinogenic effects (Davis et al. 2017; Mash et al. 2018).
In modern medicine ibogaine has been used as an anti-addictive drug in New Zealand while it
is banned for human use and only used for research aims in most countries due to its
psychoactive properties (Mash et al. 2018; Noller et al. 2018). To date, many in vitro and in
vivo studies revealed that both ibogaine and its major metabolite noribogaine (Figure 3) show
neurobiological effects in human and animals with the potential to reduce opioid dependence
and depressive symptoms (Baumann et al. 2001a; Baumann et al. 2001b; Mash et al. 2016;
Mash et al. 2001; Noller et al. 2018). Despite the promising pharmacological efficacy observed
in preclinical studies, the potential cardiotoxicity hampers their legal uses in the clinic (Schep
etal. 2016). Over decades, results from several human case studies indicated that ibogaine could
be associated with QTc prolongation, TdP and several fatalities in subjects following oral
administration of high doses of ibogaine (Asua 2013; Grogan et al. 2019; Hildyard et al. 2016;
Hoelen et al. 2009; O'Connell et al. 2015; Paling et al. 2012; Steinberg and Deyell 2018;
Vlaanderen et al. 2014). More recently, a phase 2 clinical trial revealed that noribogaine induced
a dose-dependent QTc prolongation in opioid-dependent patients at dose levels of 60, 120 and
180 mg noribogaine (Glue et al. 2016). The underlying mechanism of ibogaine and
noribogaine-induced cardiotoxicity is not fully clear but could be related to their inhibitory

effect on hERG channels observed in in vitro studies. In these studies, ibogaine and noribogaine
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were equally potent in blocking hERG channels as measured by using the patch clamp

technique (Alper et al. 2016; Koenig et al. 2014; Rubi et al. 2017).
3.2.2 Combined effects of ibogaine and noribogaine

Considering that ibogaine and noribogaine show the potential to inhibit hERG channels, both
compounds could induce cardiotoxic effects at the internal site of interest (i.e. heart) upon oral
exposure to ibogaine. Assuming that the cardiotoxic effects of ibogaine and noribogaine are
additive, the combined effective concentration of ibogaine and noribogaine could be described
as the ibogaine equivalent concentration by applying the dose addition method used for the
hazard assessment of a mixture of chemicals showing similar toxicity by a similar mode of
action. Thus the so-called toxic equivalency (TEQ) approach can be applied, which assesses
the combined effect of chemical mixtures taking the potency of each mixture component into
account by defining the toxic equivalency factor (TEF). The TEF reflects the ratio of the toxicity
of an individual chemical relative to the toxicity of the index chemical and the total toxic
concentration can be calculated as TEQ which is the sum of the concentration of the mixture
components multiplied by their respective TEFs (Bil et al. 2021; European Food Safety
Authority (EFSA) 2013; EFSA 2019; EPA 2000; EPA 2010).

3.2.3 ADME of ibogaine (and noribogaine)

Due to the low number of studies on ibogaine and noribogaine, only limited information on
human pharmacokinetics is available in the literature. Ibogaine is a lipophilic and basic
compound. Upon oral administration of ibogaine, the peak plasma concentration occurred at 1
h and 1.7 h with a given dose of 20 and 700 mg, respectively (Glue et al. 2015b; Mash et al.
2001). While for noribogaine the time to reach peak plasma concentrations was longer,
amounting to 3 to 4 h with the given doses ranging from 3 to 180 mg without substantial
differences between healthy subjects (Glue et al. 2015a) and opioid dependent individuals (Glue
et al. 2016). Ibogaine and noribogaine are reported to distribute in the human body with
2006; Litjens and Brunt 2016). Additionally, clinical studies observed a high volume of
distribution of noribogaine (18-39 1/kg), reflecting substantial distribution of noribogaine to
body tissues as well as its high lipophilicity (Glue et al. 2015a; Glue et al. 2016). In the liver
ibogaine is rapidly and extensively metabolized to its primary metabolite noribogaine via O-
demethylation (Obach et al. 1998; Glue et al., 2015; Litjens and Brunt, 2016). An in vitro
microsomal incubation study identified that CYP2D6 was the major enzyme involved in the

metabolism of ibogaine and CYP2C9 and CYP3A4 appeared to have minor contributions
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(Obach et al., 1998). Glue et al. (2015b) found that the plasma concentration of ibogaine in
subjects treated with a CYP2D6 inhibitor was 27-fold higher than that in placebo-treated
subjects, confirming a major role of CYP2D6 in the conversion of ibogaine to noribogaine.
Subsequently, noribogaine is converted to noribogaine glucuronide (Glue et al., 2016; Glue et
al., 2015b) (Figure 3). Glue et al. (2015a) reported that only small amounts of noribogaine
glucuronide were formed after an oral dose of noribogaine, suggesting a minor contribution of
glucuronidation to the total clearance of noribogaine. Ibogaine can be rapidly eliminated from
the human body with a half-life of 2.5 h at a given dose of 20 mg (Glue et al., 2015b) while
noribogaine is slowly eliminated with a half-life of 30 h after an oral dose of 120 mg
noribogaine (Glue et al., 2016). It is not clear whether ibogaine could be excreted via urine
while the urinary excretion of noribogaine and its glucuronide is low, accounting for 1.4-3.9 %
of the dose administered after a single oral dose of noribogaine (Glue et al. 2015a). Both
ibogaine and noribogaine are found in human bile and excreted via the gastrointestinal tract

circulation in certain individuals upon oral administration of noribogaine (Glue et al. 2015a).

Figure 3 Metabolic pathway of ibogaine to noribogaine by cytochromes P450 (CYPs) and
subsequent conversion of noribogaine to noribogaine glucuronide by glucuronosyltransferases

(UGTs).
4. Approaches used in the present thesis

4.1. In vitro model for cardiotoxicity

Up to date, several in vitro cell- and tissue-based models are being developed to identify the
electrophysiological cardiotoxicity induced by chemicals. Generally, cell-based assays
for electrophysiological cardiotoxicity employ non-heart cell lines transfected with one or more
ion channel(s) or cardiomyocytes derived from embryonic stem cells or induced pluripotent
stem cells, or primary cardiomyocytes (Burnett et al. 2021). When combined with the use of
the patch clamp technique, ion channel cell models can provide information on the interaction

between chemicals and ion channels and thus on the mechanism underlying cardiotoxicity
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(Dunlop et al. 2008; Hamill et al. 1981). Functional cardiomyocytes can be integrated with a
broad range of techniques such as patch clamping, multi-electrode array (MEA), intracellular
calcium imaging voltage sensitive dyes and impedance measurement, which allows a
comprehensive assessment of chemical-induced cardiotoxicity based on different
electrophysiological endpoints (Li et al. 2016; Walker et al. 2017). Recently, the heart slices
biomimetic culture system, a tissue-based model, has been demonstrated to be a promising
platform for the detection of cardiotoxicity in a model close to the in vivo physiological
situation (Miller et al. 2020; Ou et al. 2019). Additionally, with the development of three-
dimensional (3D) cell culture techniques, microphysiological heart models and heart-on-chip
systems have been applied as proof-of-principle tools for the detection of cardiotoxicity
(Burnett et al. 2021; Zuppinger 2019). Table 1 summarizes the advantages and disadvantages
of typical in vitro cardiotoxicity testing models. Among these, models employing stem cell-
derived cardiomyocytes are frequently used for cardiotoxicity screening of chemicals, given
their ability to detect the cardiotoxic effects resulting from multiple channels and being robust
and easy to use. Therefore, the present thesis focused on two stem cell-based in vitro models
using mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) and human induced
pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) evaluating their applicability

domain for cardiotoxicity testing.
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Table 1 Summary of advantages and limitations of in vitro testing assays for electrophysiological

cardiotoxicity
In vitro testing assay ~ Advantages Limitations
Ion channel assay e Mechanistic information on the e Labor-intensive
effects of chemical on ion e Large inter-laboratory
channels and their role in variability
cardiotoxicity e Unable to investigate multiple-

channel effects

Patch clamping e Highly sensitive readouts e Invasive to cells
e Multiple electrophysiological e Low throughput
endpoints e Acute exposure
Voltage sensitive e High throughput e Cytotoxic effect of dyes
dyes e Highly sensitive readouts
Multi-electrode array e Less inter-laboratory variability e High costs
compared to ion channel assay e Medium throughput
e Enables the investigation on
multiple-channel effects
e Acute and chronic exposure
3D heart models e Mimic the structure and function e Require specialized
of native cardiac tissue expertise/equipment

e No standardized platform
e Low throughput and high costs

4.1.1. Mouse embryonic stem cell-derived cardiomyocyte (mESC-CM) beating arrest

assay

Mouse embryonic stem cells were first derived from developing mouse blastocysts and can
spontaneously differentiate into beating cardiomyocytes which express the major cardiac
contractile proteins, ion channels and receptors (Abassi et al. 2012; Evans and Kaufman 1981,
Himmel 2013; Maltsev et al. 1994; Wobus et al. 1991). Nicolas et al. (2015) successfully
detected the inhibitory effects of various ion channel (receptor) blockers on the beating of
mESC-CMs, suggesting the potential of mESC-CMs for screening the cardiotoxicity of
chemicals. In the present thesis the mESC-CM beating arrest assay was set up based on the
method developed by Nicolas et al. (2015). As illustrated in Figure 4, mouse embryonic stem
D3 cells were first aggregated as small cell droplets on the lid of a 96-well plate which allows

the formation of embryoid bodies (EBs). After two-day incubation EBs were transferred to a
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petri-dish for an additional two-day culture and subsequently transferred to 48-well plates
where cells differentiated into beating cardiomyocytes from day 10 onwards. Upon compound
exposure, the number of beating cells were counted microscopically and compared to the
number of beating cells in the corresponding medium controls. The cardiotoxicity of a chemical
is reflected by its inhibitory effect on beating cardiomyocytes. The details of culturing, exposure

and analysis of the mESC-CM are shown in Chapter 2.

Figure 4 The scheme of the mouse embryonic stem cell derived cardiomyocyte (mESC-CM)

beating arrest assay.

4.1.2. Human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) multi-
electrode array (MEA) assay

In 2009 hiPSCs were successfully differentiated to functional cardiomyocytes for the first time
(Zhang et al. 2009). Since then, hiPSC-CMs combined with different techniques have been
intensively used for cardiotoxicity screening, drug development and heart disease modeling
(Chang and Mummery 2018; Li et al. 2020; Walker et al. 2017). Many studies demonstrated
that hiPSC-CMs express the major cardiac ion pumps and exchangers and membrane receptors
known to be present in human cardiomyocytes (Garg et al. 2018; Karakikes et al. 2015; Ma et
al. 2011). In recent years hiPSC-CMs combined with the MEA technique have been frequently
used for cardiac safety assessments providing comprehensive information on chemical-induced
multiple electrophysiological effects (Harris et al. 2013; Kitaguchi et al. 2017; Nozaki et al.
2017; Zwartsen et al. 2019). Figure 5 shows how the hiPSC-CM MEA assay was performed in
the present thesis. Commercially available hiPSC-CMs were seeded on electrodes on a six-well
MEA chip where a monolayer of beating cells was obtained at 7 to 8 days post seeding.
Subsequently the electrical activity of beating cells was measured by the MEA system, reflected

by the real-time waveform of extracellular field potential (middle picture in Figure 5). Upon
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chemical exposure, the changes of the extracellular field potential were recorded and analyzed
using specific software. The chemical-induced cardiotoxic effects could be characterized using
multiple electrophysiological parameters such as sodium spike amplitude, field potential
duration (FPD) and RR-interval (duration between two depolarization peaks). These parameters
are considered to specifically correspond to the parameters observed in a human ECG
(Zwartsen et al. 2019) and thus can be used as in vitro surrogate indicators for the in vivo
cardiotoxicity. The details of culturing, exposure, interpretation of the electrophysiological

parameters and data analysis are described in Chapter 2, 3 and 5.

Figure 5 The scheme of the human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-

CM) multi-electrode array (MEA) assay.

4.2. Physiologically based kinetic (PBK) modelling

PBK modelling is a mathematical in silico approach that quantitatively describes the ADME
process of chemicals and their metabolites within the body (Chiu et al. 2007; Rietjens et al.
2011). In the PBK model, body tissues and organs are described as different compartments each
defined by a set of mathematical equations, which can describe the time dependent ADME for
chemicals and their metabolites in the body. PBK models can predict the internal concentrations
(in plasma/blood or a target organ) upon exposure to known external doses of the chemicals
(i.e. forward dosimetry), and they can also be used to extrapolate in vitro toxicity data to
external dose values which is referred to as reverse dosimetry (Clewell and Clewell IIT 2008;
Louisse et al. 2010; Rietjens et al. 2011). Unlike traditional animal studies used in risk
assessment, PBK models are not limited in the use in extrapolation beyond the range of the
experimental data and can be developed for different species, exposure routes, durations and

doses based on the requirements (Lin and Fisher 2020).

Generally, three types of input parameters are required to set up a PBK model including (1)

physiological parameters (e.g. cardiac output, tissue weight/volumes and tissue blood flows),
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(2) physico-chemical parameters (e.g. tissue: blood partition coefficients), and (3) parameters
to describe toxicokinetics (e.g. kinetic constants of absorption, metabolism or excretion)
(Krewski et al. 2014; Rietjens et al. 2011). The physiological parameters are used to describe
the anatomy of the compartments and their interconnection via blood, being the skeleton of a
PBK model. These compartments are defined to represent the most relevant target organs and
tissues for the chemical and the toxicological endpoint of interest. Extensive information on
anatomical and physiological parameters are available in the literature for different species
(Brown et al. 1997; Kapraun et al. 2019). The physico-chemical and kinetic parameters are
chemical-specific parameters, and they can be obtained from the literature and/or using in vitro
and in silico approaches. In vivo toxicokinetic studies can also be performed to derive the model
parameters, which nowadays is (often) not preferred due to the conflict of in vivo studies with

the 3R principle. Approaches to derive key model parameters are summarized below.

The intestinal absorption of chemicals can be correlated to their permeability measured using
an artificial membrane such as in the parallel artificial membrane permeability assay (Fortuna
et al. 2012) or using cell-based models such as Caco-2 transport studies (Hubatsch et al. 2007;
Skolnik et al. 2010; Strikwold et al. 2017a). Moreover, absorption related kinetic parameters
can also be predicted using physicochemical, permeability and solubility data using commercial
software programs where physiologically based dynamic absorption models are included
(Jamei et al. 2009; Matsumura et al. 2020). The distribution of a chemical into tissue
compartments and the systemic circulation can be described by the tissue: blood or plasma
partition coefficients. These partition coefficients can be derived from experimental methods
using biological tissues and equilibration techniques (Fisher et al. 2020b; Gargas et al. 1989;
Jepson et al. 1994). Many mathematic algorithms have been developed to describe the tissue
partitioning of a chemical to organs (Berezhkovskiy 2004; DeJongh et al. 1997; Rodgers et al.
2005; Rodgers and Rowland 2006; Schmitt 2008). Additionally, these algorithms have been
incorporated in PBK software packages, for example, PK-SIM, Simcyp, and GastroPlus (Fisher
et al. 2020b). Metabolic kinetic parameters can be determined using various in vitro systems
and then be extrapolated to the in vivo situation by using scaling factors. These in vitro models
include incubations with recombinant enzymes (e.g. recombinant CYPs), tissue fractions (e.g.
hepatic S9 fraction, microsomes and cytosols), cell models (e.g. primary cells and hiPSC) with
respective applicability domains (Fisher et al. 2020a). Some of these assays such as the ones
using microsomes and recombinant metabolic enzymes, have been applied to study the human

variability in the metabolism of chemicals (Boonpawa et al. 2017; Ning et al. 2019; Strikwold
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et al. 2017a). Traditionally, urinary excretion can be determined based on the cumulative mass
of the chemical excreted in the urine in in vivo studies (Fisher et al. 2020b). More recently,
transfected cells with transporter proteins and 3D-culture of primary cells are developed to
determine the kinetics of biliary and urinary excretion and the corresponding scaling factors

(Cheng et al. 2016; Noorlander et al. 2021a and b; Qiao et al. 2021).
4.3. PBK modelling-based reverse dosimetry

PBK models have been widely used in chemical risk assessment for several purposes, such as
evaluation of interactions between different compounds (Alhusainy et al. 2010; Dennison et al.
2004; Tan et al. 2011), investigation of the influence of age and physiological variations on
dosimetry (Ning et al. 2019; Strikwold et al. 2017b; Yang et al. 2006; Yang et al. 2019) and
facilitating the use of in vitro toxicity models for a quantitative risk assessment (Louisse et al.
2010; Rietjens et al. 2011; Wetmore et al. 2012; Yoon et al. 2012). One good example of the
latter application is so-called PBK modelling-based reverse dosimetry that translates in vitro
concentration-response curves to predicted in vivo dose-response curves from which points of
departure (PoDs) can be derived to define safe human exposure levels of chemicals (Louisse et
al. 2010; Rietjens et al. 2011; Yoon et al. 2012; Zhao et al. 2019). In the present thesis this
approach was applied for human cardiotoxicity induced by the two anti-addictive model

compounds.

The PBK modelling-based reverse dosimetry approach is schematically presented in Figure
6 and proceeds by several steps as follows. The first step is to select an appropriate in vitro
cardiotoxicity model from which concentration-response curves can be derived. The second
step is the development of a PBK model for the model compound and its metabolites in human
using kinetic parameters obtained from in vitro models and parameters derived from in silico
simulations and/or the literature. The third step is to evaluate the performance of the developed
model. For this purpose, comparisons are made between predicted kinetics (e.g. time course of
blood or plasma concentration and area under the blood or plasma concentration time curve)
and experimental kinetics reported in clinical studies. The model evaluation can be
complemented with a sensitivity analysis which is required to identify influential parameters
on the model predictions, and can be used to better interpret the model predictions and may also
be used to select the parameters that need to be estimated with the highest accuracy (Barton et
al. 2007; Covington and Gearhart 2020). Once the performance of the model has been
adequately evaluated, the model can be used for reverse dosimetry as described in the next step.

The fourth step is to translate in vitro concentration-response curves obtained in the first step
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to in vivo dose-response curves. To do this the in vitro effective concentration of the compound
or its metabolite of interest is set equal to the relevant internal concentration (i.e. concentration
in the heart venous blood in the present thesis). Ideally this extrapolation should be based on
the unbound fraction of both the in vitro concentrations and the internal concentration to
eliminate the potential influence of differences in binding in the in vitro and in vivo situation
(e.g. binding to medium components and well plate plastic, and protein binding to human
plasma) on bioavailability of the chemical or its metabolite in both the in vitro model and the
in vivo situation. The extrapolation is applied for each in vitro concentration to obtain an entire
dose-response curve from which PoDs such as the no observed adverse effect level (NOAEL),
the benchmark dose (BMD) or an associated lower bound confidence limit (BMDL), can be
derived for the risk assessment and safety evaluation of the compound. The last step is to
evaluate the predictions made by the in vitro-PBK modelling-based reverse dosimetry approach
by comparing predicted dose-response data and PoD values to data obtained from in vivo

studies reported in the literature.

Figure 6 Principle of the physiologically based kinetic (PBK) modelling-based reverse dosimetry

approach
4.4. Use of Monte Carlo simulation in variability analysis

By combining with Monte Carlo (MC) simulation, PBK modelling can be used to explore the
inter-individual or inter-ethnic variations in the toxicokinetics of chemicals due to the
variability in, for example, age, gender, ethnicity, genotype and/or lifestyle (Clewell III and
Andersen 1996; Gentry et al. 2002; Gearhart et al. 1993; Ning et al. 2019; Rietjens et al. 2011;
Strikwold et al. 2017b; Yang et al. 2006). MC simulation is a statistical technique that involves
the random sampling of parameter values, for example for the PBK model, from the

distribution(s) of these parameters (e.g. metabolic kinetic parameters) to perform a large
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number of PBK model simulations, subsequently generating the distribution of output
parameters of interest, which typically are internal dose metrics (Covington and Gearhart 2020).
PBK modelling-based reverse dosimetry combined with MC simulation can, in addition to the
PBK model development and evaluation, be performed following several steps (Krishnan et al.
2013; Ning et al. 2019; Strikwold et al. 2017b). (1) Selection of the input model parameters of
interest for the MC simulation and predictions. Usually the selected parameters show large
variability among the population and are highly influential to the model output based on results
of the sensitivity analysis, i.e. metabolic constants in the present thesis. (2) Defining the
distribution of the parameters relevant for the MC analysis and selecting distribution parameters
including i.e. the geometric mean (GM) and standard deviations, which can be obtained from
experiments and/or from literature. Generally, physiological parameters such as body volume,
are considered to have a normal distribution while physico-chemical and kinetic parameters
including partition coefficients and metabolic constants are considered to have log-normal
distributions (Clewell et al. 1999; Clewell et al. 2004; Covington et al. 2007; Zhang et al. 2007).
(3) Running an MC simulation to randomly sample the desired number of input parameters
from their respective distributions. (4) PBK modelling to predict the distribution of the output
parameter of interest using the MC simulation. (5) Statistical analysis of the distribution of the
output generated in (4), i.e. derivation of GM (geometric mean), 95, 97.5" and 99'" percentiles
from the distribution which can be used to define a chemical-specific adjustment factor (CSAF)
that can replace the default uncertainty factor used in risk assessment to account for human
inter-individual differences in toxicokinetics (International Programme on Chemical Safety

(IPCS), 2005).
5.  Outline of thesis

Chapter 1 as the introduction chapter starts with the background information on alternative test
strategies/ NAM and the aim of the present PhD project. It also provides a definition on
cardiotoxicity, followed by the summaries of toxicokinetic and toxicodynamic profiles of the
two model compounds used for the studies and their metabolites. Subsequently the main
approaches applied in the present project, including two in vitro cardiotoxicity assays, PBK
modelling and Monte Carlo simulations are introduced. Chapter 2 evaluates a mouse and a
human stem cell-based in vitro model, namely the mESC-CM beating arrest assay and the
hiPSC-CM MEA assay, for cardiotoxicity screening of chemicals. Eleven cardiotoxic
chemicals with different modes of action were used as reference compounds. The results

obtained from the two models were compared to each other and to in vivo cardiotoxicity data,
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to provide insight into their applicability domains and to enable selection of a suitable toxicity
assay for QIVIVE in subsequent chapters. In Chapter 3 the cardiotoxicity of methadone and
its metabolites EDDP and EMDP were quantified using the hiPSC-CM MEA assay. A PBK
model of racemic methadone was developed to enable the translation of the in vitro
concentration-response curve obtained to an in vivo dose-response curve for methadone-
induced QTc prolongation. The outcomes were compared with available human in vivo QTc
prolongation data to evaluate the model performance. As follow-up of the work described in
Chapter 3, Chapter 4 investigated the potential of the developed QIVIVE approach for the
prediction of human inter-individual variability in in vivo cardiotoxicity of methadone. To this
end in vitro cardiotoxicity and metabolic data were integrated with PBK models and Monte
Carlo simulations to predict the effect of inter-individual and inter-ethnic kinetic variations on
the cardiotoxicity of the two methadone enantiomers in the Caucasian and the Chinese
population. CSAFs were defined and used to derive dose-response curves for the sensitive
individuals. The kinetic variations obtained using individual human liver microsomes or
recombinant cytochrome P450 enzymes (rCYPs) were compared. Chapter 5 investigates
whether PBK modeling-based reverse dosimetry of in vitro data was able to adequately predict
the human cardiotoxicity of the herbal alkaloid ibogaine and its metabolite noribogaine. The
TEQ approach was incorporated in the PBK model enabling the evaluation of the role of
noribogaine in ibogaine-induced in vivo cardiotoxicity. Chapter 6 summarizes the results
obtained in the thesis, provides an overall discussion and presents the future perspectives that

follow from the results obtained.
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Chapter 2

Abstract

Cardiotoxicity is an important toxicological endpoint for chemical and drug safety assessment.
The present study aims to evaluate two stem cell-based in vitro models for cardiotoxicity
screening of chemicals. Eleven model compounds were used to evaluate responses of mouse
embryonic stem cell-derived cardiomyocytes (mESC-CMs) using beating arrest as a readout
and the analysis of electrophysiological parameters measured with a multi-electrode array
(MEA) platform of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).
Results revealed that the hiPSC-CM MEA assay responded to all compounds. The mESC-CM
beating arrest assay was not responsive to potassium channel blockers and showed a lower
sensitivity to sodium channel blockers and Na* /K" ATPase inhibitors compared to the hiPSC-
CM MEA assay. Calcium channel blockers and a B-adrenergic receptor agonist showed
comparable potencies in both models. The in vitro response concentrations from hiPSC-CMs
were highly concordant with human effective serum concentrations of potassium and sodium
channel blockers. It is concluded that both in vitro models enable the cardiotoxicity screening
with different applicability domains. The mESC-CM beating arrest assay may be used as a first
step in a tiered approach while the hiPSC-CM MEA assay may be the best starting point for

quantitative in vitro to in vivo extrapolations.

42



Evaluation of two stem cell models to screen cardiotoxicity

1. Introduction

Cardiotoxicity is considered as an important endpoint in the safety testing of chemicals and
drugs. Many promising drug candidates are discontinued during the development because of
undesired cardiotoxic effects. In addition, there is an increasing need for the evaluation of food-
borne constituents like alkaloids and environmental pollutants that are associated with potential
cardiotoxicity (Ainerua et al., 2020; Kratz et al. 2017; Pang et al. 2019; Stevens and Baker
2009). For these reasons the development of new approaches that can quickly and reliably
identify and characterize the cardiotoxicity of chemicals would be of a great value. Traditional
laboratory animal studies are gradually considered as an inappropriate approach for cardiac
safety assessment due to the fact that animal studies are costly, labour intensive and considered
unethical (Pang et al. 2019). These considerations promote the development of new
technologies where in vitro assays play an important role in characterizing the toxicity of
chemicals (Bernauer et al. 2005). The present study aims to evaluate the potential applicability
domain of two stem cell-based in vitro models to rapidly screen for the potential cardiotoxicity

of chemicals.

Normal cardiac functioning requires cellular ion homeostasis in cardiomyocytes that is
maintained by the concerted action of membrane ion channels and ion transporter (Priest and
McDermott, 2015; Schwinger et al., 2003). Brief controlled changes in ionic homeostasis lead
to changing inward and outward ion fluxes, generating action potentials that ultimately result
in the contraction of cardiomyocytes (Rougier and Abriel, 2016; Huang, 2016; Jeevaratnam et
al., 2018). Sodium (Na") channels are the key drivers for inducing the depolarization of the cell
membrane (DeMarco and Clancy, 2016) and calcium channels contribute to maintaining the
plateau phase of action potentials (Bers and Perez Reyes, 1999). Various types of potassium
(K*) channels are involved in different phases of repolarization (Priest and McDermott, 2015).
In addition to ion channels, several enzymes and transporters such as Na*/K* ATPase also play
critical roles in maintaining the ion homeostasis. Chemical-induced cardiotoxicity is often
caused by the off-target interactions with these ion channels and transporters, resulting in
aberrant electrophysiological function of cardiomyocytes (Priest and McDermott, 2015).
Chemicals induce various types of adverse cardiac events, depending on the affected ion

channels or transporters.

Up to date, several in vitro methods are being explored to screen for cardiotoxicity. These

models range from reductionistic single ion channel binding studies to technological advanced
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patch clamp techniques that are essential for mechanistic studies. A conventional assay is to
measure the inhibitory effect of compounds on individual ion channels. For this, transfected
cell lines are used that allow a highly sensitive detection of binding to the target ion channel
(Clements and Thomas, 2014). However, this approach fails to address the effects induced by
drugs targeting multiple channels (Rehnelt et al., 2017), while also extrapolation to the in vivo
situation from transfected cell lines may be dfficult given the differences in expression levels.
Models that use the patch clamp technique are considered as the gold standard for detecting
cardiotoxicity since it can accurately measure relevant electrophysiological parameters
including single ion currents, action potential duration and peak amplitude (Rehnelt et al., 2017).
Yet, the patch clamp technique is labour intensive, and the stability of the system is limited due
to damage of the cell membrane (Laurila et al., 2016; Tertoolen et al., 2018). Recently,
fluorescent imaging techniques have been applied to screen for potential cardiotoxicity of
chemicals. For this, voltage-sensitive dyes are used to measure parameters which are
comparable to those targeted by the patch clamp technique but without invasive measurement
(Laurila et al., 2016). However, this approach is limited by the potential cytotoxicity of these
dyes (Chang and Mummery, 2018).

In the past decade, stem cell-derived cardiomyocytes have been integrated as in vitro models
in preclinical safety assessments (Pouton and Haynes, 2007; Denning and Anderson, 2008;
Kettenhofen and Bohlen, 2008; Freund and Mummery, 2009). Stem cell-derived
cardiomyocytes have first been obtained from the mouse embryonic stem cells (Wobus et al.,
1991; Maltsev et al., 1994). Mouse embryonic stem cell derived cardiomyocytes (mESC-CMs)
express the major cardiac contractile proteins, ion channels and receptors (Abassi et al., 2012;
Himmel, 2013), which allow them to serve as comprehensive models to detect the cardiotoxic
effect of compounds which target multiple mechanisms. Functional beating cardiomyocytes are
obtained easily from mouse embryonic stem cells by spontaneous differentiation, without the
need of specific growth factors (Seiler and Spielmann, 2011; Kamelia et al., 2017). Moreover,
Nicolas et al. (2015) reported that mESC-CMs can successfully detect in vitro cardiotoxicity of
various ion channel blockers, by determining chemical-induced concentration-dependent
cardiac beating arrest. This provides a robust and easy to use platform for the detection of
cardiotoxicity. Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs)
have shown their potential as the in vitro model for cardiotoxicity testing (Freund and
Mummery, 2009). HiPSCs do not spontaneously differentiate into functional cardiomyocytes,

but require more elaborated culturing techniques, including the application of growth factors in
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the medium (Lewandowski et al., 2017; Sala et al., 2017). HIPSC-CMs express the major
cardiac ion channels, receptors, transporters and electrophysiological responses, known to be
present in human cardiomyocytes (Ma et al., 2011; Karakikes et al., 2015; Chang and Mummery,
2018; Pouttierand Fedida., 2020). These hiPSC-CMs have often been applied in combination
with the multi-electrode array (MEA) techniques, which has proven to be a medium throughput
and non-invasive approach for the detection of cardiotoxicity (Harris et al., 2013; Liet al., 2016;
Nozaki et al., 2016; Kitaguchi et al., 2017; Ando et al., 2017). By measuring extracellular field
potential for monolayers of cardiomyocytes grown on the chip, the MEA technique can
characterize several electrophysiological parameters which specifically correspond to the
specific phases of the in vivo electrocardiogram (ECG) and can thus be used to correlate the in
vitro functional measurements to human in vivo clinical data (Halbach et al., 2003; Sala et al.,

2017).

This study aimed to identify the applicability domain of two stem cell-based assays to screen
for the potential cardiotoxicity of chemicals. For this we used the mESC-CMs with a simple
readout (beating arrest) as a relatively high throughput and low-cost assay and compared it with
the lower throughput and high-cost hiPSC-CM MEA assay. Eleven compounds with known
mode-of-action of cardiac effects that target potassium channels, calcium channels, sodium
channels, Na*/K*™ ATPase and B-adrenergic receptor were tested in both models. The effect
concentrations were compared to reported serum concentrations related to in vivo cardiotoxicity

obtained from human studies.

2. Materials and methods

2.1 Chemical

Dofetilide (product #PZ0016, >98%), amiodarone hydrochloride (product #A8423, >98%),
sematilide monohydrochloride monohydrate (product #S0323, >98%), moxifloxacin
hydrochloride (product #SMLI1581, >98%), mexiletine hydrochloride (product #M2727,
>98%), flecainide acetate salt (product #F6777, >98%), verapamil hydrochloride (product
#V4629, >99%), nifedipine (product #N7634, >98%), digoxin (product #D6003, >95%),
ouabain octahydrate (product #03125, >97%) and isoproterenol hydrochloride (product
#1351005, >98%) were purchased from Sigma-Aldrich (Zwijndrecht, The Netherlands).
Dimethyl sulfoxide (DMSO, >99.7%) was obtained from Merck (Schiphol-Rijk, The

Netherlands). All stock solutions and dilutions of test compounds were prepared in DMSO.
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2.2 In vitro cardiotoxicity in the mESC-CM beating arrest assay

In the mESC-CM beating arrest assay the in vitro cardiotoxicity was characterised by
quantifying the effect of test compounds on the beating of cardiomyocytes formed from the
pluripotent mouse embryonic stem cell line D3 (ATCC, Wesel, Germany). The cells were
cultured in HyClone AdvanceSTEM™ Low Osmo Dulbecco's Modified Eagle Medium
(DMEM, Fischer Scientific, Landsmeer, The Netherlands) supplemented with 20% heat
inactivated fetal bovine serum (FBS, ATCC, Manassas, USA), 50 U/ml penicillin (Invitrogen,
The Netherlands), 50 pg/ml streptomycin (Invitrogen) and 2 mM L-glutamine (Invitrogen). The
cells were cultured at 37 °C with 5% COz in a humidified atmosphere and subcultured three
times per week. Non-enzymatic cell dissociation solution (Sigma-Aldrich) was used to detach
cells and 1,000 U/ml murine leukemia inhibiting factor (mLIF, Sigma-Aldrich) was added to
prevent spontaneous differentiation. Cells were grown in 25 cm? flask (Corning, Amsterdam,

the Netherland) precoated with 0.1% m/v gelatine (Sigma-Aldrich).

To obtain beating cardiomyocytes, the differentiation process of cells was performed
according to previously published protocols (Nicolas et al., 2015; Kamelia et al., 2017) with
minor modifications. On day 0, 20 pl cell droplets containing 3.75 x10* cells/ml were hung on
the lid of 96-well plates (Greiner BioOne, Alphen a/d Rijn, The Netherlands). Phosphate
buffered saline (PBS, Invitrogen) was added to all wells of the 96-well plate to provide humidity
and prevent evaporation of the hanging drops. After 3 days incubation at 37 °C and 5% CO,
the embryonic bodies formed were transferred to a 60 x 15 mm bacteriological petri dish
(Greiner Bio-One) containing 5 ml medium and incubated for 3 days. On day 5, embryonic
bodies were transferred to 48-well plates (Greiner Bio-One) (one embryonic body/well). The
48-well plates were incubated at 37 °C and 5% CO; for another 5 days and the cardiomyocytes
started beating from day 10 onwards. On day 11, contracting cardiomyocytes were treated with
compounds to detect the cardiotoxicity. For each concentration of test compounds, ten wells
containing beating cardiomyocytes (10 beating embryonic bodies; 1/well) were exposed and
the number of well containing beating embryonic bodies after one-hour incubation with test
compound was counted by visual inspection under the microscope. After this visual inspection
all wells were washed with fresh medium and incubated for one hour in medium without added
test compounds to determine the recovery of beating in the cardiomyocytes. 0.25% DMSO was

used as solvent control.
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2.3 Invitro cardiotoxicity in the hiPSC-CM MEA assay

The MEA technology of Multi Channel System (MCS GmbH, Ruetlingen, Germany) was used
to assess the field potentials generated by hiPSC-CMs (Pluricyte® Cardiomyocytes) obtained
from Ncardia (Leiden, The Netherlands). The cells were prepared according to the
manufacturer’s protocol. Briefly, cells were thawed in the incubator at 37 °C for exactly 4 min
and gently transferred to a 50 ml tube. The vial was rinsed with 1 ml serum free Pluricyte®
Cardiomyocyte Medium (Ncardia) added drop-wise to the tube containing the cardiomyocytes.
Then an additional 5 ml medium were added drop-wise to the tube. 20 ul of the homogenous
cell suspension thus obtained were taken for manual cell counting using a Buerker-Tuerk
Counting Chamber (Marienfeld Superior GmbH & Co. KG, Lauda-K6nigshofen, Germany).
At the same time cells were centrifuged at 300g for 3 minutes. Then the supernatant was
removed and medium was drop-wisely added to reach the aimed concentration of cells in the
suspension (2x10* cells/2 pl). Cells were placed on the 6-well MEA chips (60-6well
MEA200/30iR-Ti-tcr) from the Multi Channel System (MCS GmbH) at the concentration of

2x10* cells/2 pl/well. Each well was precoated with fibronectin (Sigma-Aldrich) before seeding.

MEA chips were incubated at 37°C with 5% CO; and refreshed with medium every 2 days.

Electrically coupled monolayers of hiPSC-CMs with spontaneous beating behaviour can be
obtained 7-8 days post-seeding. MEA chips containing the hiPSC-CMs were placed on the
headstage of a MEA2100-System (MCS GmbH) for signal selection. Only the wells with a
signal showing clearly visible depolarization and repolarization peaks were selected for further
assessment (Sala et al., 2017). As indicated in Figure 1, a typical extracellular field potential
waveform consists of a rapid upstroke corresponding to depolarization, a slow wave/plateau
and a repolarization peak. Prior to the measurement, MEA chips containing the cells were
equilibrated for at least 20 min in the chamber of the MEA system which provided a stable
atmosphere at 37 °C with 5% COa. Then, cells were exposed to increasing concentrations of
the model compounds in a cumulative manner as follows: after an equilibration period, DMSO
(0.2%) was added into the well by replacing half of original medium to reach a final
concentration of 0.1% DMSO. Then test compound was cumulatively added to the well with
increasing concentrations in the same way. Including the baseline condition (0.1% DMSO),
seven concentrations of each compound were tested. Test compounds were diluted from stock
solutions into medium to reach the aimed final concentrations. The final concentration of
DMSO in exposure medium was kept at 0.1%. At each concentration of test compounds, the

extracellular field potential was recorded for 1 min after 10 min exposure. Data were collected
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using Cardio 2D software (MCS GmbH) with a sample frequency of 10 kHZ anda 0.1 — 3.5kHz
band-pass filter.

Fig. 1 Typical waveforms of the extracellular field potential signal generated by human

cardiomyocytes derived from human induced pluripotent stem cells cultured in 6-well MEA-chips.
2.4 Data analysis

In the mESC-CM beating arrest assay, the cardiotoxicity of model compounds was presented
as the percentage of wells containing beating cells compared to the solvent control condition
for which the response was set at 100%. The concentration-response curves for amiodarone,
sematilide, verapamil, digoxin and ouabain were obtained from our previous study (Nicolas et
al., 2015). Concentrations with a recovery less than 50% (1 uM verapamil, 1 uM nifedipine
and 600 pM ouabain, data not shown) were excluded from concentration-response curves
obtained from the mESC-CM beating arrest assay to minimize the risk that arrest was elicited
by general cytotoxicity instead of the reversible interaction with cardiac ion channels. Data

represent the mean of at least three independent experiments.

MEA data were analysed using Multiwell-Analyzer software Version 1.5.1.0 (MCS GmbH).
Only the electrodes showing a stable field potential trace (Fig. 2) were selected for analysis.
The following parameters were measured as the average of at least 30 beats from one-minute
recording of each concentration of the compounds (Fig. 2): sodium spike amplitude (defined as
the absolute amplitude of the depolarization peak), field potential duration (FPD, defined as the
duration between the beginning of the sodium spike and the repolarizing peak) and RR-interval
(the duration between two depolarization peaks). To correct the effect of beat rate on FPD, the
clinically used Fridericia 's formula was applied (Vandenberk et al., 2016), which is commonly

used in cardiotoxicity-related studies (Ando et al., 2017; Kitaguchi et al., 2017):
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FPD
FPDc = ¥RR interval (1)

In this formula the FPD and RR-interval were expressed in seconds. Beat per minute (BPM)

was derived from RR-intervals, being the duration between two depolarization peaks:

BPM = — 2 2)

RR interval

The RR-interval was expressed in seconds. Concentrations that induced arrhythmia-like
changes in the waveform and/or beating arrests were excluded from analysis of these
parameters since the FPD, RR-interval and sodium spike could not be determined (Kitaguchi
et al., 2016; Zwartsen et al., 2019). Data were collected from at least three independent
experiments (3-7 wells, 11-37 electrodes). Results are expressed as relative percentage
compared to the results obtained for the baseline control (0.1% DMSO). The response of
baseline control was set at 100%. The target ion channels or receptors and relevant endpoints

of the compounds are summarized in Table 1.

The benchmark dose (BMD) approach was applied on the in vitro concentration-response
curves obtained from both assays to derive the benchmark concentrations. A 10% change in the
readouts (beating arrest for mESC-CMs and electrical activity for hiPSC-CMs) was used as the
benchmark response to calculate the benchmark concentration (BMCio) for cardiotoxicity with
lower-upper 95% confidence interval. As the model compounds target different ion channels or
receptors, and thus cause different electrophysiological effects in the hiPSC-CM MEA assay,

BMC values were expressed in a mode-of-action specific way (see Results).

BMD analysis was performed using the European Food Safety Authority (EFSA) web-tool!
for BMD analysis based on the R-package PROAST version 66.40 developed by the Dutch
National Institute for Public Health and the Environment (RIVM). Model selection and model
fitting was performed according to the flow-chart described in the manual provided by EFSA!.
Briefly, the quantal data obtained from the mESC-CM beating arrest assay were fitted using the
available quantal models including (Log)-logistic, (Log)-probit, Weibull, Gamma, two-stage,
Exponential and Hill model. The continuous data from the hiPSC-CM MEA assay were fitted
to a set of models including Exponential, Hill, Inverse Exponential model and Log-Normal
Family. Analysis was performed according to the flow-chart described in the manual'. All fitted
models excluding FULL and NULL were used for model averaging described in Wheeler and

Bailer (2007) where a weighted average model was constructed to estimate model averaged

1 EFSA Statistical Models-BMD. [Online]. Available at: https://shiny-efsa.openanalytics.eu/app/bmd [Accessed August 1, 2019]
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confidence intervals using bootstrap sampling. Weighting was based the model’s Akaike's
Information Criterion (AIC) values where models with lower AIC values count larger weight.
The final BMC confidence intervals from model average were based on 200 bootstrap data sets.
The final BMCo values were obtained by averaging the model-specific BMC estimates by the
following equation as described by Buckland et al. (1997), Bailer et al. (2005) and Wheeler and
Bailer (2007):

BMC = ¥K_, BMCy * wy 3)

where BMC is estimated based on the accepted model k and i represents the corresponding
weight for the model k. Detailed information on the BMD analysis of in vitro data can be found

in the supplementary materials (Tab. S1-S17).

The concentration response curves obtained from both in vitro assays were plotted with
Graph Pad Prism 5.0 (GraphPad Software Inc., San Diego, USA). Each data point is presented
as the mean value + standard error of the mean (SEM). Statistical significance was analysed by
one-way ANOVA followed by post Dunnett test. Values of p < 0.05 were regarded as
statistically significant. Statistical analysis was performed by Graph Pad Prism 5.0 (GraphPad

Software Inc.).
2.5 Comparison of in vitro and in vivo human cardiotoxicity

To further evaluate the sensitivity of the hiPSC-CM MEA assay the in vitro response
concentrations were compared with reported internal effect concentrations related to human
clinical ECG data. For this, the in vitro BMCjo concentrations were compared with unbound
human plasma concentrations corresponding to 10% change on ECG (hECGio). In vivo human
data are especially available for the endpoint of the prolongation of the QT interval defined as
the prolonged duration between the beginning of ventricular repolarization (QRS complex) and
the end of depolarization (T wave) in the ECG, and the change of the QRS complex. Potassium
channel blockers increased the in vitro FPDc in the hiPSC-CM MEA assay which can be seen
as the surrogate for the QT interval in the ECG (Halbach et al, 2003; Zwartsen et al., 2019).
The effect of sodium channel blockers on the sodium spike amplitude in the hiPSC-CM MEA

assay was correlated to the change of the QRS complex in the human ECG.

Effective concentrations derived from the hiPSC-CM MEA assay are considered as unbound
concentrations due to usage of serum free medium in this assay (Harris et al., 2013). Human

ECG data were obtained from published literature (Tab. 1) where the concentration-response
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curves were extracted from graphs using GetData Graph Digitizer 2.267 to calculate the hECGq.

A zero-effect was included in the dataset, assuming a no effect at a zero compound
concentration in serum (in vivo). Obtained hECGj values were derived from the ECGs using
BMD analysis as described for the in vitro data for continuous data. Detailed information on
the BMD analysis of in vivo data can be found in the supplementary materials (Tab. S18-S25).
The unbound hECGio values were directly taken from literature when reported or were
calculated by multiplying hECGjo values with unbound fraction (fu). The fractions unbound

were taken from literature (see Tab. 1).
3. Results

3.1 Screening for cardiotoxic effects using the mESC-CM beating arrest

assay

Dofetilide, amiodarone and sematilide are class III antiarrthythmic agents which inhibit the
repaid delayed rectifying potassium current through the (human) Ether-a-go-go Related Gene
(ERG) potassium channel. Moxifloxacin is known as an antibiotic but blocks the (h)ERG
potassium channel as side effect. These four (h)ERG potassium channel blockers did not
significantly inhibit the beating of mESC-CMs within the tested concentration ranges (data are
shown in Fig. SIA-D in the supplementary data). Figure 2A-B show that the sodium channel
blockers, mexiletine and flecainide inhibited the beating of the mESC-CMs in a concentration-
dependent manner and induced maximum inhibition at 1,000 uM and 300 uM, respectively.
This resulted in a BMCig value of 85.4 uM for mexiletine and 13.4 uM for flecainide (Tab. 1).
The calcium channel blockers verapamil and nifedipine significantly inhibited the beating of
mESC-CMs from 0.1 uM and 0.01 pM onwards (Fig. 2C-D). The BMCio value derived from
the mESC-CM beating arrest assay for verapamil was 68.9 nM while nifedipine was more
potent with a BMCjo 0of 5.9 nM (Tab. 1). Digoxin and ouabain are cardiac glycosides that disturb
the intracellular Na* and K* ion balance by inhibiting the Na*/K* ATPase on the membrane of
cardiomyocytes (Guo et al., 2013). As depicted in Figure 2E, no inhibitory effect of digoxin on
mESC-CMs was found within the tested concentration range. However, ouabain significantly
inhibited the beating of mESC-CMs from 200 uM with a BMCjo of 170.5 uM (Fig. 2F, Tab.1).

The B-adrenergic receptor agonist isoproterenol that is used as an antiarrhythmic drug. Figure

2 Available at: http://getdata-graph-digitizer.com [Accessed May 30, 2019]
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2G shows that isoproterenol inhibited the beating of cardiomyocytes in a concentration-

dependent manner with a BMCio of 2.3 nM.
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Fig. 2 Concentration-response curves for cardiotoxicity in mESC-CMs of the sodium channel
blockers mexiletine (A) and flecainide (B), the calcium channel blockers verapamil (C) and
nifedipine (D), the Na*/K* ATPase inhibitors digoxin (E) and ouabain (F), and the B-adrenergic
receptor agonist isoproterenol (G). The response of the solvent control (DMSO) was set at 100%.
mESC-CMs data represent the mean of at least three independent experiments. Each data point
represents the mean + SEM. Statistically significant changes compared to the solvent control are marked

with * with p <0.05: *, p <0.01: ** and p < 0.001: ***,
3.2 Screening for cardiotoxic effects using the hiPSC-CM MEA assay

The (h)ERG potassium channel blockers dofetilide, amiodarone, sematilide and moxifloxacin
significantly prolonged the FPDc in a concentration-dependent manner and induced 10%
prolongation of the FPDc (FPDci¢) at 0.86 nM, 1.6 uM, 0.69 pM and 6.5 pM, respectively (Fig
3A-D, Tab. 1). The results presented in Table 1 also reveal that both arrhythmia-like waveforms
and the cessation of beating were observed upon treatment of the hiPSC-CM with dofetilide (at
3 nM and 10 nM, respectively) and sematilide (at 1 uM and 3 pM, respectively). Amiodarone
caused beating arrest at the highest test concentration of 30 uM without inducing arrhythmia-
like waveforms, while moxifloxacin induced arrhythmia-like waveforms from 30 pM onwards

but did not induce beating cessation within the tested concentration range (Tab. 1).

Two sodium channel blockers mexiletine and flecainide induced a 10% reduction of the
amplitude (AMP1o) at 0.89 uM for mexiletine and 0.12 uM for flecainide (Fig. 3E-F, Tab. 1).
Neither mexiletine nor flecainide induced arrhythmia-like waveforms within the tested
concentration ranges while the cessation of beating was observed in most wells at the highest

concentrations of mexiletine and flecainide (Tab.1).

For calcium channel blockers, verapamil and nifedipine shortened the FPDc in a
concentration-dependent manner (Fig. 3G-H). A 10% shortening the FPDc (-FPDcig) was
observed at a concentration of 4.4 nM for verapamil, and of 13.4 nM for nifedipine (Tab. 1).
Verapamil did not induce arrhythmia-like waveforms up to 3 pM where complete cessation
occurred (Tab. 1). In contrast, nifedipine was not associated with the arrhythmia or beating

arrest within the tested concentration range (up to 3 uM).

Figure 31 and J show that the Na*/K* ATPase inhibitors digoxin and ouabain significantly
shortened the FPDc in the hiPSC-CM MEA assay with the maximum reduction occurring at
comparable concentrations of 1 uM and 0.3 uM, respectively. Arrhythmia-like waveforms were

not observed during the exposure of digoxin and ouabain while complete beating cessation
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occurred at the highest tested concentrations of both compounds (Tab. 1). The FPDc1o was 0.24
uM for digoxin and 0.14 pM for ouabain (Tab. 1).

The antiarrhythmic drug isoproterenol increased the beating rate in a concentration-
dependent manner with the concentration causing 10% increase in beating rate (BRio)
amounting to 5.0 nM (Fig. 3K and Tab. 1). No arrhythmia-like waveforms or beating arrest of
hiPSC-CMs was observed up to the highest isoproterenol concentration tested (30 LM).
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Fig. 3 Concentration-response curves for cardiotoxicity in hiPSC-CMs of the (h)ERG potassium
channel blockers dofetilide (A), amiodarone (B), sematilide (C), and moxifloxacin (D), the sodium
channel blockers mexiletine (E), and flecainide (F), the calcium channel blockers verapamil (G)
and nifedipine (H), the Na*/K" ATPase inhibitors digoxin (I) and ouabain (J), and the B-adrenergic
receptor agonist isoproterenol (K). The response of the solvent control (DMSO) was set at 100%.
hiPSC-CMs data represent the mean of at least three independent experiments with minimum of eleven
electrodes. Each data point represents the mean + SEM (3 uM flecainide is an exception as hiPSC-CMs
stopped beating with the exposure of 3 uM flecainide and detectable Na spike amplitude was obtained
from 1 out of 7 wells). Statistically significant changes compared to the solvent control are marked with

* with p < 0.05: *, p<0.01: ** and p < 0.001: ***,
3.3 Comparison of in vitro and in vivo human cardiotoxicity

Based on the obtained results, the hiPSC-CM MEA assay shows a higher sensitivity and broader
compound coverage than the mESC-CM beating arrest assay. Therefore, we next evaluated
whether the hiPSC-CM MEA assay provides adequate data to predict human in vivo responses,
by comparing the in vitro FPDcio and AMPo values for the compounds that induced
concentration-dependent changes in these parameters in the hiPSC-CMs, with the unbound
hECGio derived from the related change of waveforms in the ECG from clinical studies (Fig.

4). All available human ECG data are reported in the supplementary file (Tab. S26).

Table 1 and Figure 4 illustrate the comparison for the four (h)ERG potassium channel
blockers between their in vitro FPDc1o values and the in vivo unbound hECjo values, being the
unbound plasma concentrations that would prolong the QTc interval by 10%. The FPDcio of
dofetilide derived from the MEA assay was comparable with its reported unbound hECGio
showing 1.5- to 2.2-fold differences and the FPDcio of sematilide was 5-fold lower than the
hECGio value derived from the in vivo data (Tab. 1). For moxifloxacin, the unbound hECGio
(31.9 uM) was 5-fold higher than its FPDcio (Tab. 1), also indicating limited in vitro-in vivo
differences. In contrast, the in vitro data for amiodarone were far out of range, resulting in an
FPDcio value (1.6 uM) that was five orders of magnitude higher than the unbound hECGio
(0.033 nM).

The in vitro-in vivo comparison for the sodium channel blockers mexiletine and flecainide
is also shown in Figure 4 and Table 1. The comparison reveals that the AMP1o values obtained
in the hiPSC-CM MEA assay were comparable to the unbound hECGo of mexiletine (1.6 uM)
(1.8-fold difference) and the range of the unbound hECGo values reported for flecainide (0.22
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-0.36 uM) derived from the clinical studies (1.8- to 3- fold difference), indicating an adequate

match between in vitro and in vivo human effect concentrations.

For the calcium channel blockers verapamil and nifedipine, the Na*/K* ATPase inhibitors
digoxin and ouabain and the adrenergic receptor antagonist isoproterenol, no adequate human

data were available for a comparison between the in vitro data and the in vivo situation.
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Evaluation of two stem cell models to screen cardiotoxicity

4. Discussion

The present study aimed to evaluate use of the mESC-CM beating arrest assay and of the
hiPSC-CM MEA assay to screen for the potential cardiotoxicity of chemicals. To evaluate
these two models, the effects of eleven model compounds were quantified in both in vitro
assays. The in vitro effect concentrations of the hiPSC-CM MEA assay were compared with
reported internal effect concentrations related to human clinical ECG data. Based on the
obtained results it was concluded that the hiPSC-CM MEA assay is the most versatile assay as
it is responsive to all evaluated compounds with a higher sensitivity for (h)ERG potassium and
sodium channel blockers and Na*/K* ATPase inhibitors, with the mESC-CM beating arrest
assay being not responsive to (h)ERG potassium channel blockers and to one of the Na*/K*
ATPase inhibitors. Furthermore, two calcium channel blockers and isoproterenol showed
comparable potencies in the two assays. The in vitro effective concentrations obtained from
the hiPSC-CM MEA assay correlated well with available in vivo effective concentrations

related to human ECG data for (h)ERG potassium and sodium channel blockers.

Given that mESC-CMs are easy to obtain without ethical problems and the mESC-CM
beating arrest assay is cost-friendly and easy, requiring less operator skills, the use of the
mESC-CM beating arrest assay could be considered as a good first-choice candidate for
cardiotoxicity screening. However, from the results obtained in the mESC-CMs, none of the
(h)ERG potassium channel blockers induced beating cessation of mESC-CMs within the tested
concentration ranges. Corroborating this, similar results (no inhibitory effect) have been found
in other studies in which dofetilide and E4031, a typical (h)ERG potassium channel blocker,
were both unable to induce the cessation of beating in mESC-CMs (Jonsson et al., 2011; Abassi
et al., 2012; Himmel, 2013). No literature data are available on the sodium channel blockers
mexiletine and flecainide on mESC-CMs to benchmark our observations. Thus, no comparison
could be made. The sodium channel blocker diphenhydramine was reported to induce cessation
of beating in mESC-CMs (Nicolas et al., 2015), which is in line with our results showing that
sodium channel blockers are active in the mESC-CM beating arrest assay. The calcium channel
blockers verapamil and nifedipine showed concentration-dependent inhibition of beating,
which corroborates results from the study of Himmel (2013) where both compounds induced
beating cessation. Digoxin did not induce a response in the mESC-CMs while ouabain inhibited
the beating of mESC-CMs at relatively high concentrations (> 100 uM), which is in line with
the study of Himmel (2013) where ouabain failed to induce beating arrest in mESC-CMs at
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concentration from 0.03 to 3 puM. Isoproterenol was used as a model compound for B-
adrenergic receptor agonists and regulates the cardiac pacemaker action potentials by
activating hyperpolarization activated pacemaker channels, further resulting in an increased
beating rate (Bers, 2002; Nozaki et al., 2017). An inhibitory effect of isoproterenol on mESC-
CMs was noted in the present study from the concentration of 1 nM and higher. However,
Ikeuchi et al. (2015) did not observe the beating cessation in mESC-CMs up to 1 pM. A
possible reason for the inconsistency between the studies could be related to the various types
of cardiac cells in embryonic bodies, resulting in different expression patterns of
hyperpolarization activated pacemaker channels. It is reported that these channels are highly
expressed in the sinoatrial node cells but low in normal atrial and ventricular cardiomyocytes

(Baruscotti et al., 2010; Sartiani et al., 2011).

The hiPSC-CM MEA assay provides insight into the real-time electrophysiological
response of compounds in hiPSC-CMs (Li et al., 2016). Clearly it is a sensitive and frequently
used platform that allows a detection of cardiotoxicity (see supplementary Tab S27; Harris et
al., 2013; Nozaki et al., 2016; Nozaki et al., 2017; Kitaguchi et al., 2017; Ando et al., 2017).
Most studies have focused on the compounds that target the (h)ERG potassium channels and
the current study provides a more comprehensive evaluation of compounds that target other
main ion channels and receptors. Our MEA data indicate that all model compounds induced
concentration-dependent effects on hiPSC-CMs with the BMCio values being in accordance
with published MEA data showing 1.2- to 5.7-fold differences. In addition, we report
concentrations that induce arrhythmia-like waveforms and beating cessation in the same range
as obtained from the literature with a maximum 3-fold difference (see references in Tab. S27).
Such differences are within the range of inter-laboratory variability of 1.8- to 20-fold reported
by Kitaguchi et al. (2016), Nozaki et al. (2016) and Tamargo et al. (2004).

Both the mESC-CM beating arrest assay and the hiPSC-CM MEA assay can be considered
to be functional models to detect cardiotoxicity. However, differences in sensitivity are
observed between the two models. The mESC-CM beating arrest assay was not responsive to
(h)ERG potassium channel blockers and the Na*/K* ATPase inhibitor digoxin. The hiPSC-CM
MEA assay appeared able to detect the effects of all model compounds. Compared with BMCio
values from the mESC-CMs, the BMC obtained from hiPSC-CMs were almost two orders of
magnitude lower for the sodium channel blockers and three orders of magnitude lower for the
Na“/K* ATPase inhibitor ouabain. Two calcium channel blockers and isoproterenol showed

comparable potencies in the two assays.
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Given the differences obtained between the two assays it is of interest to consider that there
are several factors that could explain the distinct sensitivity of the mESC-CM beating arrest
assay and the hiPSC-CM MEA assay. Although hiPSC-CMs and mESC-CMs express the
typical cardiac channels, the expression level and function of these channels are known to be
species dependent (Maltsev et al., 1994; Nerbonne, 2004; Jonsson et al., 2011). In the case of
potassium channels, the repaid and slow delayed rectifier potassium currents are two
predominant currents involved in action potential repolarization in human ventricular
cardiomyocytes (Li et al., 1996), while in mouse cardiomyocytes the other three subtypes of
delayed rectifier currents (the fast activating and slowly inactivating and steady state current)
mainly regulate the repolarization (Xu et al., 1999; Zhou et al., 2003). Thus, all tested (h)ERG
potassium channel blockers are only partly involved in the repolarization of the action potential
in mouse cardiomyocytes, providing a possible explanation for the lower sensitivity of mESC-
CMs towards the cardiotoxicity of compounds acing as potassium channel blockers.
Furthermore, the maturity of ion channels may also contribute to the differences in sensitivity
between the two assays. It has been shown that sodium channels are well-developed at
intermediate stage of post-differentiation (15 days after culturing) (Maltsev et al., 1994). While
the exposure was performed earlier in our experiments (on day 11), which may have added to

the lower sensitivity because of potentially sodium channels present in the mESC-CMs.

In addition, the differentiation level of stem cells appears to be different in the two in vitro
models. The hiPSC-CMs protocol results in high purity ventricular cardiomyocytes while a
combination of diverse cell types with less than 5% cardiomyocytes are present in the mESC-
CMs (Kolossov et al., 2005). This can explain the less extended applicability domain of the
mESC-CM beating arrest assay compared to the hiPSC-CM MEA assay. Such variation in the
type of cells present upon differentiation of the stem cells could influence the diffusion of
compounds to their targets in the cell models as compounds were supposed to have a better
diffusion in the monolayer of hiPSC-CMs (Harris et al., 2013), which may result in an apparent
lower sensitivity of the mESC-CM beating arrest assay. To add, the lower sensitivity of the
mESC-CM beating arrest assay may be in part related to the serum that is present in the
exposure medium of the mESC-CMs but not in the hiPSC-CMs medium, potentially reducing
the fraction unbound of test compounds. However, given the f, values for binding of test
compounds to serum protein (Tab. 1) this could not fully explain the orders of magnitude
difference in sensitivity observed. Lastly, the differences in sensitivity could be due to the

endpoint that is used in the mESC-CMs. Beating arrest can be regarded as a late cardiac event
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that follows the initial early markers of cardiotoxicity detected by the MEA-related endpoints.
For mESC-CMs inactive compounds, including the (h)ERG potassium channel blockers and
Na'/K* ATPase inhibitors, alteration of contraction frequency might reflect their potential
effects better than beating cessation (Himmel, 2013; Ikeuchi et al., 2015). However, scoring
contraction frequency instead of beating arrest as endpoint studied will clearly make the assay
labour intensive, thereby removing one of its advantages as a simple and cheap assay.
Considering the sensitivity and practical characteriscs, both in vitro models can be used for
screening cardiotoxicity. The mESC-CM beating arrest assay could be used as a first step in a
tiered approach as a first screen for cardiotoxicity. Negative responding chemicals can be
further evaluated in the hiPSC-CM MEA assay as a second tier to exclude cardiotoxicity for
humans. Furthermore, positive chemicals in the mESC-CM beating arrest assay, can be further

tested in the hiPSC-CM MEA assay to provide relevant human mechanistic data.

Finally, the hiPSC-CM MEA assay showed a high sensitivity to the effects of the chemicals.
Therefore, the obtained effective concentrations were compared to internal effect
concentrations related to human clinical ECG data. Given that mice show differences in the
response doses, duration and certain morphology features of action potentials compared to
humans (Danik et al., 2002; Edvardsson et al., 1984; Huang, 2016; Kaese and Verheule, 2012),
such a direct comparison was not made for the murine data. Both the in vitro FPDcio and
AMP¢ values derived from the hiPSC-CM MEA assay matched well with the corresponding
unbound hECGio values derived from human ECG data. Remarkably, the hECGio of
amiodarone was five orders of magnitude lower than the in vitro FPDcio. The extent to what
this discrepancy is related to its high lipophilicity that results in high levels of protein binding
in different matrices with f, values amounting to values as low as 0.0002 (Redfern et al., 2003;
Ando et al., 2017), as well as other reasons underlying the discrepancy between the in vitro
and in vivo situation for amiodarone remain open for further studies. Combining the in vitro
cardiotoxicity data with so-called physiologically based kinetic modelling will facilitate

incorporation of such factors in making ultimate QIVIVE based predictions.

The present study evaluated the sensitivity of mouse (mESC-CMs) and human (hiPSC-CMs)
stem cell-derived in vitro models to screen for the potential cardiotoxicity of chemicals. The
hiPSC-CM MEA assay showed a higher sensitivity for (h)ERG channel potassium and sodium
channel blockers and Na*/K* ATPase inhibitors while the mESC-CM beating arrest assay
appeared to be not responsive to (h)ERG potassium channel blockers and the Na*/K* ATPase

inhibitor digoxin. The two models showed comparable sensitivity to calcium channel blockers
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and a B-adrenergic receptor agonist. Comparison of in vitro responses with available human
clinical data revealed that effect concentrations obtained in the hiPSC-CM MEA assay were
highly concordant with reported human in vivo effective concentrations of potassium and
sodium channel blockers. In conclusion, both in vitro models can be considered as functional
models to detect cardiotoxicity with different applicability domains. Given its ease of handling
the mESC-CM beating arrest assay may be used as a first step in a tiered approach to screen
the cardiotoxicity. While negative compounds could be further tested in the hiPSC-CM MEA
assay as a second tier to quantify the cardiotoxicity of compounds and reflect human in vivo

cardiotoxicity.
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Abstract

Development of novel testing strategies to detect adverse human health effects is of interest to
replace in vivo based drug and chemical safety testing. The aim of the present study was to
investigate whether physiologically based kinetic (PBK) modelling-facilitated conversion of
in vitro toxicity data is an adequate approach to predict in vivo cardiotoxicity in humans. In
order to enable evaluation of predictions made, methadone was selected as the model
compound, being a compound for which data on both kinetics and cardiotoxicity in humans
are available. A PBK model for methadone in humans was developed and evaluated against
available kinetic data presenting an adequate match. Use of the developed PBK model to
convert concentration-response curves for the effect of methadone on human induced
pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) in the so-called multi-electrode
array (MEA) assay, resulted in predictions for in vivo dose-response curves for methadone
induced cardiotoxicity that matched the available in vivo data. The results also revealed
differences in protein plasma binding of methadone to be a potential factor underlying variation
between individuals with respect to sensitivity towards the cardiotoxic effects of methadone.
The present study provides a proof-of-principle of using PBK modelling-based reverse
dosimetry of in vitro data for the prediction of cardiotoxicity in humans, providing a novel

testing strategy in cardiac safety studies.
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1. Introduction

Traditional approaches for the risk and safety assessment of compounds rely heavily on toxicity
data derived from laboratory animals, which are gradually being recognized as inappropriate
models for the prediction of human health effects due to toxicodynamic and toxicokinetic
differences between animals and human (Ewart et al. 2014; Pang et al. 2019). This
consideration as well as the fact that animal-based testing strategies are cost and labour
intensive, while also increasingly considered unethical, has stimulated the development of
novel testing strategies, leading to a paradigm shift in toxicity testing (Judson et al. 2014).
Novel testing strategies generally apply in vitro assays and take into account insight in the
modes of action underlying the toxicity (Bernauer et al. 2005). However, in vitro assays
provide hazard information and concentration-response curves that require translation to
corresponding human dose-response curves, taking into account human toxicokinetics, to
enable their use in human risk and safety assessment of compounds (Bell et al. 2018; Blaauboer

2010).

Over the last decade several proof-of-principle studies indicated that combining in vitro
toxicity assays with physiologically based kinetic (PBK) modelling, which describes the
absorption, distribution, metabolism and excretion (ADME) of a compound in a defined
species, can adequately predict in vivo dose-response curves (Louisse et al. 2017; Rietjens et
al. 2011). For example, quantitative in vitro to in vivo extrapolation (QIVIVE) using PBK
modelling-based reverse dosimetry was shown to adequately predict the in vivo toxicity for
different endpoints, including developmental toxicity (Li et al. 2017; Louisse et al. 2010;
Strikwold et al. 2013, 2017), liver toxicity (Ning et al. 2017), nephrotoxicity (Abdullah et al.
2016) and neurotoxicity (Zhao et al. 2019). To further explore the potential applicability of this
in vitro-in silico approach, the aim of the present study was to investigate whether the PBK
modelling-based reverse dosimetry can be extended to predict in vivo cardiotoxicity in human

thereby providing a novel testing strategy for cardiac safety testing.

Cardiotoxicity is an important endpoint in pharmaceutical safety testing and has been a
leading cause of drug attrition in preclinical drug development (Pang et al. 2019; Stevens and
Baker 2009). In addition, cardiotoxicity is also a relevant endpoint in food safety, given that
many food-borne alkaloids from botanicals and botanical preparations, including for example
synephrine from bitter orange (Citrus aurantium) and nuciferine from lotus (Nelumbo nucifera),

raise a concern with respect to potential cardiotoxicity (Kratz et al. 2017). Potential
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cardiotoxicity includes functional and structural disruption of the cardiovascular system by
interfering with ion channels, intracellular organelles and cellular signalling pathways
(Clements et al. 2015; Pang et al. 2019). Particularly cardiac electrophysiological alterations
such as delayed ventricular repolarization are endpoints of interest for cardiac safety
assessment. Delayed ventricular repolarization can result in a prolonged QTc interval (time
from ventricular depolarization and repolarization corrected for heart rate) in the
electrocardiogram (ECG) which is associated with increased risk of arrhythmia including
polymorphic ventricular tachyarrhythmia (torsade de pointes, TdP) (Ewart et al. 2012; Harris
et al. 2013; Kannankeril et al. 2010; Redfern et al. 2003; Wakefield et al. 2002). Current
regulatory guidelines to evaluate in vitro electrophysiological cardiotoxicity are based on ion
channel inhibition assays using cell lines transfected with specific ion channels, including
especially human ether-a-go-go-related gene (hERG) channels which play a critical role in
cardiac repolarization (ICH 2005a; Martin et al. 2004; Zwartsen et al. 2019). However, such
an approach focussing on a single type of ion channel fails to address effects induced on other
channels (Mirams et al. 2011; Rehnelt et al. 2017). Recently, human induced pluripotent stem
cell-derived cardiomyocytes (hiPSC-CMs) have been reported to provide a physiological
relevant in vitro model for human cardiotoxicity testing. These hiPSC-CMs express major
cardiac ion channels and show typical electrophysiological responses upon the exposure to
compounds (Garg et al. 2018; Ma et al. 2011). In the present study hiPSC-CMs were applied
in combination with the multi-electrode array (MEA) technique measuring the extracellular
field potential of electrically active cardiomyocytes, which is considered a promising tool to
assess electrophysiological alteration and arrhythmias (Ando et al. 2017; Harris et al. 2013;
Kitaguchi et al. 2017; Li et al. 2016). The parameters obtained from extracellular field potential
waveforms are considered to resemble the parameters observed in the human ECG (Zwartsen
et al. 2019), which allows use of the hiPSC-CM MEA assay as an adequate in vitro model for
QIVIVE.

The model compound selected for the present study was methadone (Fig. 1). Methadone is
a synthetic drug for the treatment of opioid dependence and chronic pain. Methadone is
metabolized by cytochromes P450 (CYP) mainly in the liver (Eap et al. 2002; Nilsson et al.
1982). The primary metabolite, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), is
formed via N-demethylation and cyclisation, and a subsequent N-demethylation leads to the
secondary metabolite, 2-ethyl-5-methyl-3,3-diphenylpyrroline (EMDP) (Fig. 1). Methadone

has been reported to cause cardiotoxic side effects in human clinical studies in which prolonged
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QTc interval and TdP have been observed in subjects receiving methadone maintenance
treatment (Alinejad et al. 2015; Eap et al. 2002; Justo et al. 2006). Several in vitro studies using
electrophysiological-based patch clamp demonstrated an association between the
cardiotoxicity of methadone and the inhibition of hERG channels (Eap et al. 2007; Kuryshev
et al. 2010).

In the present study, the in vitro concentration-dependent cardiotoxicity of methadone and
its metabolites EDDP and EMDP was quantified in hiPSC-CM using the MEA technique.
Additionally, a PBK model for methadone kinetics in human was developed by integrating
data from literature as well as experimentally obtained metabolic parameters. This PBK model
was subsequently used to translate the in vitro toxicity data to predict in vivo cardiotoxicity in
human. The data thus obtained were compared to available data on the effect of methadone on

cardiac parameters in subjects that received methadone maintenance treatment.

Fig. 1 Metabolic conversion of methadone to 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine
(EDDP), and 2-ethyl-5-methyl-3,3-diphenylpyrroline (EMDP) by cytochromes P450 (CYP450)

2. Materials and methods

2.1 Chemical and biological materials

Methadone hydrochloride (=98%), EDDP perchlorate (=98%), EMDP hydrochloride solution
(1.0 mg/ml), Tris (hydroxymethyl) aminomethane (Trizma® base), ammonium formate and
fibronectin were purchased from Sigma-Aldrich (Zwijndrecht, The Netherlands). Methadone
and metabolites were ordered under the opium exemption license number 104783 03 WCO,
which is registered at Farmatec (executive organization of the Ministry of Health, Welfare and
Sport, The Hague, The Netherlands). Dimethyl sulfoxide (DMSO, 99.7%) was obtained from
Merck (Schiphol-Rijk, The Netherlands). Phosphate buffered saline (PBS) was purchased from
Gibco (Paisley, Scotland, UK). Acetonitrile (UPLC/MS grade) was obtained from Biosolve
BV (Valkenswaard, The Netherlands). hiPSC-CM (Pluricyte® Cardiomyocytes, cat# PCMI-
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1031-1, lot# 60151) and Pluricyte® Cardiomyocyte Medium were obtained from Ncardia
(Leiden, The Netherlands). Pooled human liver microsomes (from 150 donors), pooled human
intestinal microsomes (from 7 donors) and reduced nicotinamide adenine dinucleotide
phosphate (NADPH) regenerating system solution A and solution B were purchased from
Corning (Woburn, MA, USA). Pooled human plasma and rapid equilibrium dialysis (RED)
materials, including RED inserts, RED base plates and sealing tape were obtained from Thermo

Fisher Scientific (Bleiswijk, The Netherlands).

2.2  General outline of the PBK modelling-based reverse dosimetry

approach

The PBK modelling-based reverse dosimetry approach to predict the in vivo dose-response
curves from in vitro cardiotoxicity concentration-response data included the following steps:
(1) establishment of the in vitro concentration-response curves for methadone and its
metabolites EDDP and EMDP in hiPSC-CM using the MEA, (2) development of a PBK model
for methadone and its metabolites in human using metabolic parameters obtained from in vitro
incubations with pooled human liver microsomes, and parameters derived from in silico
simulations and the literature, (3) evaluation of the PBK model, (4) translation of in vitro
concentration-response curves to the in vivo dose-response curves using the PBK model, and
(5) evaluation of the PBK modelling-based reverse dosimetry approach by comparing
predicted dose-response data to data obtained from literature on the effect of methadone on

cardiac parameters in subjects receiving methadone maintenance treatment.

2.3 In vitro cardiotoxicity of methadone and metabolites in hiPSC-CM
using the MEA

The MEA system of Multi Channel System (MCS GmbH, Ruetlingen, Germany) combined
with Pluricyte® Cardiomyocytes was used to detect the cardiotoxicity of methadone, and the
metabolites EDDP and EMDP. The Pluricyte® Cardiomyocytes were thawed and seeded on
the 6-well MEA chips (60-6well MEA200/30iR-Ti-tcr, MCS GmbH) according to the
manufacturer’s protocol. Briefly, each well of the MEA chips was precoated with 50 pg/ml
fibronectin for 3 hours in the incubator at 37 °C with 5% CO:. The fibronectin coating solution
was aspirated before seeding. Cells were thawed in the incubator at 37 °C for exactly 4 min
and carefully transferred to a 50 ml tube. The original vial was rinsed with serum free
Pluricyte® Cardiomyocyte Medium and added drop-wise to the tube containing the

cardiomyocytes. Subsequently cell counting was manually performed by using 20 pl of
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obtained homogenous cell suspension in a Buerker-Tuerk Counting Chamber (Marienfeld
Superior GmbH & Co. KG, Lauda-Konigshofen, Germany) and at the same time the remaining
cells were centrifuged at 300g for 3 min. Then the supernatant was removed and medium was
drop-wisely added to reach the aimed concentration of cells in the suspension (10* cells/ul). 2
ul cell suspension per well was placed on the 6-well MEA chips in a density of 10* cells/ul.
After 3 hours incubation (37 °C, 5% COz), 200 pul of medium was filled into each well of the
MEA chips which were subsequently incubated at 37 °C with 5% CO; and refreshed with

medium every 2 days.

At 7-8 days after seeding, MEA chips were placed on the headstage of a MEA2100-system
(MCS GmbH) integrated with the chamber providing a stable atmosphere (37 °C, 5% CO») to
record the extracellular field potential (Fig. 2) of spontaneous beating hiPSC-CM. After an
equilibration time of 20 min, half of the medium (100 pl) in each well was replaced by culture
medium containing 0.2% (v/v) DMSO to reach a final concentration of 0.1% (v/v) DMSO,
which was used as baseline condition. Subsequently the model compounds were tested in
separate wells, and each test compound was cumulatively added to the well with increasing
concentrations in the same way (Harris et al., 2013; Nozaki et al., 2017; Ando et al., 2017). At
each concentration, the extracellular field potential was recorded for 1 min after 10 min
exposure. Stock solutions of model compounds were prepared in DMSO and further diluted in
Pluricyte® Cardiomyocyte Medium to make exposure medium with the final concentration of
0.1% (v/v) DMSO. The following concentrations were tested, 0.01, 0.03, 0.1, 0.2, 0.3, 0.4, 1,
3, 10, 30 uM (methadone), 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30 uM (EDDP) and 0.1, 0.3, 1, 3, 10,
30 uM (EMDP), at which no cytotoxicity was observed (data not shown). The test
concentrations of methadone were based on reported human methadone plasma concentrations
that were observed after oral methadone treatment. Same test concentrations were chosen for
EDDP and EMDP, which enables definition of concentration-dependent curves for EDDP and
EMDP that allow potency comparison.

One well of 0.1% (v/v) DMSO on each MEA chip was used as the vehicle control well and
run at the same time as the compound exposure wells to correct for time- and DMSO-dependent
effects on the field potential. A detailed exposure scheme can be found in Fig. S1. Data were
collected using Cardio 2D software (MCS GmbH) with a sample frequency of 10 kHz and a
0.1 — 3.5kHz band-pass filter.
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Fig. 2 Typical extracellular field potential waveform consisting of a rapid upstroke corresponding
to depolarization, a slow wave/plateau and a repolarization peak. Signals were generated under the
baseline condition (0.1% (v/v) DMSO) in Pluricyte cardiomyocytes cultured in 6-well MEA-chips
measured by the MEA2100-System platform of MCS

After exposure, MEA data generated from the electrodes showing stable baseline field
potential with clearly visible depolarization (peak amplitude > 200 puV) and repolarization
peaks (peak amplitude > 20 pV) (Ando et al. 2017; Sala et al. 2017) were selected for further
analysis using Multiwell-Analyzer software Version 1.5.1.0 (MCS GmbH). Field potential
duration (FPD) was defined as duration between the beginning of the sodium spike and the
repolarizing peak (Fig. 2). RR-intervals were defined as the duration between two
depolarization peaks (Fig. 2). The FPD and RR-interval were measured as the average of at
least 30 beats from one-min recording at each concentration of the test compound. In addition,
the Fridericia formula (equation 1) was applied to correct for the effect of beat rate on FPD
(Vandenberk et al. 2016) as widely used in other MEA studies (Ando et al. 2017; Kitaguchi et
al. 2017):

. FPD
FPDe= 3\/RR interval - M

In this formula the FPD and RR-interval are expressed in seconds. Data were collected from
at least three independent experiments (4-8 wells, 26-38 electrodes), using a new vial of cells
(all from the same batch) at each independent experiment. In vitro cardiotoxic effects are
expressed as relative percentage of FPDc compared to the FPDc results obtained for the
baseline condition (0.1% (v/v) DMSO) and further corrected for the time- and DMSO-
dependent effects by subtracting the response of 0.1% (v/v) DMSO obtained from the
corresponding time-matched vehicle control well. The concentrations inducing irregularities in
the field potential trace (Fig. S2) were also noted. Such irregularities included arrhythmia-type

changes in the waveform, a flattened unclear second peak and/or beating arrest (Asakura et al.
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2015; Kitaguchi et al. 2017; Nakamura et al. 2014; Zwartsen et al. 2019). Concentrations
inducing these irregularities were excluded from the FPD analysis since the FPD and RR-

interval could not be determined.

Effective concentrations expressed as the FPDc (% to the baseline control) were determined
by using the benchmark dose (BMD) approach which was performed as described in the section
on “Evaluation of the PBK modelling-based reverse dosimetry approach”. The concentration-
response curves were plotted with GraphPad Prism 5.0 using the four-parameters logistic fit
(GraphPad Software Inc., San Diego, USA). Each data point is presented as the mean value of
at least three independent experiments + standard deviation (SD). Statistical significance of the
changes in response of cells exposed to the compound compared to the solvent control was
analyzed by one-way ANOVA followed by post Dunnett test. Values of p <0.05 were regarded
as statistically significant (p < 0.05: *, p < 0.01: ** and p < 0.001: ***), Statistical analysis
was performed by GraphPad Prism 5.0 (GraphPad Software Inc.).

2.4 In vitro microsomal incubations

In vitro incubations were performed to obtain the kinetic parameters for the conversion of
methadone by human liver microsomes. To this end, incubation conditions were optimized to
obtain linear reaction rates with respect to microsomal protein levels (0.1-2 mg/ml protein) and
incubation time (1-120 min) at 50 uM methadone. The final incubation mixtures (final volume
of 160 pl) consisted of 0.1 M Tris-HCI (pH 7.4-7.5), NADPH regeneration system (final
concentrations 1.3 mM NADP", 3.3 mM glucose-6-phosphate, 0.4 U/ml glucose-6-phosphate
dehydrogenase and 3.3 mM magnesium chloride) and methadone at eight final concentrations
ranging from 10 to 1500 puM diluted from a 100 mM stock solution in water. The test
concentrations were chosen to enable adequate analysis of Michaelis-Menten kinetics. After
one-min pre-incubation of this solution at 37 °C, the reactions were initiated by addition of
human liver microsomes giving a final concentration of 0.5 mg/ml microsomal protein and
incubations were performed in a shaking water bath at 37 °C for 40 min. Control incubations
were performed in the absence of NADPH which was replaced with Tris-HCI. The reactions
were terminated by addition of 40 pl ice-cold acetonitrile. Samples were kept on ice for at least
20 min and then centrifuged at 18,000g for 5 min at 4 °C to precipitate microsomal proteins.
The supernatant was collected for the quantification of EDDP formation, which was analyzed
by Ultra Performance Liquid Chromatography PhotoDiode Array (UPLC-PDA, Waters) as
described in the “Quantification of methadone and its metabolites by UPLC-PDA analysis”

section.
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The formation of the secondary metabolite EMDP from EDDP was investigated by
incubating 1000 uM EDDP under the same conditions as described above for the microsomal
methadone incubations. The kinetic parameters for the conversion of methadone by intestinal
microsomes were determined under the same conditions as the incubations with liver
microsomes after the incubation conditions were optimized with respect to microsomal protein

levels (0.1-2 mg/ml protein) and incubation time (1-120 min) at 50 pM methadone.

The apparent maximum velocity (Vmax) and the apparent Michaelis-Menten constant (Km)
describing the conversion of methadone to EDDP were determined using the Michaelis-

Menten equation (2):

. Vmax X [S]

Knt[S] @

Where [S] is the substrate concentration (uM) and v is the rate of EDDP formation
(nmol/min/mg protein). Vmax and Kn were obtained by fitting the data to equation (2) in
GraphPad Prism 5.0 (GraphPad Software Inc.). Data were collected from 3 independent

experiments and each data point is presented as the mean value + SD.

2.5 Determination of unbound fraction of methadone and EDDP in in

vitro hiPSC-CM MEA assay medium and in human plasma

The rapid equilibrium dialysis (RED) assay was performed to determine the unbound fraction
(fu) of methadone and EDDP in in vitro medium and in pooled human plasma using the protocol
adapted from the manufacturer of the RED device (Thermo Fisher Scientific, 2017). In short,
methadone or EDDP were added to the in vitro medium or pooled human plasma to reach a
concentration of 150 uM in test sample solution and PBS was used as buffer. 300 pl test sample
solution and 500 ul PBS were respectively added to the sample chamber and the buffer
chamber of the RED insert, which was subsequently incubated for 5 hours at 37 °C at 250 rpm
on an orbital shaker to reach equilibrium (van Liempd et al. 2011). Then 25 pl of post-dialysis
samples were collected from the sample chambers and transferred to test sample tubes followed
by an addition of 25 ul PBS. Equal volumes of post-dialysis samples collected from the buffer
chamber which were then mixed with 25 pl of in vitro medium or human plasma in the buffer
sample tubes. Then, both samples were precipitated using 300 pl cold acetonitrile/water (90/10
v/v). The samples were put on ice for 30 min followed by centrifugation for 30 min at 15,000g.
Then, supernatants were collected for UPLC-PDA analysis. The fraction unbound was

calculated with equation 3 (van Liempd et al. 2011; Waters et al. 2008):
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concentration in buffer chamer

fi= )

concentration in sample chamer

The measurements were performed in triplicate in two independent experiments.

2.6 Quantification of methadone and its metabolites by UPLC-PDA

analysis

The quantification of methadone and its metabolites was performed by UPLC-PDA analysis
using a Waters Acquity UPLC H_class system (Etten-Leur, The Netherlands) equipped with a
Waters Acquity BEH C18 (1.7 um, 2.1 x 50 mm) column. For optimal separation, a gradient
of 20 mM ammonium formate (pH = 5.7) (solvent A) and acetonitrile (solvent B) with a flow
rate of 0.3 ml/min was applied as follows, the initial condition was 90:10 (A:B) then the
gradient was increased linear to 98% B over 8 min, then set to the initial conditions in 2 min
and re-equilibrated for 5 min. Retention times of methadone, EDDP and EMDP were 4.7, 4.4
and 6.3 min, respectively. Identification of methadone and its metabolites was based on
comparison of their retention time and UV spectrum to those of commercially available
reference compounds. Quantification was based on comparison of the respective peak areas to
the peak areas of corresponding calibration curves which were prepared using the reference

compounds (R*> 0.999).

2.7 Establishment of the PBK model for methadone and EDDP

In the present paper a PBK model describing the ADME of methadone and its major
metabolites in human was developed. Fig. 3 presents the schematic diagram of the PBK model
including a submodel for the major metabolite EDDP and the compartments relevant for the
ADME characteristics of methadone and EDDP. A submodel for EDDP was included to enable
the prediction of internal concentrations of EDDP required to evaluate if EDDP will be formed
in quantities that are relevant for cardiotoxicity. Considering that methadone is usually
administered to the opioid dependent population or patients with chronic pain on a daily basis,

a PBK model for repeated dosing of methadone was developed.

The absorption rate constant (ka) and fraction absorbed (Fa) are two key parameters
describing the absorption of methadone. The uptake of methadone from the gastrointestinal
(GI) tract was reported to follow a first-order process (Yang et al. 2006) with a mean ka value
0f'0.59 /h obtained from several studies (Foster et al. 2000; Wolff et al. 2000). A mean Fa value
of 0.88 was reported by Ke et al. (2014).
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To describe the distribution, tissue: blood partition coefficients (P) of methadone and EDDP
were obtained by dividing tissue: plasma partition coefficients by the corresponding
blood/plasma ratio (BPr) obtained from subjects on methadone maintenance treatment (Hsu et
al. 2013), to correct for the differences in the distribution of the compounds in blood and plasma.
The tissue: plasma partition coefficients of methadone and EDDP were calculated using
prediction method 1 which applies the algorithms of Berezhkovskiy (2004) in the Simcyp
Simulator V18 Release 1 (Certara, Sheffield, UK) requiring information on the fraction
unbound in plasma (fup), lipophilicity (logP) and acid-base properties (pKa). The logP and pKa
value of methadone were obtained from literature (Gerber et al. 2001; Ke et al. 2014). The logP
and pKa of EDDP were obtained from Marvinsketch (ChemAxon, Hungary). The fu; of
methadone was obtained from the in silico Simcyp prediction tool (Certara). The fup value of
0.3 for EDDP was obtained from the study of Moody et al. (2008). The f., of methadone and
EDDP were also measured using pooled human plasma in the current study (see “RED assay”
section). Since the influence of blood: tissue partition coefficients derived based on different
fup values on the model output was negligible (data not shown), the blood: tissue partition

coefficients calculated with the Simcyp-derived fu, were used.

Liver was identified as the metabolizing organ in the PBK model since conversion of
methadone was reported to primarily occur in the liver (Foster et al. 2004; Totah et al. 2008).
Although Oda and Kharasch (2001) observed conversion of methadone in in vitro human
intestinal microsomal incubations, the contribution of this intestinal metabolism to the
elimination of methadone in vivo seems to be relatively small compared to the contribution of
hepatic metabolism (Ke et al. 2014). Given that only minor methadone depletion was observed
in the incubations with pooled intestinal microsomes (see “In vitro microsomal incubations”
section), intestinal metabolism was not considered in the model. Conversion of EDDP to
EMDP was not included in the model since no EMDP measured in the microsomal incubations
with EDDP (see “In vitro microsomal incubations” section). The in vitro Vmax obtained from
human liver microsomal incubations were scaled to the in vivo situation taking the total liver

microsomal protein yield of 32 mg microsomal protein/ g liver into account (Barter et al. 2007).

After oral dosing, the urinary excretion of methadone and its metabolites accounts for up to
50% of the given dose (Anggard et al. 1975; Lugo et al. 2005; Sullivan and Due 1973) with
the ratio of unchanged methadone to EDDP ranging between 1/1 to 1/5 (Kharasch et al. 2004,
2009; Verebely et al. 1975). Therefore urinary excretion of methadone and EDDP was included

in the PBK model. In addition, biliary excretion was included in the submodel of EDDP since
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the recovery of EDDP in faeces was reported to account for up to 39% (Foster 2001). The renal
clearance of methadone (RCLmet) was set at 1.45 1/h which was the average of the values
reported in different in vivo studies (Boulton et al. 2001; Foster et al. 2000; Kharasch et al.
2009). The renal clearance (RCLeddp) and biliary excretion rate constant (kbile) of EDDP
were obtained by the curve fitting option in Berkeley Madonna (version 8.3.18, UC Berkeley,
CA, USA) in which the steady-state blood maximum concentration (Cmax) of EDDP obtained
with the PBK model was fitted to the steady-state blood Cmax of EDDP that was reported in
subjects receiving methadone maintenance treatment with an oral dose of 57.5 mg/day (De Vos
et al. 1995). This resulted in the fitted rate constants for RCLeddp and Kbile of 19.99 I/h and
1.65 /h (Table 1), respectively. Kinetic model calculations and curve fitting were performed
with Berkeley Madonna, applying Rosenbrock’s algorithms for solving stiff systems. Model
equations were shown in supplementary materials 2. Human physiological parameters used in
the PBK model were obtained from Brown et al. (1997) (Table 1). Table 2 shows the

physicochemical parameters of methadone and EDDP.

Fig. 3 Schematic diagram of the PBK model of methadone and EDDP
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Table 1 Physiological and biochemical parameters used in the PBK model for methadone and
EDDP

Parameters Symbol Value References
Body weight (kg) BW 70 ?1;0 ;;I)l ctal.
Tissue volume (% body weight) Brown et al.

Liver VL 0.0257 (1997)

Fat VFc 0.2142

Lung VLuc 0.0076

Arterial blood VAc 0.0198

Venous blood VVe 0.0593

Kidney VKc 0.004

Heart VHc 0.0047

Slowly perfused tissue VSc 0.5318

Rapidly perfused tissue VRe 0.052

Cardiac output (1/h) Qc 347.9
Blood flow to tissue (% cardiac Brown et al.
output) (1997)

Liver QLc 0.227

Fat QFc 0.052

Kidney QKc 0.175

Heart QHc 0.04

Slowly perfused tissue QSc 0.188

Rapidly perfused tissue QRc 0.318

Foster et al.
ﬁ;:fﬁ;ggﬁ: (r/z;t)e constant of Ka 0.59 ii](:)(l)sf);t N
(2000)

Fraction absorbed of methadone Fa 0.88 Keetal. (2014)

Boulton et al.
(2001); Foster et

Renal clearance of methadone (1/h) RCLmet 1.45 al. (2000);
Kharasch et al.
(2009)

Renal clearance of EDDP (1/h) RCLeddp 19.99 ¢ fitted values
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Biliary excretion rate constant of

fitted val
EDDP (/h) kbile 1.65° itted values

*fitted value generated from EDDP data presented in the study of De Vos et al. (1995).

Table 2 Physicochemical parameters for methadone and EDDP

tissue: blood partition coefficients ¢

compound LogP pKa  BPr slowly rapidly
liver fat perfused perfused lung kidney heart
tissue tissue
methadone 3.93* 9.20° 0.70° 12.45 046 7.67 12.45 1.77 17.56 49
EDDP 4.63° 9.64° 0.87° 11.51 0.18 7.06 11.51 1.56 6.95 4.48

BPr, blood/plasma ratio. *reported in Ke et al. (2014), ° reported in Gerber et al. (2001), © reported in
Hsu et al. (2013), ¢ obtained by dividing tissue: plasma partition coefficients by the corresponding BPr
values, © obtained from Marvinsketch (ChemAxon)

2.8 Evaluation of the PBK model

To evaluate the performance of the PBK model developed, comparisons were made between
predicted blood concentrations and area under the curve (AUC) values of methadone and in
vivo blood concentrations and AUC values obtained in clinical studies with repeated daily oral
administration at different doses of methadone. Given that the kinetics of methadone were
reported based on plasma concentrations in clinical studies, the plasma concentration time
curves were extracted from graphs presented in the respective clinical studies using GetData
Graph Digitizer 2.26! and further converted to blood concentration time curves by multiplying
with the BPr value. For the evaluation of the PBK model, the model parameter body weight
and the oral dose were chosen to match the values used in the clinical studies. The
specifications of in vivo kinetic studies of methadone used to evaluate the PBK model are

summarized in Table 4.
2.9 Sensitivity analysis

A local parameter sensitivity analysis was performed to identify influential parameters on the
predicted Cmax in the heart venous blood during the steady state phase. The normalized

sensitivity coefficient (SC) was calculated with the following equation (4):

! Available at: http://getdata-graph-digitizer.com [Accessed 20th November 2019]
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0 P

SC== (P-P) " C

“4)

where C is the initial value of the model output being the steady-state Cmax of the heart venous
blood, C’ is the model output after a 1% increase in each model parameter value, P is the initial
parameter value and P’ is the parameter value after a 1% increase. Parameters with an absolute
SC > 0.1 are considered to be influential on the model output (Chiu et al. 2007; Rietjens et al.
2011). The sensitivity analysis was carried out for a subject with a body weight of 70 kg (Brown
et al. 1997) and for oral daily doses of 20 and 200 mg, representing respectively a clinically
relevant dose level and a dose level associated with a high proportion of case reports of

cardiotoxicity in subjects receiving methadone (Chou et al. 2014).

2.10 Translation of in vitro concentration-response data to in vivo dose-

response data using PBK modelling-based reverse dosimetry

A change in the FPDc in the vitro field potential waveforms can be considered the surrogate
endpoint for the QTc interval in the human ECG (Zwartsen et al. 2019). Based on this
consideration, PBK modelling-based reverse dosimetry was applied to translate in vitro
concentration-response data on FPDc obtained from the hiPSC-CM using the MEA to in vivo
dose-response curves for QTc. To this purpose, the in vitro unbound concentrations of
methadone tested in the hiPSC-CM MEA assay were set equal to the unbound steady-state
Cmax of methadone in the heart venous blood by correcting the fraction unbound in plasma to
a fraction unbound in blood using the BPr value in equation (5):
fu

Ctotal, in vitro X fu, m- Ctotal, human bloodX B_PI; (%)
where Cyya1, in vitro and f, ,, are the in vitro methadone concentration and unbound fraction of
methadone in the in vitro exposure medium, respectively. BPr is the blood to plasma ratio of
methadone and f,;, is the unbound fraction of methadone in human plasma. Cital, human blood
values were extrapolated to in vivo oral doses by PBK-modeling based reverse dosimetry,
using a bodyweight of 70 kg (Brown et al. 1997). The same procedure was performed for each
of the in vitro concentrations tested in the MEA. Thus the entire in vitro concentration-response

curve was translated to a predicted in vivo dose-response curve.
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2.11 Evaluation of the PBK modelling-based reverse dosimetry approach

To evaluate the performance of the PBK modelling-based reverse dosimetry approach, the
predicted dose-response curves were compared to dose-response data for QTc prolongation
obtained from published literature including single case reports, case series (Table S1), cross-
sectional, retrospective and prospective studies (Table S2). To better illustrate the dose-
dependent effect of methadone on QTc prolongation, individuals who have potential QTc
prolonging risk factors including structural heart disease, electrolyte imbalance, hepatic
impairment, concomitant use of medications that potentially prolong QTc or influence the
metabolism of methadone (Stringer et al. 2009) were excluded from case reports and case series
used for the evaluation. Similar criteria could not be applied to the cross-sectional,
retrospective and prospective studies due to the absence of detailed individual information on
these risk factors. Potential QTc prolonging risk factors and exclusion criteria for these studies
were summarised in Table S2. To facilitate the comparison between in vitro and in vivo derived
values, both the absolute FPDc values obtained from the in vitro cardiotoxicity assay and the
in vivo methadone-induced QTc prolongation on ECG were expressed as relative percentages
by dividing the post-treatment FPDc and QTc values by the respective baseline values. For the
studies in which baseline QTc data were not reported, a population baseline QTc was assumed
as described in the study of Florian et al. (2012) in which baseline QTc was set equal to baseline
QTc values identified in Wedam et al. (2007), with an average value of 407 ms (411 ms for

female; 405 ms for male).
2.12 Benchmark Dose modelling

BMD analysis of predicted in vivo dose-response curves was performed to derive a BMD that
can be used as point of comparison to evaluate the predicted dose-response data against
therapeutic methadone levels reported in the literature. The benchmark response (BMR) was
defined as a 10% change compared to the control. For the QTc an effect of 10% change over
the population baseline of 407 ms, amounting to a QTc of 450 ms is frequently used as a
threshold for abnormal QTc prolongation (Anchersen et al. 2009; Chou et al. 2014; ICH 2005b;
Mujtaba et al. 2013; Treece et al. 2018). The BMD values resulting in a BMR of 10% with
lower and upper 95% confidence limit were defined as BMDL o and BMDU\o. The European
Food Safety Authority (EFSA) web-tool? integrated with the R-package PROAST version

2 EFSA Statistical Models-BMD. [Online). Available at: https://shiny-efsa.openanalytics.eu/app/bmd [Accessed 20 December,
2019]
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66.40 developed by the Dutch National Institute for Public Health and the Environment (RIVM)
was used for BMD analysis. In short, the continuous data from the predicted in vivo dose-
response curves were fitted to a set of models including the Exponential, Hill, Inverse
Exponential, and the Log-Normal Family models. According to the flow-chart described in the
manual® provided by EFSA, all fitted models excluding the FULL and NULL model were used
for model averaging and a weighted average model was constructed to estimate model
averaged confidence intervals using bootstrap sampling (Wheeler and Bailer 2007). Weighting
was based on the model’s Akaike's Information Criterion (AIC) values where models with
lower AIC values get a larger weight. 200 bootstrap data sets were run to calculate the final

BMD confidence intervals from model averaging.

In vitro concentration-response cardiotoxicity data were analysed using the same BMD
approach to derive benchmark concentrations that induced a 20% change in the FPDc over the
control (BMCxo) for comparing the potency of methadone, EDDP and EMDP. The final BMCa
values were obtained by weighted averaging BMCy values derived from all fitted models
excluding the FULL and NULL model. For this analysis a BMR of 20% was chosen being the

lowest BMR allowing reliable curve fitting.

3. Results

3.1 In vitro cardiotoxicity in the hiPSC-CM MEA assay

Fig. 4 shows the cardiotoxicity of methadone, EDDP and EMDP in hiPSC-CM as detected in
the MEA. Methadone and its primary metabolite EDDP significantly prolonged the FPDc in a
concentration-dependent manner with a BMCz of 0.6 pM and 2.3 puM, respectively. Of interest
to note is that the secondary metabolite EMDP induced an opposite effect, shortening the FPDc
in a concentration-dependent manner with the concentration shortening the FPDc by 20%
amounting to 3.8 pM. Both methadone and EDDP induced arrhythmia-like waveforms from 3
uM onwards while cessation of beating was observed upon the treatment of the hiPSC-CM
with methadone and EDDP at 30 uM. EMDP caused beating arrest in certain wells at 30 pM
without inducing arrhythmia-type waveforms within the test concentration range. The FPDc of
hiPSC-CM treated with repeated application of 0.1% (v/v) DMSO in the vehicle control well
was not significantly affected (Fig. S3).
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Fig. 4 Concentration-response curves for the effect of methadone (circles), EDDP (squares) and
EMDP (triangles) on FPDc in hiPSC-CM detected by the MEA. The response of the baseline
condition (0.1% (v/v) DMSO) was set at 100%. Data represent the mean of 4-9 wells with in total 26-

38 electrodes. Each data point represents the mean + SD. Statistically significant changes in response

Hokok

compared to the solvent control are marked with * with p < 0.05: ", p <0.01: ™ and p < 0.001:
3.2 In vitro microsomal incubations

Fig. 5 shows the concentration-dependent formation rate of EDDP from methadone by human
liver microsomes, which followed Michaelis-Menten kinetics. The apparent Vmax and Km
values obtained from the data, and the catalytic efficiency (Vmax/Km) are presented in Table 3.
No EMDP formation was measured in these incubations. In similar incubations using EDDP
as the substrate, formation of EMDP was neither detectable. In incubations with intestinal
microsomes applying the two highest methadone concentrations tested in liver microsomes
(1000 and 1500 uM), formation of EDDP was less than 8% of the formation observed with
liver microsomes at these concentrations. In addition, negligible formation of EDDP was
observed in the incubation of 50 uM methadone with increasing incubation time up to 120 min
and protein concentrations up to 2 mg/ml human intestinal microsomal protein. Also in these
incubations no EMDP formation was detected. This implied that conversion by intestinal
microsomes was considered limited compared to conversion by human liver microsomes and
therefore methadone conversion by intestinal tissue was not incorporated in the PBK model

and hence no further kinetic constants were derived.
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Fig. 5 Concentration-dependent formation of EDDP in incubations with human liver microsomes.

Data represent the mean of 3 independent experiments. Each data point represents the mean + SD

Table 3 Kinetic constants for formation of EDDP from methadone obtained from in vitro

incubations with human liver and intestinal microsomes

Vinax + SD K. + SD Catalytic efficiency *
Organ Substrate Metabolite (nmol/min/mg (nl]\/l) (ul/min/mg microsomal
microsomal protein) H protein)
275 +
liver methadone  EDDP 0.82+0.026 26.78 297
EMDP n.d. n.d. -
EDDP EMDP n.d. n.d. -
intestine methadone EDDP 0.058, 0.057° n.d. -
EMDP n.d. n.d. -

n.d., not determined, since EDDP and EMDP were unable to be quantified (see text for details); -,
unable to calculate. * Vinax/Kn*1000, ® formation rate at 1000 uM and 1500 uM

3.3 Unbound fraction for methadone in in vitro hiPSC-CM MEA medium
and in human plasma
Due to the use of serum free medium in the hiPSC-CM MEA assay, the unbound fraction of

methadone in the in vitro medium was relatively high, amounting to 0.79 + 0.041 compared to

the unbound fraction in pooled human plasma determined to be 0.055 = 0.011. The unbound
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fraction of EDDP in the in vitro medium was 0.90 £ 0.072 and was 0.30 = 0.015 in pooled

human plasma.

Considering the large inter-individual variation in plasma protein binding for methadone
observed in in vivo studies (Eap et al. 1990; Olsen 1973; Romach et al. 1981; Wilkins et al.
1997), also two extreme fu, values (0.034 and 0.22) obtained from the literature together with
the Simcyp-derived and RED-derived fu, values (0.15 and 0.055, respectively) were used to
translate in vitro effect-concentrations to the total blood concentration as presented in equation

5, which were subsequently subject to PBK modelling-based reverse dosimetry.
3.4 PBK model development and evaluation

To evaluate the performance of the human PBK model, the predicted methadone blood kinetics
were compared to in vivo human data obtained from the literature. The specifications of in vivo
studies on the subjects receiving methadone maintenance treatment that are used for the PBK
model evaluation are summarized in Table 4. As illustrated in Fig. 6, the developed PBK model
accurately predicts the change of methadone blood concentrations during the last 24 hours upon
repeated oral methadone exposure as described in the study of Foster et al. (2000) and Liu et
al. (2007). Table 4 further shows the detailed comparison between the model prediction and
the in vivo kinetic data using steady-state blood Cmax and AUC values on the last day of
exposure as model outcomes. For methadone the predicted kinetic values are in accordance
with reported values expressing a 0.78- to 1.35-fold difference in Cmax values and 0.76- to 0.97-
fold difference in AUC values (Table 4).

Table 4 Summary of in vivo kinetic studies and evaluation of the PBK model predictions for

methadone steady-state blood Cnax and AUC values based on the data derived from in vivo kinetic

studies
Ratio ;
Mean  Mean In vivo In vivo Predicted Predicted redicted Ratl(')
body methadone p predicted
weight dose ® Cinax AUC Cinax AUC ) AUC/in Reference
ng/ml)®  (ng-h/ml)®  (ng/ml ng h/ml)  Cma/in )
(k&)  (mg/day) (ng/ml)®  (ng )" (ng/ml) (ng ) e Cl Vivo AUC
Foster et
74 70 346.2 5097 320.5 4967 0.93 0.97 al. (2000)
90 100 453.6 7889 385.2 5969 0.85 0.76 Liuet al.
' ’ ' ’ (2007) ©
Diong et
d -
70 61 216.0 nr. 293.1 4542 1.35 al. (2014)
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De Vos et

64.7 57.5 383.6 5978 296.4 4591 0.78 0.77 al. (1995)

n.r., not reported; -, unable to calculate; * free base form of methadone, ® blood data were obtained by
multiplying reported plasma data by the BPr value, ° in vivo Cnax and AUC is the sum of data of
enantiomers, ¢ the body weight of subjects was set equal to the value used in the PBK model since body
weight of study subjects was not reported

Fig. 6 Blood concentration-time curves of methadone in human predicted with the PBK model
(lines) and published in vivo data (dots) after a repeated oral dose of 70 mg/day for 60 days (a)
(Foster et al. 2000) and 100 mg/day for 30 days (b) (Liu et al. 2007)

3.5 Sensitivity analysis

Fig. 7 shows the most influential model parameters for the prediction of steady-state Cmax in
the heart venous blood upon exposure to oral repeated methadone doses of 20 and 200 mg. The
results indicate that the normalized sensitivity coefficients of all PBK model parameters were
not dose-dependent until at least 200 mg/day and that the predicted steady-state Cmax in the
heart venous blood is most sensitive to the oral fraction absorbed and the body weight with
normalized SC values above 0.8. The parameters related to liver metabolism (volume of liver,
liver microsomal protein yield, unscaled maximum rate of methadone metabolism) also
substantially influence the model outcome with normalized SC values of 0.6. The absorption
rate constant and the partition coefficient rapidly perfused tissue to blood of methadone are

less influential with normalized SC value of 0.25 and 0.1, respectively.
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Fig. 7 Normalized SCs of PBK model parameters for the prediction of steady-state Cmax of
methadone in the heart venous blood upon oral repeated doses of 20 mg/day (white bars) and 200
mg/day (black bars). Model parameters with normalized SC with an absolute value higher than 0.1
(dotted lines) are shown. BW, body weight; VLc, fraction of liver; PRmet, partition coefficient rapidly
perfused tissue: blood of methadone; ka, absorption rate constant; Fa, oral fraction absorbed; MPL,
liver microsomal protein yield; Vmaxc, unscaled maximum rate of methadone metabolism in liver; Km,

Michaelis-Menten constant for methadone metabolism in liver

3.6 Translation of in vitro concentration-response data into in vivo dose-

response data using PBK-modelling based reverse dosimetry

Although EDDP induced concentration-dependent prolongation of FPDc in the in vitro assay,
the free blood Cmax of EDDP, after an oral dose of 57.5 mg/day, was estimated to be 0.05 uM
based on EDDP data reported in De Vos et al. (1995). By using the current PBK model, the
free blood Cmax of EDDP was predicted to be 0.17 pM at a relatively high dose level of
methadone of 200 mg/day. Both the reported and predicted free blood Cmax of EDDP are
substantially lower than unbound concentrations causing cardiotoxicity in the hiPSC-CM MEA
assay (unbound BMC20=2.07 uM) (Fig. 4). To reach the unbound BMC» value of 2.07 uM, a
methadone dose level of 2600 mg/day was estimated to be required, which is 22-fold higher
than the highest clinical relevant dose of 120 mg/day (Chou et al. 2014). Therefore, the
cardiotoxicity of EDDP was not considered to play a role in methadone induced cardiotoxicity

and thus also not considered for the reverse dosimetry.
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Upon correction for protein binding performed using the values for fum and fu, described
above, the in vitro concentration-response curve of methadone obtained in the hiPSC-CM as
detected by the MEA was translated to in vivo dose-response curves for human cardiotoxicity
using the developed PBK model. As mentioned in the “unbound fraction for methadone”
section, fum 0f 0.79 was used to correct for protein binding of methadone in the in vitro medium
while for the in vivo situation four different f,, values were used including the experimental
fup value obtained from pooled human plasma, an in-silico derived fu, value and two extreme
fup values obtained from the literature (Eap et al. 1990; Foster et al. 2000; Moody et al. 2008;
Olsen 1973; Romach et al. 1981; Wilkins et al. 1997). This resulted in 4 predicted in vivo dose-
response curves for methadone induced cardiotoxicity, one for each of the f, values (Fig. 8).
These predicted dose-response curves were subsequently compared to available in vivo human

data.

Fig. 8 Predicted dose-response curves for cardiotoxicity of methadone obtained by using PBK
modelling-based reverse dosimetry compared to in vivo dose-response data derived from
literature. The curves represent the prediction based on a f., of 0.22 (black line), 0.15 (red line), 0.055
(blue line) and 0.034 (green line). Symbols represent the data obtained from case reports, case series of
individuals (orange triangles) (Esses et al. 2008; Fredheim et al. 2006; Krantz et al. 2002) and other
studies as follows: Bart et al. (2017) (purple circle); Carlquist et al. (2015) (orange square); Chang et
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al. (2012) (green circle); Chowdhury et al. (2015) (dark blue cross); Cruciani et al. (2005) (green cross);
Eap et al. (2007) (green star); Ehret et al. (2006) (dark blue triangle); Fareed et al. (2013) (dark blue
circle); Heesch et al. (2015) (dark blue star); Krantz et al. (2005) (orange circles); Maremmani et al.
(2005) (green square); Martell et al. (2005) (green triangle); Peles et al. (2007) (orange star); Reddy et
al. (2010) (orange circles); Roy et al. (2012) (dark blue square). The in vivo data are summarized in

Table S1 and S2

3.7 Evaluation of the PBK modelling-based reverse dosimetry approach

and BMD analysis of predicted dose-response data

To evaluate the performance of the PBK modelling-based reverse dosimetry approach, the
dose-response data for QTc prolongation obtained from case reports, case series, cross-
sectional, retrospective and prospective studies were compared with the predicted dose-
response curves for QTc prolongation taking different f.p values into account. This
comparison, presented in Fig. 8, reveals that the predicted in vivo dose-response curves for
QTc prolongation were comparable with reported in vivo data. The prediction of QTc
prolongation with the fu; value of 0.15 obtained from Simcyp is best in line with the majority
of reported QTc prolongation data of individual cases. The QTc prolongation data reported in
population studies, however, were more close to the predicted dose-response curve with the fu,

value of 0.055 obtained from the RED assay.

To further evaluate the model predictions a BMD analysis was performed. BMDL values
were derived and used as points of comparison. Fig. 9 presents the BMDL o derived from the
dose-response curves presented in Fig. 8, predicted with the different f., values while also
presenting therapeutic dose levels of methadone. The comparison presented in Fig. 9 reveals
that the predicted BMDL 1o values overlap with the therapeutic methadone dose levels. The
predicted BMDL o values for methadone induced cardiotoxicity based on high f,, values of
0.22 and 0.15 are 1.7- and 2.4-fold higher respectively, than the recommended initial dose for
opioid-native patients (10 mg/day), and the predicted BMDLo values based on low fy; values
0f 0.055 and 0.034 are 2.2- and 3.6-fold higher respectively than the recommended initial dose
for opioid users (30 mg/day) (Chou et al. 2014; BCCSU 2017). This indicating that these
therapeutic dose levels are below the dose levels predicted to result in 10% change, an effect
size that can be used as a threshold to evaluate abnormal QTc prolongation (Anchersen et al.
2009; Chou et al. 2014; ICH 2005b; Mujtaba et al. 2013; Treece et al. 2018). The maintenance
dose of 60-120 mg methadone/day (Chou et al. 2014; BCCSU 2017) is however 0.6 to 7.2-fold
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higher than the predicted BMDLo values in all scenarios, pointing at a potential cardiotoxic
effect in especially individuals with relatively lower plasma protein binding (higher fup).
Detailed information on the BMD analysis can be found in the supplementary materials 1 Table

S3-S7 and the BMD values are summarized in Table S7.

Fig. 9 Comparison of BMDL values derived from the predicted dose-response curves for human
cardiotoxicity of methadone presented in Fig. 8 (lines) and therapeutic dose levels reported in the

literature (boxes filled with horizontal lines)
4. Discussion

The aim of the present study was to investigate whether human in vivo cardiotoxicity could be
predicted by a novel testing strategy combining the in vitro toxicity assay with hiPSC-CM in a
MEA and PBK modelling-based reverse dosimetry. Methadone was used as the model
compound given that for this drug both kinetic and clinical human data for evaluation of

predictions made were available.

The in vitro electrophysical cardiotoxicity was detected using hiPSC-CM combined with
the MEA technology, which can capture the overall effects on multiple ion channels on the
extracellular field potential. The change in FPDc in the in vitro obtained field potential
waveforms, can be considered a surrogate endpoint for the QTc interval in the human ECG

(Zwartsen et al. 2019), the parameter known to be indicative for methadone induced
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cardiotoxicity (Mujtaba et al. 2013). The results show that methadone induced a concentration-
dependent prolongation of FPDc which is in line with the study of Kuryshev et al. (2010)
reporting that methadone prolonged the action potential duration using patch clamp recordings
in human cardiomyocytes. Studies using mammalian cells transfected with cardiac ion
channels revealed that the prolonged effect on FPDc can be ascribed to the inhibition of the
hERG and sodium channels (Eap et al. 2007; Kuryshev et al. 2010). The major methadone
metabolite EDDP appeared to also prolong the FPDc albeit with lower potency than methadone.
This lower potency of EDDP is in line with the fact that EDDP was reported to be a weaker
hERG channel blocker compared to methadone (Eap et al. 2007; Katchman et al. 2002) while
effects on other ion channels such as sodium channel may contribute to the observed EDDP-
induced FPDc prolongation effect (Mishra et al. 2014). Neither FPDc prolongation nor
arrhythmia-type waveforms were observed upon exposure of the hiPSC-CM to EMDP which
is in accordance with the previous study reporting EMDP to not inhibit hERG channels (Eap
et al. 2007). Given that the in vivo total plasma concentration of EMDP has been reported to
be less than 0.04 uM after clinical relevant dosing (Alburges et al. 1996), it can be concluded
that the in vitro effects of EMDP in the hiPSC-CM MEA assay, with an in vitro BMCy for
decreasing FPDc of 3.8 uM, would not be relevant in in vivo. Thus, the methadone-induced
prolongation of the FPDs is unlikely to be counteracted by EMDP and the cardiotoxicity of

EMDP was not further taken into account.

The evaluation of the developed PBK model against literature data available on steady-state
blood Cmax and AUC values of methadone (De Vos et al. 1995; Diong et al. 2014; Foster et al.
2000; Liu et al. 2007), indicated that the model was able to adequately predict the kinetics of
methadone with differences being less than 2-fold, which is generally accepted as an adequate

predictive performance (Badhan et al. 2019; WHO 2010).

It is generally assumed that the unbound concentration is responsible for the clinical
response of a drug (Smith et al. 2010). Given that methadone is a lipophilic drug with basic
properties, the extent of protein binding may play an important role in determining the free
concentration and influence the therapeutic or toxic effects of methadone. Given that in vivo
experimental data report variation in the f., values of methadone, the PBK modelling-based
reverse dosimetry was performed taking into account different values for f. ;. It is reported that
the fraction of unbound methadone is significantly correlated to the plasma concentration of
alphal-acid glycoprotein (AAG) (Abramson 1982; Yang et al. 2006), which is known to be
influenced by physiological and pathologic conditions of the subject (Eap et al. 1990). The 1.5-
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up to 6.5-fold difference in the four f,, values used for the PBK modelling-based reverse
dosimetry are in line with the 2 to 20-fold variation of the AAG concentration among

individuals (Taguchi et al. 2013).

The predicted dose-response curves obtained from the PBK modelling-based reverse
dosimetry, using the respective f,, values were in line with in vivo data available from case
reports, case series, cross-sectional, retrospective and prospective studies on methadone
induced effects on in vivo QTc prolongation available in the literature (Fig. 8). This further
validates the developed PBK model and provides support for the novel in vitro-in silico testing

strategy for prediction of cardiotoxicity in human.

It is of interested to note that the predictions with high fu, values (0.22 and 0.15) are more
in line with data obtained from individual case series while the data obtained with lower fip
values (0.055 and 0.034) especially match the data from population studies. The reasons
underlying this observation remain to be elucidated but may be related to the fact that the
concentration of AAG increases under the conditions of heroin addiction (Garrido et al. 2000),
HIV infection (Barrail-Tran et al. 2010), and cancer (Huang and Ung 2013). Given that the
subjects in the epidemiological studies were associated with those physiological and pathologic
conditions, smaller ., values would be expected while the individual cases series were selected
using criteria that specifically exclude these potential factors that interfere with the

concentration of AAG.

To further evaluate the in vitro-in silico predictions for human cardiotoxicity of methadone,
BMDL o values derived from predicted dose-response curves were compared to therapeutic
doses. The BMDL ¢ values appeared to overlap with the therapeutic dose levels. Given the fact
that a BMDL o value is generally considered a dose level that is comparable to a no observed
adverse effect level (EFSA 2017), and 10% effect is an effect size used as a threshold to
evaluate abnormal QTc prolongation (Anchersen et al. 2009; Chou et al. 2014; ICH 2005b;
Mujtaba et al. 2013; Treece et al. 2018), doses lower than the predicted BMDL ¢ values would
be expected to be without an effect on QTc prolongation, which is in line with the observation
that the predicted BMDL o values based on high fu values and low f. values are 2- to 3-fold
higher than the recommended initial dose for opioid-native patients (10 mg/day) and opioid
users (30 mg/day), respectively (Chou et al. 2014; BCCSU 2017). The fact that the BMDL1o
values obtained with the relatively higher fu, values are 2.5 to 7-fold lower than the
maintenance dose (60 mg/day), may explain the QTc prolongation observed in some

methadone maintenance treatment patients given these therapeutic maintenance dose levels.
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This confirms the need for particular cautions (intensive ECG monitoring and determining
arrhythmia risk factor) for patients receiving high doses of methadone (>100 mg) (Florian et
al. 2012; Mujtaba et al. 2013; Treece et al. 2018). Krantz et al. (2002) reported that methadone
induced TdP in patients, without the presence of other risk factors, prescribed an average dose
of 400 mg/day, which is consistent with our predictions given the fact that this dose is even 4-
fold higher than the BMDL o value (109 mg/day) derived from the predictions based on the
lowest fu values. The results of our study indicate that especially subjects with lower levels of

plasma protein binding (higher f.) of methadone may be a group at extra risk.

The results of the present study indicate that f., may be a key parameter causing
interindividual differences in the cardiotoxicity of methadone. The exact magnitude of the
effect of changes in protein binding on toxicity, however, is not always straightforward since
this is an interplay between the available fraction at the site of action, metabolism and excretion
and may i.e. require detailed information on the fate of a compound within cells/the human
body which is often not available. Moreover, the variability in other factors that influence the
concentration in the heart venous blood may also cause variation in cardiotoxic effects in
individuals. Based on the sensitivity analysis, the Cmax in heart venous blood is also influenced
by metabolism-related parameters. A major enzyme involved in the metabolism of methadone
to EDDP is CYP2B6, a cytochrome P450 that shows large interindividual variability due to
genetic polymorphism (Kharasch 2017). It would be of interest to integrate also this variability
in the PBK model-based reverse dosimetry approach and predict its influence on the in vivo
effects of methadone. This is a topic beyond the aim of the present study, that is currently under
investigation. In addition, given that methadone is the racemic mixture of R- and S-methadone
and the latter enantiomer is mainly responsible for the cardiotoxic effects (Ansermot et al. 2010;
Eap et al. 2007; Lin et al. 2009), it would also be of interest to predict methadone induced

cardiotoxicity distinguishing between the R- and S-enantiomers.

In the present study we demonstrated the integration of the hiPSC-CM MEA data and PBK
modelling-based reverse dosimetry to assess the in vivo cardiotoxicity of methadone in human.
This in vitro-in silico approach enabled the translation of the in vitro concentration-response
data on cardiotoxicity to predicted in vivo dose-response data for methadone-induced QTc
prolongation in human. Comparison of model predictions to in vivo data revealed that the novel
testing strategy provided adequate predictions for both in vivo kinetics and cardiotoxicity of
methadone, also pinpointing to an important role for binding to plasma proteins in determining

potential interindividual differences in sensitivity towards the cardiotoxic effects of methadone.
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The present study provides a proof-of-principle of using PBK modelling-based reverse
dosimetry for QIVIVE to predict cardiotoxicity in human, providing a novel testing strategy

for cardiac safety.
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Abstract

New approach methodologies predicting human cardiotoxicity are of interest to support or even
replace in vivo-based drug safety testing. The present study presents an in vitro-in silico
approach to predict the effect of inter-individual and inter-ethnic kinetic variations in the
cardiotoxicity of R- and S-methadone in the Caucasian and the Chinese population. In vitro
cardiotoxicity data, and metabolic data obtained from two approaches, using either individual
human liver microsomes or recombinant cytochrome P450 enzymes (rCYPs), were integrated
with physiologically based kinetic (PBK) models and Monte Carlo simulations to predict inter-
individual and inter-ethnic variations in methadone-induced cardiotoxicity. Chemical specific
adjustment factors were defined and used to derive dose-response curves for the sensitive
individuals. Our simulations indicated that Chinese are more sensitive towards methadone-
induced cardiotoxicity with Margin of Safety values being generally 2-fold lower than those
for Caucasians for both methadone enantiomers. Individual PBK models using microsomes
and PBK models using rCYPs combined with Monte Carlo simulations predicted similar inter-
individual and inter-ethnic variations in methadone-induced cardiotoxicity. The present study
illustrates how inter-individual and inter-ethnic variations in cardiotoxicity can be predicted by
combining in vitro toxicity and metabolic data, PBK modelling and Monte Carlo simulations.
The novel methodology can be used to enhance cardiac safety evaluations of drugs in the

preclinical stage and facilitate the design for dosing regiments in clinical trials.
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1. Introduction

Cardiotoxicity is an important endpoint in drug safety evaluation as it has been a leading cause
of drug attrition during the development stage and leads to the withdrawal of marketed drugs
(Ferri et al., 2013). Recently we demonstrated that quantitative in vitro to in vivo extrapolation
(QIVIVE) using physiologically based kinetic (PBK) modelling-based reverse dosimetry is an
adequate approach to predict in vivo cardiotoxicity of racemic methadone (rac-methadone) in
humans (Shi et al., 2020a). In this previous work, the cardiotoxic effects of rac-methadone on
human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were quantified in
vitro using the multi-electrode array (MEA) system. The obtained in vitro concentration-
response curve for the field potential duration corrected for beat rate (FPDc), resembling the
parameters observed in the human ECG (Zwartsen et al., 2019), was extrapolated to a predicted
in vivo dose-response curve, which matched well with in vivo clinical data on rac-methadone-

induced QTc prolongation.

Methadone is a prescription drug for the treatment of opioid addiction and chronic pain,
which however has been associated with QTc interval prolongation in the clinic (Alinejad et
al., 2015). Methadone is usually administered as the racemic preparation, a 1:1 mixture of the
R- and S-enantiomer, with mainly the S-enantiomers being responsible for the cardiotoxic
effects observed in vivo (Ansermot et al., 2010) and in vitro (Eap et al., 2007). Eap et al. (2007),
reported that S-methadone showed a 3.5-fold higher potency than R-methadone in blocking
the human ether-a-go-go-related gene (hERG) currents which play an important role in cardiac
repolarization (Martin et al., 2004). Methadone is predominately cleared by the hepatic
cytochrome P450 (CYP) enzymes via N-demethylation and cyclisation to its primary
metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), which was not found
to be cardiotoxic in vitro at therapeutic relevant internal concentrations (Eap et al., 2007; Shi
et al., 2020a). The major enzymes mediating the formation of EDDP have been identified in
both in vitro and in vivo studies to be CYP2B6, CYP3A4 and to a lesser extent CYP2C19, with
CYP2C19 and CYP2B6 showing stereoselectivity towards the conversion of R- and S-
methadone, while CYP3A4 appeared to convert R- and S- methadone without stereoselectivity
(Chang et al., 2011; Eap et al., 2007; Foster et al., 1999; Gerber et al., 2004; Kharasch, 2017,
Totah et al., 2007).

An increasing number of drug failures has been associated to unexpected extreme effects or

inefficacy effects in clinical studies, pointing out the importance of studying inter-individual
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variation in response to drug candidates and identifying covariates resulting in such variations
(Tracy et al., 2016). Ethnic differences in demography, physiology and genetic background
may affect the kinetic processes thereby contributing to uncertainty in the safety evaluation of
compounds (Malinowski et al., 2008; Ning et al., 2017). Moreover, polymorphisms in CYP
enzymes is considered to be one of the most important factors contributing to the inter-
individual variability in sensitivity towards compound exposure and thus needs to be
incorporated in deciding on individual dosing regimens (Chiba et al., 2017; Zanger and Schwab,
2013). The PBK model established in our previous work (Shi et al., 2020a) was defined for the
Caucasian population as a whole while inter-individual and inter-ethnic differences in kinetics
were not yet considered. Large inter-individual variations in methadone pharmacokinetics have
been reported to be the result of variability in the expression of the CYP isoforms involved in
methadone metabolism (Eap et al., 2002). Given the highly polymorphic gene of CYP2B6
(Kharasch, 2017; Zanger and Klein, 2013) and the large variations between Caucasians and
Chinese in the abundance of CYP3A4 (Barter et al., 2013), it is of interest to include such
variabilities in the PBK model-based reverse dosimetry approach and predict their effects on

the in vivo cardiotoxicity of R- and S-methadone.

PBK modelling and Monte Carlo simulations have been used to assess inter-individual
variation in drug safety evaluations (Ito et al., 2017; Mehrotra et al., 2012). However, most
studies involve in vivo data and specific dose regimens while the inter-individual variation on
the whole population level for different dose regimens was not quantitatively evaluated. In the
safety assessment of chemicals, the International Programme on Chemical Safety (IPCS) has
proposed the chemical-specific adjustment factor (CSAF) as a standard parameter to quantify
inter-species or human inter-individual differences in toxicokinetics or toxicodynamics , while
such a factor may equally well be defined for chemical drugs like methadone (IPCS, 2005).
The default uncertainty factor of 10 is set for human inter-individual differences with a
subdivision for a factor of 3.16 accounting for human variability in toxicokinetics and 3.16 for

variability in toxicodynamics (IPCS, 2005).

Previously a new approach methodology (NAM, ICCVAM, 2018) combining in vitro data,
PBK modelling and Monte Carlo simulations has been used to predict inter-individual and/or
inter-ethnic variations in in vivo toxicity for developmental toxicity of phenol (Strikwold et al.,
2017) and liver toxicity of lasiocarpine (Ning et al., 2019). The aim of the present study was to
demonstrate such an approach for the cardiotoxicity of R- and S-methadone, and to elucidate

the consequences of inter-ethnic and inter-individual kinetic variations for the sensitivity
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towards these pharmaceuticals. To obtain this insight, PBK models for the two methadone
enantiomers were developed and variations in their CYP-mediated metabolism were
incorporated using two different approaches including 1) metabolic variation obtained from
incubations with 25 Caucasian and 25 Chinese individual human liver microsomes (HLMs),
and 2) reported variation in CYP abundances combined with Monte Carlo simulations.
Ultimately the maximum concentrations (Cmax) of R- and S-methadone in the heart venous
blood were predicted, from which CSAFs were derived to describe the inter-individual kinetic
variations within the different populations. Subsequently the CSAFs were applied to the
predicted in vivo dose-response curves obtained by reverse dosimetry of in vitro cardiotoxicity
data to predict the toxicity for the most sensitive individuals within the populations based on

which the safety in use of R- and S-methadone was discussed.

2.  Materials and methods
2.1. Chemical and biological materials

Rac-methadone hydrochloride (>98%, R-methadone: S-methadone 1:1), rac-EDDP
perchlorate (>98%, R-EDDP: S-EDDP 1:1), Tris (hydroxymethyl) aminomethane (Trizma®
base), and ammonium acetate were purchased from Sigma-Aldrich (Zwijndrecht, The
Netherlands). The use of rac-methadone was in compliance with the registration (opium
exemption license number 104783 03 WCO) at Farmatec (executive organization of the
Ministry of Health, Welfare and Sport, The Hague, The Netherlands). Dimethyl sulfoxide
(DMSO, 99.7%) was obtained from Merck (Schiphol-Rijk, The Netherlands). Acetonitrile
(ACN, UPLC/MS grade) was obtained from Biosolve BV (Valkenswaard, The Netherlands).
Reduced nicotinamide adenine dinucleotide phosphate (NADPH) regenerating system solution
A and solution B were purchased from Corning (Woburn, MA, USA). Twenty-five individual
Caucasian male human liver microsomes were obtained from XenoTech (Lenexa, USA).
Twenty-five individual Chinese male human liver microsomes were purchased from PrimeTox
(Wuhan, China). Detailed information of the human liver microsome donors are shown in

Table S1 in the supplementary materials 1.
2.2. General outline of PBK modelling and Monte Carlo simulation

To investigate the inter-individual and inter-ethnic variations in the cardiotoxicity of R- and S-
methadone, the present study included the following steps: (1) Generation of information on
the metabolic variation in CYP-mediated conversion of R- and S-methadone using two

approaches. In the first approach information on the metabolic variation of R- and S-methadone
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conversion was generated from in vitro kinetic experiments using 25 Chinese and 25 Caucasian
individual liver microsomes while in the second approach information on variation in the
metabolism was obtained based on reported kinetic constants for R- and S-methadone of
recombinant CYP isoforms (rCYPs) together with reported variation in their expression in the
Caucasian and the Chinese population. (2) Development and evaluation of PBK models for R-
and S-methadone using the metabolic parameters obtained from the two approaches. (3)
Integrating metabolic variations, PBK modelling and the Monte Carlo simulation to predict
inter-individual and inter-ethnic variations in the kinetics of R- and S-methadone and the
calculation of CSAFs for human kinetics. (4) PBK modelling-based reverse dosimetry and
dose-response analysis of R- and S-methadone-induced cardiotoxicity for the average and the
sensitive populations in the Caucasian and Chinese populations for the safety evaluation of R-

and S-methadone.

2.3. Generation of metabolic variation data in the conversion of R- and S-

methadone toward R- and S-EDDP

2.3.1. Invitroincubations with 25 Caucasian and 25 Chinese individual liver microsomes

In vitro incubations with 25 male Caucasian and 25 male Chinese individual liver microsomes
were performed as previously described by Shi et al. (2020a). Based on the IPCS guideline this
number of individual microsomes is sufficient to accurately measure the central tendency of
the whole population (IPCS 2005). In brief, incubation samples with a final volume of 160 pl
were prepared in 0.1 M Tris-HC1 (pH 7.4) containing the NADPH regeneration system (final
concentrations 1.3 mM NADP?, 3.3 mM glucose-6-phosphate, 0.4 U/ml glucose-6-phosphate
dehydrogenase and 3.3 mM magnesium chloride) and rac-methadone at seven final
concentrations ranging from 25 to 1500 pM added from a concentrated stock solution of 100
mM in water. Control samples were prepared in the same way, but in the absence of NAPDH
regeneration system which was replaced with Tris-HCI. Samples were pre-incubated at 37 °C
for one minute and the reactions were started by adding individual human liver microsomes at
a final concentration of 0.5 mg/ml microsomal protein. After 40 min incubation at 37 °C, 40
ul ice-cold ACN were added to terminate the reaction. Then samples were put on ice for 20
min and centrifuged at 18,000 g for 5 min at 4 °C to precipitate microsomal proteins. The
supernatant was collected and diluted 2 to 10 times with ACN for the quantification of R- and
S-EDDP by liquid chromatography-mass spectrometry (LC-MS/MS) as described in the “LC-

MS/MS analysis” section. Under these conditions the reaction rate was shown to be linear with
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respect to incubation time and microsomal protein concentration. Given that no gender
differences in metabolism of methadone have been reported in the literature (Graziani and
Nistico, 2015) and that the average of catalytic efficiency for rac-methadone metabolism
obtained from 25 male Caucasian HLMs was comparable with the one obtained from the mix-
gender microsomal pool of 150 donors (Shi et al., 2020a), the metabolic variations derived

from male individuals are expected to be comparable those for mixed gender.

The metabolic parameters including the apparent maximum reaction rate (Vmax) and the
apparent Michaelis—Menten constant (Ku) for the formation of R- and S-EDDP were defined
using GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, USA.) to fit the data obtained
from the in vitro microsomal incubations to the Michaelis—Menten equation (1):

Vmax * S
g Yo [3]

Kn+[S] M

where [S] is the substrate concentration (WM) and v is the rate of R- and S-EDDP formation
(nmol/min/mg microsomal protein). The in vitro catalytic efficiency expressed in pl/min/mg
microsomal protein was calculated by dividing Vmax by Km. Data were collected from 2
independent experiments and each data point is presented as the mean value + SD. The mean
values and the coefficient of variations (CVs) of Vmax and K were calculated using Microsoft

Excel 2016 (Microsoft Corporation, Washington, USA).

2.3.2. Kinetic constants for R- and S-methadone conversion by rCYPs and variations in

CYP abundances in the Caucasian and the Chinese population

CYP3A4, CYP2B6 and CYP2C19 are the major CYPs involved in the metabolism of both
methadone enantiomers (Chang et al., 2011; Totah et al., 2007), and their kinetic constants
(Vmax, cyrand K, cyp) for the conversion of R- and S-methadone toward R- and S-EDDP were
obtained from the study of Totah et al. (2007). These kinetic constants were determined using
Baculovirus-insect cells (Supersomes) expressing recombinant CYP2B6, CYP2C19 and
CYP3A4 and the kinetic constants for methadone conversion by each CYP are shown in Table
1. To correct for the differences between the activity of the CYPs in the rCYP system and the
HLM system, the reported Vmax for Supersomes (Vimax, cyp, pmol/min/pmol CYP) were scaled
to the Vmax value for microsomes (Vimax, cyp in HLM, pmol/min/mg protein) using the following

equation (2):

Vimax, CYP in HLM= Vmax, cyp * ISEF * CYP abundance )
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where ISEF is the CYP isoform specific inter-system extrapolation factor to correct for
differences in the intrinsic activity between Supersomes and microsomes taking into account
the relative abundance of the respective CYP in HLM (Proctor et al., 2004). CYP abundance
(pmol/mg protein) is the expression level of the individual CYP present in HLM samples which
were collected from the literature (Table 1). The ISEFs for the three CYPs were calculated
using the following equation (3) for each methadone enantiomer:

CLint, cyp in HLM
ISEF= ' 3
CLint, cyr * CYP abundance 3)

where CLint, cyp in HLM (Ul/min/mg protein) represents in vitro intrinsic clearance of R- or S-
methadone by each CYP in HLM, which were determined by multiplying the in vitro total
CYP-mediated intrinsic clearance for the respective methadone enantiomer in Caucasian or
Chinese HLM (CLixn, M) measured in this study by the relative contribution of the respective
CYP to the total CYPs in the HLM (fi, cyp). This relative contribution, defined as fraction
metabolised by each CYP of the total in vitro metabolic clearance amounted to 0.44, 0.09 and
0.46 (R-methadone), and 0.59, 0.09 and 0.32 (S-methadone) for CYP2B6, CYP2C19 and
CYP3AA4, respectively (Totah et al., 2008). These fm, cyp values were obtained by the
incubation of Caucasian HLM with inhibitors of the specific CYP isoforms (Totah et al., 2008).
CLin, cyp (ul/min/pmol CYP) represents the in vitro intrinsic clearance of the methadone
enantiomers by each CYP reported by Totah et al. (2007). CLint, cyp in Hum and CLiy, cyp were
calculated from the enzyme kinetic parameters (Vmax/Km) determined in HLM and the
Supersomes, respectively. The calculated ISEFs for the Caucasians and Chinese are shown in
Table 1. Due to lacking information about the fi,, cyp for the Chinese population, the fim, cyp of
the Caucasian was used to calculate ISEF values for the Chinese population. The detailed
information used for calculation of the ISEF and fi, cyp can be found in Table S2 and S3 in the

supplementary materials 1.
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2.4. LC-MS/MS analysis

The chiral separation of R- and S-methadone and their metabolites and quantification was
performed by LC-MS/MS analysis using a Shimadzu Nexera XR LC-20AD SR UPLC system
coupled with a Shimadzu LCMS-8045 mass spectrometer (Kyoto, Japan). Samples were
loaded on a CHIRALPAK® AGP column (100 x 4mm Spm Analytical Column M) and
CHIRALPAK® AGP pre-column (0.4cm x 1 cm 5Sum) with an injection volume of 1 ul. A
Shimadzu LCMS-8045 triple quadrupole with electrospray ionization (ESI) interface was used
to perform the MS-MS analysis. The instrument was operated in positive mode in the multiple
reaction monitoring (MRM, N2 collision gas) mode. The multiple reaction monitoring of m/z
310.20 (MH") to 265.15 (CE: — 15 kV), m/z 310.20 (MH") to 105.05 (CE: — 28 kV) and m/z
310.20 (MH") to 77.15 (CE: — 51 kV) were used to analyse R- and S- methadone. The m/z
278.10 (MH") to 234.20 (CE: — 31 kV), m/z 278.10 (MH") to 249.15 (CE: — 25 kV) and m/z
278.10 (MH") to 186.15 (CE: — 38 kV) were used to analyse R- and S-EDDP. The MRMs were
selected based on previous studies (Moody et al., 2008; Chang et al., 2011). For optimal chiral
separation, an isocratic mobile phase of 10 mM ammonium acetate (pH = 7.0): ACN (85: 15,
v/v) with a flow rate of 1 ml/min was applied. The temperature of the column was kept at 20 °C.
The retention times for R- EDDP, S-EDDP, R-methadone and S-methadone were 10.1, 12.9,
14.5 and 19.6 min, respectively, determined using commercially available reference
compounds. Quantification was based on comparison of the respective peak areas of the total
ion chromatogram (TIC) to the TIC peak areas of corresponding linear calibration curves
obtained from standards prepared in ACN using the reference compounds (R? > 0.999), using

Postrun analysis in the software LabSolution (Shimadzu).

2.5. Development of the PBK models of R- and S-methadone for the

Caucasian and Chinese population

The PBK model of rac-methadone developed in the study of Shi et al. (2020a) was adjusted to
describe the ADME of R- and S-methadone in the Caucasian and Chinese populations in the
Berkeley Madonna software (version 8.3.18, UC Berkeley, CA, USA) applying Rosenbrock’s
algorithms for solving stiff systems. Figure 1 presents the schematic diagram of the PBK model
and the compartments relevant for the ADME characteristics. The PBK model is developed for

repeated dosing given that methadone is usually administrated daily.

Human physiological parameters used in the PBK model for the Caucasian population were

obtained from Brown (Brown, Delp, Lindstedt, Rhomberg & Beliles, 1997) et al. (1997) and
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for the Chinese population from NHFPC (2007a,b, 2014) (Table S4 in supplementary materials
1). The volume of the arterial, venous blood and the blood flow to the heart are not available
for the Chinese population and were assumed to be the same as the ones for the Caucasian,
which is regarded suitable since these parameters are not influential on the model outcome (see
the results in sensitivity analysis). The physicochemical parameters of R- and S-methadone are
presented in Table S5 in supplementary materials 1. Given that no chiral difference was
reported in absorption related parameters (Ke et al., 2014; Badhan et al., 2019), values for these
parameters were similar for both enantiomers, including a mean oral absorption rate constant
(ka) value of 0.59 and a mean fraction absorbed (Fa) value of 0.88 obtained from studies on

rac-methadone (Foster et al., 2000; Ke et al., 2014).

Tissue: blood partition coefficients (P) of R- and S-methadone were obtained by dividing
tissue: plasma partition coefficients by the corresponding blood/plasma ratio (BPr) to correct
for the differences in the distribution of the compounds in blood and plasma. The BPr value of
0.7 reported by Hsu et al. (2013) was used and assumed to be similar for the two enantiomers
(Badhan et al., 2019). The tissue: plasma partition coefficients of the two enantiomers (Table
S5) were estimated using a QIVIVE tool (version 1.0) from Wageningen Food Safety Research
(WESR, 2020). The fraction unbound in plasma (f.p), lipophilicity (logP) and acid-base
properties (pKa) were used as the input for the algorithms of Berezhkovskiy (2004). The two
enantiomers have the same logP and pKa values, amounting to 3.93 and 9.2, respectively (Ke
et al., 2014; Gerber et al., 2001). The mean f,, values were obtained from several studies,

amounting to 0.16 for R-methadone and 0.12 for S-methadone as reported by Ke et al. (2014).

As described in our validated PBK model for rac-methadone (Shi et al., 2020a), liver was
considered as the metabolizing organ. The average values of kinetic constants (Vmax and Km)
obtained from incubations with ethnic-specific individual microsomes were used to define the
metabolism of R- and S-methadone in the two populations, applying Michaelis-Menten
kinetics. Besides, the metabolism of R- and S-methadone at the microsomal level was defined
by using reported rCYPs kinetic data of CYP2B6, CYP2C19 and CYP3A4. The enantiomeric
interactions observed in the racemate metabolism using in vitro incubation of rCYPs (Totah et
al., 2007) were included in the current model where the algorithms for the rate of R- and S-
EDDP formation was described by two-substrate, two-site models with the competitive
inhibition enabling the homotropic and heterotropic binding. The algorithms were taken from
equations reported in Totah et al. (2007) in which enantiomeric interactions were described for

the CYP2B6, CYP2C19 and CYP3A4 separately (model equations are shown in
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supplementary materials 2). Predicted blood kinetics were not distinctive between
enantiomeric interaction equations and Michaelis—Menten equation when both equations were
modelled in the rCYP-based PBK model (data are not shown, both model equations are shown
in supplementary materials 2), suggesting that predictions with the HLM PBK model without
interaction are valid as well. The in vitro Vmax values were scaled to the in vivo situation by
using a microsomal protein per gram of liver (MPPGL) value of 32 mg/g for the Caucasian
population (Barter et al., 2007) and a value of 39.46 mg/g for the Chinese population (Zhang
et al., 2015b).

Besides metabolism, urinary excretion significantly contributes to the elimination of
methadone (Lugo et al., 2005), and thus the urinary excretion was included in the model. The
renal clearance values (RCL) were set at 1.8 1/h for R-methadone and 1.1 for S-methadone as

reported in the study of Ke et al. (2014).

Figure 1 Schematic diagram of the PBK model of R- and S-methadone.
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2.6. Sensitivity analysis and evaluation of the PBK model for R- and S-

methadone

The sensitivity analysis and model evaluation were performed for the PBK model with the
average of the Vimax and K, values of the 25 individual HLMs and the PBK model with rCYPs

defined metabolism data.

The influence of model parameters on the predicted R- and S-methadone Cax in the heart
venous blood during the steady-state phase was identified by performing a local parameter
sensitivity analysis. The sensitivity coefficient (SC) was determined according to the following
equation:

_ (€O P

SC (P-P) C

4)

where C represents the initial value of the model output, C’ is the model output after a 1%
increase in an individual model parameter value. Similarly, P stands for the initial parameter
value and P’ is the parameter value after a 1% increase. Only parameters with an absolute SC >
0.1 are considered further, indicating a large impact on the model output (Rietjens et al., 2011).
The sensitivity analysis was carried out for both the Caucasian and Chinese PBK model with
the respective mean body weight of 70 kg (Brown et al., 1997) and 58.5 kg (NHFPC, 2007a),
and for oral daily doses of 20 and 200 mg rac-methadone (10 and 100 mg of each enantiomers)

for 30 days, as previously described (Shi et al., 2020a).

The performance of the developed PBK models for R- and S-methadone were evaluated by
comparing the predicted blood concentrations and area under the curve (AUC) values of the
enantiomers to the respective in vivo data on these parameters obtained in clinical studies
(Foster et al., 2000; Garimella et al., 2015; Liu et al., 2007) where the time dependent
concentrations of R- and S-methadone were measured in plasma. The reported plasma-based
kinetics of R- and S-methadone were extracted using GetData Graph Digitizer 2.26 and
converted to blood-based kinetics with multiplication by the respective BPr values. The
specifications of in vivo studies are summarized in Table S6 and S7. Body weight, the oral
dose and exposure duration were chosen to match the conditions used in the clinical studies for
the PBK model evaluation. The performance of the enantiomeric PBK model for the Chinese
was based on this evaluation of the model for the Caucasians since no in vivo kinetic data on
dose-dependent blood or plasma levels of methadone enantiomers are available for the Chinese

population.
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2.7. Prediction of inter-individual and inter-ethnic variations applying
individual PBK models and PBK modelling combined with Monte

Carlo simulations

The sensitivity analysis revealed that metabolic parameters are highly influential on the model
output. To predict the influence of metabolic variations on the inter-individual and inter-ethnic
differences in formation of R- and S-EDDP, two approaches were applied. In the first approach,
25 Caucasian and 25 Chinese individual PBK models were built by integrating the metabolic
parameters obtained from the incubation of individual microsomes, to enable the prediction of
Chmax in the heart venous blood of the two enantiomers at a clinically relevant daily dose of 30
mg of each enantiomer administered for 30 consecutive days for each individual applying a
mean body weight of 70 kg for Caucasian and 58.5 kg for Chinese (Brown et al., 1997; NHFPC,
2007a).

In the second approach the Monte Carlo simulation was performed together with PBK
modelling to simulate the variation in the Cmax in the heart venous blood of R- and S-methadone
in the Caucasian and the Chinese population. Monte Carlo simulations of the respective PBK
models were run for each enantiomer in two populations with a daily dose of 30 mg of each
enantiomer administered for 30 days applying a mean body weight of 70 kg for Caucasian and
58.5 kg for Chinese (Brown et al., 1997; NHFPC, 2007a). To simulate the metabolic variation
in R- and S-methadone formation, parameters for which random values were taken from the
parameters’ log-normal distribution for Monte Carlo simulation were the CYP abundances in
the Caucasian and Chinese population. For the other parameters, fixed values were used. The
distribution in the CYP abundances were defined by their mean value and CV in the Caucasian
and Chinese population. For that purpose, lognormally distributed CYP abundances were
transformed to a normally distributed variable w with the mean (p») and standard deviation

(0w) using the following equations (Zhang et al., 2007):

Ho=In (ux/ 1+Cvx2> (5)

and

6,2=In(1+CV,?) (6)
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where i is the mean of CYPs abundances obtained from literature (Table 1). CVy is the
coefficient of variation of non-transformed CYP abundances. Monte Carlo simulations were
performed in Berkeley Madonna (version 8.3.18, UC Berkeley) using the parameter plot
function. Individuals with CYP abundances that were three times the standard derivation higher
or lower than the mean values were excluded from the Monte Carlo simulation (Ning et al.,
2019; Strikwold et al., 2017).

For the distribution of the CYP2B6 abundance in the Caucasian and the Chinese population
two phenotypes were distinguished, namely the extensive metabolisers (EM) and the poor
metabolizers (PM) using values reported in the Simcyp simulator V18 Release 1 (Certara,
Sheffield, UK). For CYP2C19 and CYP3A4 the CYP abundance values for the general
Caucasian population reported by Achour et al. (2014), without phenotype specification were
used, while for the Chinese population the abundance distribution for the EM was used given
the absence for the distribution data for the general Chinese population together with high
frequency of CYP2C19 and CYP3A4 EM in Chinese (Barter et al., 2013). The hepatic CYP
abundances (mean and CV), genotypes and corresponding phenotype frequencies obtained
from several studies are summarized in Table 1. Given different phenotypes of CYP2B6 were
integrated in the simulation, two separate Monte Carlo analyses were performed for EM and
PM, respectively. 15000 simulations were run to predict the probability distribution of Cmax in
the heart venous blood of R- and S-methadone for each CYP2B6 phenotype population. The
distribution parameters for the whole population were calculated by using the weighted average
parameters obtained in each phenotype population. Weighting was based on the EM and PM
phenotype frequencies in the two population as shown in Table 1. In the model simulation the
parameters were allowed to vary independently from each other. The summary of distribution
parameters was shown in Table S8. Model codes of Monte Carlo simulation are provided in
the supplementary materials 3. Statistical analysis of the population distributions obtained with
Monte Carlo simulations was performed in GraphPad Prism 5.0 (GraphPad Software Inc., San
Diego, USA) calculating the GM, geometric CV, the 95% and 99'" percentile of the Ciax in the

heart venous blood of R- and S-methadone for the two populations.
2.8. Derivation of CSAF

Given that the IPCS (2005) guideline recommends several options for the calculation of CSAFs,
different approaches were applied for deriving CSAFs to provide comprehensive information
for the risk assessment of methadone. Firstly, the CSAF values for both the Caucasian and the

Chinese population were derived by dividing the 95" and the 99 percentile of the Cax in the
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heart venous blood of R-and S-methadone by the GM of the Cmax of R-and S-methadone.
Additionally, the Chinese population was considered as the sensitive group, and the CSAF
values were calculated by dividing the 95" and 99" percentile of the Cmax in the heart venous
blood of both enantiomers in the Chinese population by the GM of the Cmax of the respective
enantiomers in the Caucasian population (IPCS, 2005). The CSAF values calculated based on
the 99t percentile in each population were used to generate in vivo dose-response curves of R-
and S-methadone for sensitive groups (99" percentile of Cmax) in each population as outlined
in the next section. In the present study definition of the sensitive groups is based on differences

between individuals in methadone metabolism and does not cover any dynamic variation.

2.9. PBK modelling-based reverse dosimetry and Benchmark dose

analysis of in vivo cardiotoxicity predictions

In our previous study (Shi et al., 2020a), PBK model-based reverse dosimetry was applied to
translate in vitro concentration-response curves for rac-methadone-induced cardiotoxicity to in
vivo dose-response curves for QTc prolongation. A similar approach was applied to predict the
in vivo cardiotoxicity of methadone enantiomers for the average and sensitive groups in
Caucasian and Chinese populations. To this end, the in vitro cardiotoxic effects of rac-
methadone on the FPDc measured in hiPSC-CMs using the MEA technique (Shi et al., 2020a)
were used to derive concentration-response curves for R- and S-methadone. Given that S-
methadone blocked hERG currents 3.5-fold more potently than R-methadone (Eap et al., 2007),
the responses induced by rac-methadone were with the ratio of 1: 3.5 proportionally distributed
to responses of R- and S- methadone, respectively. Subsequently, the f, value of 0.79 for rac-
methadone in the in vitro medium of hiPSC-CM MEA assay (Shi et al., 2020a), assumed to be
the same for R- and S-methadone, was used to calculate unbound in vitro R- and S-methadone
concentrations which were set equal to the unbound steady-state Cmax of R- and S-methadone
in the heart venous blood of the PBK model using the average of individual HLMs as specified
by Shi et al. (2020a). Reverse dosimetry on each concentration-effect level tested in the hiPSC-
CMs was performed using the PBK models for the average Caucasian and the average Chinese
population using the average Vmax and K values obtained from incubations with the 25
Caucasian and 25 Chinese human liver microsomes, generating in vivo dose-response data for
R- and S-methadone. From this the dose-response curves for R- and S-methadone were defined
for the average Caucasian and the average Chinese population. The dose-response curves for

sensitive groups in the Caucasian and the Chinese population were obtained by applying the
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respective CSAFs (calculated using the 99t percentile of Cmax) to the dose-response curves of

the average populations given that no saturation occurs at the higher doses.

Benchmark dose (BMD) analysis of the predicted dose-response curves for R- and S-
methadone was performed to obtain a benchmark dose resulting in 10% cardiotoxic effect
(BMD) for the general and sensitive groups in the Caucasian and Chinese population, where
the FPDc derived in vitro, can be regarded a representative endpoint for the QTc interval in the
human ECG. An effect size of 10% was chosen considering the physiological and statistical
meaning of the abnormal QTc prolongation as previously described (Shi et al., 2020a). The
BMD analysis was performed using the European Food Safety Authority web-tool integrated
with the R-package PROAST version 66.90 developed by the Dutch National Institute for
Public Health and the Environment (RIVM) as previously described (Shi et al., 2020b). Unlike
the concentration-response curve itself, the accompanying confidence intervals of rac-
methadone could not be assigned or distributed to the two enantiomers. Therefore the BMDL 1o
values (lower 95% confidence limit of BMD1o) were derived by dividing BMD values by 3
given that a reliable BMDL value should be at most 3-fold lower than the corresponding BMD
value (EPA, 2012). BMDL ¢ values were defined for the average group and for the sensitive
group using the CSAF, which allows the extrapolation of inter-individual kinetic variations in

metabolic conversion to variation in external toxic dose levels.

The Margin of safety (MOS) is an important concept in the safety evaluation of drugs. In
the classic approach, the MOS for the drug safety in pharmaceutical industry is the ratio of the
lethal dose or toxic dose to 1% of the population (LD or TD1) to the effective dose to 99% of
the population (EDygy) and would require in vivo data representative for the population. To
obtain insight in the influence of inter-individual variation on the toxicological profile for the
risk-benefits of a compound earlier in the drug developmental process BMDLs derived using
the presented in vitro-in silico approach can be integrated in the MOS approach. In this example
the predicted BMDL o of the enantiomers for the sensitive population (99" percentile of the
Cmax in the heart venous blood) was chosen as an alternative to the TD: and the therapeutic
dose of rac-methadone served as EDgo because information on therapeutic doses of enantiomers

is not available.
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3. Results

3.1. Metabolic variation in the conversion of R- and S-methadone

3.1.1. In vitro incubation of 25 Caucasian and 25 Chinese individual liver microsomes

The conversion of R- and S- methadone toward R- and S-EDDP was measured in incubations
with individual microsomes originating from the Caucasian and the Chinese population. The
concentration-dependent increase in the formation of R- and S-EDDP followed Michaelis—
Menten kinetics. The obtained apparent Vmax and Km values, and the calculated catalytic
efficiencies derived from the data are summarized in Table 2 and individual results are shown
in Table S9. For the 25 Caucasian individuals, the differences between the individuals with the
highest and lowest catalytic efficiency and the CV of the inter-individual differences in
catalytic efficiency for R-methadone were 1.9- and 1.4-fold lower than the ones for S-
methadone, respectively. The mean catalytic efficiency for R-methadone conversion to R-
EDDP was 1.5-fold lower than that for S-methadone conversion. For the 25 Chinese
individuals, a comparable variation in the metabolism of R- and S-methadone was observed
for differences between the highest and lowest catalytic efficiency, the CV of the inter-

individual differences in catalytic efficiency and the mean catalytic efficiency.

Regarding the inter-ethnic variations in the metabolism of R-methadone, a 6.3-fold higher
mean Vmax value and a comparable mean K, value were obtained for the Caucasian population
compared to the Chinese population, resulting in a 5.2-fold higher mean catalytic efficiency in
the Caucasian population than the Chinese population (Table 2). For the metabolism of S-
methadone, the catalytic efficiency was 9-fold higher in the Caucasian population than in the
Chinese population, which is mainly due to a 7.4-fold higher mean Vmax value since similar
mean K, values were observed in the Caucasian population compared to the Chinese
population (Table 2). The CV of the catalytic efficiency for R- and S-methadone metabolism
was respectively 1.4- and 2.2-fold higher in the Caucasian population than in the Chinese

population.
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Table 2 Descriptive statistic of the kinetic constants V., K and catalytic efficiencies for R-

EDDP and S-EDDP formation by 25 Caucasian and 25 Chinese individual human liver

microsomes.
Caucasian individuals Chinese individuals
R-EDDP formation S-EDDP formation R-EDDP formation S-EDDP formation
Catalyti Catalyti Catalyti Catalyti
Vina b C Vina b Vina b C Vina b ©
X2 Ka efficien XA Ka efficien XA Ko efficien x4 Ka efficien
cy* cy*® cy* cy*
Mean 155. 111. 0.06 127. 0.04 115.
() 0.40 1 2.87 0.34 3 4.27 4 . 0.55 6 6 0.47
SD¢ 2'32 42.8 2.64 (9)'31 442 554 (1)'03 424 035 (1]'02 63.6 0.28
CVi%°® 803 276 921 93.8 40 130 485 332 643 46.5 55 59.8
Fold-
differen 13 3 19 17 4 37 11 4 10 11 8 12

ces’

* nmol/min/mg liver microsomes, ® UM, ¢ Vyuux/Km, ul/min/mg protein, ¢ standard deviation of kinetic
constants, ¢ coefficient of variation, % (= SD/meanx 100), f highest/lowest values.
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3.1.2. Kinetic constants for R- and S-methadone conversion by rCYPs and variations in

CYP abundances in the Caucasian and the Chinese population

Table 1 shows the in vitro kinetic constants Vmax and K for the conversion of methadone
enantiomers to EDDP enantiomers by the major CYPs as reported by Totah et al. (2007). The
Table also presents the scaled catalytic efficiency for Caucasian and Chinese HLM for R- and
S-methadone conversion taking into account the ISEF and the population specific CYP
abundances to calculate Vmax according to equation 2. Compared to the Chinese population,
the Caucasian population has 3.2-fold higher, 2.5-fold higher and 1.3-fold lower abundances
in CYP2B6, CYP2C19 and CYP3AA4, respectively, with larger CVs.

3.2. Sensitivity analysis and evaluation of the PBK model for R- and S-
methadone

The sensitivity analysis shows that the SC of model parameters in the PBK model using the

average individual HLM kinetic data were similar for R- and S-methadone at the two dose

levels analysed (supplementary materials 1, Figure S1). For both the Caucasian and the Chinese

PBK model, the predicted steady-state Cimax of R- or S-methadone in the heart venous blood

was highly influenced by the following model parameters with the hierarchy of normalized SC
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values being the oral fraction absorbed (Fa) > body weight (BW) > liver metabolism related
parameters (VLc, MPPGL, Viax, Km) > the absorption rate constant (ka). The renal clearance
(RCL) was more influential in the Chinese model with a normalized SC value comparable to
those of liver metabolism related parameters. The results of the sensitivity analysis performed
in the PBK model using rCYPs kinetic data were similar to the results obtained in the PBK

model using HLM kinetic data (data not shown).

The developed PBK models using the average individual HLM kinetic data or rCYPs kinetic
data for R- and S-methadone were evaluated against reported in vivo human data. Figure 2
reveals that for both models the predicted blood concentrations of R- and S-methadone during
the last 24 h upon a repeated oral rac-methadone dose of 100 mg/day for 30 days, adequately
matched with the corresponding in vivo data for Caucasian subjects (Liu et al., 2007). A similar
comparison was obtained between predictions and in vivo human data from other studies
(Foster et al., 2000; Garimella et al., 2015) as shown in Figure S2 and S3 in the supplementary
materials 1. Compared to data from three in vivo studies, when using the HLM kinetic data and
rCYPs kinetic data, the prediction of kinetic values of R-methadone showed a 0.79- to 1.06-
fold difference in steady-state Cmax in venous blood and a 0.67-to 0.91-fold difference in AUC
values. In case of S-methadone, the prediction showed a 0.95- to 1.36- fold difference in steady-
state Cmax in venous blood and a 0.75-to 1.08-fold difference in AUC values (Table S6 and S7

in the supplementary materials 1).
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Figure 2 Blood concentration-time curves of R-methadone (a, b) and S-methadone (c, d) in human
predicted with the PBK model (lines) and published in vivo data (dots) (Liu et al., 2007) after a
repeated oral rac-methadone dose of 100 mg/day for 30 days. (a) and (c) present predictions
obtained from the model using HLM Kkinetic data and (b) and (d) present predictions obtained from the
model using rCYPs kinetic data. The top right insert is the predicted blood concentration of R- and S-

methadone (lines) and in vivo data (dots) during the last 24 h upon the oral exposure.

3.3. Prediction of inter-individual and inter-ethnic variations applying
individual PBK models and PBK modelling combined with Monte

Carlo simulations

Figure 3 shows the differences in the distribution of the predicted Cmax of R- and S-methadone
in the heart venous blood among 25 Caucasian and 25 Chinese individuals. In the 25 Caucasian
individuals the geometric CV of the predicted Cmax of R-methadone in the heart venous blood
was 1.6-fold lower than that of S-methadone, while in the 25 Chinese individuals, this value
was 1.2-fold lower for R-methadone compared to S-methadone. For the inter-ethnic variations,
the GM of predicted Cmax of R- and S-methadone in 25 Caucasian individuals was 2.2- and 3-

fold lower than those in 25 Chinese individuals, respectively, and the geometric CVs observed
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in Caucasian individuals were 2.1 and 2.8-fold higher than those observed in Chinese

individuals for R- and S-methadone, respectively.

The inter-individual and inter-ethnic differences in Cmax of R- and S-methadone in the heart
venous blood predicted with the Monte Carlo simulations using variation in CYP abundances
are shown in Figure 3. Both for the Caucasian and the Chinese population, the geometric CVs
and the differences between highest and lowest predicted Cmax of R- and S-methadone were
comparable to those obtained from individual PBK models, except that the geometric CVs of
predicted Cmax of S-methadone in the Caucasian population was 1.8-fold lower than the results
obtained from the individual Caucasian PBK models. For the Caucasian population, the GM
of Cmax of the two enantiomers were comparable with the GM values predicted using the
individual PBK models and for the Chinese population the GM of predicted Cimax of R- and S-
methadone were both 1.1-fold higher than when using individual PBK models. Furthermore,
the inter-ethnic variations in GM and geometric CVs of predicted Cmax of the two enantiomers
differ less than 2-fold from the ones obtained using individual PBK models. Detailed

predictions are shown in Table S10 in the supplementary materials 1.

Figure 3 Distribution of predicted Cnax of R- (a) and S-methadone (b) in the heart venous blood
at steady-state after a repeated oral methadone enantiomer dose of 30 mg/day for 30 days in the
Caucasian and the Chinese population. The scatter plots represent the predictions obtained using
individual PBK models. Box and whisker plots represent the predictions obtained by the Monte Carlo
(MC) simulation using reported in vitro kinetic data of rCYPs. The whiskers represent the 1* and 99™

percentile of defined populations.
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3.4. Derivation of CSAF

The frequency distribution of the Cmax of methadone enantiomers in the heart venous blood is
shown in Figure 4. Table 3 shows the CSAF values calculated for the Caucasian population,
the Chinese population and the two populations combined. The CSAFs for the Chinese were
1.4 to 1.6-fold lower than the Caucasian CSAFs, indicating a smaller inter-individual variation

in the Chinese compared to the Caucasian population, which is also visible in Figure 3.

Chapter 4

Figure 4 Frequency distribution for Cnax of R- and S-methadone in the heart venous blood at
steady-state after a repeated oral methadone enantiomer dose of 30 mg/day for 30 days in
Caucasian (a, ¢) and Chinese (b, d) individuals by the Monte Carlo simulation using in vitro

Kinetic data of rCYPs. The GM and P99 represent the geometric mean and the 99™ percentile of the

distribution.
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Table 3 CSAFs of R- and S-methadone for the Caucasian population, the Chinese population and

the two populations combined in each scenario of Monte Carlo simulation.

CSAFs at 95" percentile CSAFs at 99" percentile
C i . T . . T
auca51.an Chinese WO. Caucasian Chinese W9
population opulation® populations opulation®  population® populations
a pop combined® pop pop combined®
R- 1.7 12 3.0 2.0 1.3 3.2
methadone
S- 1.9 1.3 4.5 2.3 1.4 4.7
methadone

* obtained by dividing the 95" or 99" percentile of the Cinax in heart venous blood by the GM of the Cpax
in heart venous blood in each population. ® obtained by dividing the 95" or 99" percentile of the Cunax
in heart venous blood in the Chinese population by the GM of the Cmax in heart venous blood in the
Caucasian population.

3.5. PBK modelling-based reverse dosimetry and BMD analysis of in vivo

cardiotoxicity of methadone

PBK modelling-based reverse dosimetry was applied to further investigate the consequences
of obtained inter-individual and inter-ethnic kinetic variations for the predicted in vivo
cardiotoxicity of R- and S-methadone. To this end, first the in vitro derived cardiotoxicity of
rac-methadone obtained in the hiPSC-CM MEA assay (Shi et al., 2020a) was transformed to
cardiotoxicity data for the individual R- and S-enantiomer, based on the reported hERG
channel inhibition potencies of the two enantiomers (Eap et al., 2007). The thus obtained in

vitro concentration-response curves of R- and S-methadone are shown in Figure S4.

After reverse dosimetry, the in vivo dose-response curves for R- and S-methadone for the
average and sensitive population for the both the Caucasian and Chinese population (Figure 5)
indicate a larger variation in both R- and S-methadone-induced human cardiotoxicity for the
Caucasian population compared to in the Chinese population. Table 4 shows that the BMDL ¢
value of R- and S-methadone for the average Caucasian were respective 2.1- and 2.4-fold
higher than the BMDLo values of the sensitive Caucasians. For the average Chinese the
BMDL ¢ value of two enantiomers were 1.4-fold higher than the BMDLo values for the of
sensitive Chinese. BMDLjo values of S-methadone for the average and the sensitive
Caucasians were respectively 3.7- and 2-fold higher than the corresponding values for the
Chinese, indicating that the Caucasians may be less sensitive to methadone-induced
cardiotoxicity of than the Chinese (Table 4). The predicted MOS values are summarized in

Table 5. For both enantiomers the MOS values for the Caucasians were 1.6- to 2-fold higher
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than the MOS values for the Chinese. The MOS values for R-methadone were generally 7-fold

higher than the ones for S-methadone.

Table 4 The predicted BMDL,y values for the average and the sensitive (99" percentile of
predicted Cpax in heart venous blood) of the Caucasian and Chinese population obtained by the

CSAFs derived from the Monte Carlo simulation.

Caucasian population Chinese population

R-methadone R-methadone S-methadone

methadone

BMDL1 (mg/day) for = g ¢ 18.7 39.5 5.1
the average population
BMDLo (mg/day) for 474 75 29.9 37

sensitive population

Table 5 Summary of Margin of Safety values for R and S-methadone for the Caucasian and

Chinese population. The Margin of Safety is defined as the ratio the predicted BMDLo of the ;
enantiomers for the sensitive population (99™ percentile of the Cumay in the heart venous blood) and the %
therapeutic dose of rac-methadone. f)
Effective dose Toxic dose*
(rac- Margin of Safety ®
Enantiomer Stage dosing methadone (enantiomer mg/day)
mg/day)
Caucasian Chinese Caucasian Chinese

R- Initial 10 47.4 29.9 4.7 3.0

methadone Maintenance 60 474 29.9 0.8 0.5

S- Initial 10 7.5 3.7 0.7 0.4

methadone Maintenance 60 7.5 3.7 0.12 0.06

“BMDL values for the sensitive population (99™ percentile of Cmax in heart venous blood) were used
as toxic dose for 1% population (TD). ° obtained by dividing TD; by effective dose.
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Figure 5 Predicted dose-response curves for the cardiotoxicity of R-methadone and S-methadone
in the average (solid lines) and the sensitive population (99" percentile of predicted Cuax in heart
venous blood) (dotted lines) of Caucasian (a) (c) and Chinese (b) (d) population. The dose-response
curves for sensitive Caucasian and Chinese populations were obtained by applying the respective

CSAFs to the dose-response curves of the average populations.
4. Discussion

The aim of present study was to apply a NAM approach that combines in vitro data, PBK
modelling and Monte Carlo simulations to predict inter-ethnic and inter-individual kinetic
variations in the R- and S-methadone-induced cardiotoxicity, and to elucidate consequences of
these variations for the sensitivity towards the cardiotoxicity of both enantiomers. CSAFs were
derived to quantitatively reflect the inter-ethnic and inter-individual variation in kinetics and
used to derive dose-response curves for the sensitive individual in the population. Applying
the presented NAM in drug safety evaluation contributes to the 3Rs, since the approach reduces

the need for animal studies on cardiotoxicity.

In the current paper, two sources of metabolic data were integrated in the PBK model to

define the inter-individual differences in the metabolism of R- and S-methadone. Firstly, the
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formation of both enantiomers was determined with 25 Caucasian and 25 Chinese individual
HLMs and kinetic constants obtained were used to define 50 individual PBK models. The
catalytic efficiencies for the metabolism of both enantiomers were 5- to 9-fold higher in
incubations with the Caucasian HLMs compared to Chinese HLMs, and, as a result, the PBK
model predictions revealed a notable inter-ethnic difference in the predicted venous blood
concentrations. The observed differences may be explained by the inter-ethnic differences in
the distribution of functional alleles and in the abundance of CYP2B6 and CYP3A. Zhou et al.
(2017) found that the overall frequency of CYP2B6 alleles, associated with higher catalytic
activity, was 2-fold higher in Europeans compared to the East Asians. Especially, two key
allelic mutations (516G>T and 785A>Q@), known to increase the in vitro catalytic efficiency
for conversion of 7-ethoxy-4-trifluoromethylcoumarin (Jinno et al, 2003) and
cyclophosphamide (Xie et al., 2003), have higher frequencies in the Caucasian population
compared to the Chinese population (Guan et al.,2006). The CYP3A4*20 allele, reported to
result in inactived catalytic activity (Zhou et al., 2017), showed a 3.7-fold lower prevalence in
the Caucasian population compared to the East Asians (McGraw and Waller, 2012) and the
CYP3A4*22 allele, which decreases the activity and protein expression, had a higher frequency
in the Asian population (0.043) compared to the Caucasians (0.008-0.025) (Zanger and Schwab,
2013). Furthermore, the reported hepatic abundances of CYP2B6 and CYP3A4 (EM) were up
to 3-fold higher in Caucasians compared to the Chinese (Barter et al., 2013).

Another factor contributing to the ethnic differences in the catalytic efficiency and predicted
kinetics could be the content of cytochrome b5 (Cyt b5). It is important to note that the Cyt b5
plays an important role in the CYP-mediated reactions where Cyt bS may provide the second
electron to the monooxygenase cycle (Kandel and Lampe, 2014). Many studies indicated that
Cyt b5 stimulated the catalytic activity of CYP2B6 and CYP3A4. Yamazaki et al. (1996)
demonstrated that the catalytic efficiency for testosterone (CYP3A4 substrate) in the presence
of Cyt b5 was 4-fold higher than the one without Cyt b5. Zhang et al. (2015a) found a positive
correlation between the Cyt b5 content and the catalytic efficiency (and Vmax) for CYP2B6 in
Chinese HLM, which was in agreement with the positive correlation we found between the Cyt
b5 content and the catalytic efficiency (and Vmax) for both enantiomers in 25 Caucasian and 25
Chinese individual HLMs (Figure S5), suggesting that Cyt b5 may influence the catalytic
efficiency for methadone enantiomers. The mean Cyt b5 content in HLMs used in the current
study are 455 pmol/mg for Caucasians HLMs and 199 pmol/mg for Chinese, which are
comparable with reported values being 660 pmol/mg for Caucasians (Corning, 2014) and 270
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pmol/mg for Chinese (Zhang et al., 2015a). Thus, the lower conversion of methadone by the
Chinese HLM may in part also be ascribed to the lower Cyt b5 content.

Our results reveal that Caucasians had in general 2-fold higher CVs for the catalytic
efficiency and predicted venous blood concentrations for both enantiomers than Chinese. This
can be partly explained by the fact that the CV of CYP3A4 abundance is 3-fold higher for
Caucasians compared to Chinese (Achour et al., 2014, Shu et al., 2000), and that the allelic
variants of CYP2B6 and CYP3A4 appeared to be more frequent in Caucasian than in Asian
(Li and Bluth, 2011). The latter fact may also explain the larger variations in the kinetics of S-
methadone within the Caucasian population observed in the current study, given that CYP2B6

shows stereoselectivity towards to metabolism of S-methadone (Chang et al., 2011).

The reported CYP abundances combined with kinetic data for the respective rCYPs were
used as the second source to describe inter-individual variation in metabolism of methadone
enantiomers using a PBK model integrated with Monte Carlo simulations. Generally, the
predicted GM of Cuax in the heart venous blood and the corresponding CV values were
comparable with the results obtained from the individual PBK models, especially for the
Caucasian population. For the Chinese population the predicted GM of Cpax in the heart venous
blood for the two enantiomers showed a 1.2-fold differences between the two approaches. The
reasons underlying this observation may be related to the fact that the ISEF values used for the
Chinese models were derived using fmcyp obtained from Caucasian microsomes due to the
absence of Chinese microsomal data. The derivation of ISEFs was reported to vary among
studies and be dependent on the accessory proteins (Chen et al., 2011; Crewe et al., 2011).
Crewe et al. (2011) demonstrated that ISEFs for CYP2C9 differed up to 10-fold between rCYP
systems with and without Cyt b5, indicating that ISEFs were sensitive to the differences in Cyt
b5 and the CYP450/Cyt b5 ratio can be used to indicate the influences of Cyt b5 variations on
ISEFs. In the current study, the CYP450/Cyt b5 ratio of 25 Caucasian HLM is 1 while the ratio
for 25 Chinese HLM was much higher amounting to around 10 (Table S1,). Given that both
the Cyt b5 content and CYP450/Cyt b5 ratio differed between the two populations, the ISEFs
determined based on Caucasian microsomal kinetics may not completely capture the
discrepancy between rCYP system and HLM system for the Chinese population. Further
studies on Chinese specific ISEFs are needed to improve the prediction. Moreover, together
with reporting rCYPs catalytic data, assay specific ISEF values should ideally also be derived
and reported, since the absence of these ISEFs hamper the use of reported rCYPs data, for
example for QIVIVE.
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Altogether, comparing the results obtained from the individual PBK models and the Monte
Carlo prediction indicates that both approaches similarly predict the inter-individual and inter-
ethnic variations in the kinetics of R-methadone and to a lesser extent S-methadone. This
implies that both groups of 25 Caucasian and 25 Chinese individuals were able to represent the

inter-ethnic kinetic variations between Caucasians and Chinese on a population level.

Comparing the CSAF values of the Caucasian and the Chinese to the default safety factor
of 3.16 for kinetic differences used in chemical risk assessments (IPSC, 2005) indicates a
limited inter-individual kinetic variation in each population for both enantiomers. When
considering the combined population, the obtained CSAFs for S-methadone were somewhat
higher than 3.16, but for R-methadone this default uncertainty factor for interindividual
differences in kinetics appears sufficiently protective. For both enantiomers, the MOSs were
2-fold higher for the Caucasians compared to the Chinese, indicating that, based on the kinetic
differences observed, the Chinese population may be at extra risk towards methadone-induced
cardiotoxicity. The BMDL of rac-methadone for the average Caucasian was 24 mg/day (Shi
et al., 2020a). After applying the CSAF of rac-methadone obtained using the same approach
the MOS values obtained were 4- to 9-fold lower than the MOS values of R-methadone for the
Caucasians, indicating administering only R-methadone might decrease the risk of methadone-
induced cardiotoxicity, which is in agreement with the study of Ansermot et al. (2010) where
the replacement of rac-methadone by R-methadone was shown to reduce the prolonged QTc
interval in opioid addiction patients, thus the use of R-methadone is highly recommended in

the clinic.

In the current study the inter-ethnic and inter-individual variation in methadone-induced
cardiotoxicity were assessed using the variability in metabolic kinetics, which could to some
extent reflect the overall variability in the populations given the significant role of variation in
methadone blood concentrations in the variation in the individual sensitivity in the clinical
settings (Eap et al., 2002; Li et al., 2008). HiPSC-CMs derived from different donors have been
demonstrated as a potential tool to study the inter-individual variability in the toxicodynamics
of drug-induced cardiotoxic effects (Burnett et al., 2021). To what extent a chemical shows
such inter-individual variation in toxicodynamics for cardiotoxicity may be chemical-specific
and also dependent on the type of dynamic endpoint quantified (e.g. QT prolongation, beating
rate, peak amplitude and cell viability) (Blanchette et al., 2020; Burnett et al., 2019; Grimm et
al., 2018). Due to lack of such data on methadone, toxicodynamic variations could not be

included in the present approach, but future data on potential inter-ethnic and inter-individual
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variation in toxicodynamics could be combined with the data on inter-ethnic and inter-
individual variation in toxicokinetics defined in the present study to further characterize the
inter-individual variation in methadone-induced cardiotoxicity and define an overall CSAF that

also includes a CSAF for interindividual differences in toxicodynamics (HDak).

In conclusion, we demonstrated that integrating in vitro cardiotoxicity data, PBK modelling
and Monte Carlo simulation can be a powerful approach to predict the influence of inter-ethnic
and inter-individual kinetic variations for the sensitivity towards on R- and S-methadone-
induced cardiotoxicity. PBK models based on either HLM kinetics or rCYPs kinetics similarly
predicted the inter-ethnic and inter-individual kinetic variations for the methadone enantiomers,
while the data also revealed the importance of the scaling factors used when rCYP systems are
applied. Furthermore, based on the kinetic differences Chinese were predicted to be more
sensitive towards methadone-induced cardiotoxicity making it even more important to replace
rac-methadone by R-methadone to decrease the risk of methadone-induced cardiotoxicity in
the clinical setting. Altogether, the present study shows that this PBK modeling-based NAM
approach combining in vitro data and in silico modelling is promising to predict the role of
kinetics in inter-ethnic and inter-individual variation in cardiotoxicity, which can be used to

refine the cardiac safety evaluation in the preclinical stage.
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Figure S1 SCs of PBK model parameters for the prediction of steady-state Cmax of R-methadone (a)
and S-methadone (b) in the heart venous blood upon the oral repeated methadone enantiomer doses of
10 mg enantiomers/day (white bars for Caucasians, black bars for Chinese) and 100 mg
enantiomers/day (white bars with dots for Caucasians, black bars with dots for Chinese) for 30 days.
BW, body weight; VLc, fraction of liver; RCLRmet and RCLSmet, renal clearance of R- and S-
methadone; ka, absorption rate constant; Fa, oral fraction absorbed; MPPGL, microsomal protein per
gram of liver; VmaxRmetc and VmaxSmetc, unscaled maximum rate of R- and S-methadone
metabolism in liver; KmRmet and KmSmet, Michaelis-Menten constant for R- and S-methadone

metabolism in liver.
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Figure S2 Blood concentration-time curves of R- methadone (a, ¢) and S-methadone (b, d) in human

Chapter 4

predicted with the PBK model (lines) using HLM kinetic data and published in vivo data (dots) after a
repeated oral rac-methadone dose of 70 mg/day for 60 days (a, b) (Foster et al., 2000) and 40 mg/day
for 30 days (¢, d) (Garimella et al., 2015).
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Figure S3 Blood concentration-time curves of R- methadone (a, ¢) and S-methadone (b, d) in human
predicted with the PBK model (lines) using rCYPs kinetic data and published in vivo data (dots) after
a repeated oral rac-methadone dose of 70 mg/day for 60 days (a, b) (Foster et al., 2000) and 40 mg/day
for 30 days (¢, d) (Garimella et al., 2015).

Figure S4 Concentration-response curves for the effect of rac-methadone (circles), R-methadone
(squares) and S-methadone (triangles) on corrected field potential duration (FPDc) in human induced
pluripotent stem cell derived cardiomyocytes detected by the multielectrode array. The concentration-
response curve of rac-methadone (Shi et al., 2020a) was corrected to the curve of R- and S-methadone
based on the potency difference between R- and S-methadone in blocking potassium channels as

reported in Eap et al., (2007).

Figure S5 Correlation between Cytochrome b5 (Cyt bS) content and catalytic efficiency (a), Vimax (b)
and Kn, (¢). Dots in blue, green, orange and red represent the data for R-methadone in Caucasians, for
S-methadone in Caucasians, R-methadone in Chinese and S-methadone in Chinese, respectively. The
correlation coefficients (r) for the correlations are as follows: r=0.79**** for R-methadone; r=0.79****
for S-methadone (a), r=0.82**** for R-methadone; r=0.8**** for S-methadone (b) and r=0.19 for R-
methadone; =-0.06 for S-methadone (¢). The data distribution was checked using Kolmogorov-

Smirnov normality test. Since most data sets were log-normally distributed, nonparametric Spearman’s
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correlation was used. A p value < 0.05 was regarded as statistically significant. The r values are marked
with * with p < 0.05: *, p < 0.01: **, p < 0.001: *** and p < 0.0001: **** Statistical analysis was
performed by Graph Pad Prism 8.0 (GraphPad Software Inc.).

Supplementary materials 2

Model code for Caucasian population without Monte Carlo simulation. The enantiomeric interaction equations
are shown in italic.

;Model code

; Physiological parameters

;Tissue volumes (L or Kg)

BW =170 ; body weight human in kg (Brown et al., 1997)
; all fractions taken from Brown et al. (1997)
VLc =0.0257 ; fraction of liver tissue
VFc=0.2142 ; fraction of fat tissue
VLuc = 0.0076 ; fraction of lung tissue
VAc= 0.0198 ; fraction of arterial blood: 0.074*1/4
VVc =0.0593 ; fraction of venous blood: 0.074*3/4
VKc = 0.004 ; fraction of kidney tissue
VHc = 0.0047 ; fraction of heart tissue -
VRc =0.09-VLc - VLuc - VKc - VHe ; fraction of richly perfused tissue =
VSc =0.746-VFc ; Fraction of blood flow to slowly perfused tissue 2
; total of fractions = 0.9151 %‘
VL =VLc¢ * BW ; volume of liver 5
VF = VFc¢ * BW ; volume of fat
VLu=VLuc * BW ; volume of lungs
VK = VKc * BW ; volume of kidneys
VH = VHc * BW ; volume of heart
VR = VRc * BW ; volume of richly perfused tissue
VS =VSc * BW ; volume of slowly perfused tissue
VA =VAc * BW ; volume of arterial blood
VV =VVc * BW ; volume of venous blood
;Blood flow rates (L/h)
QC=15*BW»0.74 ; Info: QC =15 * BW"0.74 (Brown, 1997)
QLc=0.227 ; Fraction of blood flow to liver
QFc =10.052 ; Fraction of blood flow to fat
QKc=0.175 ; fraction of blood flow to kidneys
QHc =0.04 ; fraction of blood flow to heart
QSc =0.24-QFc ; Fraction of blood flow to slowly perfused tissue
QRc =0.76-QLc-QKc-QHe ; fraction of blood flow to rapidly perfused tissue

; total of fractions = 1
; all fractions taken from Brown 1997

QL =QLc*QC ; blood flow rate to liver in L/hr

QF = QFc*QC ; blood flow rate to fat

QK =QKc *QC ; blood flow rate to kidneys

QH = QHc*QC ; blood flow rate to heart

QR =QRc*QC ; blood flow rate to richly perfused tissue
QS =QSc*QC ; blood flow rate to slowly perfused tissue

; Partition Coefficients

; R-Methadone

PLRmet = 12.53 ; liver/blood partition coefficient R-Methadone
PFRmet = 3.33 ; fat/blood partition coefficient R-Methadone
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PRRmet = 12.53 ; richly perfused tissues/blood partition coefficient R-Methadone
PSRmet =7.71 ; slowly perfused tissues/blood partition coefficient R-Methadone
PLuRmet = 1.77 ; lung/blood partition coefficient R-Methadone

PKRmet = 7.6 ; kidney/blood partition coefficient R-Methadone

PHRmet =4.93 ; heart/blood partition coefficient R-Methadone

; S-Methadone

PLSmet =11.99 ; liver/blood partition coefficient S-Methadone

PFSmet = 2.54 ; fat/blood partition coefficient S-Methadone

PRSmet=11.99 ; richly perfused tissues/blood partition coefficient S-Methadone
PSSmet =7.39 ; slowly perfused tissues/blood partition coefficient S-Methadone
PLuSmet = 1.71 ; lung/blood partition coefficient S-Methadone

PKSmet = 7.29 ; kidney/blood partition coefficient S-Methadone

PHSmet =4.73 ; heart/blood partition coefficient S-Methadone

B

; Biochemical parameters

;Linear uptake rate (/h)

ka=10.59 ; obtained from Foster et al. (2000); Wolff et al. (2000)

;Fraction absorbed

Fa=0.88 ; obtained from Ke et al. (2013)

;Renal clearance (L/h)

RCLRmet =1.8 ; average values obtained from Boulton et al. (2001); Kharasch et al. (2009)
Foster et al. (2000)

RCLSmet =1.1 ; average values obtained from Boulton et al. (2001); Kharasch et al. (2009)

Foster et al. (2000)

;Metabolism liver
;Scaling factors

ISEFCYP2B6R=0.13 ; corrected based on Totah et al. (2007) (2008)

ISEFCYP3A4R=0.04 ; corrected based on Totah et al. (2007) (2008)

ISEFCYP2CI9R=0.1 ; corrected based on Totah et al. (2007) (2008)

ISEFCYP2B6S=0.13 ; corrected based on Totah et al. (2007) (2008)

ISEFCYP3A4S=0.03 ; corrected based on Totah et al. (2007) (2008)
ISEFCYP2C19S=0.39 ; corrected based on Totah et al. (2007) (2008)

aCYP2B6 =17 ; EM CYP abundance level pmol/mg CYPisoform from Barter et al. (2013)
;aCYP2B6 =6 ; PM CYP abundance level pmol/mg CYPisoform from Barter et al. (2013)
aCYP3A4 =93 ; CYP abundance level pmol/mg CYPisoform from Achour et al. (2014)
n=713

aCYP2C19=11 ; CYP abundance level pmol/mg CYPisoform from Achour et al. (2014),
n=76;

MPL=32 ; liver microsomal protein yield (mg/gram liver) (Barter et al., 2007)
L=VLc*1000 ; liver = 25.7 (gram/kg BW)

;in vitro recombinant incubation of R-methadone (pmol/min/nmol CYP)

VmaxRmetCYP2B6m = 36 ; Totah et al. (2007)

VmaxRmetCYP3A4m = 43 ; Totah et al. (2007)

VmaxRmetCYP2C19m = 22 ; Totah et al. (2007)

;metabolites of R-methadone, unscaled maximum rate of metabolism (pmol/mg protein/min)
VmaxRmetCYP2B6c = VmaxRmetCYP2B6m*ISEFCYP2B6R*aCYP2B6
VmaxRmetCYP3A4c = VmaxRmetCYP3A4m*ISEFCYP3A4R*aCYP3A4
VmaxRmetCYP2C19¢ = VmaxRmetCYP2C19m*ISEFCYP2C19R*aCYP2C19

;metabolites of R-Methadone, scaled maximum rate of metabolism (umol/h)
VMaxRmetCYP2B6 = VmaxRmetCYP2B6¢ / 1000000 * 60 * MPL * L * BW
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VMaxRmetCYP3A4 = VmaxRmetCYP3A4c / 1000000 * 60 * MPL * L * BW
VMaxRmetCYP2C19= VmaxRmetCYP2C19c¢ / 1000000 * 60 * MPL * L * BW

;metabolites of R-methadone, affinity constants (umol/L)
KmRmetCYP2B6 = 60

KmRmetCYP3A4 =137

KmRmetCYP2C19 =97

;in vitro recombinant incubation of S-methadone (pmol/min/nmol CYP)

VmaxSmetCYP2B6m = 15 ; Totah et al. (2007)
VmaxSmetCYP3A4m = 46 ; Totah et al. (2007)
VmaxSmetCYP2C19m = 8 ; Totah et al. (2007)

;metabolites of S-methadone, unscaled maximum rate of metabolism (pmol/mg protein/min)
VmaxSmetCYP2B6¢c = VmaxSmetCYP2B6m*ISEFCYP2B6S*aCYP2B6
VmaxSmetCYP3A4c = VmaxSmetCYP3A4m*ISEFCYP3A4S*aCYP3A4
VmaxSmetCYP2C19¢c = VmaxSmetCYP2C19m*ISEFCYP2C19S*aCYP2C19

; metabolites of S-methadone, scaled maximum rate of metabolism (umol/h)
VMaxSmetCYP2B6 = VmaxSmetCYP2B6¢ / 1000000 * 60 * MPL * L * BW
VMaxSmetCYP3A4 = VmaxSmetCYP3A4c / 1000000 * 60 * MPL * L * BW
VMaxSmetCYP2C19 = VmaxSmetCYP2C19c¢ / 1000000 * 60 * MPL * L * BW

;metabolites of S-methadone, affinity constants (umol/L)
KmSmetCYP2B6 = 16

<

KmSmetCYP3A4 = 149 5
KmSmetCYP2C19 = 125 2
; =
;Run settings &}
;molecular weight (g/mol)

MWRmet=309.4 ; molecular weight

MWSmet= 309.4 ; molecular weight
; R-methadone Given dose (mg/kg bw) and oral dose in umol/kg bw

TDOSERmet = 30 ; whole body total dose in mg

GDOSERmet = TDOSERmet / BW ; given dose in mg per kg bw

ODOSERmet = GDOSERmet * le-3 / MWRmet *1e6 ; determine odose (umol/kg bw)

DOSERmet = ODOSERmet * BW ; determine dose in pmol

; S-methadone Given dose (mg/kg bw) and oral dose in pmol/kg bw
TDOSESmet = 30 ; whole body total dose in mg
GDOSESmet = TDOSESmet / BW ; given dose in mg per kg bw
ODOSESmet = GDOSESmet * 1e-3 / MWSmet *1e6; determine odose (umol/kg bw)
DOSESmet = ODOSESmet * BW ; determine dose in pmol

dose_int=24 ; dosing interval in hours
;Time

Starttime = 0 ;in hrs

Stoptime = 30%24 ; in hrs (days * hours in a day)

DTMIN = le-6

DTMAX =1

DTOUT =0

TOLERANCE = 0.00001

;
;Kinetics

;slowly perfused tissue compartment

;ASRmet = Amount R-methadone in slowly perfused tissue (umol)
ASRmet' = QS * (CARmet - CVSRmet)
Init ASRmet =0
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CSRmet = ASRmet / VS
CVSRmet = CSRmet / PSRmet

;ASSmet = Amount S-methadone in slowly perfused tissue (umol)
ASSmet' = QS * (CASmet - CVSSmet)
Init ASSmet =0
CSSmet = ASSmet / VS
CVSSmet = CSSmet / PSSmet

; rapid perfused tissue compartment
;ARRmet = Amount R-methadone in richly perfused tissue (umol)
ARRmet' = QR * (CARmet - CVRRmet)
Init ARRmet =0
CRRmet = ARRmet / VR
CVRRmet = CRRmet / PRRmet
;ARSmet = Amount S-methadone in richly perfused tissue (umol)
ARSmet' = QR * (CASmet - CVRSmet)
Init ARSmet =0
CRSmet = ARSmet / VR
CVRSmet = CRSmet / PRSmet

;fat compartment
;AFRmet = Amount R-methadone in fat tissue (umol)
AFRmet' = QF * (CARmet - CVFRmet)
Init AFRmet =0
CFRmet = AFRmet / VF
CVFRmet = CFRmet / PFRmet

;AFSmet = Amount S-methadone in fat tissue (umol)
AFSmet' = QF * (CASmet - CVFSmet)
Init AFSmet =0
CFSmet = AFSmet / VF
CVFSmet = CFSmet / PFSmet

; uptake methadone from GI tract
;AGIRmet = Amount R-methadone remaining in GI tract (pmol)

Init AGIRmet =0
AGIRmet' = pulse(DOSERmet* Fa, 0, dose_int) + AGIRmet * -Ka

;AGISmet = Amount S-methadone remaining in GI tract (umol)

Init AGISmet =0
AGISmet' = pulse(DOSESmet* Fa, 0, dose_int) + AGISmet * -Ka

;liver compartment
;ALRmet = Amount R-methadone in liver tissue (umol)

ALRmet'= QL * (CARmet - CVLRmet )+ (AGIRmet * Ka) - AMLRmetCYP2B6' -AMLRmetCYP3A4' -
AMLRmetCYP2C19'

Init ALRmet =0

CLRmet = ALRmet/ VL

CVLRmet = CLRmet / PLRmet

;metabolism described by Michaelis-Menten Kinetics
;AMLRmetCYP2B6=Amount R-methadone metabolized in liver to R-EDDP by CYP2B6
;AMLRmetCYP2B6' = (VmaxRmetCYP2B6*CVLRmet) / (KmRmetCYP2B6 + CVLRmet)
;init AMLRmetCYP2B6 =0

;AMLRmetCYP3A4=Amount R-methadone metabolized in liver to R-EDDP by CYP3A4
;AMLRmetCYP3A4' = (VmaxRmetCYP3A4*CVLRmet) / (KmRmetCYP3A4 + CVLRmet)
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;init AMLRMetCYP3A4 =0

;AMLRmetCYP2C19=Amount R-methadone metabolized in liver to R-EDDP by CYP2C19
;AMLRmetCYP2C19' = (VmaxRmetCYP2C19*CVLRmet) / (KmRmetCYP2C19 + CVLRmet)
;init AMLRMetCYP2C19 =0

smetabolism described by enantiomeric interactions equations

AMLRmetCYP2B6'=VmaxRmetCYP2B6*((CVLRmet*CVLRmet/(ahCYP2B6*KmRmetCYP2B6*KmRm
etCYP2B6))+(CVLRmet/KmRmetCYP2B6)+(CVLRmet*CVLSmet/(bhCYP2B6*KmRmetCYP2B6*KmS
metCYP2B6)))/(1+(CVLRmet*CVLRmet/(ahCYP2B6*KmRmetCYP2B6*KmRmetCYP2B6))+(2*CVLR
met/KmRmetCYP2B6)+(CVLSmet*CVLSmet/(ahCYP2B6*KmSmetCYP2B6*KmSmetCYP2B6))+(2*C

VLSmet/KmSmetCYP2B6)+(2*CVLRmet*CVLSmet/(bhCYP2B6*KmRmetCYP2B6*KmSmetCYP2B6)))

ahCYP2B6=5 ; homotropic interaction factor (Totah et al., 2007)
bhCYP2B6=7 ; heterotropic interaction factor (Totah et al., 2007)

init AMLRmetCYP2B6 = 0

AMLRmetCYP3A44' =
(VmaxRmetCYP3A44*((CVLRmet*CVLRmet/(ahCYP3A4*KmRmetCYP3A4*KmRmetCYP3A44))+(CVL
Rmet/KmRmetCYP3A4)))/(1+(CVLRmet*CVLRmet/(ahCYP344*KmRmetCYP3A44*KmRmetCYP3A4))
+(2*CVLRmet/KmRmetCYP3A4)+(CVLSmet*CVLSmet/(ahCYP3A4*KmSmetCYP344*KmSmetCYP3
A4))+(2*CVLSmet/KmSmetCYP3A4)+(2*CVLRmet*CVLSmet/(bhCYP3A4*KmRmetCYP3A4*KmSmet

CYP344))) <
S

7]

ahCYP3A44=4 ; homotropic interaction factor (Totah et al., 2007) 2
bhCYP3A44=2 ; heterotropic interaction factor (Totah et al., 2007) 2
&}

init AMLRmetCYP3A44 = 0

AMLRmetCYP2C19' =
(VmaxRmetCYP2C19*(CVLRmet/KmRmetCYP2C19))/(1+(CVLRmet*CVLRmet/(ahCYP2C19*KmRme
tCYP2C19*KmRmetCYP2C19))+(2*CVLRmet/KmRmetCYP2C19)+(CVLSmet*CVLSmet/(ahCYP2C1
9*KmSmetCYP2C19*KmSmetCYP2C19))+(2*CVLSmet/KmSmetCYP2C19)+(2*CVLRmet*CVLSmet/(
bhCYP2C19*KmRmetCYP2C19*KmSmetCYP2C19)))

ahCYP2C19=42 ; homotropic interaction factor (Totah et al., 2007)
bhCYP2C19=3 ; heterotropic interaction factor (Totah et al., 2007)

init AMLRmetCYP2C19 = 0

;S-methadone
;ALSmet = Amount S-methadone in liver tissue (pmol)

ALSmet' = QL * (CASmet - CVLSmet )+ (AGISmet * Ka) - AMLSmetCYP2B6' -AMLSmetCYP3A4' -
AMLSmetCYP2C19'

Init ALSmet =0

CLSmet = ALSmet/ VL

CVLSmet = CLSmet / PLSmet

;metabolism described by Michaelis-Menten Kinetics
;AMLSmetCYP2B6=Amount Smet metabolized in liver to S-EDDP by CYP2B6
;AMLSmetCYP2B6' = (VmaxSmetCYP2B6*CVLSmet) / (KmSmetCYP2B6 + CVLSmet)
;init AMLSmetCYP2B6 =0

;AMLSmetCYP3A4=Amount Smet metabolized in liver to S-EDDP by CYP3A4

;AMLSmetCYP3A4' = (VmaxSmetCYP3A4*CVLSmet) / (KmSmetCYP3A4 + CVLSmet)
;init AMLSmetCYP3A4 =0
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;AMLSmetCYP2C19=Amount Smet metabolized in liver to S-EDDP by CYP2C19
;AMLSmetCYP2C19' = (VmaxSmetCYP2C19*CVLSmet) / (KmSmetCYP2C19 + CVLSmet)
;init AMLSMetCYP2C19 =0

smetabolism described by enantiomeric interactions equations

AMLSmetCYP2B6' =
VmaxSmetCYP2B6*((CVLSmet*CVLSmet/(ahCYP2B6*KmSmetCYP2B6*KmSmetCYP2B6))+(CVLSm
et/KmSmetCYP2B6)+(CVLRmet*CVLSmet/(bhCYP2B6*KmRmetCYP2B6*KmSmetCYP2B6)))/(1+(CV
LRmet*CVLRmet/(ahCYP2B6*KmRmetCYP2B6*KmRmetCYP2B6))+(2*CVLRmet/KmRmetCYP2B6)
+(CVLSmet*CVLSmet/(ahCYP2B6*KmSmetCYP2B6*KmSmetCYP2BG6))+(2*CVLSmet/KmSmetCYP2
B6)+(2*CVLRmet*CVLSmet/(bhCYP2B6*KmRmetCYP2B6*KmSmetCYP2BG6)))

ahCYP2B6=5 ; homotropic interaction factor (Totah et al., 2007)
bhCYP2B6=7 ; heterotropic interaction factor (Totah et al., 2007)

init AMLSmetCYP2B6 = 0

AMLSmetCYP3A44' =
(VmaxSmetCYP3A4*((CVLSmet*CVLSmet/(ahCYP3A4*KmSmetCYP3A4*KmSmetCYP3A44))+(CVLS
met/KmSmetCYP3A44)))/(1+(CVLRmet*CVLRmet/(ahCYP344*KmRmetCYP3A4*KmRmetCYP3A44))+(
2*CVLRmet/KmRmetCYP3A4)+(CVLSmet*CVLSmet/(ahCYP3A4*KmSmetCYP3A44*KmSmetCYP3A4)
)+(2*CVLSmet/KmSmetCYP3A44)+(2*CVLRmet *CVLSmet/(bhCYP344*KmRmetCYP3A4*KmSmetCY
P344)))

ahCYP3A44=4 ; homotropic interaction factor (Totah et al., 2007)
bhCYP3a4=2 ; heterotropic interaction factor (Totah et al., 2007)

init AMLSmetCYP344 = 0

AMLSmetCYP2C19' =
(VmaxSmetCYP2C19*(CVLSmet/KmSmetCYP2C19))/(1+(CVLRmet*CVLRmet/(ahCYP2C19*KmRmet
CYP2C19*KmRmetCYP2C19))+(2*CVLRmet/KmRmetCYP2C19)+(CVLSmet*CVLSmet/(ahCYP2C19
*KmSmetCYP2C19*KmSmetCYP2C19))+(2*CVLSmet/KmSmetCYP2C19)+(2*CVLRmet*CVLSmet/(b
hCYP2C19*KmRmetCYP2C19*KmSmetCYP2C19)))

ahCYP2C19=42 ; homotropic interaction factor (Totah et al., 2007)
bhCYP2C19=3 ; heterotropic interaction factor (Totah et al., 2007)

init AMLSmetCYP2CI19 = 0

;kidney compartment
;AKRmet = Amount R-methadone in kidney tissue (umol)

AKRmet'= QK * (CARmet - CVKRmet)- ACLRmet'
Init AKRmet =0

CKRmet = AKRmet / VK

CVKRmet = CKRmet / PKRmet

;ACLRmet=Amount R-methadone cleared renally

ACLRmet'=RCLRmet*CVKRmet
init ACLRmet =0

;AKSmet = Amount S-methadone in kidney tissue (umol)

AKSmet' = QK * (CASmet - CVKSmet)- ACLSmet'
Init AKSmet =0

CKSmet = AKSmet / VK

CVKSmet = CKSmet / PKSmet

;ACLSmet=Amount S-methadone cleared renally
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init ACLSmet =0

;Heart compartment
;AHRmet = Amount R-methadone in heart tissue (umol)
AHRmet' = QH * (CARmet - CVHRmet)
Init AHRmet =0
CHRmet = AHRmet / VH
CVHRmet = CHRmet / PHRmet

;AHSmet = Amount S-methadone in heart tissue (umol)
AHSmet' = QH * (CASmet - CVHSmet)
Init AHSmet =0
CHSmet = AHSmet / VH
CVHSmet = CHSmet / PHSmet

;lung compartment
;ALuRmet = Amount R-methadone in lung tissue (umol)
ALuRmet' = QC * (CVRmet - CALuRmet)
Init ALuRmet =0
CLuRmet = ALuRmet / VLu
CALuRmet = CLuRmet / PLuRmet

;ALuSmet = Amount S-methadone in lung tissue (umol)
ALuSmet' = QC * (CVSmet - CALuSmet)
Init ALuSmet =0
CLuSmet = ALuSmet/ VLu
CALuSmet = CLuSmet / PLuSmet

Chapter 4

; arterial blood compartment

;CARmet = Concentration arterial blood R-methadone
AARmet' = QC * (CALuRmet- CARmet);
Init AARmet =0
CARmet= AARmet/ VA

;CASmet = Concentration arterial blood S-methadone
AASmet' = QC * (CALuSmet- CASmet);
Init AASmet =0
CASmet= AASmet/ VA

; venous blood compartment
;AVRmet = amount venous blood R-methadone (umol)

AVRmet' = (QF * CVFRmet + QR * CVRRmet + QS * CVSRmet + QL * CVLRmet + QK * CVKRmet +
QH *CVHRmet- QC * CVRmet)

Init AVRmet =0

CVRmet = (AVRmet / VV)

;AVSmet = amount venous blood S-methadone (umol)

AVSmet'= (QF * CVFSmet + QR * CVRSmet + QS * CVSSmet + QL * CVLSmet + QK * CVKSmet +
QH *CVHSmet- QC * CVSmet)

Init AVSmet =0

CVSmet = (AVSmet/ VV)

;
;Mass balance calculations

{Mass Balance}

TotalRMet' = pulse(DOSERmet *Fa, 0, dose_int)

init TotalRmet = 1E-50

CalculatedRmet = AFRMet + ASRmet+ ARRmet + ALRmet+ AVRmet+ AARmet + AGIRmet +
AMLRmetCYP2B6 + AMLRmetCYP3A4 + AMLRmetCYP2C19+ALuRmet + AKRmet + AHRmet +
ACLRmet
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ERRORRmet = ((TotalRmet - CalculatedRmet) / (TotalRmet + 1E-30)) * 100
MASSBALRmet = TotalRmet - CalculatedRmet + 1

TotalSMet' = pulse(DOSESmet *Fa, 0, dose_int)

init TotalSmet = 1E-50

CalculatedSmet = AFSMet + ASSmet+ ARSmet + ALSmet+ AVSmet+ AASmet + AGISmet +
AMLSmetCYP2B6 + AMLSmetCYP3A4 + AMLSmetCYP2C19 + ALuSmet + AKSmet + AHSmet +
ACLSmet

ERRORSmet = ((TotalSmet - CalculatedSmet) / (TotalSmet + 1E-30)) * 100
MASSBALSmet = TotalSmet - CalculatedSmet + 1

;Calculation with model

CVRmetB = CVRmet * MWRmet ; concentration of R-methadone in venous blood (pg/L)
AUCRmet' = CVRmetB ; calculate AUC for R-methadone

init AUCRmet =0

CVSmetB = CVSmet * MWSmet ; concentration of S-methadone in venous blood (ng/L)
AUCSmet' = CVSmetB ; calculate AUC for S-methadone

init AUCSmet =0

CVheartRmet= CVHRmet*MWRmet ; concentration of R-methadone in the heart venuos blood (ng/L)
CVheartSmet= CVHSmet*MW Smet ; concentration of S-methadone in the heart venuos blood (ng/L)

Supplementary materials 3

Model code of Monte Carlo simulation for Caucasian population

;CYP2B6 EM

;aCYP2B6c = init(exp(normal(2.38, 0.955)))

;aCYP2B6 = IF aCYP2B6¢ >0.61 AND aCYP2B6¢ < 189.01 THEN aCYP2B6¢ ELSE 100001 ;Values higher
or lower than 3 times the SD are removed

;CYP2B6 PM

aCYP2B6c¢ = init(exp(normal(0.99, 1.269)))

aCYP2B6 = IF aCYP2B6¢ >0.06 AND aCYP2B6¢ < 120.66 THEN aCYP2B6¢ ELSE 100001 ;Values higher
or lower than 3 times the SD are removed

;CYP3A4 general population n=713

aCYP3Ad4c = init(exp(normal(4.28, 0.71)))

aCYP3A4 =1F aCYP3A4c >8.58 AND aCYP3A4c < 608.6 THEN aCYP3A4c ELSE 100001 ;Values higher or
lower than 3 times the SD are removed

;CYP2C19 general population n=76

aCYP2C19c = init(exp(normal(2.14, 0.717)))

aCYP2C19 =1IF aCYP2C19¢ >0.99 AND aCYP2C19c¢ < 73.12 THEN aCYP2C19¢ ELSE 100001 ;Values
higher or lower than 3 times the SD are removed
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Abstract

The development of non-animal based New Approach Methodologies (NAMs) for chemical
risk assessment and safety evaluation is urgently needed. The aim of the present study was to
investigate the applicability of an in vitro in silico approach to predict human cardiotoxicity of
the herbal alkaloid ibogaine and its metabolite noribogaine, being promising anti-addiction
drugs. Physiologically based kinetic (PBK) models were developed using in silico-derived
parameters and biokinetic data obtained from in vitro liver microsomal incubations and Caco-
2 transport studies. Human induced pluripotent stem cell-derived cardiomyocytes combined
with the multi-electrode array (MEA) assay were used to determine in vitro concentration-
dependent cardiotoxicity reflected by prolongation of field potential duration, which was
subsequently translated to in vivo dose-dependent QTc prolongation using PBK model based
reverse dosimetry. Results showed that the predictions matched well with available in vivo
kinetic data and QTc data for ibogaine and noribogaine available in literature, indicating a good
performance of the NAM. Benchmark dose analysis of the predicted dose response curves
adequately predicted the onset of in vivo cardiotoxicity detected by QTc prolongation upon
oral exposure to ibogaine and noribogaine. The present study provides an additional proof of
principle of using PBK modeling-based reverse dosimetry as a NAM to predict human

cardiotoxicity.
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1. Introduction

In line with the 3Rs principle, the development of non-animal based novel methods has been a
leading research topic towards New Approach Methodologies (NAMs) for chemical risk
assessment and safety evaluation (Andersen et al., 2019; ICCVAM, 2018; Taboureau et al.,
2020).The NAMSs using in vitro and in silico models have become increasingly important for
predicting human toxicity as they are high throughput in generating data and reduce animal use
and costs (Bos et al., 2020; Patterson et al., 2020). Within the frame of NAMs, the biological
effects of chemicals are characterized by in vitro toxicity assays with target organ specificity
and reflecting the relevant mode of action, while the biokinetics related to absorption,
distribution, metabolism and distribution (ADME) can be captured by using in vitro and/or
computational models (Andersen et al., 2019; Punt et al., 2020). One good example of such
NAMs is so-called physiologically based kinetic (PBK) modelling-based reverse dosimetry,
which has been shown to be of use for quantitative in vitro in vivo extrapolation (QIVIVE)
enabling definition of in vivo dose response curves for different toxic endpoints (Abdullah et
al., 2016; Gilbert-Sandoval et al., 2020; Louisse et al., 2010; Rietjens et al., 2011; Strikwold et
al., 2017; Zhao et al., 2019), including cardiotoxicity (Shi et al., 2020a).

In our previous work, we demonstrated that in vivo methadone-induced QTc prolongation
(heart rate corrected time duration from ventricular depolarization to repolarization) can be
adequately predicted based on in vitro cardiotoxic effects of methadone on human induced
pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) combined with PBK modelling
(Shi et al., 2020a). Given that cardiotoxicity is one of the most common toxic endpoints and a
main concern for discontinuing drug development (Ovics et al., 2020; Pang et al., 2019), it is
of importance to validate the applicability and accuracy of this newly developed NAM by
providing additional proofs of principle for the evaluation of cardiotoxicity. Thus the aim of
the present study was to apply the developed PBK modelling-based reverse dosimetry approach
to predict the cardiotoxicity of ibogaine and its metabolites, which are plant-based substances
that attracted special attention due to their potential cardiotoxicity occurring in the clinical

setting (Schep et al., 2016).

Ibogaine is an indole alkaloid naturally occurring in the West African shrub Tabernanthe
iboga, which was traditionally used for medical treatment and religious ceremonies (Davis et
al., 2017; Goutarel et al., 1993; Litjens and Brunt, 2016; Mash et al., 2018). Nowadays ibogaine

is banned or allowed only under medical supervision in most countries due to its psychoactive
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properties with an exception of New Zealand Noller et al., 2018). It is used given that a single
high dose of ibogaine can be effective for reducing drug-induced withdrawal symptoms in
human (Alper, 1999; Mash et al., 2018; Noller et al., 2018). Ibogaine is mainly metabolized by
the hepatic cytochromes P450 (CYPs) via O-demethylation to the primary metabolite
noribogaine, which is also psychoactive and has pharmacological effects (Obach et al., 1998;
Glue et al., 2016; Mash et al., 2016; Litjens and Brunt, 2016). The major enzyme involved in
the conversion of ibogaine to noribogaine has been identified in both in vitro and in vivo studies
to be CYP2D6 (Obach et al., 1998; Glue et al., 2015b), with minor contributions from CYP2C9
and CYP3A4 (Obach et al., 1998). Subsequently, noribogaine is cleared via glucuronidation to
noribogaine glucuronide (Glue et al., 2016; Glue et al., 2015a; Glue et al., 2015b) (Figure 1).

The efficacy and safety of ibogaine and noribogaine for the treatment of drug addiction has
been under debate over decades. Despite evidence obtained in preclinical and clinical studies
showing promising pharmacological efficacy, cardiotoxicity was identified as the major safety
concern for its clinical use (Schep et al., 2016). Several fatalities and case reports described
patients who received a high dose of ibogaine after which they experienced prolonged QTc
interval, which could further develop to cardiac arrythmia and even sudden death (Asua, 2013;
Grogan et al., 2019; Hildyard et al., 2016; Hoelen et al., 2009; O'Connell et al., 2015; Paling
et al., 2012; Pleskovic et al., 2012; Steinberg and Deyell, 2018; Vlaanderen et al., 2014).
Furthermore, Glue et al. (2016) observed a dose-dependent effect of noribogaine on QTc
prolongation in opioid-dependent patients. The observed QT prolongation could be associated
with the potential inhibitory effect of both compounds on human ether-a-go-go-related gene
(hERG) channels that play a critical role in cardiac repolarization (Martin et al., 2004). Based
on in vitro studies using the electrophysiological-based patch clamp technique, both ibogaine
and noribogaine were reported to block the hERG channels with similar potency (Alper et al.,
2016; Koenig et al., 2014; Rubi et al., 2017).

Figure 1 Metabolic pathway of ibogaine to noribogaine by cytochromes P450 (CYPs) and
subsequent conversion of noribogaine to noribogaine glucuronide by glucuronosyltransferases
(UGTs).
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In the present study, to predict the cardiotoxicity upon oral exposure to ibogaine or
noribogaine using PBK model based reverse dosimetry, the in vitro cardiotoxicity of the two
compounds was quantified in hiPSC-CMs using the multiple-electrode array (MEA) technique.
The obtained data were subsequently combined with in vitro biokinetic data and used in a PBK
model based reverse dosimetry approach to predict human dose-response curves. The hiPSC-
CM MEA assay quantifies the extracellular field potential duration corrected for beat rate
(FPDc) as an in vitro surrogate of QTc prolongation in the human electrocardiogram (ECG).
The biokinetic data describing absorption and metabolism of ibogaine and noribogaine,
obtained from in vitro experiments, were integrated in a PBK model for ibogaine with a
submodel for noribogaine in human. Subsequently the PBK model was used to translate the in
vitro concentration-dependent cardiotoxicity to the predicted dose-dependent cardiotoxic
effects on QTc prolongation in human. The obtained data were compared to reported human
in vivo data on ibogaine and noribogaine-induced QTc¢ prolongation. Benchmark dose (BMD)
analysis of the predicted in vivo dose-response curves was performed to allow comparison to
available data on human cardiotoxicity and validate the predictions, thus providing insight in
the use of the NAM to evaluate the risk of ibogaine and noribogaine-induced cardiotoxicity in

the clinical setting.

2. Materials and methods

2.1. Chemicals and biological materials

Ibogaine hydrochloride (99.5%), noribogaine hydrochloride (98.8%) and noribogaine
glucuronide lithium salt (97.4%) were purchased from TLC Pharmaceutical Standards Ltd.
(Newmarket, Ontario, Canada,). Antipyrine (= 99%), bovine serum albumin (BSA, > 96%),
dofetilide (> 98%), fibronectin, fluorescein (95%), isoproterenol hydrochloride (> 98%),
methadone hydrochloride (> 98%), methanesulphonic acid (> 99%) and Tris (hydroxymethyl)
aminomethane (Tris), were purchased from Sigma-Aldrich (Zwijndrecht, The Netherlands).
Methadone was used under the opium exemption license number 104783 03 WCO, registered
at Farmatec (executive organization of the Ministry of Health, Welfare and Sport, The Hague,
The Netherlands). Dimethyl sulfoxide (DMSO, 99.7%) and sodium hydrogen carbonate
(NaHCOs3, > 99%) were obtained from Merck (Schiphol-Rijk, The Netherlands). Acetonitrile
(UPLC/MS grade) was obtained from Biosolve BV (Valkenswaard, The Netherlands). Formic
acid (FA) was purchased from VWR International (Amsterdam, The Netherlands).
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hiPSC-CM (Pluricyte® Cardiomyocytes, cat# PCMI-1031-1) and Pluricyte® Cardiomyocyte
medium were purchased from Ncardia (Leiden, The Netherlands). The human colon carcinoma
cell line Caco-2 was obtained from ATCC (Manassas, VA, USA). Dulbecco’s modified
Eagle’s medium (DMEM, GlutaMAXTM containing 4.5 g/L D-glucose and pyruvate), Hank’s
balanced salt solution (HBSS) without phenol red and phosphate-buffered saline (PBS) were
obtained from Gibco (Paisley, Scotland, UK). Non-essential amino acids (NEAA) and
penicillin-streptomycin (P/S) were purchased from Gibco (Grand Island, New York, USA).
Fetal Bovine Serum (FBS) was purchased from Bodinco BV (Alkmaar, The Netherlands).
Pooled human liver microsomes (Corning® UltraPool™ HLM 150, pooled from 150 donors
with mixed gender), reduced nicotinamide adenine dinucleotide phosphate (NADPH)
regenerating system solution A and solution B, glucuronosyltransferase (UGT) reaction mix
system solution A and solution B were purchased from Corning (Woburn, MA, USA). Pooled
human plasma and rapid equilibrium dialysis (RED) materials, including RED inserts, RED
base plates and sealing tape were obtained from Thermo Fisher Scientific (Bleiswijk, The

Netherlands).

2.2. In vitro cardiotoxicity of ibogaine and noribogaine in the hiPSC-CM

MEA assay
2.2.1. hiPSC-CM culture

Pluricyte® Cardiomyocytes (Ncardia) were prepared according to the manufacturer’s protocol
as previously described in Shi et al. (2020a). Prior to seeding, precoating was performed by
adding 2 pl of 50 pg/ml fibronectin in each well of the MEA chips (60-6well MEA200/30iR-
Ti-tcr, MCS GmbH, Ruetlingen, Germany) and the coating solution was removed after 3-h
incubation at 37 °C with 5% CO,. Cardiomyocytes were taken from liquid nitrogen and
immediately thawed in the incubator at 37 °C for exactly 4 min and then mildly transferred to
a 50 ml tube. 1 ml serum free Pluricyte® Cardiomyocyte Medium (Ncardia) was added to the
original vial for rinsing and drop-wisely transferred to the 50 ml tube, followed by a drop-wise
addition of 5 ml medium. Manually cell counting was performed using Buerker-Tuerk
Counting Chamber (Marienfeld Superior GmbH & Co. KG, Lauda-Konigshofen, Germany)
followed by a centrifugation at 300 g for 3 min at 25 °C. After removing the supernatant,
medium was carefully added to reach the aimed concentration being 10 cells/ul. Subsequently,
2 ul of cell suspension was added to each well of the MEA chips which were incubated at 37 °C
with 5% COz for 3 h. Then 200 pl of medium was filled into each well and cardiomyocytes
were maintained for 7 days (37 °C with 5% CO,) with medium refreshing every 2 days.
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2.2.2. MEA recording

The exposure and the recording of spontaneous beating of hiPSC-CMs were conducted as
previously described (Shi et al., 2020a). Stock solutions of ibogaine were prepared in
acetonitrile/water (50/50 v/v). Noribogaine and two references, dofetilide and isoproterenol,
were dissolved in DMSO. All stock solutions were diluted in culture medium to make exposure
medium with the final concentration of 0.05%(v/v) acetonitrile or 0.1% (v/v) DMSO. Based
on cytotoxicity and relevant human plasma concentrations observed upon oral administration
of ibogaine and noribogaine, the following concentrations were tested, 0 (control), 0.03, 0.1,
0.2,0.3,0.4,0.5, 1 uM (ibogaine) and 0 (control), 0.03, 0.1, 0.2, 0.3, 0.4, 1, 3 uM (noribogaine).
The test concentrations were 0 (control), 0.1, 0.3, 1, 3, 10 nM for dofetilide and 0 (control), 3,
10, 30, 100, 300 nM for isoproterenol, which are typical responsive concentrations in the

hiPSC-CM MEA assay (Zwartsen et al. 2019).

At day 7-9 post-seeding, extracellular field potentials of cardiomyocytes (Figure 2) were
accessed by using the MEA2100-system (MCS GmbH) equipped with a chamber and a heating
controller that guaranteed a stable atmosphere (37 °C with 5% COz). A 20 min equilibration
period was applied prior to the compound/ vehicle exposure. Measurements started with
replacing half of the medium in each well by fresh medium containing 0.1% (v/v) acetonitrile
or 0.2% (v/v) DMSO to reach a final concentration of 0.05% (v/v) acetonitrile or 0.1% (v/v)
DMSO, which was defined as baseline condition. Following the same way, each concentration
of the model compounds was cumulatively added to the well increasing the concentration at
each subsequent addition (Ando et al., 2017; Nozaki et al., 2017). In each MEA chip, five of
the six wells were exposed to model or reference compounds while one well served as the
vehicle control analyzed during a similar period of time as the other wells to enable corrections
for time-, addition- and vehicle-dependent effects on the field potentials. At each concentration,
exposure was conducted for 15 min followed by a 2 min recording of extracellular field
potentials. Data were recorded using Cardio 2D software Version 2.12.0 (MCS GmbH) with a
sample frequency of 10 kHZ and a 0.1-3.5 kHz band-pass filter.

2.2.3. Data analysis and statistics

Raw data obtained from the hiPSC-CM MEA assay were analyzed using Multiwell Analyzer
software Version 1.8.6.0 (MCS GmbH). Electrodes with field potentials of good quality, being
the ones with amplitudes of depolarization and repolarization peaks higher than 200 pV and

20 uV, respectively, were selected for further analysis (Ando et al., 2017; Sala et al., 2017; Shi
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et al,, 2020a). Subsequently, two parameters reflecting electrophysiological activity of
cardiomyocytes, namely field potential duration (FPD, duration between the beginning of the
sodium spike and the repolarizing peak) and RR interval (duration between two depolarization

peaks), were measured from the 2 min recording for each concentration.

In line with other MEA studies, the Fridericia formula (Eq. 1) was applied to correct for the
effect of beat rate on FPD (Ando et al., 2017; Kitaguchi et al., 2017; Vandenberk et al., 2016):

_ FPD
FPDe= 3\/ RR interval M

Where the FPD and RR-interval are expressed in seconds. Well-based FPDc were determined
by calculating the relative percentage of FPDc for the exposure measurements compared to
FPDc at baseline conditions (0.05% (v/v) acetonitrile or 0.1% (v/v) DMSO) set at 100%. The
potential effects of time, addition and vehicle on well-based FPDc were corrected for by
subtracting the responses obtained from the corresponding time-matched vehicle control well.
Irregular waveforms (Figure S1) on field potential including arrhythmia-type changes, a
flattened unclear second peak and beating arrest may occur at high concentrations (Kitaguchi
et al., 2017; Shi et al., 2020a; Zwartsen et al., 2019). For deriving concentration-response
curves of model compounds, concentrations inducing irregular waveforms were excluded

given the FPD and RR interval could not be defined.

Figure 2 Normal and prolonged waveforms of field potential observed in human induced
pluripotent stem cell-derived cardiomyocytes using the multiple-electrode array. a, field potential
duration (FPD) at baseline condition with the treatment of 0.05% (v/v) acetonitrile. b, FPD at baseline
condition with the treatment of 0.1% (v/v) DMSO. c, prolonged FPD observed at 0.4 uM ibogaine. d,
prolonged FPD observed at 0.4 uM noribogaine.
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To compare the potency of model compounds, BMD analysis was used to derive effective
concentrations causing a defined % increase in the FPDc compared to the baseline control as
described in the “Benchmark dose analysis” section. The concentration—response curves were
plotted using GraphPad Prism 5.0 with four-parameters logistic fit (GraphPad Software Inc.,
San Diego, USA). Data were collected from three independent experiments with six well
replicates (two replicates for dofetilide and isoproterenol) in each experiment. Each data point
is presented as the mean value + standard deviation (SD) of the three independent replicates.
One-way analysis of variance (ANOVA) followed by Dunnett test were conducted to assess
the effect of ibogaine and noribogaine on FPDc using GraphPad Prism 5.0 (GraphPad Software

Inc.). Significance was determined at p < 0.05.
2.3. In vitro experimental biokinetic parameters for the PBK models

2.3.1. In vitro intestinal transport studies

To estimate the intestinal absorption of ibogaine and noribogaine, a Caco-2 transport study was
performed to determine the apparent permeability coefficients (Payp) using a previously
developed method with minor modifications (Hubatsch et al., 2007; Strikwold et al., 2017).
Caco-2 cells (passages 10-15 post -thawing) were seeded onto the insert of Costar 12-well
transwell plates (Corning, 0.4 pm pored polycarbonate membrane, 12 mm diameter). The
apical compartment of each well was filled with 0.5 ml of a 4 x 10* cell suspension in culture
medium consisting of DMEM supplemented with 10% (v/v) FBS, 1% (v/v) P/S and 1% (v/v)
NEAA and the basolateral compartment was filled with 1.5 ml culture medium. The plate was
incubated under atmospheric conditions at 37°C and 5% CO> for 21-23 days, which allows
cells to grow and differentiate into a confluent monolayer. Cell culture medium was changed

every 2 days.

Stock solutions of ibogaine were prepared in acetonitrile/water (50/50 v/v). Noribogaine,
methadone (reference compound), antipyrine (passive transcellular control for the transport
studies) and fluorescein (passive paracellular control for the transport studies) were dissolved
in DMSO. Stock solutions were diluted 200-fold resulting a final test concentration of 50 pM
(125 nM for fluorescein) at which cytotoxicity was not observed (data not shown). The final

concentration of acetonitrile or DMSO was 0.25%(v/v) or 0.5% (v/v), respectively.

For the transport experiment, HBSS containing 10 mM methanesulfonic acid, NaHCO3
(final concentration 0.35 mg/ml) and the respective test compounds was used as exposure

medium (pH 6.5) in the apical compartment. HBSS containing 30 mg/ml BSA was used as
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medium in the basolateral compartment (pH 7.4). 1.5 ml basolateral transport medium was first
added, and the experiment was initiated by adding 0.5 ml exposure medium to the apical
compartment. The plate was incubated at 37 °C with 5% CO- for 20 min. Subsequently, an
aliquot of 75 pul sample was collected from the basolateral compartment and transferred to a
tube containing 150 pl ice-cold acetonitrile. To measure the mass balance (recovery), 75 ul
exposure buffer was also collected from the apical compartment before and after the incubation
and added to the tubes containing 150 pl ice-cold acetonitrile. The insert filters were washed
with PBS then cut out and transferred to 200 pl ice-cold acetonitrile for a 15 min sonification.
Samples were left on ice for 20 min and centrifuged for 45 min at 18,000g, after which

supernatants were collected for LC-MS/MS analysis.

To check the linearity of transport of test compounds, 75 pl sample was collected from the
basolateral compartment at 1, 5, 10, 20, 30 and 60 min of incubation and added to 150 pl ice-
cold acetonitrile. After each collection, an equal volume of basolateral transport medium was

added back as compensation. The calculation for each time point was corrected for the dilutions.

The integrity of the Caco-2 cell monolayer was checked by measuring the transepithelial
electrical resistance (TEER) using a Millicell ERS-2 Volt-Ohm Meter (EMD Millipore
Corporation, California, USA). Prior to the transport experiment, cells with a TEER value
between 600 and 800 Qcm? were chosen for the transport study. After the experiment, cells
with a change of TEER value larger than 20% were excluded from further analysis of the Papp
value (Bentz et al., 2013). Additionally, the integrity was also checked by measuring the
transport of fluorescein, and cells with a transport of fluorescein less than 1 % were considered

suitable for the analysis.

The Papp (cm/s) value was calculated using Eq. 2 as follows (Hubatsch et al., 2007; Strikwold
etal., 2017):

AQ
It
AxCy

Papp= 2

where AQ/At (nmol/s) is the amount of the test compound transported to the basolateral
compartment over the incubation time, A (cm?) is the surface area of the filter and Co (uM) is
the initial concentration of the test compound in the apical compartment. The mass balance
was calculated by comparing the total amount of compound in the apical compartment,
basolateral compartment and filter to the initial amount. The results were obtained from three

independent experiments including four replicates for ibogaine and noribogaine and two
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replicates for methadone and antipyrine in each independent experiment. Data are presented as

the mean value + SD.

Using methadone as a reference compound, the in vivo oral absorption rate constant (ka)
for ibogaine and noribogaine were calculated by multiplying the corresponding ratio of Papp to
Papp of methadone by a mean ka value of methadone being 0.59/h reported in human studies

(Foster et al., 2000; Wolff et al., 2000).
2.3.2. In vitro microsomal incubations

To determine kinetic parameters for the conversion of ibogaine to noribogaine, in vitro
microsomal incubations were performed as described before (Shi et al., 2020a) with minor
modifications. Incubation mixtures contained the NADPH regeneration system (final
concentrations 1.3 mM NADP", 3.3 mM glucose-6-phosphate, 0.4 U/ml glucose-6-phosphate
dehydrogenase and 3.3 mM MgCl,) and ibogaine at final concentrations from 0 to 25 uM, in
100 mM Tris-HCI buffer (pH 7.4) with a total volume of 160 pl. Stock solutions of ibogaine
were prepared in acetonitrile/water (50/50 v/v), and were diluted 50 times to reach the test
concentrations in the incubation mixtures. Samples were pre-incubated at 37°C for 1 min and
a final concentration of 0.25 mg/ml liver microsomal protein was added to initiate the reaction.
After 2.5 min incubation in a shaking water bath at 37 °C, the reaction was terminated by
adding 40 pl ice-cold acetonitrile. Control incubations were performed in the absence of

NADPH which was replaced with Tris-HCI.

The formation of the glucuronide of noribogaine was investigated in a similar manner as
described above. A total volume of 200 pl sample contained (final concentrations) UGT
reaction system (5 mM uridine 5'-diphosphoglucuronic acid (UDPGA), 8 mM MgCl,, 25
pg/ml alamethicin) and 0.5 mg/ml liver microsomal protein in 100 mM Tris—HCI (pH 7.4).
Samples were placed on ice for 30 min which allows the pore forming peptide alamethicin to
boost the glucuronidation activity (Fisher et al., 2000; Ning et al., 2017). After pre-incubating
samples at 37°C for 5 min, reactions were started by adding noribogaine from 100 times
concentrated stock solutions in DMSO at final concentrations ranging from 0-750 uM. The
incubation time was 40 min and reactions were terminated by adding 50 ul ice-cold acetonitrile.
Control incubations were performed in the absence of UDPGA which was replaced with Tris-

HCL

Test concentrations of ibogaine and noribogaine were chosen at relevant human plasma

concentrations and enabled the determination of Michaelis-Menten kinetic parameters.
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Optimizations of experiments demonstrated that the reaction rates for the formation of
noribogaine were linear with time up to 20 min and with protein concentration of up to 1 mg/ml.
For the formation of noribogaine glucuronides, reaction rates were shown to be linear with
time up to 120 min and with protein concentration up to 0.75 mg/ml. After termination, samples
were centrifuged at 18,000g for 5 min at 4 °C. The supernatant was collected for the
quantification of ibogaine, noribogaine and noribogaine glucuronide by liquid
chromatography-mass spectrometry (LC-MS/MS) as described in the “LC-MS/MS analysis”

section.

For the kinetic analysis, the data for the formation of noribogaine and noribogaine
glucuronide were fitted to the Michaelis-Menten Eq. 3 using GraphPad Prism 5.0 (GraphPad
Software Inc.):

_ Vmaxx [S]

" Kn+[S] (3)

where [S] is the substrate concentration (uM) and v is the rate of metabolite formation
(nmol/min/mg protein). Vmax is the apparent maximum velocity (nmol/min/mg protein) and K,
the apparent Michaelis—Menten constant (uM). The in vitro catalytic efficiency expressed in
ul/min/mg microsomal protein was calculated by dividing Vmax by Km. Data were collected

from three independent experiments and each data point is presented as the mean value + SD.
2.4. Determination of plasma protein and in vitro medium binding

The rapid equilibrium dialysis (RED) assay was conducted to determine the unbound fraction
(fu) of ibogaine and noribogaine in pooled human plasma and in the in vitro medium used in
the hiPSC-CM MEA assay as previously described (Shi et al., 2020a). The stock solutions of
ibogaine prepared in acetonitrile/water (50/50 v/v) and noribogaine dissolved in DMSO were
diluted 100-fold in human plasma or in vitro medium to reach the final concentration of 10 pM
in test sample solutions. A 300 pl aliquot of test sample solution was added to the sample
chamber and 500 pl PBS was added to the buffer chamber of the RED insert, after which
dialysis was performed on an orbital shaker at 37 °C at 250 rpm for 5 h. Following dialysis, an
aliquot of 25 pul was collected from both the sample and buffer chamber and diluted with 25 pl
of PBS (to the aliquot from the sample chamber) and plasma or in vitro medium (to the aliquot
from the buffer chamber) to eliminate potential matrix effects. Subsequently, post-treatment
samples were precipitated using 300 pl cold acetonitrile/water (50/50 v/v) and left on ice for

30 min followed by a centrifugation for 45 min at 18,000g. Supernatants were collected for
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LC-MS/MS analysis. The fraction unbound (f.) was calculated with Eq. 4 (van Liempd et al.,
2011; Waters et al., 2008):

__concentration in buffer chamer

4)

concentration in sample chamer

The measurements were performed in triplicate in three independent experiments. Results are

presented as the mean value & SD.

2.5. LC-MS/MS analysis

The identification and quantification of compounds in samples from the Caco-2 transport
studies, microsomal incubation and RED assay were performed by LC-MS/MS analysis using
a Shimadzu Nexera XR LC-40D SR UPLC system coupled with a Shimadzu LCMS-8045 mass
spectrometer (Kyoto, Japan). The compounds were separated by a Phenomenex Kinetex® C18
column (2.1 x 50 mm 1.7 um, 100 A) connected to a precolumn and detected by a Shimadzu
LCMS-8045 triple quadrupole with electrospray ionization (ESI) interface. The instrument was
operated in positive mode and multiple reaction monitoring (MRM, N collision gas) mode.
The MRMs of m/z 311.15 (MH") to 122.2 (CE: — 33 kV), m/z 311.15 (MH") to 174.2 (CE: —
36 kV) and m/z 311.15 (MH") to 124.15 (CE: — 31 kV) were used to analyse ibogaine. The
MRMs of m/z 297 (MH") to 122.15 (CE: — 33 kV), m/z 297 (MH") to 160.2 (CE: — 35 kV) and
m/z 297 (MH") to 146.25 (CE: — 45 kV) were used to analyse ibogaine. The MRMs of m/z
473.15 (MH") to 297.2 (CE: — 33 kV), m/z 473.15 (MH") to 122.15 (CE: — 54 kV) and n/z
473.15 (MH") to 160.1 (CE: — 50 kV) were used to analyse noribogaine glucuronide. The
MRMs for methadone were m/z 310.2 (MH") to 265.15 (CE: — 15 kV), m/z 310.2 (MH") to
105.05 (CE: — 29 kV) and m/z 310.2 (MH") to 77.15 (CE: — 50 kV). The MRMs for antipyrine
were m/z 189.1 (MH") to 56.1 (CE: — 35 kV), m/z 189.1 (MH") to 77.2 (CE: — 42 kV) and m/z
189.1 (MH") to 58.2 (CE: — 23 kV). The MRMs were selected based on previous studies
(Chang et al., 2011; Glue et al., 2016).

Mobile phase A was nanopure water containing 0.1% (v/v) formic acid and mobile phase B
was acetonitrile containing 0.1% (v/v) formic acid. A gradient elution at a flow rate of 0.3
ml/min was applied for the analysis with the program set as follows: the initial concentration
was 100% mobile phase A, linearly changing to 100% mobile phase B over 7 min which was
held for 1 min. Then mobile phase B dropped to 0% over 1 min followed by equilibration of
the system for 4 minutes. Total run time was 13 minutes. The injection volume was 1 pl and

the temperature of the column was kept at 40 °C. The retention times for ibogaine, noribogaine,
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noribogaine glucuronide, methadone and antipyrine were 5.6, 5.0, 4.9, 6.3 and 5.1 min,
respectively, determined using commercially available reference compounds. Quantification
was performed by comparing the respective peak areas of the total ion chromatogram (TIC) to
the TIC peak areas of corresponding linear calibration curves of reference compounds (R? >

0.999), using Browser analysis in the software LabSolution (Shimadzu).
2.6. Development of the PBK models

As presented in Figure 3, a PBK model consisting of multiple organ compartments was
developed to describe the ADME of ibogaine and its metabolite noribogaine upon oral
administration. Noribogaine has also been reported to cause the prolongation effects on the
QTec interval in human (Glue et al., 2016). Therefore, an oral administration route was included
in the submodel of noribogaine, which enables modeling of noribogaine kinetics and prediction
of its cardiotoxicity upon oral administration. Human physiological parameters reported in

Brown et al. (1997) were used in the PBK model (Table 1).

Figure 3 Schematic diagram of the PBK model for ibogaine with a submodel for noribogaine.
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Table 1 Physiological parameters used in the PBK models.

Symbol in model

Parameters code Value®
Body weight (kg) BW 70
Tissue volume (% body weight)
Liver VLc 2.57
Fat VFc 21.4
Lung VLuc 0.76
Arterial blood VAc 1.98
Venous blood VVc 5.93
Kidney VKc 0.4
Heart VHc 0.47
Slowly perfused tissue VSc 58
Rapidly perfused tissue VRe 3.7
Cardiac output (I/h) Qc 347.9
Blood flow to tissue (% cardiac output)
Liver QLc 22.7
Fat QFc 5.2
n
Kidney QKc 17.5 §
Heart QHc 4 E
Slowly perfused tissue QSc 29.1 ©
Rapidly perfused tissue QRc 21.5

*Reported in Brown et al. (1997)

For the absorption parameters, the ka values of ibogaine and noribogaine were extrapolated
from in vitro-derived Pap, values obtained in the present study as described in the “in vitro
intestinal transport studies” section. Due to limited pharmacokinetic data of both ibogaine and
noribogaine, the experimental fractions absorbed (Fa) were not available. However, many
studies demonstrated a positive correlation between Papp, values and human Fa, and also
indicated that Fa values can be estimated to be 1 when the Papp, value is higher than 10-3 (cm/s)
(Lozoya-Agullo et al., 2015; Liipfert and Reichel, 2005; Skolnik et al., 2010). Considering the
relatively high Papp values measured for ibogaine and noribogaine (see Results), the Fa values

for both compounds were assumed to be 1.
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To describe how ibogaine and noribogaine distribute in organs and the systemic blood
circulation upon absorption, tissue: blood partition coefficients (P) of ibogaine and noribogaine
were obtained by converting tissue: plasma partition coefficients using the corresponding
blood/plasma ratio (BPr) as previously described (Shi et al., 2020a). The tissue: plasma
partition coefficients were predicted using the QIVIVE tool (version 1.0) from Wageningen
Food Safety Research (WFSR, 2020) in which the algorithm of Berezhkovskiy (2004) was
applied for ibogaine and the algorithm of Rodgers and Rowland (2006) was used for
noribogaine given it generally shows better prediction for zwitterions (Graham et al., 2012;
Utsey et al., 2020). Other input parameters including acid-base properties (pKa), lipophilicity
(logP) and fraction unbound in plasma (fup). The logP and pKa values were predicted using
Chemicalize (ChemAxon, Hungary). The logP and pKa of ibogaine were 3.53 and 8.97,
respectively. The log P and pKa of noribogaine were 3.0 and 8.87 (basic) and 9.66 (acidic).
The fip values were determined using pooled human plasma in the present study. A BPr value
of 2.5 for noribogaine in human was reported by Mash et al. (2016) while no published BPr
value was available for ibogaine. Given that also for ibogaine the concentration was reported
to be higher in the blood compared to plasma (Alper, 2001; Maciulaitis et al., 2008) the BPr
value of ibogaine was assumed to be the same as that for noribogaine. Tissue: blood partition

coefficients for ibogaine and noribogaine are summarized in Table 2.

Table 2 Tissue: blood partition coefficients for ibogaine and noribogaine.

Tissue: blood partition coefficients

Compound . slowly rapidly .
liver fat . . ung kidney heart
perfused tissue  perfused tissue
Ibogaine 1.62 0.18 2.73 1.62 0.32 1.02 0.7
Noribogaine 15.3 1.38 2.33 15.3 13.1 16.9 7.6

* Obtained by dividing tissue: plasma partition coefficients by the BPr value.

Based on in vitro metabolism and in vivo pharmacokinetic studies, liver was considered as
the major organ for the metabolism of ibogaine and noribogaine (Glue et al., 2016; Glue et al.,
2015b; Obach et al., 1998). The kinetic parameters obtained in the current study were used to
define the conversion of ibogaine to noribogaine and the glucuronidation of noribogaine by
applying Michaelis-Menten kinetics. To extrapolate the in vitro Vimax to an in vivo Vmax, a total
microsomal protein per gram of liver (MPL) value of 32 mg/g was applied in the PBK model

(Barter et al., 2007). The in vivo K was assumed to be similar to the in vitro Kpy,.
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Hepatic metabolism was reported to be the major elimination route for ibogaine (Mash et
al., 2016). For noribogaine, Glue et al. (2015a) found that only a small amount of the dose
administered (1.4-3.9 %) was detected in urine as noribogaine and its glucuronide after a single
oral dose of noribogaine in human, indicating the negligible contribution of urinary excretion
to the elimination of noribogaine. For this reason renal excretion was not considered in the
PBK model of noribogaine. Given the higher molecular weight of ibogaine and noribogaine
than the cut-off value of 275 Da for biliary excretion in human, the compounds could be
excreted via bile instead of via urine (Haddad and Nong, 2020). This is supported by the fact
Maciulaitis et al. 2008) and were excreted via the gastrointestinal tract (Alper, 2001) and
present in faeces in rat (Jeffcoat et al., 1993). Therefore, biliary excretion was assumed to be
the major elimination route for ibogaine and noribogaine and was included in the PBK model.
The biliary excretion rate constant (kb) of noribogaine was obtained by the curve fitting option
in Berkeley Madonna (version 8.3.18, UC Berkeley, CA, USA) in which the predicted blood
maximum concentration (Cmax) of noribogaine was fitted to the Cmax of noribogaine in the blood
that was reported in clinical studies (Glue et al., 2016; Glue et al., 2015a; Glue et al., 2015b).
The averaged fitted kb for noribogaine was 0.575 (/h). Due to the limited pharmacokinetic data
on ibogaine and little influence of biliary excretion on ibogaine blood kinetics (see the results
of the sensitivity analysis), the same kb value was assumed for ibogaine. Kinetic model
calculations and curve fitting were performed with Berkeley Madonna, applying Rosenbrock’s

algorithms for solving stiff systems. Model equations are shown in Supplementary materials 2.
2.7. Evaluation of the PBK model

To evaluate the model, the predicted blood concentrations and area under the blood
concentration- time curve (AUC) of ibogaine and noribogaine were compared with the in vivo
data reported in clinical studies (Glue et al., 2016; Glue et al., 2015a; Glue et al., 2015b). The
reported plasma-based kinetics of ibogaine and noribogaine were extracted using
WebPlotDigitizer Version 4.4. (Rohatgi, 2020) and converted to blood-based kinetics by
multiplying with the respective BPr values. The evaluation was performed according to the

specifications (body weight and oral dose) of in vivo studies as summarized in Table 4.
2.8. Sensitivity analysis

A local parameter sensitivity analysis was conducted to estimate to what extent the model

parameters can influence the model output, which refers to Cmax of ibogaine and noribogaine
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in the heart venous blood upon the oral administration of ibogaine or noribogaine. Furthermore,
given that the in vivo cardiotoxicity of ibogaine is dependent on the unbound concentration of
both ibogaine and noribogaine, the sensitivity analysis was also performed for the unbound
toxic equivalence (TEQ) concentration (details see in “QIVIVE using PBK modeling-based
reverse dosimetry” section). The sensitivity coefficient (SC) was calculated according to the
Eq. 5:

_co_P

SC (P-P) " C

)

where P and C represent the initial value of the model parameter and output, respectively. P’
and C’ stand for the model parameter and model output after a 1% increase in an individual
model parameter value, respectively. Only parameters with an absolute SC > 0.1 are considered
to be influential on the model output (Rietjens et al. 2011). The sensitivity analysis was carried
out for a subject with a body weight of 70 kg (Brown et al., 1997) and for a single oral dose of
20 and 500 mg ibogaine, representing a safe and well tolerated dose for healthy people (Glue
et al., 2015b) and a clinically relevant dose for the treatment of drug addiction (Maciulaitis et
al., 2008), respectively. For the sensitivity analysis of the noribogaine model, a single oral dose
of 20 mg and 200 mg was chosen, respectively representing a safe dose for healthy people and

a dose level associated with prolonged QTc in human (Glue et al., 2016).
2.9. QIVIVE using PBK modeling-based reverse dosimetry

Given that the in vitro endpoint FPDc can be considered as a surrogate endpoint for the QTc
interval in the human ECG (Shi et al., 2020a; Zwartsen et al., 2019), in vitro concentration-
response curves for FPDc obtained in the hiPSC-CM MEA assay were translated to in vivo
dose-response curves for QTc using PBK modeling-based reverse dosimetry. In the case of
oral administration of ibogaine, a TEQ approach was applied to combine the cardiotoxicity of
ibogaine and noribogaine. Assuming that the cardiotoxicity of ibogaine and noribogaine are
additive to hiPSC-CM, the internal unbound TEQ concentration was the combination of the
unbound concentration of ibogaine and noribogaine in the heart venous blood taking the
corresponding toxic equivalency factors (TEFs) into account. The TEF of ibogaine and
noribogaine were calculated based on their cardiotoxic potencies obtained in the hiPSC-CM
MEA assay, with the TEF for ibogaine defined as 1.00. Then QIVIVE was performed by

assuming the in vitro unbound concentration of ibogaine equal to the unbound Crax of unbound

188



Prediction of (nor)ibogaine-induced cardiotoxicity in humans

ibogaine expressed in TEQ concentrations in the heart venous blood as shown in the Eq.6 and

7
Ctotal, in vitro, ibo X fu, m, ibo = Cunbound, human blood, TEQ (6)

— 1Cu, p, ibo
Cunbound, human blood, TEQ — Ctotal, human blood, ibo X BPr 5o X TEF ipo +

i

fu, p,nor
Ctotal, human blood,nor X BPr ror X TEFnor @)

where Ciypa1, in vitro.ibo a0d T 1 ibo are the in vitro ibogaine concentration and unbound fraction
of ibogaine in the in vitro exposure medium, respectively. BPrino and BPryor are the blood to
plasma ratio of ibogaine and noribogaine. f, |, ipo and f,  nor are the respective unbound
fraction of ibogaine and noribogaine in human plasma. Cigal hyman blood, ibo  and
Cotal, human blood, nor ar€ the concentrations of ibogaine and noribogaine in the heart venous blood,
respectively. TEFi,, and TEF., are the TEF values of ibogaine (defined as 1.00) and
noribogaine (defined based on its relative potency in the MEA assay). Cynbound, human blood, TEQ
values were converted to in vivo oral doses of ibogaine by PBK-modeling based reverse

dosimetry, using a bodyweight of 70 kg (Brown et al., 1997).

When oral administration of noribogaine was considered, the translation was performed by
setting the in vitro unbound concentrations of noribogaine detected in the hiPSC-CM MEA
assay equal to the unbound Ciax of noribogaine in the heart venous blood with a correction for
the fraction unbound in human plasma and conversion from plasma to blood using BPr as

described in in Eq.8:

C _ Ctotal, in vitro, nor X fu, m, nor
total, human blood, nor — fu, p, nor ®)

BPr o

Where Ciopal, in vitronor a0d £y, 1 nor are the in vitro noribogaine concentration and unbound
fraction of noribogaine in the in vitro exposure medium, respectively. Cioal, human blood, nor
values were extrapolated to in vivo oral doses of noribogaine by PBK-modeling based reverse
dosimetry, using a bodyweight of 70 kg (Brown et al., 1997). The calculations by Eq. 6 and 7
or 8 were performed for each of the in vitro concentrations of ibogaine or noribogaine tested
in the hiPSC-CM MEA assay, which enables the translation of the entire in vitro concentration-

response curve to a predicted in vivo dose-response curve.
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2.10. Validation of the PBK modeling-based reverse dosimetry approach

To validate the performance of the PBK modeling-based reverse dosimetry approach, the
predicted dose-response curves for QTc prolongation upon the exposure to ibogaine and
noribogaine were compared to the respective in vivo dose-response data obtained from single
case reports and clinical studies (Asua, 2013; Glue et al., 2016; Grogan et al., 2019; Henstra et
al.,2017; Hildyard et al., 2016; Hoelen et al., 2009; Meisner et al., 2016; Pleskovic et al., 2012;
Steinberg and Deyell, 2018; Vlaanderen et al., 2014). Since in most case reports ibogaine
administered to the patients were internet-purchased with unknown purity, the reported doses
were converted to effective doses by multiplying with the lower (15%) and upper value (50%)
of purity reported in Alper et al. (2012). The predicted dose-response curve of noribogaine for
the validation was made using the bodyweight of 81.9 kg, which was the average body weight
of subjects as reported in Glue et al. (2016). The details of the in vivo studies are summarized
in Table S1 in the supplementary material 1. The in vitro absolute FPDc values and the in vivo
QTc data were expressed as relative percentages by comparing the post-treatment data to the

baseline values for a straightforward comparison.
2.11. Benchmark dose analysis

BMD analysis of reported and predicted dose-response curves for ibogaine and noribogaine
was performed to derive a lower 95% confidence limit of the BMD resulting in 10%
cardiotoxicity (BMDL1o), which can be used as the point of departure (PoDs) for the risk
assessment and safety evaluation of ibogaine and noribogaine. As previously described (Shi et
al., 2020a), an effective size of 10% was chosen based on the fact that a BMDLo value is
generally considered as a dose level similar to a no observed adverse effect level (EFSA, 2017),
and that 10% change in QTc interval over the population baseline of 407 ms, being a QTc of
450 ms can be used as a threshold to evaluate the abnormal QTc prolongation (ICH 2005;
Mujtaba et al. 2013; Wedam et al. 2007; Florian et al. 2012). The European Food Safety
Authority web-tool based on R-package PROAST version 69 (Dutch National Institute for
Public Health and the Environment, RIVM, The Netherlands) was used for the BMD analysis
(Shi et al., 2020a).

BMD analysis of in vitro concentration-response data was performed to calculate the
benchmark concentrations (BMC) resulting in 10% change in the FPDc with lower 95%
confidence limit (BMCL1¢). The obtained BMCL¢ values were used to compare the potency
and derive the TEF of noribogaine relative to the TEF of ibogaine set at 1.00.

190



Prediction of (nor)ibogaine-induced cardiotoxicity in humans

3. Results

3.1. In vitro cardiotoxicity of ibogaine and noribogaine in the hiPSC-CM

MEA assay

Figure 4 Concentration-response curves for the effect of ibogaine (black circles and line) and
noribogaine (green squares and line) on FPDc in hiPSC-CM detected by the MEA. The response
of the baseline condition (0.05% (v/v) acetonitrile for ibogaine, 0.1% (v/v) DMSO for noribogaine) was
set at 100%. Data represent the mean of results obtained from three independent experiments each

containing six well replicates. Each data point represents the mean + SD. Statistically significant

EEEY

changes in response compared to the solvent control are marked with * with p < 0.001: ™",

Figure 4 shows that ibogaine and its metabolite noribogaine induced a significant
concentration-dependent prolongation of FPDc. The BMCLois 0.11 pM for ibogaine and 0.15
uM for noribogaine, which results in TEF values of ibogaine and noribogaine being 1.00 and
0.73, respectively. Arrhythmia-type waveforms were observed upon the treatment with 1 pM
ibogaine and 3 uM noribogaine. The repeated addition of vehicle controls (0.05% (v/v)
acetonitrile and 0.1% (v/v) DMSO) did not significantly influence the FPDc (Figure S2). Two
reference compounds dofetilide and isoproterenol respectively prolonged the FPDc and
increased beat rates in a concentration-dependent manner, indicating the adequate performance

of the hiPSC-CM MEA assay (Figure S3).
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3.2. In vitro experimental biokinetic parameters for PBK models
3.2.1. In vitro intestinal transport studies

Table 3 shows the Papp values obtained from Caco-2 transport studies and the ka values of the
test compounds derived from these Papp values based on comparison to the data for methadone.
All test compounds were rapidly transported with the largest Papp value of 47.0 x10¢ cm/s for
antipyrine and the smallest Papp value of 20.8 x10°° cm/s for methadone. The Py value of
noribogaine was 1.5-fold higher than that of ibogaine. The transport of all test compounds was
within the linear range up to 30 min of incubation. The mass recovery of ibogaine, noribogaine,

methadone and antipyrine are 90%, 102%, 74% and 88%, respectively.

Table 3 The apparent permeability (P.,,) obtained from Caco-2 transport studies, and the
predicted intestinal oral absorption rate constants (ka) for the test compounds derived from the

P.pp values using the ka for methadone (Foster et al., 2000; Wolf et al., 2000) as the reference.

Compound Papp = SD (10 cm/s) ka (/h)
Ibogaine 279+4.6 0.79
Noribogaine 42.4+3.6 1.23
Methadone 20.8+1.9 0.59¢
Antipyrine 47.0+5.0 1.33

*Reported value obtained from human studies (Foster et al., 2000; Wolf et al., 2000)
3.2.2. In vitro microsomal incubations

Figure 5 shows the substrate concentration dependent metabolism of ibogaine and noribogaine
by human liver microsomes. The obtained results follow Michaelis-Menten kinetics. The
apparent Vmax and K, derived from these data for the formation of noribogaine from ibogaine
(Figure 5a) were 0.17 + 0.033 nmol/min/mg microsomal protein and 0.63 + 0.005 pM,
respectively. The apparent Vimax and K, for the conversion of noribogaine to its glucuronide
(Figure 5b) were 0.036 = 0.0008 nmol/min/mg microsomal protein and 305 £ 15.8 uM,
respectively. The catalytic efficiency (Vmax/Km) for the formation of noribogaine was 269.8
pl/min/mg microsomal protein, which was 2,248-fold more efficient than that for formation of
noribogaine glucuronide being 0.12 pl/min/mg microsomal protein. This explains the relatively

higher plasma concentrations of noribogaine than of ibogaine upon dosing ibogaine (see below).
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Figure 5 Concentration-dependent formation of (a) noribogaine from ibogaine and (b)
noribogaine glucuronide from noribogaine using in vitro incubations with human liver
microsomes. Data represent the mean of three independent experiments. Each data point represents the

mean + SD.
3.3. Determination of plasma protein and in vitro medium binding

The unbound fraction of ibogaine and noribogaine in the in vitro medium and human plasma
were determined by the RED assay, in order to enable the calculation of the unbound
concentration of the compounds for the in vitro to in vivo extrapolation. The unbound fraction
of ibogaine and noribogaine in the in vitro medium were comparable, amounting to 0.71 + 0.01
and 0.80 + 0.03, respectively. The unbound fraction of ibogaine in human plasma was
determined to be 0.04 = 0.017, which was 6.5-fold lower than that for noribogaine, being 0.26
+0.05.

3.4. Evaluation of the PBK model

The PBK models of ibogaine and noribogaine were evaluated against in vivo data reported in
clinical studies. Figure 6 shows that the developed PBK model accurately predicted the time-
dependent change in the blood concentrations of ibogaine and noribogaine upon oral
administration of ibogaine (Glue et al., 2015b) and noribogaine (Glue et al., 2015a; Glue et al.,
2016). The detailed comparisons between predicted and reported blood Cmax and AUC values
are summarized in Table 4. For ibogaine, the predicted blood Cmax and AUC were 1.7- fold and
2.1-fold higher than the reported values, respectively. For noribogaine, the prediction shows

an average 0.9-fold and 1.3-fold difference both in blood Cimax and AUC values.
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Table 4 Summary of in vivo kinetic studies and evaluation of the PBK model predictions for
ibogaine and noribogaine blood Cn.x and AUC.

. . Ratio
Mean Mean In vivo Predicted Ratl(.) In vivo Predicted  predicted
Compou  body dose C C predicted ~ AUC AUC AUC/in Referenc
. max max . "
nd \xlz(el)ght gmg/day (ng/ml)» (ng/ml) Cmax/cl:n Eng h/ml) (ag*/ml)  vivo
(kg Vivo Cpax AUC
Ibogaine 20 2.75 4.81 1.7 9.0 19.3 2.1 Glue et
Noribog ~ 80° B al.
aine - 46.8 549 1.2 693.5 1029.4 1.5 (2015b)
3 13.0 10.0 0.77 185.5 165.8 0.89
Noribog 10 36.3 335 0.92 636.25 552.8 0.87 Slue et
aine 30 139.8 100.4 0.72 1751.0 1658.4 0.95 (20152)
60 290.0 200.8 0.69 4905.5 3316.9 0.68
60 204.0 191.3 0.94 5150.8 3924.1 0.76
Noribog g1 9 129 4320 3827 0.89 82013 78485 0.9 Glue et
aine al. (2016)
180 669.8 574.1 0.86 17219.3 11773.3 0.68

* Blood data were obtained by multiplying reported plasma data by the BPr value.

®The body weight was not reported and set equal to the average of values in other studies conducted
by the same group (Glue et al., 2016; Glue et al., 2015a), assuming subjects have similar demographic
characteristics.

¢ The body weight was not reported and set equal to the value used in the PBK model.

4 Subjects were administered ibogaine.
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Figure 6 Comparison of blood concentration-time curves of ibogaine and noribogaine in human
predicted with the PBK model and as published in the literature for human case studies. (a) Dots
and squares respectively indicate the reported blood concentrations of ibogaine and noribogaine after a
single oral dose of 20 mg ibogaine (Glue et al., 2015b). Solid lines and dashed lines represent the
predictions for ibogaine and noribogaine, respectively. (b) Dots, squares, triangles and crosses represent
the reported blood concentrations after an oral dose of 3, 10, 30 and 60 mg noribogaine (Glue et al.,
2015a), respectively, with the solid lines being the predicted blood concentrations for the corresponding
doses. (¢) Dots, squares, and triangles represent the reported blood concentrations after an oral dose of
60, 120 and 180 noribogaine (Glue et al., 2016), respectively, with the solid lines being the predicted

blood concentrations of the corresponding doses.

3.5. Sensitivity analysis

Figure 7 Sensitivity coefficients of PBK model parameters for the prediction of (a) Cunax of
ibogaine in the heart venous blood upon an oral single ibogaine dose of 20 mg (white bars) and
500 mg (black bars), (b) Cmax of noribogaine in the heart venous blood upon an oral single
noribogaine dose of 20 mg (white bars) and 200 mg (black bars) and (¢) Cmax expressed in
unbound ibogaine equivalents upon an oral single ibogaine dose of 20 mg (white bars) and 500
mg (black bars). Dotted lines indicate the normalized SC with an absolute value higher than 0.1. BW,
body weight; VLc, fraction of liver; VRs, fraction of rapidly perfused tissue; VSc, fraction of slowly
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perfused tissue; QLc, percentage of blood flow to liver; QKc, percentage of blood flow to kidney; QHc,
percentage of blood flow to heart; QRc, percentage of blood flow to rapidly perfused tissue; QSc,
percentage of blood flow to slowly perfused tissue; PSibo, partition coefficient slowly perfused tissue:
blood of ibogaine; MPL, microsomal protein per gram of liver; Vmaxc1, unscaled maximum rate of
ibogaine metabolism in liver; Kmi, Michaelis-Menten constant for ibogaine metabolism in liver; PLnor,
partition coefficient liver: blood of noribogaine; PSnor, partition coefficient slowly perfused tissue:
blood of noribogaine; kaibo, absorption rate constant of ibogaine; kanor, absorption rate constant of
noribogaine; Faibo, fraction absorbed of ibogaine; Fanor, fraction absorbed of noribogaine; Kbnor,
biliary excretion constant of noribogaine; BPnor, blood to plasma ratio of noribogaine; fupnor, unbound

fraction of noribogaine in human plasma; TEFnor, toxic equivalency factor of noribogaine.

Figure 7 shows the results of the sensitivity analysis presenting the influential model
parameters for the prediction of Cmax of ibogaine and noribogaine in the heart venous blood
and of the Cmax expressed in unbound ibogaine equivalents using a TEQ approach, upon
exposure to an oral dose of ibogaine or noribogaine. For the oral administration of ibogaine
(Figure 7a), results reveal that Cimax of ibogaine in the heart venous is most sensitive to the body
weight, fraction absorbed of ibogaine, fraction of liver, percentage of blood to liver and
metabolic parameters for conversion of ibogaine to noribogaine (MPL, Vmaxc1 and Km1). When
the oral dose increased from 20 mg to 500 mg, the normalized SC values of body weight,
fraction of liver, absorption related parameters (Faibo and kaibo) and metabolic parameters
(MPL and Vmaxc1) increased 2- to 3-fold while the normalized SC values of Ky1 shows a 3.6-

fold decrease.

As illustrated in Figure 7b similar SC values were obtained for the prediction of the Cmax of
noribogaine in the heart venous blood at two oral doses of 20 mg and 200 mg noribogaine. The
predicted Cmax of noribogaine in the heart venous blood is most affected by the fraction
absorbed of noribogaine and the body weight with the normalized SC values being 1.
Parameters related to percentage of blood to tissues also influence the prediction especially the
percentage of blood to liver, rapidly perfused tissue, slowly perfused tissue and kidney with
the normalized SC values above 0.5. Other model parameters show less influence with the

normalized SC values ranging from 0.14 to 0.37 (Figure 7b).

Figure 7c shows that the unbound TEQ concentration expressed in ibogaine equivalents is
most sensitive to the percentage of blood flow to slowly perfused tissue, followed by the
percentage of blood flow to liver, and to rapidly perfused tissue with normalized SC values

above 1. Besides, body weight, fraction absorbed of ibogaine, blood to plasma ratio of
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noribogaine, unbound fraction of noribogaine in plasma and TEF of noribogaine show a high
influence on the prediction with the normalized SC values being 1. Figure 7c also indicates
that parameters related to percentage of blood flow to tissues (QSc, QLc, QRc, QKc, QFc and
QHc) show a dose-dependent influence on the prediction with the normalized SC values being
higher at 500 mg compared to those at 20 mg. While the SC of other model parameters

generally are not dose-dependent at the two doses of ibogaine.

3.6. Contribution of ibogaine and noribogaine to blood ibogaine

equivalents

Figure 8 Predicted dose-dependent relative contribution of ibogaine (solid line) and noribogaine

(dashed line) to the Cnax expressed in unbound ibogaine equivalents for a human of 70 kg.

To further illustrate the contribution of ibogaine and noribogaine to ibogaine-induced
cardiotoxicity in human, a dose-dependent comparison was made between the predicted
unbound blood concentration of ibogaine and noribogaine taking into account their TEF values.
Figure 8 shows that, upon dosing ibogaine, the contribution of noribogaine to the Cmax
expressed in unbound ibogaine equivalents is substantially higher than the contribution of
ibogaine itself at all dose levels evaluated. The relative contribution of ibogaine to the ibogaine
equivalents increases with increasing oral dose, but is still about 9-fold lower than that of
noribogaine at 500 mg, in spite of the only limited difference in the TEF value between the two

compounds. This observation can be ascribed to the fact that the concentration of noribogaine
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is higher than that of ibogaine (see also Figure 6a) due to the fact the catalytic efficiency of
ibogaine O-demethylation to noribogaine is more efficient than the clearance of noribogaine

by glucuronidation.

3.7. QIVIVE using PBK modeling-based reverse dosimetry, its validation
and BMD analysis

By applying reverse dosimetry, the in vitro concentration-response curves of ibogaine and
noribogaine obtained in the hiPSC-CM MEA assay were translated to predicted in vivo dose-
response curves for the QTc prolongation, upon oral administration of ibogaine (Figure 9a) or
noribogaine (Figure 9b). Subsequently, the predicted data were compared to the in vivo dose-
response data for QTc prolongation obtained from case studies and clinical studies to evaluate
the performance of the PBK modeling-based reverse dosimetry predictions (Figure 9). Given
the unknown purity of internet-purchased ibogaine described in the case studies, a range of 15
to 50% was used to correct for the effective doses. Figure 9a reveals that the predicted dose-
dependent QTc prolongation for ibogaine is best in line with the reported data when the a purify
of 15% was considered. For noribogaine, the predicted dose-response curve is comparable with
the reported dose-response data on QTc prolongation (Figure 9b).

To further evaluate the model predictions and derive PoDs for risk assessment, BMDLo
values were calculated from both predicted and reported dose-response curves. The BMDLio
value of noribogaine derived from the clinical study of Glue et al. (2016) was 163 mg for the
subjects with an average body weight of 81.9 kg, which is 1.5-fold higher than the predicted
BMDL ¢ value amounting to 110 mg for a 81.9 kg person, showing that the PBK modeling-
based reverse dosimetry can adequately predicted the in vivo cardiotoxicity of noribogaine.
The predicted BMDLo value for ibogaine-induced QTc prolongation was 96.9 mg for a 70 kg
person, which is similar to that for noribogaine (94.2 mg, based on a bodyweight of 70 mg),

indicating a comparable potency of the two compounds in inducing QTc prolongation.
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Figure 9 Predicted dose—response curves for cardiotoxicity of (a) ibogaine and (b) noribogaine
obtained using PBK modeling-based reverse dosimetry compared to in vivo data derived from
literature. The curves represent the predicted dose dependent QTc prolongation. Horizontal bars or the
dot in (a) represent the reported data of ibogaine obtained from the following studies: Asua (2013)
(grey); Grogan et al. (2019) (black); Henstra et al. (2017) (orange); Hildyard et al. (2015) (green);
Hoelen et al. (2009) (pink dot); Meisner et al. (2016) (blue); Pleskovic et al. (2012) (brown); Steinberg
and Deyell. (2018) (purple); Vlaanderen et al. (2014) (red). The horizontal bars represent the range of
effective doses corrected by multiplying the reported doses with the purity range of internet-purchased
ibogaine (15-50%) (Alper et al. 2012). Dots in (b) represent the in vivo dose-response data for
noribogaine reported in Glue et al. (2016).

4. Discussion and conclusion

The aim of the present study was to provide an additional proof-of-principle for the potential
prediction of in vivo human cardiotoxicity on QTc prolongation by combing an in vitro
cardiotoxicity assay, in vitro-derived biokinetic parameters and PBK modeling-based reverse
dosimetry as a NAM for human risk and safety assessment. Two herbal alkaloids, ibogaine and
noribogaine being promising anti-addiction drugs, were selected as model compounds since
their cardiotoxicity is one of the major safety concerns related to their clinical uses, while so
far not well studied. In addition, available in vivo kinetic and QTc data available for human
subjects exposed to the compounds enable the evaluation of the developed NAM against

clinically observed responses.

In the current paper, the electrophysiological cardiotoxicity of ibogaine and noribogaine
was assessed using hiPSC-CMs on the MEA platform, which has been used previously for
detecting drug-induced QTc prolongation and proarrhythmia (Shi et al., 2020a; Shi et al.,
2020b; Satsuka and Kanda, 2020). The results reveal that ibogaine and noribogaine prolonged

200



Prediction of (nor)ibogaine-induced cardiotoxicity in humans

the FPDc in a concentration-dependent manner which could be explained by their inhibitory
effects on hERG channels as detected using human mammalian cell lines heterologously
expressing hERG channels (Alper et al., 2016; Koenig et al., 2014; Rubi et al., 2017). Our
results also indicate that ibogaine was 1.4-fold more potent than noribogaine in prolonging
FPDc, which is in contrast to those hERG inhibition studies reporting a slightly lower (1.3-
fold) potency of ibogaine compared to noribogaine. The discrepancy might be ascribed to the
usage of different cell models. Unlike transfected cell lines containing a single type of ion
channels, hiPSC-CMs express the major cardiac ion channels and receptors present in human
cardiomyocytes (Karakikes et al., 2015; Kussauer et al., 2019; Ma et al., 2011) and thus the
observed results of ibogaine and noribogaine could be the result of multiple ion-channel effects.
Rubi et al. (2017) assessed the cardiotoxicity of ibogaine and noribogaine in hiPSC-CMs using
one concentration of each compound which prolonged the action potential duration at 90%
repolarization by respectively 14.2% and 15.5% indicating comparable potency. Additionally,
arrhythmia-type waveforms were observed upon treatment of hiPSC-CMs with ibogaine at
high concentrations which is line with case studies where cardiac arrhythmia has been

associated with the intake of an overdose ibogaine (Asua, 2013; Paling et al., 2012).

Furthermore, at clinically relevant doses of ibogaine for the treatment of drug addiction
(typically 500-1000 mg), the total blood concentration of noribogaine ranged from 0.7 to 4.5
uM (Mash et al., 2008) and unbound blood concentrations ranged from 0.08 to 0.47 uM when
taking its unbound fraction in plasma and BPr into account. These values cover the unbound
in vitro effective concentration (BMCL0) of noribogaine being 0.12 pM, a value corrected for
the unbound fraction in the in vitro medium obtained in the current study, indicating that the
cardiotoxicity of noribogaine contributes to ibogaine-induced cardiotoxicity and should thus

be taken into account in the reverse dosimetry.

Results obtained from in vitro microsomal incubations reveal a high catalytic efficiency for
the metabolism of ibogaine to noribogaine, which is in accordance with published data
indicating that ibogaine is a compound with high intrinsic clearance with the majority being
metabolized to noribogaine (Obach et al., 1998). Based on studies with human liver
microsomes Obach et al. (1998) suggested that two enzymes with different activities were
involved in the formation of noribogaine, and the apparent Vmax and K for the high-affinity
enzyme appeared comparable with our data. However, the reported biphasic kinetics were not
observed in our incubations. Furthermore, we found that the catalytic efficiency for the

conversion of noribogaine to noribogaine glucuronide was quite low, which is consistent with
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the fact that only small amounts of noribogaine glucuronides were reported to be formed
following an oral dose of noribogaine (Glue et al., 2015a). The substantially higher catalytic
efficiency for conversion of ibogaine to noribogaine than for glucuronidation of noribogaine is
also reflected by the kinetic data of the present study, and explains why upon dosing ibogaine,
plasma levels of noribogaine exceed those of ibogaine itself. Additionally, by comparing the
unbound blood concentration corrected for TEF values of ibogaine and noribogaine, we found
that noribogaine is predicted to be a major contributor to the unbound TEQ concentration
expressed in ibogaine equivalents. In the light of these findings it can be speculated that
noribogaine instead of ibogaine itself plays a dominant role in the in vivo cardiotoxicity upon
the oral administration of ibogaine. The discrepancy between the relatively high cardiotoxic
potency for ibogaine observed in hiPSC-CM MEA assay and a relatively small contribution to
the in vivo cardiotoxicity could be explained by our findings that i) ibogaine can be efficiently
and extensively metabolized to noribogaine, ii) that ibogaine highly binds to the plasma protein,
resulting a small unbound internal concentration of ibogaine, which is the fraction generally
assumed to be responsible for the therapeutic or toxic effect of drugs (Smith et al., 2010), and
iii) that clearance of noribogaine to its glucuronide is less efficient and iv) that the protein
binding of noribogaine is somewhat less than that of ibogaine resulting in higher unbound

concentrations.

The blood Cmax and AUC values of ibogaine and noribogaine predicted by the developed
PBK model are comparable with the literature data with differences between the predicted and
reported values being less than 2-fold, indicating an adequate predictive performance of the

developed PBK models.

Based on the sensitivity analysis, the influence of metabolic parameters on the predicted
Chmax of ibogaine in heart venous blood showed a dose-dependent change. When the oral dose
of ibogaine increased to 500 mg the influence of Vmax increased while Km was less influential.
This may be explained by the fact that at high dose levels metabolism gets saturated, which
reduces the influence of the Ky, with metabolic clearance being dependent on Vmax. It is also of
interest to note that most of the ibogaine related parameters, including metabolic parameters,
were not influential to the unbound TEQ concentration expressed in ibogaine equivalents,
which however was sensitive to noribogaine related parameters. Furthermore, results show that
the unbound TEQ concentration and Cmax of noribogaine in the heart venous blood were

affected by these noribogaine related parameters to a similar extent.
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Upon evaluation of the newly defined PBK models the models were used to translate the in
vitro concentration response curves obtained in the hiPSC-CM-MEA assay to in vivo dose
response curves for cardiotoxicity of ibogaine and noribogaine. To evaluate the predictions of
the PBK modeling-based reverse dosimetry NAM, the predicted dose-response curves of
ibogaine and noribogaine were compared to available in vivo data. The results obtained show
that the predicted dose-response curve for ibogaine is in line with the reported QTc
prolongation data especially when the reported doses were corrected for a purity of 15%, which
could be considered as a representative and realistic purity of internet-purchased ibogaine as
reported by Hoelen et al. (2009). It is important to note the large variation in QTc prolongation
data at similar oral doses as observed in some case reports, which may be related to individuals’
diverse demographic characteristics and/ or potential QTc prolonging risk factors that were not
well-documented in these studies. When applicable, applying exclusion or inclusion criteria to
the reported data may better illustrate the dose-dependent effects of ibogaine and thus further
improve the accuracy of the evaluation. For noribogaine, the predicted dose-response curve
matches well with reported dose-response curves for QTc prolongation with a difference in the
BMDL ¢ values derived from the predicted and reported data being less than 1.5-fold, which
further demonstrates that the developed QIVIVE approach can adequately predict the in vivo

cardiotoxicity for human.

Based on human experiences the administered dose of ibogaine for treating drug addiction
has a wide range and varies from 6 to 30 mg/kg bw (equal to 420 to 2100 mg for a human of
70 kg) (Alper et al., 1999; Davis et al., 2017; Mash et al., 2018; Noller et al., 2018; Schep et
al., 2016). These dose levels are 4-to 21-fold higher than our predicted BMDL 1o value (96.9
mg for a human of 70 kg) for the ibogaine dependent induction of QTc prolongation. Since a
BMDL value generally represents a dose level at which the adverse effect is considered
negligible (EFSA, 2017), the prolonged QTc would be expected at doses higher than the
predicted BMDL o values, which is in line with the observation that QTc prolongations and
arrythmia were observed in the subjects administered dose levels of ibogaine above the
predicted BMDL1o, and that a dose higher than 20 mg/kg bw ibogaine (equal to 1400 mg for a
human of 70 kg) is associated with fatalities (Mash et al., 2018). Our predictions also confirm
that ECG monitoring is essential for patients receiving ibogaine (Glue et al., 2016). In addition,
many studies demonstrate that ibogaine and noribogaine have different neurobiological
profiles (Baumann et al., 2001a; Baumann et al., 2001b; Maciulaitis et al., 2008), indicating

that noribogaine instead of ibogaine might be more efficient in mediating certain
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pharmacological effects (Mash et al., 2016). Based on our model predictions and reported
observations (Glue et al., 2016), a 1.3 to 1.7-fold higher dose of ibogaine is needed to reach
the same Cmax of noribogaine compared to the direct intake of noribogaine. Considering a
similar in vivo potency observed in the current study for the predicted in vivo induction of the
unwanted side effect of QTc prolongation by the two compounds (similar predicted BMDL1o

values), noribogaine would be a safer option.

In the present study we consider that a relatively small contribution of ibogaine itself to the
in vivo cardiotoxicity could be due to its low unbound fraction in plasma and its extensive
metabolism. However, as ibogaine is a basic compound, the plasma protein binding could be
influenced by the level of alphal-acid glycoprotein which has an up to 10-fold variation in
human plasma (Smith and Waters, 2019). Furthermore, it has been reported that the internal
concentration of ibogaine was up to 43-fold higher in CYP2D6 poor metabolizers compared to
extensive metabolizers (Mash et al, 2001; Glue et al., 2015b). Glue et al. (2015b) also reported
that the Cmax of ibogaine was 26-fold higher in CYP2D6 extensive metabolizers who took
CYP2D6 inhibitors compared to the ones who took placebo. Based on these observations, the
cardiotoxicity of ibogaine might become apparent more easily in these sensitive individuals.
Moreover, due to the limited information on the metabolism of noribogaine, only the
glucuronidation was included in the current model. Other metabolic reactions such as sulfation
might be also involved in the clearance of noribogaine (Glue et al., 2016). Considering the
relative high potency of noribogaine in in vivo cardiotoxicity, it would be of interest to have a
comprehensive metabolic profile for noribogaine defining also potential minor pathways for

its clearance.

In conclusion, we demonstrated that integrating in vitro cardiotoxicity data obtained with
hiPSC-CMs in the MEA assay, in vitro biokinetic data and PBK modelling can be a promising
NAM to predict the in vivo dose-dependent cardiotoxicity of ibogaine and noribogaine in
human. The comparison of the predictions obtained to the in vivo data indicated the adequate
performance of the developed in vitro in silico approach. Obtained predictions also reveal that
a similar in vivo cardiotoxicity potency upon the oral administration of ibogaine and
noribogaine while noribogaine might play a substantial role in ibogaine-induced QTc
prolongation. Altogether, the present study shows an additional proof of principle for using a
NAM consisting of PBK modeling-based reverse dosimetry of hiPSC-CMs MEA assay data

for the prediction of human cardiotoxicity, which can be used for cardiac safety evaluation.
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Supplementary materials 1

Figure S1 Irregular waveforms of field potential observed in human induced pluripotent stem cell-
derived cardiomyocytes using the multiple-electrode array. a, arrhythmia-type waveform induced by 1
uM ibogaine. b, arrhythmia-type waveform induced by 3 uM noribogaine. Waveforms present in a and

b were not used for defining the in vitro concentration-response curves for FPDc effects.
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Figure S2 Effects of repeated addition of 0.05% (v/v) acetonitrile (squares) and 0.1% (v/v) DMSO
(circles) on the FPDc relative to baseline conditions in the vehicle control well set at 100%. Vehicle
control addition 0 on the X axis represents the response of the baseline control set at 100%. 1-7 represent
the 1 to 7™ addition of vehicle controls corresponding to the 1% to 7" addition. Each data point

represents the mean + SD of three independent experiments.
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Figure S3 Concentration-response curves for cardiotoxicity in hiPSC-CMs of the reference compounds

(a) dofetilide and (b) isoproterenol. The response of the baseline at 0.1% (v/v) DMSO was set at 100%.

Data represent the mean of results obtained from three independent experiments each containing six

well replicates. Each data point represents the mean = SD. Statistically significant changes in response

compared to the solvent control are marked with * with p <0.05: *, » <0.01: ™ and p < 0.001: ™,

Table S1 Summary of case reports of QT prolongation upon oral administration of ibogaine

Baseline

Post

Reason for ibogai D Te (%t
Reference® eason for ibogaine Sex 0S¢ QTc (ms) QTc QTe M’ 0
use (mg/day)* baseline)
(ms)

Asua (2013) Heroin addiction Male 7000 405 600 148.1
Grogan et al. Cocaine and heroin

Femal 2 411 191.
(2019) addiction emale 2000 e o
Henstra et al. Heroin addiction Female 1400 411 647 130.2
(2017)
Hildyard et al. Heroin addiction Male 7000 405 730 182.5
(2015)
Hoelen et al. L. .
(2009) Alcohol addiction Female 500 411 616 149.9
Meisner et al. Heroin addiction Male 4000 405 588 145.2
(2016)
Pleskovic et al.

Mal 4 4 13.
(2012) Not reported ale 600 05 60 3.6

i 1. .. ..
Steinberg et a Opioid addiction Male 5600 405 714 176.3
(2018)
Vlaanderen et
Not report Mal 24 4 163.

al. (2014) ot reported ale 00 05 663 63.7

“internet-purchased ibogaine with unknown purity. ® Baseline was assumed to be 405 ms and 411 ms

for male and female, respectively, given that no baseline information was reported (Wedam et al., 2007).

¢ a dose of 3500 mg ibogaine was corrected for the reported purity of 15%.
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Supplementary materials 2

;PBK model code human model

s

; physiological parameters

; Tissue volumes (L or Kg)

; body weight human in kg

; All fractions are taken from Brown et al. (1997)

BW =170
VLc =0.0257
VFc=0.2142
VLuc =0.0076
VAc=10.0198
VVec=0.0593
VKc =0.004
VHc = 0.0047
VRc =0.037
VSc=0.58
VL =VLc * BW
VF = VFc * BW

VLu= VLuc * BW

VK =VKc * BW
VH = VHc * BW
VR = VRc * BW
VS =VSc * BW
VA =VAc * BW
VV=VVc* BW

; fraction of liver tissue

; fraction of fat tissue

; fraction of lung tissue

; fraction of arterial blood: 0.074*1/4

; fraction of venous blood: 0.074*3/4

; fraction of kidney tissue

; fraction of heart tissue

; fraction of rapidly perfused tissue
; fraction of blood flow to slowly perfused tissue
; total of fractions = 0.9527

; volume of liver
; volume of fat
; volume of lung
; volume of kidney
; volume of heart
; volume of rapidly perfused tissue
; volume of slowly perfused tissue
; volume of arterial blood
; volume of venous blood

; Blood flow rates (L/h)
QC=15* BW"0.74

QLc=0.227
QFc = 0.052
QKc=0.175
QHc = 0.04

QSc =0.291
QRc=0215

; QC =15 * BW"0.74 (Brown et al., 1997)

; fraction of blood flow to liver

; fraction of blood flow to fat

; fraction of blood flow to kidney

; fraction of blood flow to heart

; fraction of blood flow to slowly perfused tissue

; fraction of blood flow to rapidly perfused tissue
; total of fractions = 1
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; all fractions are taken from Brown et al. (1997)

QL = QLc*QC
QF = QFc*QC
QK = QK¢ * QC
QH = QHc*QC
QR = QRc*QC
QS = QSc*QC

; blood flow rate to liver in L/h

; blood flow rate to fat

; blood flow rate to kidney

; blood flow rate to heart

; blood flow rate to rapidly perfused tissue
; blood flow rate to slowly perfused tissue

s

; Partition coefficients

PFibo =0.18

PSibo =2.73
PHibo = 0.7
PKibo =1.02
PLibo =1.62
PRibo = 1.62
PLuibo = 0.32
PFnor =1.38

; fat/blood partition coefficient ibogaine
; slowly perfused tissues/blood partition coefficient ibogaine
; heart/blood partition coefficient ibogaine
; kidney/blood partition coefficient ibogaine
; liver/blood partition coefficient ibogaine
; rapidly perfused tissues/blood partition coefficient ibogaine
; lung/blood partition coefficient ibogaine

; fat/blood partition coefficient noribogaine
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PSnor=2.33 ; slowly perfused tissues/blood partition coefficient noribogaine
PHnor =7.6 ; heart/blood partition coefficient noribogaine

PKnor = 16.9 ; kidney/blood partition coefficient noribogaine

PLnor=15.3 ; liver/blood partition coefficient noribogaine

PRnor =15.3 ; rapidly perfused tissues/blood partition coefficient noribogaine

PLunor =13.1 ; lung/blood partition coefficient noribogaine

;
; Biochemical parameters

; Linear uptake rate (/h) ; calculated based on Papp values obtained from the current study using
methadone as a reference compound.

kaibo =0.79

kanor =1.23

; Fraction absorbed
Faibo =1

Fanor =1

; Biliary excretion

kbibo=0.575 ; the kb of noribogaine was assumed to be same for ibogaine
kbnor=0.575 ; biliary excretion rate constant (/h) of noribogaine was obtained by
fitting CVBnor to reported in vivo data (Glue et al., 2016; Glue et al., 2015a; Glue et al., 2015b).

; Metabolism of ibogaine in the liver
; Scaling factors;

MPL=32 ; liver microsomal protein yield (mg/gram liver) (Barter et al.,
2007)
L=VLc*1000 ; liver =25.7 (gram/kg BW)

; Metabolites of ibogaine, unscaled maximum rate of metabolism (nmol/mg protein/min)

Vmaxcl =0.17 ; obtained from in vitro microsomal incubation in the current study.
; Metabolites of ibogaine, scaled maximum rate of metabolism (umol/h)

Vmax1 = Vmaxcl /1000 * 60 * MPL * L * BW

; Metabolites of ibogaine, affinity constants (umol/L)
Kml =0.63 ; obtained from in vitro microsomal incubation in the current study.

; metabolism of noribogaine in the liver

; Metabolites of noribogaine, unscaled maximum rate of metabolism (nmol/mg protein/min)

Vmaxc2 =0.036 ; obtained from in vitro microsomal incubation in the current study.
; Metabolites of noribogaine, scaled maximum rate of metabolism (umol/h)

Vmax2 = Vmaxc2 / 1000 * 60 * MPL * L * BW

; Metabolites of noribogaine, affinity constants (umol/L)
Km2 =305 ; obtained from in vitro microsomal incubation in the current study.

;
; Run settings

B

; Molecular weight (g/mol)
MWibo=310.4 ; molecular weight of ibogaine
MWnor = 296.4 ; molecular weight of noribogaine

; Given dose (mg/kg bw) and oral dose in pmol/kg bw for ibogaine
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TDOSEibo = 0.0000001 ; whole body total dose (mg)

GDOSEibo = TDOSEibo / BW ; given dose (mg/kg bw)
ODOSEibo = GDOSEibo * 1e-3 / MWibo*1e6 ; determine odose (umol/kg bw)
DOSEibo = ODOSEibo * BW ; determine dose (umol)
TDOSEnor = 30 ; whole body total dose (mg)
GDOSEnor = TDOSEnor / BW ; given dose (mg/kg bw)

ODOSEnor = GDOSEnor * le-3/MWnor *1e6 ; determine odose (umol/kg bw)
DOSEnor = ODOSEnor * BW ; determine dose (umol)
doseibo_int = 2400 ; dosing interval in hours

dosenor_int = 2400

; Time (h)
Starttime = 0 ; in h (days * hours in a day)
Stoptime = 1*24 ; in h (days * hours in a day)
DTMIN = le-6
DTMAX =1
DTOUT =0
TOLERANCE = 0.00001

;
; Knetics ibogaine

; Slowly perfused tissue compartment
; ASibo = Amount ibogaine in slowly perfused tissue (umol)

ASibo' = QS * (CAibo - CVSibo)
Init ASibo =0
CSibo = ASibo / VS
CVSibo = CSibo / PSibo

; Rapidly perfused tissue compartment

Chapter 5

;ARibo = Amount ibogaine in rapidly perfused tissue (umol)

ARibo' = QR * (CAibo - CVRibo)
Init ARibo =0
CRibo = ARibo / VR
CVRibo = CRibo / PRibo

; Fat compartment
;AFibo = Amount ibogaine in fat tissue (umol)

AFibo' = QF * (CAibo - CVFibo)
Init AFibo = 0
CFibo = AFibo / VF
CVFibo = CFibo/ PFibo

; Uptake ibogaine from GI tract
;AGlibo= Amount ibogaine remaining in GI tract (pmol)

Init AGlIibo =0
AGIibo' = pulse (DOSEibo* Faibo, 0, doseibo _int) -kaibo * AGlibo
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; Liver compartment
;ALibo = Amount ibogaine in liver tissue (umol)

ALibo'= QL * (CAibo - CVLibo )+ (AGlibo * kaibo) - AMLibo' -ABibo'
Init ALibo= 0
CLibo = ALibo/ VL
CVLibo= CLibo / PLibo

;AMLibo=Amount ibogaine metabolized in liver to noribogaine

AMLibo' = (Vmax1*CVLibo) / (Km1 + CVLibo)
init AMLibo =0

; ABibo= amount of biliary excretion of ibogaine

ABibo'=kbibo*ALibo
init ABibo =0

; Kidney compartment
;AKibo = Amount ibogaine in kidney tissue (umol)

AKibo' = QK * (CAibo - CVKibo)
Init AKibo =0
CKibo = AKibo / VK
CVKibo= CKibo/ PKibo

;Heart compartment
;AHibo = Amount ibogaine in heart tissue (umol)

AHibo' = QH * (CAibo - CVHibo)
Init AHibo =0

CHibo = AHibo / VH

CVHibo= CHibo / PHibo

s

;Lung compartment
;ALuibo = Amount ibogaine in lung tissue (umol)

ALuibo' = QC * (CVibo - CALuibo)
Init ALuibo =0

CLuibo= ALuibo / VLu

CALuibo = CLuibo / PLuibo

s

; Arterial blood compartment
;CAibo = Concentration arterial blood ibogaine
AAibo' = QC * (CALuibo- CAibo);

Init AAibo =0
CAibo= AAibo/VA

B

; Venous blood compartment

;AVibo = amount venous blood ibogaine (umol)
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AVibo' = (QF * CVFibo + QR * CVRibo + QS * CVSibo + QL * CVLibo + QK * CVKibo + QH *CVHibo-
QC * CVibo)
Init AVibo =0

CVibo = (AVibo / VV)

;
; Kinetics noribogaine sub-model

;Slowly perfused tissue compartment
; ASnor = Amount noribogaine in slowly perfused tissue (umol)

ASnor' = QS * (CAnor- CVSnor)
Init ASnor =0

CSnor = ASnor / VS

CVSnor = CSnor / PSnor

; Rapidly perfused tissue compartment
; ARnor = Amount noribogaine in rapidly perfused tissue (imol)

ARnor' = QR * (CAnor - CVRnor)
Init ARnor =0
CRnor = ARnor / VR
CVRnor= CRnor/ PRnor

s

; Fat compartment

; AFnor= Amount noribogaine in fat tissue (pmol)

w

S

AFnor' = QF * (CAnor - CVFnor) 2

Init AFnor=0 %

CFnor= AFnor/ VF 5

CVFnor = CFnor/ PFnor

s

; Uptake noribogaine from GI tract
;AGInor= Amount noribogaine remaining in GI tract (umol)

Init AGInor =0
AGInor' = pulse (DOSEnor* Fanor, 0, dosenor_int) + -kanor * AGInor

; Liver compartment

; ALnor= Amount noribogaine in liver tissue (pmol)

ALnor' = QL * (CAnor - CVLnor) + (AGInor * kanor) +AMLibo' - ABnor'- AMLnor'
Init ALnor =0
CLnor = ALnor/ VL
CVLnor = CLnor / PLnor

;AMLnor=Amount noribogaine metabolized in liver to noribogaine glucuronide

AMLnor' = (Vmax2*CVLnor) / (Km2 + CVLnor)
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init AMLnor =0
; ABnor= amount of biliary excretion of noribogaine

ABnor'=kbnor*ALnor
init ABnor =0

; Kidney compartment
; AKnor = Amount noribogaine in kidney tissue (umol)

AKunor' =QK * (CAnor - CVKnor)
Init AKnor =0
CKnor = AKnor / VK
CVKnor= CKnor / PKnor

B

; Heart compartment
; AHnor = Amount noribogaine in heart tissue (umol)

AHnor' = QH * (CAnor- CVHnor)
Init AHnor =0

CHnor = AHnor / VH

CVHnor = CHnor / PHnor

s

;Lung compartment
; ALunor = Amount noribogaine in lung tissue (umol)

ALunor' = QC * (CVnor - CALunor)
Init ALunor =0

CLunor = ALunor / VLu

CALunor = CLunor / PLunor

B

; Arterial blood compartment
; CAnor= Concentration arterial blood noribogaine(pmol)
AAnor' = QC * (CALunor- CAnor)

Init AAnor =0
CAnor = AAnor/ VA

; Venous blood compartment
; AVnor = Amount venous blood noribogaine (umol)

AVnor' = (QF * CVFnor + QR * CVRnor+ QS * CVSnor+ QL * CVLnor + QK * CVKnor + QH *CVHnor-
QC * CVnor)

Init AVnor =0

CVnor= (AVnor/ VV)

; Mass balance calculations of ibogaine

Totalibo' = pulse (DOSEibo *Faibo, 0, doseibo_int)
init Totalibo = 1E-50
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Calculatedibo = AFibo + ASibo+ ARibo + ALibo+ AVibo+ AAibo + AGIibo + AMLibo + ALuibo + AKibo +
AHibo+ABibo

ERRORIibo = ((Totalibo - Calculatedibo) / (Totalibo + 1E-30)) * 100
MASSBALIbo = Totalibo - Calculatedibo + 1

;
; Mass balance calculations of noribogaine

Totalnor' = AMLibo'+pulse (DOSEnor *Fanor, 0, dosenor_int)
init Totalnor = 1E-50+AMLibo

Calculatednor = AFnor + ASnor+ ARnor + ALnor + AVnor+ AAnor+ ALunor + AKnor + AHnor +ABnor+
AMLnor + AGInor

ERRORnor= ((Totalnor - Calculatednor) / (Totalnor + 1E-30)) * 100
MASSBALnor = Totalnor - Calculatednor + 1

; Calculation with model

; Calculations to evaluate the model performance of ibogaine
CViboB = CVibo* MWibo ; Concentration of ibogaine in venous blood (ng/1)

AUCibo' = CViboB ; Calculate AUC for ibogaine
init AUCibo =0

CVheartibo= CVHibo*MWibo ; Concentration of ibogaine in heart venous blood (pg/1)

; Calculations to evaluate the model performance of noribogaine l:
]
N

CVnorB = CVnor * MWnor ; Concentration of noribogaine in venous blood (ng/1) %
=

AUCnor' = CVnorB ; Calculate AUC for noribogaine ©

init AUCnor = 0

CVheartnor= CVHnor*MWnor ; Concentration of noribogaine in heart venous blood (ug/l)

BPribo=2.5 ;blood to plasma ratio of ibogaine, assumed to be same as

noribogaine

BPrnor=2.5 ;blood to plasma ratio of noribogaine (Mash et al. 2016)

fupibo=0.04 ;fraction unbound in plasma of ibogaine obtained from the

current study

fupnor=0.26 sfraction unbound in plasma of ibogaine obtained from the current

study

; toxic equivalency factor based on in vitro cardiotoxic potency (BMCLio of ibogaine =0.11 uM BMCL1o of
noribogaine= 0.15uM) obtained in the hiPSC-CM MEA assay in the current study.

TEFibo=1

TEFnor=0.73

; toxic equivalency concentration upon the oral exposure of ibogaine
fCVheartTEQ=CVheartibo* (fupibo/BPribo) *TEFibo+CVheartnor* (fupnor/BPrnor) *TEFnor
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Discussion

1.  Overview of the results and main findings

In the last decades a paradigm shift can be observed in the toxicity testing used for chemical
risk assessment and safety evaluation. The use of animal studies in toxicity testing is being
debated. This is because of the inter-species differences between animals and human as well
as the ethical and financial concerns related to animal studies. Therefore alternative testing
strategies or new approach methodologies (NAMs) that integrate in vitro and in silico

approaches are currently being developed.

As an important component of such NAMs, physiologically based kinetic (PBK) modeling
can link the internal concentrations at the target organ with the external doses of the chemicals
that humans are exposed to. The use of PBK modelling also enables extrapolation of in vitro
data to the in vivo situation taking the toxicokinetics into account. A quantitative in vitro to in
vivo extrapolation (QIVIVE) approach combining data from an in vitro toxicity assay and PBK
modeling via so-called PBK modeling-based reverse dosimetry, has already adequately
predicted the in vivo toxicity in experimental animals for various toxic endpoints in recent
years including for example liver toxicity, nephrotoxicity, developmental toxicity and
neurotoxicity (Abdullah et al. 2016; Algharably et al. 2021; Chen et al. 2019; Gilbert-Sandoval
et al., 2020; Louisse et al. 2010 and 2017; Ning et al. 2019, Omwenga et al. 2021; Strikwold
etal. 2013 and 2017; Zhao et al. 2019). To further facilitate the use of the PBK modeling-based
reverse dosimetry approach for chemical risk assessment and safety evaluation it is of interest
to extend its potential applicability to a broader range of toxicity endpoints and to the human
situation. Considering that cardiotoxicity is one of the most important toxicity endpoints in
safety testing of chemicals (non-pharmaceuticals and pharmaceuticals) and that lots of animals
are needed for cardiac safety testing, animal free testing approaches are urgently needed for
this endpoint. So far, proofs-of-principle for the PBK modeling-based reverse dosimetry
approach mainly exist for the prediction of toxicity in experimental animals while ultimately
predictions for human are needed. Therefore, the present thesis aims to provide proofs-of-
principle for using PBK modeling-based reverse dosimetry of in vitro cardiotoxicity data for
the quantitative prediction of cardiotoxicity in humans, thereby providing a new approach

methodology in cardiac risk assessment and safety evaluations.

In Chapter 2, two stem cell-based in vitro models were evaluated for cardiotoxicity
screening of chemicals. The first model, namely the mouse embryonic stem cell-derived

cardiomyocyte (mESC-CM) model, used beating arrest as a toxicity readout and the second
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model, being the human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM)
multi-electrode array (MEA) assay, had multiple electrophysiological parameters as readout.
To evaluate the two models, the cardiotoxicity data of eleven model compounds obtained in
the two assays were compared. The results showed that the mESC-CM beating arrest assay
was not responsive to four hERG channel blockers and one Na*/K* ATPase inhibitor, being
digoxin. Whereas the hiPSC-CM MEA assay was responsive to all hERG channel blockers and
more sensitive to two sodium channel blockers and the Na” /K" ATPase inhibitor ouabain. The
effective concentrations inducing 10% change in the readouts (EC1o) obtained in the hiPSC-
CM MEA assay were two to three orders of magnitude lower than those obtained in the mESC-
CM model. Additionally, the two models showed similar sensitivity to two calcium channel
blockers and a f-adrenergic receptor agonist. The reason underlying the observed disparities
could be partly attributed to 1) the inter-species differences in expression level, function and
maturity of ion channels present in the mouse or human cardiomyocytes, 2) the differences in
differentiation level of stem cells (i.e. combination of diverse cardiac cell types in the mouse
cell model and a monolayer of ventricular cardiomyocytes in the human cell model) which
could influence the diffusion of compounds to their targets in the cell models and 3) the
temporal differences in endpoints used in two models (i.e. an early and late stage indicator of
cardiotoxicity being electrophysiological alterations and beating arrest, respectively). Given
that the hiPSC-CM MEA assay was more sensitive and had a broader compound coverage, a
comparison was made between in vitro effective concentrations (i.e. ECio) obtained from the
hiPSC-CM MEA assay and the reported serum concentrations associated with human (in vivo)
observed responses observed in the electrocardiogram (ECG). This allowed the evaluation of
the potential use of the human stem cell model for the prediction of human in vivo
cardiotoxicity. Results revealed a good correlation between in vitro and in vivo data for most
hERG channel blockers and sodium channel blockers with the differences being mostly smaller
than 5-fold. Overall, our results showed that both models could be used to detect cardiotoxicity
within the respective applicability domains. The mESC-CM beating arrest assay could be used
as the first step in a tiered approach for cardiotoxicity screening to detect hazards related to
cardiotoxicity via effects on for example sodium and calcium ion channels. The hiPSC-CM
MEA assay was applicable to detect all evaluated compounds with different modes of action
(MoAs) and thus could be used as a second tier to detect cardiotoxicity. Furthermore, given its
adequate prediction of effective concentrations, and the use of human cells instead of cells of
animal origin, it was selected as the model of choice as basis for QIVIVE predictions of human

cardiotoxicity.

226



Discussion

Chapter 3 demonstrated that the combination of the hiPSC-CM MEA assay and PBK
modeling based reverse dosimetry could adequately predict methadone-induced cardiotoxicity
in humans. The in vitro cardiotoxicity of methadone and its metabolites EDDP and EMDP was
quantified using the hiPSC-CM MEA assay. A human PBK model of methadone with a sub-
model of EDDP was developed using data obtained from in silico predictions, in vitro
microsomal incubations and literature. The comparison between model predictions and the
reported blood kinetic data showed a difference of less than 2-fold, indicating a good model
performance and thus allowing the use of the developed PBK model for the reverse dosimetry.
Both methadone and EDDP induced concentration-dependent prolongation of field potential
duration corrected for beat rate (FPDc) in hiPSC-CMs. However, the unbound in vitro
concentration of EDDP causing 20% FPDc prolongation was respectively 41- and 12-fold
higher than the unbound maximum blood concentration of EDDP reported in the subjects
receiving an oral dose of methadone of 57.5 mg/day and predicted using the developed
submodel for EDDP at a high dose level of methadone of 200 mg/day. These facts point at a
limited contribution of cardiotoxicity of EDDP in the vivo situation. Thus, the cardiotoxicity
of EDDP was not considered for the reverse dosimetry. Subsequently the in vitro
concentration-response curve of methadone was converted to an in vivo dose-response curve
for QTc prolongation in humans. Additionally, considering the variation in protein plasma
binding of methadone reported in in vivo human studies, the PBK modeling based reverse
dosimetry was performed using different unbound fraction (fu,) values of methadone. Results
revealed that the prediction using high and low fu, values were well in line with data obtained
from individual case studies and epidemiological population studies, respectively. The reason
underlying this observation could be partly explained by the distinctive physiological and
pathological conditions of subjects in the two types of studies, which could influence the
plasma concentration of alphal-acid glycoprotein to which methadone is mainly bound in
plasma thereby influencing the fraction of unbound methadone. Altogether, this chapter
provides a proof-of-principle of using PBK modeling-based reverse dosimetry of in vitro

cardiotoxicity data for the prediction of QTc prolongation in humans.

Results of the sensitivity analysis of the developed PBK model in Chapter 3 revealed that
metabolism related parameters were highly influential on the methadone PBK model
predictions and thus that the variation in metabolism would be a potential factor contributing
to the interindividual human variation in the sensitivity towards the cardiotoxicity of

methadone. This was further investigated in Chapter 4 where the developed PBK model of
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methadone was used as a basis to construct PBK models for R- and S-methadone for the
Caucasian and Chinese population, and to study the inter-individual and inter-ethnic variability
in the methadone enantiomer-induced cardiotoxicity. Instead of racemic methadone, the two
enantiomers were used as model compounds because of their different potency in
cardiotoxicity and stereoselective metabolism. To investigate the effect of inter-individual and
inter-ethnic kinetic variations on the cardiotoxicity of the two methadone enantiomers in the
Caucasian and the Chinese population, two sources of metabolic variation data were
incorporated in the PBK models. In the first approach the metabolic variation was characterized
using kinetic constants obtained from in vitro incubations with 25 Caucasian and 25 Chinese
individual human liver microsomes (HLMs) to define 50 individual PBK models by which
blood kinetics of the two methadone enantiomers in the two populations were predicted. In the
second approach reported kinetic constants for the conversion of the two enantiomers by
recombinant cytochrome P450 isoforms (rCYPs) and variations in CYP abundances were
incorporated in the PBK models and combined with Monte Carlo simulations to predict the
probability distribution of blood kinetics of the two methadone enantiomers in the two
populations. The results showed that both approaches similarly predicted the inter-individual
and inter-ethnic variations in the kinetics of the two enantiomers. A higher catalytic efficiency
for the metabolism of both enantiomers and thus lower predicted blood concentrations of the
enantiomers at similar dose levels with a higher coefficient of variation were observed in the
Caucasian population compared to the Chinese population. This may partly be due to the
reported inter-ethnic differences in functional alleles and the abundance of CYPs involved in
the metabolism as well as in the content of cytochrome b5 that provides electrons for the CYP
mediated conversions. Subsequently, the predicted blood kinetics obtained using rCYPs
combined with Monte Carlo simulation were used to derive chemical specific adjustment
factors (CSAFs), which were further applied to define dose-response curves obtained by
reverse dosimetry for sensitive individuals within the populations. BMD analysis and the
Margin of Safety (MOS) approach were subsequently used to evaluate the inter-ethnic
difference in sensitivity towards R- and S-methadone. The results revealed that Chinese may
be at relatively higher risk towards the cardiotoxicity of methadone with MOS values at similar
dose levels being 2-fold lower than those for Caucasians for both methadone enantiomers. In
conclusion, this chapter illustrated that integrating in vitro cardiotoxicity and metabolic data,
PBK modelling and Monte Carlo simulation can be a powerful approach to predict the role of
kinetics in inter-ethnic and inter-individual variation in cardiotoxicity, which can be used to

refine the cardiac risk assessment and safety evaluation.
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Given that cardiotoxicity is an important endpoint not only in drug development with respect
to pharmaceuticals but also for public health with respect to food-related and environmental
chemicals, it is of great value to explore the potential applicability of the developed NAM to
predict human cardiotoxicity for a broader range of compounds. This is needed to prove that
the adequate prediction of in vivo methadone-induced cardiotoxicity is not a unique case.
Therefore, Chapter 5 investigated the possibility of the PBK modeling-based reverse
dosimetry approach to predict the in vivo cardiotoxicity of the herbal alkaloid ibogaine and its
metabolite noribogaine. Following a similar procedure as the one presented in Chapter 3, the
cardiotoxicity of ibogaine and noribogaine was quantified in vitro using the hiPSC-CM MEA
assay. PBK models to predict the toxicokinetics of ibogaine and noribogaine in human were
developed using parameters obtained from in silico methods and the literature, and biokinetic
data were obtained from a Caco-2 transport study and in vitro liver microsomal incubations.
Using the developed PBK model, in vitro concentration-response curves (from the hiPSC-CM
MEA assay) were translated to in vivo dose-response data for QTc prolongation using PBK
modeling-based reverse dosimetry. Results of the hiPSC-CM MEA assay showed that both
ibogaine and noribogaine prolonged FPDc in a concentration-dependent manner with ibogaine
being 1.4-fold more potent than noribogaine. Unlike what was observed for the methadone
metabolite EDDP in Chapter 3, the unbound in vitro effective concentration of noribogaine
inducing 10% prolongation of FPDc was within the range of the unbound maximum blood
concentration of noribogaine after ingestion of clinically relevant doses of ibogaine (typically
500-1000 mg). Thus, the cardiotoxicity of noribogaine was taken into account in the reverse
dosimetry for the prediction of ibogaine-induced cardiotoxicity by using the toxic equivalency
(TEQ) approach using toxic equivalency factors (TEFs). Given that the oral administration of
noribogaine is reported to be associated with QTc prolongation in humans, reverse dosimetry
of in vitro cardiotoxicity of noribogaine was performed to predict the in vivo noribogaine-
induced QTc prolongation. Comparison of both model predictions to reported in vivo data
showed that the developed approach adequately predicted the cardiotoxicity of both ibogaine
and noribogaine in human. Additionally, the relative contribution of ibogaine and noribogaine
in ibogaine-induced cardiotoxicity was investigated by integrating the TEQ approach in the
PBK model. It was shown that noribogaine plays a substantial role in the in vivo cardiotoxicity
upon oral administration of ibogaine. A relatively smaller contribution of ibogaine itself to the
in vivo cardiotoxicity could be ascribed to its low unbound fraction in plasma and its extensive

metabolism. In conclusion, this chapter provided an additional proof-of-principle for using
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PBK modeling-based reverse dosimetry of hiPSC-CMs MEA assay data for the prediction of

human cardiotoxicity, which can be used for risk assessment and safety evaluation.
2.  General discussion and future perspectives

The present thesis demonstrated the potential of PBK modeling-based reverse dosimetry of in
vitro data to predict human cardiotoxicity reflected by effects on QTc prolongation, providing
a NAM for the cardiac risk assessment and safety evaluation of chemicals. The obtained results
will be further discussed to elucidate considerations on study limitations, applications and
future improvements, including the following topics:

- Applicability domains of in vitro cardiotoxicity models

- Considerations for the PBK model

- Use of PBK modeling-based reverse dosimetry

- Implications for risk assessment

- Future perspectives

2.1 Applicability domains of in vitro cardiotoxicity models

The present thesis first focused on two stem cell-based in vitro models and provided a
comprehensive evaluation of their capacities to detect chemical-induced cardiotoxicity via
different mechanisms by using eleven model compounds, and thereby elucidated the potential
for use of the two models for cardiotoxicity screening and QIVIVE. The following section
presents additional considerations related to the proposed applicability domains of the two in

vitro cardiotoxicity models.
2.1.1 Applicability domain of the mESC-CM beating arrest assay

Considering the fundamental differences of the readouts of the two cell models (i.e. beating
arrest vs. electrophysiological parameters) and the species differences for the cell species used
(i.e. mouse vs. human), it is of importance to point out that the aim of Chapter 2 was not to
quantitatively compare the two models, but to evaluate their applicability domains and explore
their potential as a model for cardiotoxicity screening and/or for QIVIVE. Given the increasing
demand for evaluation of chemicals, including pharmaceuticals, industrial chemicals, natural
alkaloids, environmental pollutants and other potentially cardiotoxic chemicals (Burnett et al.
2021; Kratz et al. 2017; Krishna et al. 2020), it is essential to consider an in vitro model that is
suitable for screening of a large number of chemicals. For such aim it can be advantageous that
compounds have a similar MoA in human and mice, but at the same time it is not a prerequisite.

In this case, apart from biological considerations, costs and practical aspects should also be
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taken into account for the evaluation, and with respect to these topics the mouse model may
have advantages. The mESC-CMs are easy to obtain, and the mESC-CM beating arrest assay
is cost-friendly and relatively easy to implement, which may result in the mESC-CM beating
arrest assay to be a first-choice candidate for cardiotoxicity screening, as long as it is kept in

mind that it may not detect for example hERG channel blockers.

The results of chapter 2 demonstrated that the mESC-CM beating arrest assay detected the
cardiotoxicity of sodium and calcium channel blockers and could be used as a first step in a
tiered approach as a first screen for detection of hazards related to cardiotoxicity via effects on
these ion channels. The mESC-CM beating arrest assay was not responsive to the hERG
channel blockers tested, while hERG channel blockers are considered problematic compounds,
since blockage of hERG channels is a frequently encountered off-target activity during drug
development, associated with prolonged QTc interval and thus potentially causing life-
threatening ventricular arrythmia (Martin et al. 2004; Sanguinetti et al. 1995; Thomas et al.
2006). The observed low sensitivity of the mESC-CM towards hERG channel blockers could
be attributed to several reasons. It has been reported that hERG channel-mediated rapid delayed
rectifier potassium currents (Ik) represent one of the major currents involved in the regulation
of repolarization in human ventricular cardiomyocytes, while it is not a prominent current in
mouse cardiomyocytes (Nerbonne 2004; Xu et al. 1999). The repolarization of mouse
cardiomyocytes is mainly regulated by three other types of delayed rectifier potassium currents,
namely the fast activating and slowly inactivating currents (Ik siow1 and Ik siow2) and the steady
state current (Is), that are not expressed in human ventricular cardiomyocytes (Huang 2017,
Xu et al. 1999). Thus, the observed low sensitivity of the mouse model towards hERG channel
blockers could be the result of a relatively small contribution of hERG channels to the

regulation of repolarization in mouse ventricular cardiomyocytes.

Furthermore, the use of beating arrest as the readout may be another reason for the low
sensitivity of the mouse model. Beating arrest is considered as a late marker of cardiotoxicity
that follows some electrophysiological alterations (e.g. changes in beat rate and time duration
of repolarization) occurring at an early stage. Additionally, beating arrest may not be an
indicative endpoint when chemical-induced electrophysiological alterations would not result
in the cessation of beating of the cells. Many studies explored the potential of using mESC-
CMs combined with electrophysiological approaches for cardiotoxicity detection. Dofetilide,
a typical hERG channel blocker used in the present thesis, was reported to change contraction

amplitude and beating rate in a concentration-dependent manner when analyzing impedance
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signals from mESC-CMs (Himmel 2013). Ikeuchi et al. (2015) differentiated mESC to the
beating cells following the same approach as used in the present thesis. The effects of chemical
exposure on beating cells were recorded and the obtained videos were converted to data on
inter-beat interval and beat rate using an optical microscopy imaging system (Ikeuchi et al.
2015). Indeed, using electrophysiological parameters as the readout appears to improve the
applicability of mESC-CMs. However, measurement and analysis of those parameters require
specialized expertise and equipment, thereby losing some of the major advantages of the assay

as a simple and cheap assay.

Besides the considerations for the mouse model on hERG channel blockers and endpoints,
mESC-CMs also show dissimilarities in certain morphology features of the action potential
compared to human cardiomyocytes (Danik et al. 2002; Huang 2017; Kaese and Verheule
2012), indicating that special caution and carefully interpretation are needed when
extrapolating mouse data to the human situation, and that the predictive or translational value
may be considered limited. Therefore, the use of the mESC-CMs beating arrest assay may not

be adequate for QIVIVE to predict human cardiotoxicity.
2.1.2 Applicability domain of hiPSC-CM MEA assay

In Chapter 2 of the present thesis it was concluded that the hiPSC-CM MEA assay provides a
suitable in vitro model for QIVIVE for predicting human cardiotoxicity because of the high
sensitivity and good in vitro-in vivo concordance in unbound effective concentrations and
affected endpoints. Chapter 2 showed that the hiPSC-CM MEA assay responded to model
compounds with diverse MoAs and the obtained effective concentrations were highly
concordant with in vivo effective concentrations especially for hERG channel and sodium
channel blockers. Furthermore, the electrophysiological parameters used in hiPSC-CM MEA
assay were considered as suitable readouts to reflect human in vivo clinical endpoints. Namely,
extracellular field potentials of hiPSC-CMs as measured in the MEA correlated well to action
potentials of hiPSC-CMs measured by the patch clamp technique and are considered to some
extent correlated with human ECG parameters (Sala et al. 2017; Tertoolen et al. 2018).
Especially, in the clinic, exposure to hERG channel blockers caused a prolongation of the QT
interval which reflected the ventricular action potential duration (APD) (Hondeghem and De
Clerck 2012). Considering a good linear relationship observed between APD and the field
potential duration (FPD) with an R? of 0.999 (Tertoolen et al. 2018), hERG channel blocker-
induced prolongation of FPD in the hiPSC-CM MEA assay can be seen as the surrogate for the
QT interval prolongation in the ECG (Zwartsen et al. 2019). Many studies also demonstrated
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that the prolongation of FPD corrected for beat rate (FPDc) and the occurrence of in vitro
arrhythmia-like waveforms in the MEA assay have high translational value for clinical
cardiotoxicity (Blinova et al. 2018; Millard et al. 2018). This was corroborated by the results
obtained in Chapter 3 and 5 where with the concentration-dependent effects of methadone and
(nor)ibogaine on FPDc prolongation their dose-dependent effects on QTc prolongation in

human in vivo were adequately predicted.

As mentioned above the hiPSC-CM MEA assay showed great promise for cardiotoxicity
screening and QIVIVE. To further refine the application of the model and interpretation of
results, future efforts could focus on improving the maturity of hiPSC-CMs and optimizing
experimental settings. These suggestions are indicated by the following considerations. hiPSC-
CMs are generally considered as a powerful predictive tool for drug proarrhythmic risk testing
and disease modelling (Crumb Jr et al. 2016; Pourrier and Fedida 2020). It is well documented
that the electrophysiological properties of most key ion channels in hiPSC-CMs such as Ica.L,
Ikr and Iks. remarkably resemble those of human cardiomyocytes (Barbuti et al. 2016;
Karakikes et al. 2015). On the other hand, it is reported that certain characteristics of hiPSC-
CMs are different from the ones of adult cardiomyocytes, while being more similar to fetal
cardiomyocytes with e.g. higher density of pacemaker current (Ir) (Guo et al. 2011; Hoekstra
et al. 2012; Pourrier and Fedida 2020). Unlike the hiPSC-CMs, human adult ventricular
cardiomyocytes do not exhibit spontaneous beating and their contractions are triggered by
impulses transmitted via a cardiac conduction system where Ir plays an essential role in
initiating the spontaneous beating. The current density of Irin hiPSC-CMs was reported to be
higher compared to the Ir density in human adult ventricular cardiomyocytes at a similar
membrane potential (Baruscotti et al. 2010; Ma et al. 2011). The robust I in hiPSC-CMs
prevented the complete repolarization to the resting potential and thus was considered to
contribute to the spontaneous beating of hiPSC-CM (Hoekstra et al. 2012; Ma et al. 2011).
Such a dissimilarity may lead to a complicated in vitro-in vivo comparison as the Irmodulation
would be a confounding factor for the in vitro-in vivo correlation of chemical-induced
chronotropic effects observed in hiPSC-CM (Pang et al. 2019). In the present thesis the
potential influence of the immature phenotype on the characteristics of hiPSC-CMs was to
some extent overcome by culturing the hiPSC-CMs in medium that was specifically designed
for improving maturity of hiPSC-CMs as demonstrated by similar electrophysiological
properties and gene expression pattern to adult cardiomyocytes (Mulder et al. 2018).

Additionally, many other differentiation methods have been developed to improve the maturity

233

Chapter 6



Chapter 6

of hiPSC-CMs through biophysical stimulations (Nunes et al. 2013), optimized growth
substrates (Patel et al. 2015), medium additives (Yang et al. 2014), extended culture time

(Rajamohan et al. 2013) or three-dimension culture (Sirenko et al. 2017).

Furthermore, given that MEA chips with a six-well format (i.e. allowing only six
independent treatments at the same time) were used in the present thesis, like in most hiPSC-
CM MEA studies, exposure to the compounds was performed in a cumulative dosing manner.
This enables testing of a wider chemical concentration range and the direct comparison of
treatments to the same baseline. On the other hand, this may also bring some limitations. For
example, the cumulative dosing may have influence on the observed effects given that certain
compounds can accumulate in the cell membrane and/or cytosol and may result in the
(de)sensitization of ion channels and/or receptors, such as in the case of catecholamines-
induced B-adrenergic receptor desensitization (Lohse et al. 1996; Uzun et al. 2016). To further
elucidate the potential difference between a cumulative and single dosing pattern, the effective
concentrations (ECio) of compounds obtained in the present thesis were compared to the
available data (for dofetilide, mexiletine, nifedipine and isoproterenol) obtained from hiPSC-
CM MEA studies which employed a single dosing strategy (Zwartsen et al. 2019).
Comparisons revealed that the two dosing patterns resulted comparable type of effects of the
compounds (i.e. increase or decrease) with a less than 2-fold difference between the ECio
values obtained in the present thesis using cumulative dosing and reported concentrations
inducing around 10% change on MEA readouts upon single dosing. This difference was even
smaller than the observed inter-laboratory variations when using the same dosing approach.
Likewise, our data on noribogaine obtained via single or cumulative dosing showed that the
results were comparable, demonstrating a comparable potency in prolongation of FPDc (Figure
1). It appears that the influence of cumulative dosing was relatively insignificant for the
compounds discussed above, however, it should be noted that the accumulation of compounds
is dependent on their physicochemical properties and the potential effects on ion channel/
receptor (de)sensitization may differ from case to case. Given that comprehensive information
on mechanisms and effects is not available for most compounds tested in the hiPSC-CM MEA
assay, single dosing experiments could be considered to avoid possible interference,
particularly when the use of a higher-throughput platform of MEA (e.g. 96-well plate) is
possible, which could ensure an efficient detection for a larger number of samples thereby

facilitating testing a wide concentration range by single dosing.
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Figure 1 Concentration-response curves for the effect of noribogaine on FPDc¢ in hiPSC-CM
detected by the MEA using cumulative dosing (black circles and line) or single dosing (orange
squares and line). The response of the baseline condition (0.1% (v/v) DMSO) was set at 100%. Data
represent the mean of results obtained from three independent experiments each containing six well
replicates for the cumulative dosing and from two independent experiments each containing one or two

well replicates for the single dosing.
2.2  Considerations for the PBK model

Chapter 3, 4 and 5 demonstrated how in vitro cardiotoxicity data obtained from the hiPSC-CM
MEA assay can be translated to in vivo cardiotoxicity dose-response curves by using PBK
modeling-based reverse dosimetry. Being the key step of the approach, PBK modeling fills the
gap on kinetics between in vitro data and the in vivo situation. The accuracy of the PBK model
influences the applicability of the model for its intended purpose, which in this case is reverse
dosimetry to predict in vivo cardiotoxicity. In this section topics related to model building and

evaluation and refinements for model predictions are discussed.

2.2.1 Scaling of in vitro metabolism parameters for PBK models

For chemicals that are extensively metabolized, an accurate measurement and description of
their metabolism is essential for developing PBK models because of the large impact of
metabolism on the toxicokinetics and bioactivation/detoxification of the chemicals (Fisher et
al. 2020). In the present thesis two frequently used in vitro systems including liver microsomes
and recombinant cytochrome P450 enzymes (rCYPs) were employed to determine the

metabolic constants (the Michaelis-Menten constant K, and the maximum rate of the reaction
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Vmax). Subsequently, the obtained in vitro metabolic constants were translated to the in vivo
situation to allow their use in the PBK models developed in Chapter 3, 4 and 5. Such scaling
was achieved by using different scaling factors in both models. For liver microsomes a simple
scaling factor can be applied to scale the Vmax by correcting for differences in the amount of
microsomal protein in the HLM and the intact liver. For supersomes expressing single rCYP,
the extrapolation of a rCYP dependent rate constant to the in vivo situation is more complicated
since an additional step is needed to first scale the rCYP system to liver microsomes, so that
by using the scaling factor for liver microsomes, the rate constant can be scaled to the in vivo
situation (Brandon et al. 2003; Ooka et al. 2020; Wetmore et al. 2014). The scaling from the
rCYP system to liver microsomes can be done by using a so-called inter-system extrapolation
factor (ISEF). The ISEF for a specific CYP can be calculated by dividing the Vimax of a CYP
probe substrate measured in HLM (pmol/min/mg microsomal protein) by the Vimax of that CYP
probe substrate measured in the rCYP system (pmol/min/pmol CYP) that is divided by the
abundance of that CYP in the HLM samples (pmol CYP/ mg microsome protein) (Proctor et
al. 2004). Within the ISEF, differences in CYP abundances between both systems are cancelled
out by a correction for the CYP abundance in the HLM used. This makes ISEF values
dimensionless and allow the consideration of differences in the intrinsic activity per amount of
the CYP of interest between the two systems (Proctor et al. 2004; Crewe et al. 2011), reflecting
the differences in lipid environment, nonspecific binding, and concentration of accessory
proteins (Crewe et al. 2011; Lipscomb and Poet 2008). By using the variation in CYP
abundances in a population, the ISEF allows the scaling of the Vmax of the compound of interest
measured in rCYP system to study the population variability in metabolism as demonstrated in
Chapter 4.

Generally, the ISEF value for a specific CYP is derived based on in vitro metabolic data of
a suitable specific probe substrate. The obtained ISEF value is often considered as a “standard”
value and used to predict total metabolic clearance of a compound metabolized by this CYP.
However, the obtained prediction is not always comparable to the in vivo data or to the ones
predicted using liver microsome data, and the discrepancy could be partly attributed to the
over/underestimation of the ISEF values (Badhan et al. 2019; T’jollyn et al. 2015; Youdim et
al. 2008). Several studies have demonstrated that the estimation of ISEFs could be influenced
by many factors including the selection of the probe substrate, the recombinant systems used
and the concentration of accessory proteins (e.g. cytochrome b5). Umehara et al. (2017) found
that the ISEFs for CYP3A4 differed from 0.06 to 0.35 among seven probe substrates and a
large variation in ISEFs for CYP2C9 derived using different probe substrates was also reported
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(Chen et al. 2011; Crewe et al., 2011). The observed substrate-dependent effects of ISEF
estimations may be partly explained by heterogeneities of probe substrate binding towards the
active site of the relevant CYP (Kumar et al. 2006; Stresser et al. 2000; Williams et al. 2003;
Umehara et al. 2017). Additionally, the ISEFs for the same probe substrate could be different
when different recombinant enzyme systems are used. For example, the ISEF for bufuralol
(CYP2D6 probe substrate) obtained using baculovirus transformed insect cells was 67-fold
lower compared to the ISEF obtained using B-lymphoblastoid cells (Proctor et al. 2004). It is
also reported that the level of accessory proteins can have an important role in the ISEFs since
ISEFs for CYP2C9 differed up to 10-fold between rCYP systems with and without cytochrome
b5 (Crewe et al. 2011), the latter being involved in providing the electron for the CYP catalysis.

Chapter 4 of the present thesis demonstrated a compound-specific approach to derive ISEFs
for the two methadone enantiomers for which metabolic data were obtained from incubations
with human liver microsomes and a rCYPs system (Baculovirus-insect cells) and the fraction
metabolized by each CYP. The use of compound specific ISEFs enables avoiding the substrate-
dependent effect on the ISEF calculations mentioned above and subsequently on model
predictions. The prerequisite for defining these compound-specific ISEFs is the availability of
information on the fraction metabolized by each CYP in HLM of the compound of interest,
which information may not be available for newly synthesized/discovered compounds and
additional experiments would be needed. To further mitigate the potential influence of
variations in ISEF on the extrapolation, probe substrate derived ISEFs could be corrected to
ISEFs specific for the compound of interest by fitting the prediction with experimental human
data (Badhan et al. 2019). However, such a correction would not be the first option since it can
be only applied when there are in vivo data available. Other methods, such as using the average
of ISEFs for different probe substrates (Chen et al., 2011) also contribute to more accurate
ISEFs. Moreover, deriving rCYP system specific ISEFs (with probe substrates) can be
recommended. This can be done by using the same rCYP system (same batch is preferred) that
is used to quantify the CYP specific metabolism of the compound of interest and using HLMs
that adequately resemble the individual or population of interest, i.e. with respect to relevant

cytochrome b5 levels.
2.2.2 The role of protein binding in hepatic metabolism

In addition to an adequate extrapolation of in vitro metabolism parameters, a suitable
recognition of the influence of protein binding in hepatic metabolism is also important for

developing an accurate PBK model. Generally, there are three types of protein binding that
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may be considered in the prediction of hepatic metabolism, namely plasma protein binding,
tissue protein binding in the intracellular space, and non-specific binding of chemicals to
components of the in vitro incubation systems used (e.g. liver microsomes and hepatocytes)
(Benet and Zia-Amirhosseini 1995; Deb et al. 2018; Heuberger et al. 2013; Kalvass et al. 2001;
OCED 2021; Kotsiou and Tesseromatis 2011; Sweeney and Gearhart 2020). It is of importance
to consider to what extent the protein binding could influence the prediction of hepatic
metabolism and how it depends on the properties of the chemical of interest, and also that the
correction for one or more types of protein binding does not always contribute to improving
the in vivo predictions of hepatic metabolism (Heuberger et al. 2013; Fagerholm 2007; Nichols
et al. 2018; Obach et al. 1999). This was corroborated by the results in the current thesis where
the metabolism algorithm in the PBK models of methadone and ibogaine did not correct for
protein binding (so called unrestricted clearance, assuming that the chemical bioavailability to
metabolizing enzymes in the in vitro and in vivo situation is effectively the same), but still
properly predicted in vivo metabolism, as reflected by the accurate PBK model prediction of
blood kinetics. This was also observed in the study of Obach et al. (1999) where the in vivo
clearance values were predicted without adding a correction for binding in plasma and to liver
microsomes. These predictions were reported to be more accurate or comparable to the in vivo
data than the ones predicted by including all binding factors for lipophilic basic and neutral
compounds (Obach et al. 1999). The reason underlying such observations remains unclear but
it was assumed to be the result of similar unbound fractions in the in vivo and the in vitro
system for the metabolism of these chemicals (Poulin et al. 2002). Additionally, plasma protein
binding was considered to highly influence the hepatic clearance of so-called restrictive
clearance chemicals, for which clearance is restricted by strong binding to plasma proteins
hampering binding to the respective enzymes. On the other hand, clearance of non-restrictive

clearance chemicals is unlikely to be affected by plasma protein binding (Ye et al. 2016).

It should also be noted that this does not mean that protein binding is not important and can
be ignored when considering hepatic metabolism, particularly in the case where the unbound
fraction of chemicals may be very different between the extracellular and intracellular situation.
For example, it has been suggested that for some ionizable compounds, ionic interactions
between the extracellular protein-chemical complex and the hepatocyte surface and the
differences in pH between plasma and intracellular water may result in a different unbound
chemical concentration in liver compared to plasma. Thus using the unbound fraction in liver

(fu. 1iver) would be expected to better predict in vivo hepatic clearance (Berezhkovskiy 2011;
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Burczynski et al. 2001; Poulin et al. 2012). This was supported by Poulin et al. (2012) who
demonstrated that a more accurate prediction of in vivo hepatic clearance for some chemicals
highly bound to plasma protein can be obtained using in vitro metabolism data that take into
account the ionization of chemicals and f,, liver, compared to the prediction only corrected for
plasma protein binding and/or non-specific binding in incubation systems. Furthermore, Obach
et al. (1999) also demonstrated that the inclusion of binding to plasma protein and microsomes
to some extent improved the prediction of in vivo hepatic clearance for acidic compounds.
Overall, it would be prudent to always carefully consider if it is essential to account for different
binding conditions and types of protein binding when considering the use of in vitro metabolic
data for in vivo metabolism predictions. It is also important to note that the correction for
protein binding should also be considered when performing the reverse dosimetry. The need
for a correction for differences in protein binding in the in vitro bioassay and the in vivo

situation when performing reverse dosimetry will be discussed in section 2.3.1.

When protein binding is considered necessary to be integrated in the prediction of hepatic
metabolism (and in the reverse dosimetry), the unbound fraction values can be determined by
various in vitro and/or in silico approaches. Many approaches have been developed to
determine the plasma protein binding including in vitro models such as equilibrium dialysis
(Ye et al. 2017; van Liempd et al. 2011) and ultrafiltration (Howard et al., 2010; Wang and
Williams 2013), as well as many in silico structure-based prediction models (Moroy et al. 2012;
Vallianatou et al. 2013; Wageningen Food Safety Research (WFSR) 2020). Furthermore, the
non-specific binding of chemicals to human liver microsomes, hepatocytes and/or proteins in
the incubation medium can be predicted using in silico models which require information on
microsome concentration and on the physicochemical properties of the compound of interest
(Gao et al. 2008; Hallifax and Houston 2012; Kilford et al. 2008; Poulin and Haddad 2011)
while it can also be experimentally determined using equilibrium dialysis and ultrafiltration
(Barr et al. 2019; Gao et al. 2008). Compared to plasma protein binding, information on tissue
(liver) binding is more challenging to obtain in vitro, given the difficulty to access tissues and
the fact that in vitro measurements would require intact organs, tissue homogenates, or
incubated tissue slices (Brunner and Langer 2006; Riccardi et al. 2018). In silico tools using
mathematical algorithms could also indirectly estimate the unbound concentration of chemicals

in the liver from fu, (Poulin and Theil 2002).
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2.2.3 Refinement of the description of excretion in the PBK model

Besides the hepatic metabolism, the present thesis also considered the importance of excretion
and included urinary and/or biliary excretion in the PBK models as routes for the elimination
and clearance of model compounds and their metabolites when relevant. The renal and biliary
excretion would be expected to influence the blood kinetics of EDDP given that a large
percentage of EDDP originating from a given dose of methadone was reported to clear via
urine and feces (Foster 2001; Kharasch et al. 2004; Kharasch et al. 2009). Similarly, biliary
excretion showed a high influence on the predicted blood kinetics of noribogaine with a
sensitivity coefficient of the biliary excretion rate constant being 0.25. In the light of these facts,
the inclusion of excretion for these compounds would be necessary for an accurate prediction
on their blood kinetics, especially for noribogaine for which the biliary excretion is the
predominant elimination route. In the present thesis parameters for renal and biliary excretion
of methadone, EDDP and noribogaine were either taken from reported in vivo data or derived
by fitting the predicted blood kinetics to respective reported human data. However, these
approaches are restricted to compounds with available in vivo data. Therefore, to better comply
with the 3R principles and enable the prediction of excretion for chemicals lacking in vivo data,
it would be valuable to integrate in vitro-derived biliary or urinary excretion parameters in the
PBK model. The description of excretion can be further refined by using algorithms with
different complexity, allowing the consideration for multiple mechanisms involved in the
excretion of chemicals of interest.

The simplest model for renal elimination is to assume that chemicals can be cleared directly
from the blood or kidney compartments into the urine and that all processes involved in the
renal excretion can be represented by an overall rate of renal excretion (Quindroit et al. 2019;
Mukherjee et al. 2014; Zhang et al. 2007). The rate of renal excretion can be described as a
first-order process using the intrinsic clearance (1/h) or rate constant (/h) for renal clearance, or
as a saturable process expressed in Michaelis—Menten kinetics (Haddad and Nong 2020). More
complex models have been developed to describe the multiple processes involved in the renal
excretion, allowing a detailed look on glomerular filtration, active transport in proximal tubular
cells and passive diffusion (Worley and Fisher 2015; Dubbelboer et al. 2017). More recently,
Huang and Isoherranen (2018) demonstrated that a generic dynamic physiologically-based
mechanistic kidney model developed based on human physiology can adequately predict the

renal clearance for 40 compounds with active renal transport using the plasma unbound fraction,
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in vitro transporter uptake clearance and in vitro permeability data obtained from the Madin-

Darby canine kidney (MDCK) or Caco-2 cell line.

Comparable to the equations used to describe urinary excretion, biliary excretion can be
described in an empirical model using the rate of biliary excretion from the liver following
either first-order or Michaelis—Menten kinetics (Nong et al. 2009; Noorlander et al. 2021a).
Physiologically based mechanistic models are available for the prediction of fecal elimination
and enterohepatic circulation (Clewell et al. 2008). Noribogaine was suspected to undergo
enterohepatic circulation since fluctuations in the noribogaine concentration-time curves
during the distribution phase were observed in certain individuals upon oral administration of
noribogaine (Glue et al. 2015). However, given that such fluctuations were not observed in the
mean noribogaine concentration-time profiles in human clinical studies (Glue et al. 2015 and
2016) and the fact that the developed PBK model of noribogaine including the biliary excretion
without enterohepatic circulation correctly predicted the blood kinetics required for reverse
dosimetry (see results in Chapter 5), the enterohepatic circulation of noribogaine might not
substantially influence the first phase of the blood concentration-time profile in humans from
which the Ciax for the reverse dosimetry is derived. The inclusion of enterohepatic circulation
in the noribogaine PBK model may still be valuable to explain the slow in vivo elimination

observed at later time points and provide further insight into the ADME of noribogaine.

Many in vitro cell-based models have been developed to determine kinetic parameters for
renal and biliary excretion, being the input for the models mentioned above. Transfected cells
with specific transporter(s), such as Chinese hamster ovary (CHO) cells, MDCK cells, human
embryonic kidney 293 cells (HEK293) and pig kidney epithelial cells (LLC-PK1), have been
widely used to investigate the active excretion of chemicals via kidneys or liver in vitro (Hirano
et al. 2005; Matsushima et al. 2005; Zhang et al. 2012). By using transfected MDCK and HEK
cells, Campbell et al. (2015) found that EDDP but not methadone was the substrate for several
key uptake transporters including organic-anion transporting polypeptides (OATP1A2 and
OATPI1BI1) and organic cation transporters (OCT1 and OCT3) and for efflux transporters
including P-glycoprotein and breast cancer resistant protein (BCRP). Besides, bi-directional
transport assays employing immortalized liver (e.g. HepaRG), kidney (e.g. Caki) and intestine
(e.g. Caco-2) cell lines with the expression of functional transporters, as well as hepatocyte-
based models are also well developed methods to study the excretion of chemicals (Brantegem
et al. 2019; Giacomini et al. 2010; Soldatow et al. 2013; Van Zhang et al. 2012). No matter

which in vitro assay is performed to derive kinetic parameters of excretion, it is of importance
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to consider the differences in expression level and activity of transporters between in vitro
models and in vivo organs and thus adequate scaling factors are needed to translate the in vitro
determined values to in vivo relevant input parameters for PBK models (Choi et al. 2019;

Haddad and Nong 2020; Noorlander et al. 2021 a and b).

2.3  Use of PBK modeling-based reverse dosimetry

An adequate prediction of in vivo cardiotoxicity requires careful consideration for each key
step involved in the entire PBK modeling-based reverse dosimetry approach. The importance
of in vitro model selection, in vivo resemblance of the in vitro endpoint and the PBK model
establishment were discussed in the previous sections. This section focuses on the relevant
choices with respect to the extrapolations from in vitro toxicity data to in vivo toxicity values,
including the selection of dose metric together with a correction for differences in protein

binding and inclusion of metabolites in the reverse dosimetry.
2.3.1 Selection of dose metric for the in vitro in vivo extrapolation

The selection of an appropriate dose metric is an important step to quantitatively predict in
vivo effects from in vitro toxicity data. The maximum concentration (Cmax) and the area under
the blood or plasma concentration-time curve (AUC) are two often used dose metrics. For
selecting the appropriate dose metric, the time-depend nature of the toxic effect and MoA of
the chemical should be taking into account. It has been proposed that the AUC could be used
for chemicals causing irreversible cumulative toxic effects, such as genotoxicity or
carcinogenicity. Alternatively, Cmax would be a suitable dose metric for the chemicals with
reversible mechanisms (Groothuis et al. 2015). In Chapter 3 and 5 of the thesis, the recovery
of cardiotoxicity (i.e. relief of prolonged FPDc) was observed for the model compounds studied
(methadone, EDDP, ibogaine and noribogaine) when exposure medium was replaced by fresh
medium, indicating a reversible reaction to be involved in the blockage of ion channels by these
model compounds, and thus Cmax Was considered a more appropriate dose metric used for the

QIVIVE.

In the present thesis, in vitro concentration-response curves were translated to in vivo dose-
response curves by assuming unbound in vitro concentrations to be equal to unbound
concentrations in the heart venous blood. The assumptions on in vitro and in vivo dose metrics
involved in this translation were as follows. Based on a well-accepted notion that only the
unbound fraction of a chemical can distribute to the site of action and cause toxicity (Deb et al.

2018; Howard et al. 2010), a correction for differences in protein binding in the in vitro model
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and the in vivo situation should be considered in the reverse dosimetry. The most relevant dose
metric for the in vitro toxicity assay to be used as input for the reverse dosimetry would be the
unbound intracellular concentration at the site of action or the membrane concentration
(Groothuis et al. 2015; Fisher et al. 2019). Many studies have emphasized the importance of
measurement or prediction of intracellular concentrations for QIVIVE (Armitage et al. 2014;
Hamon et al. 2015), which is also evident from a study by Poulin et al. (2012) already
mentioned in section 2.2.2. These authors demonstrated that the use of unbound intracellular
liver concentrations can improve the accuracy of predicted in vivo hepatic clearance especially
for chemicals highly bound to plasma protein. However, determination or prediction of
intracellular concentrations is challenging and often practically not feasible (Albrecht et al.
2019). For example, dilution, homogenization and incubation involved in preparing tissue
samples for experiments on tissue protein binding like equilibrium analysis may disrupt the
intracellular components (e.g. acidic organelles) that contribute to the in vivo distribution of
chemicals (Clausen and Bickel 1993; Kotsiou and Tesseromatis 2011). This may result in an
underprediction of in vivo distribution of basic lipophilic chemicals including methadone to
liver and kidney when using the in vitro binding values obtained from liver and kidney
homogenates (Clausen and Bickel 1993; Kotsiou and Tesseromatis 2011). Intracellular
concentrations used in in vitro assays can also be estimated by some mathematic-based models,
which however require several prerequisites for the prediction, such as the fact that they are
only applicable for neutral and unionized compounds (Armitage et al. 2014; Comenges et al.
2017; Worth et al. 2017) or a steady-state assumption of multiple dynamic processes (Armitage
et al. 2014; Fischer et al. 2017). On the other hand, the selection for an internal concentration
should also consider whether the increased accuracy of the prediction is worth the investment
of performing additional experiments (Groothuis et al. 2015). Given that adequate QIVIVE can
be obtained by using unbound extracellular concentrations in the in vitro cardiotoxicity assay
medium, as shown in Chapter 3 and 5, the use of unbound extracellular concentrations for the
QIVIVE can be a first-choice dose metric. When the use of unbound extracellular
concentrations does not work or when intracellular exposure is known to be significantly
different from extracellular exposure in certain cases such as protein (albumin)-facilitated
uptake of chemicals in hepatocytes (Bowman and Benet 2018; Burczynski et al. 2001), an
attempt can be made to use (unbound) intracellular concentrations as the dose metric for

QIVIVE, despite the fact that measurement of these intracellular concentrations is a challenge.
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It is common practice in QIVIVE to link the in vivo plasma concentration to in vitro
concentrations (Wetmore et al. 2015). Plasma dosimetry, the unbound concentration in heart
venous blood, was used as the in vivo dose metric for QIVIVE in the present thesis. This was
based on an assumption that the unbound concentration in heart venous blood reflects the
concentrations at the site of action, which is supported by the study of Mikkelsen et al. (2018).
By using the postmortem concentrations of methadone in biophysically based mathematical
models of human cardiac electrophysiology, the authors demonstrated that methadone induced
QTec prolongation was best predicted based on unbound plasma concentrations whereas the use
of both unbound and total heart tissue concentrations resulted in an overpredicted effect on the

QTc (Mikkelsen et al. 2018).
2.3.2 Role of metabolites in reverse dosimetry

The in vivo toxicity of a chemical may be caused by the parent chemical itself and/or its
metabolite(s). When there is no in vivo toxicity information available for metabolites, the
determination of their in vitro toxicity is of importance to identify their role in the chemical-
induced toxicity as well as to ensure an adequate prediction of the in vivo toxicity of the parent
chemical. This was illustrated by the results in Chapter 3 and 5 of the present thesis where two
cardiotoxic metabolites EDDP and noribogaine, being the primary metabolites of respectively
methadone and ibogaine, were shown to play different roles in their parent compound-induced
in vivo cardiotoxicity. The findings obtained in theses chapters also provided insight into the
factors that influence the relevance of cardiotoxicity of metabolites in the reverse dosimetry
for the prediction of parent chemical-induced cardiotoxicity, such as the relative potency and
internal concentration of the metabolite relative to those of the parent compound. Additionally,
the adequate prediction of ibogaine-induced cardiotoxicity in Chapter 5 demonstrated that the
in vitro-PBK modeling-based approach integrated with the TEQ approach provided a strategy

to predict in vivo cardiotoxicity of a chemical for which also the metabolites are active.

In Chapter 3 and 5, the cardiotoxicity of EDDP and noribogaine were detected in the hiPSC-
CM MEA assay. Results showed that both EDDP and noribogaine induced concentration-
dependent prolongation of FPDc with a 4- and 1.3-fold lower potency than methadone and
ibogaine, respectively. However, only the cardiotoxicity of noribogaine was taken into account
in the reverse dosimetry of ibogaine while the cardiotoxicity of EDDP did not need to be
included for the reverse dosimetry of methadone. As aforementioned, this was based on the
fact that the unbound in vitro effective concentrations of EDDP were substantially higher than

its internal unbound concentrations upon the oral administration of methadone while the
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unbound in vitro effective concentrations of noribogaine were within the range of its unbound
internal blood concentrations after clinically relevant dosing of ibogaine. This indicates that in
addition to positive in vitro cardiotoxic effects, the relevance of in vitro cardiotoxicity to the in
vivo situation needs to be considered to justify the inclusion (or not) of cardiotoxicity of
metabolites in the reverse dosimetry for the prediction of parent chemical-induced
cardiotoxicity. When no in vivo data for the metabolite are available to compare with its
unbound in vitro effective concentrations, a PBK submodel for the metabolite can be developed

to provide such data for comparison.

When the cardiotoxicity of metabolites is considered relevant, the combined effective
concentration of the parent chemical and its active metabolite(s) can be described as the
equivalent concentration expressed either in parent chemical or metabolite equivalents. The
unbound concentration in parent compound or metabolite equivalents subsequently can be used
as the dose metric in the reverse dosimetry for the prediction of parent (or metabolite) chemical-
induced cardiotoxicity using the in vitro data for the parent compound or the metabolite, the
latter depending on the choice for expressing the equivalent concentrations. Such a TEQ
approach can be achieved by using the toxic equivalency factor (TEF) or relative potency factor
(RPF). These two types of relative potency factors can be considered similar given that both
TEF and RPF values can be used in the TEQ approach to assess the combined effects of
chemical mixtures taking the potency of each mixture component into account (Bil et al. 2021;
Bosgra et al. 2009; EFSA 2013; EFSA 2019; Safe 1998; van Ede et al. 2016; WHO 2016;).
The RPF values can be used for mixture components with the same toxic effects which may
result from different MoAs given that information on the MoA is often lacking, whereas the
establishment of TEF values requires more information on the MoA and could be considered
as a specific type of RPF with the prerequisite of mixture components sharing the same MoA
(Biletal. 2021; EFSA 2013; EFSA 2019; U.S. Environmental Protection Agency (EPA) 2000).
In the present thesis these two terms were not specifically distinguished and the TEF was used
as the general term. Besides the prerequisite on 1) similar MoAs and/or toxicological effects,
the use of the TEF based approach also requires that 2) mixture components only differ in
potency (i.e. show similar shape of the individual concentration-response curves on a log-scale)
and 3) their toxicity are concentration (dose) additive (i.e. no synergism or antagonism) (Bil et
al. 2021; Bosgra et al. 2009; EFSA 2019; Safe 1998). To what extent ibogaine and noribogaine

fulfill these assumptions is discussed below.
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The fulfillment of the first requirement is supported by the fact that both ibogaine and
noribogaine can prolong QTc in human (Glue et al. 2016; Hoelen et al. 2009) and FPDc in
hiPSC-CMs as observed in the present thesis, which may be ascribed to their blockage of hERG
channels observed in in vitro studies employing the patch clamp technique (Alper et al. 2016;
Koenig et al. 2014; Rubi et al. 2017). The fulfillment of the second requirement follows from
the statistical comparison of the hillslope values of the concentration-response curves of
ibogaine and noribogaine (Figure 4 in Chapter 5), which showed that the hillslope values of
ibogaine and noribogaine were comparable (with a p value of 0.07), indicating that the two
concentration-response curves were parallel. Given that limited data are available for the
cardiotoxicity of ibogaine and noribogaine especially on their combination effects, an
assumption was made that cardiotoxic effects of ibogaine and noribogaine were additive to
enable the application of the TEF based approach in the present thesis. This assumption to
some extent could be considered as adequate since the predicted cardiotoxicity of ibogaine
using the TEF based approach appeared to match well with the reported in vivo cardiotoxicity
of ibogaine (Figure 8 in Chapter 5). One may argue that possible synergism or antagonism
could exist between the two compounds. However, since the unbound internal blood
concentration of ibogaine was predicted to be approximately 100-fold lower than that of
noribogaine upon a clinically relevant dose of ibogaine (calculated based on the data shown in
Chapter 5), the presence of ibogaine would not be expect to influence the cardiotoxic potency
of noribogaine in the in vivo situation. Whether this also holds for the effects of noribogaine
on ibogaine toxicity remains to be established. Nevertheless, it would be of interest to
experimentally verify whether the cardiotoxicity of the two compounds is additive. To this end,
the combined effect of ibogaine and noribogaine can be assessed by detecting the FPDc
prolongation induced by an equipotent mixture of the two compounds. The obtained
concentration-response curve of the mixture expressed in ibogaine equivalents needs then to

be comparable to the one of ibogaine alone to support additive cardiotoxicity.
2.4 Implications for risk assessment

In traditional risk assessment involving in vivo animal studies, points of departure (PoDs)
derived from animal data to define safe exposure levels of chemicals for humans are generally
divided by a default uncertainty factor of 100 that comprises the default factors of 10 for inter-
species and 10 for intraspecies (inter-individual) differences (IPCS 2005). However, the use of
default uncertainty factors may be over- or under-protective resulting in over- or

underestimation of the risk of chemical use, and either unnecessary restrictions for chemicals
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or insufficient protection for the sensitive subpopulation (Kasteel and Westerink 2021; Zeise
et al. 2013). Thus, to refine the risk assessment of chemicals, these default uncertain factors
could be replaced by chemical-specific adjustment factors (CSAFs) defined based on chemical
specific data (IPCS 2005). By integrating the variation of input data (both kinetic and dynamic),
the developed PBK modeling-based reverse dosimetry approach offers the potential to
characterize the interspecies and inter-individual variation and refine some of the default
uncertainty factors used in the risk assessment. Chapter 4 shows how PBK modeling-based
reverse dosimetry can be combined with Monte Carlo simulation to quantify the inter-
individual kinetic variation underlaying possible variation in cardiotoxicity of the two
methadone enantiomers, and to define CSAFs for interindividual and inter-ethnic kinetic
differences for the Caucasian, Chinese and combined populations. Results obtained showed
that the default CSAF of 3.16 for interindividual kinetic differences appeared to adequately
cover the inter-individual differences in toxicokinetics for R- and S-methadone-induced
cardiotoxicity in the Caucasian and Chinese population. When considering the combined
population, the default CSAF was just sufficient for R-methadone while for S-methadone the
CSAF for kinetic differences amounted to 4.5 and 4.7 for protection of the 95" and 99*

percentile of the population, respectively.

It is of importance to note that the CSAF for kinetic differences derived in Chapter 4 was
based only on the metabolic variations for both methadone enantiomers given that large inter-
individual variations in methadone pharmacokinetics have been reported to be the result of
variability in methadone metabolism (Eap et al. 2002). In the present approach the CSAF for
kinetic differences did not yet take into account variability in other factors that influence the
kinetics of the methadone enantiomers, such as body weight and oral fraction absorbed, which
were parameters of major influence illustrated in the sensitivity analysis in Chapter 3 and 4.
Variation in the fraction unbound in plasma also influences the kinetics of methadone as shown
in Chapter 3. To evaluate this further for this discussion chapter the PBK modeling combined
with Monte Carlo simulation was used to predict the kinetic variations based on the variations
in metabolism, body weight, oral fraction absorbed and fraction unbound in plasma of R- and
S-methadone. Monte Carlo simulation was performed in the same way as described in Chapter
4. The coefficients of variation for these parameters were assumed to be 0.3 representing a
moderate level of variation (Covington et al. 2007). Table 1 shows the results thus obtained
and reveals that CSAF values for kinetic variations increased when considering the variation

in body weight, fraction absorbed and fraction unbound in plasma. Similar to the CSAF derived
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based on metabolic variations (values in brackets in Table 1), the default CSAF of 3.16 would
still be adequate to cover inter-individual differences in kinetics for the Caucasian and the
Chinese population except for protection of the 99" percentile of the Caucasian population in
the case of exposure to S-methadone for which a CSAF of 3.3 for inter-individual kinetic
differences would be required. For the combined population the default CSAF ranged from 4.5
to 8.3 for protection of the 95™ and 99 percentile of the population, respectively. This implies
that kinetic differences of methadone enantiomers among human individuals, especially for S-
methadone, are higher than the default value of 3.16 for inter-individual kinetic differences.
For protecting the 99 percentile of the human population for the exposure to S-methadone,
the CSAF of 8.3 defined for inter-individual kinetic differences (Table 1), together with the
default uncertainty factor of 3.16 for inter-individual dynamic differences, would result in a
CSAF for inter-individual differences of 26.2, which is 2.6-fold higher than the default
uncertainty factor of 10 for human inter-individual differences consisting of default uncertainty
factors of 3.16 for human variability in both toxicokinetics and toxicodynamics (IPCS, 2005).
Thus, an increase of the uncertainty factor would be needed to sufficiently protect the human
population from S-methadone induced cardiotoxicity.

Table 1 CSAFs of R- and S-methadone for the Caucasian population, the Chinese population and

the two populations combined in each scenario of Monte Carlo simulation taken into account

variation in metabolism, bodyweight and oral fraction absorbed.

CSAFs at 95" percentile CSAFs at 99" percentile
Caucasian ) Two ) ) Two
. Chinese . Caucasian Chinese .
population ) populations ) ) populations
population® ) population®  population® )
2 combined® combined®
] 2.4 (1.7) 1.9(1.2) 4.5(3.0) 3.1(2.0) 2.5(1.3) 5.8(3.2)
methadone
) 2.5(1.9) 2.1(1.3) 6.7 (4.5) 33(2.3) 2.6(1.4) 8.3(4.7)
methadone

Values in brackets were obtained in Chapter 4 where the CSAF values were derived based on the
metabolic variations. * obtained by dividing the 95" or 99" percentile of the Cmax in heart venous blood
by the GM of the Cpax in heart venous blood in each population. ® obtained by dividing the 95" or 99™
percentile of the Cimax in heart venous blood in the Chinese population as the most sensitive population
by the GM of the Cpax in heart venous blood in the Caucasian population.

In addition to toxicokinetic variation, the variation in toxicodynamics can also play an
important role in the inter-individual variation (Grimm et al. 2018; Zeise et al., 2013). To

improve the developed QIVIVE approach for the prediction of inter-individual variation, it
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would be valuable to also consider the variations in toxicodynamics. In the context of
electrophysiological cardiotoxicity, toxicodynamic variations could refer to the variation in
baseline characteristics and responses to the chemical exposure, which may result from genetic
variability (Britton et al. 2017; Grimm et al. 2018). HiPSC-CMs derived from healthy
individuals with diverse genetic backgrounds have been demonstrated as a promising model to
investigate the inter-individual variability in chemical-induced cardiophysiologic effects
(Burnett et al. 2019; Grimm et al., 2018). By using such a population-based hiPSC-CM model
with Bayesian modeling, Blanchette et al. (2020) estimated the uncertainty factor of 136 drugs
and environmental chemicals for variations in different dynamic endpoints such as QT
prolongation, positive (negative) chronotropy and cytotoxicity. The results demonstrated that
31 compounds showed QT prolongation effects and the inter-individual variability observed
using the population-based hiPSC-CM model with Bayesian modeling was for all compounds
higher than the default value of 3.16. This indicates that the further refinement of the
uncertainty factors for toxicodynamic variations might be needed for the chemicals that can
induce QT prolongation, such as hERG channel blockers. Given that the CSAFs for
toxicokinetic differences of the methadone enantiomers were higher than the default
uncertainty factor for toxicokinetic differences and that the CSAF for toxicodynamic
differences of methadone, being a hERG channel blocker, might also be higher that the default
uncertainty factor, it can be concluded that for methadone a CSAF for overall inter-individual

variation higher than 10 would be needed.

Additionally, it should be noted that the PoDs derived in the present thesis using an in vitro-
PBK modeling-based approach are based on a human in vitro model for cardiotoxicity and a
human PBK model. This implies that the use of such PoDs in risk assessment would not require
the uncertainty factor for inter-species differences. Instead, an extra uncertainty factor could
be considered because use of an in vitro-PBK modeling-based approach to define safe exposure
level of chemicals for humans brings inherent uncertainties related to for example the in vitro
toxicity assay used, the PBK model and its parameters and in the choice of the dose metric for

QIVIVE.
2.5 Future perspectives

The present thesis provides proofs-of-principle for using PBK modeling-based reverse
dosimetry of in vitro cardiotoxicity for the prediction of electrophysiological cardiotoxicity in
humans. On the basis of findings in the present thesis, the developed in vitro-PBK modeling-

based approach could be further extended to a broader range of toxicological endpoints and
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chemicals, which ultimately will contribute to the use of non-animal based NAMs for the
human risk assessment and safety evaluation of chemicals. This can be achieved by optimizing
and specializing the in vitro and/or in silico parts involved in the developed approach in two
ways. One may consider a switch of the QIVIVE approach either to generic approaches that
suit the need for rapid interpretation of data generated from high-throughput in vitro assays for
large numbers of chemicals, or to more sophisticated approaches that integrate in vitro assays
and PBK models adapted for diverse purposes. From such sophisticated approaches
comprehensive compound specific information can be obtained and are appropriate for more
accurate risk assessment. The combination of in vitro-PBK modeling with Monte Carlo
simulation to investigate inter-individual variations and to define CSAFs as present in Chapter

4 is an example for the latter application.

For the first application (i.e. being generic approaches), by using a higher-throughput
platform of the MEA (e.g. 96-well plate) with automated analysis programs (Kraushaar and
Guenther 2019), the hiPSC-CM MEA assay could gain the potential to rapidly screen and
identify the cardiotoxicity for large numbers of chemicals. To extrapolate such high amount of
in vitro effective data to the in vivo scenarios for risk prioritization or assessment, efficient
PBK modelling approaches are necessary (Yoon 2020). In this context, the development of a
generic modeling framework would accelerate the efficiency of PBK modeling, which could
be achieved by a streamlined model parameterization (Daga et al. 2018; Yoon 2020). Some
efforts in developing generic PBK modeling based reverse dosimetry with simplified
parameterization have been reported. The U.S. EPA initiated a strategy where high-throughput
screening data of ToxCast and Tox21 chemicals can be extrapolated by using generic PBK
models which only included a few kinetic processes with limited experimental parameters such
as unbound fraction in plasma, hepatic metabolic clearance, and intestinal permeability (Sipes
et al. 2017; Wetmore et al. 2012 and 2015). The development of high-throughput and
automated biokinetic assays to derive these parameters would further contribute to the
efficiency of model parameterization. Furthermore, a free available web-based tool to build
generic PBK models for rats and human has been developed and can be used to predict the
internal concentrations upon chemical exposure by using limited input information including
physicochemical parameters (i.e. logP, pKa and molecular weight), intestinal uptake and in
vitro hepatic clearance (Punt et al. 2021). Combined with in vitro ToxCast bioactivity data (e.g.
cytotoxicity, inhibition of human thyroid peroxidase activity and estrogenicity), the developed

generic PBK model tool has been demonstrated to predict the oral equivalent doses for four
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food additives which were subsequently compared with their human exposure data for the risk
assessment (Punt et al. 2021). Additionally, Zhang et al. (2018 and 2020) demonstrated that a
generic PBK model combined with in vitro estrogenicity data can predict the in vivo
uterotrophic response (i.e. increase of uterus weight) for seven compounds in rats. In their
studies the model parameters related to the absorption (i.e. in vitro and in vivo permeability
coefficient) and distribution (i.e. tissue/blood partition coefficients) were determined by in
silico quantitative structure activity relationship (QSAR) (Hou et al. 2004; Sun et al. 2002)
and quantitative property relationship (QPPR) approaches (DeJongh et al. 1997), respectively.
In vitro incubations using liver S9 with all co-factors involved in phase I and phase II
metabolism was performed to determine the overall hepatic clearance. Admittedly, a simplified
model parameterization may more benefit from in silico approaches than in vitro experiments,
in particular for the metabolic parameters given that the derivation of metabolic parameters in
vitro was considered to be low throughput compared to the pace of data generation from in
vitro toxicity assays (Yoon 2020). In summary, to enable the rapid interpretation of in vitro

toxicity data, future efforts could be focused on developing more generic PBK models.

Furthermore, the application of the in vitro-in silico approach can be expanded to a more
sophisticated compound-specific risk assessment, which enables the establishment of accurate
PoDs, supporting the higher tier risk-based decision making of chemicals (Andersen et al. 2019;
Yoon 2020). This can be done, for example, by including additional relevant toxicity endpoints
in the QIVIVE approach. As aforementioned, cardiotoxicants may affect both cardiac electrical
and contraction function via different mechanisms (Ovics et al. 2020). When combined with
MEA or other techniques, hiPSC-CMs can be used to detect not only electrophysiological but
also contractile (i.e. beat rate, contractile force), and even structural (i.e. subcellular structure
morphology, cytotoxicity, mitochondrial dysfunction) effects of chemicals (Burnett et al. 2021;
Chaudbhari et al. 2016; Lee et al. 2021), which offers the opportunity to predict dose-response
behavior for other relevant in vivo cardiotoxicity endpoints using PBK modeling-based reverse
dosimetry. Recently, Li et al. (2021) demonstrated that the combination of PBK modeling and
in vitro cardiotoxicity assays that detected doxorubicin-induced mitochondrial toxicity, cardiac
arrhythmicity and cytotoxicity provided reasonable predictions of the PoDs of in vivo
doxorubicin-induced cardiotoxicity. This work shows the promise of developing a QIVIVE
approach to predict multiple in vivo endpoints. PBK modeling-based reverse dosimetry of in
vitro data obtained from a multiparametric in vitro cardiotoxicity assay would provide a more

comprehensive risk assessment of cardiotoxicity for a chemical of interest, which enables
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determination of the sensitive target/key cardiotoxic effect based on PoDs predicted for

different endpoints.

Another example of combination of the in vitro-in silico approach with specific type of vitro
cardiotoxicity data for a more sophisticated application could be the risk assessment of
chemicals for specific/sensitive populations. The availability of hiPSC-CM derived from
individuals with a specific genetic and demographic background (e.g. ethnic, life stage, gender)
or from patients with cardiac diseases such as dilated cardiomyopathy (Panopoulos et al. 2017;
Sun et al. 2012) and long QT syndromes (Egashira et al. 2012; Itzhaki et al. 2011; Shinozawa
et al. 2017) could provide representative toxicodynamic data for sensitive subgroups within the
population. The PBK models developed in the present thesis provide an adequate starting point
for such studies. Moreover, PBK models can consider specific physiological conditions such
as age-dependent enzyme activities (Mallick et al. 2020; Yang et al. 2006; Yang et al. 2019),
pregnancy (Ke et al. 2014) and autoinduction of enzyme activity upon repeated exposure

(Badhan et al. 2019).
Conclusion

The present thesis demonstrated that integration of in vitro cardiotoxicity data, in vitro kinetic
data and PBK modeling adequately predicted human in vivo dose-dependent cardiotoxicity of
two selected anti-addiction drugs. Furthermore, the present thesis demonstrated the use of PBK
models to predict the inter-ethnic and inter-individual variations taking methadone enantiomers
as examples, which showed the possibility to refine the uncertainty factors for inter-individual
differences in toxicokinetics used in risk assessment. The obtained results subsequently can be
used to refine the risk assessment for chemical-induced cardiotoxicity. Additionally, the
QIVIVE approach was shown to adequately predict in vivo cardiotoxicity for a chemical with
a bioactive metabolite, that should be taken into account based on its relative potency and in
vivo concentration compared to the parent compound. Altogether, the present thesis provides
proofs-of-principle for using PBK modeling-based reverse dosimetry of in vitro data for the
prediction of cardiotoxicity in humans, further validating the potential applicability of this in
vitro-in silico QIVIVE approach for a broader range of toxicity endpoints and for the human
situation, ultimately contributing to non-animal based NAMs for risk assessment and safety

evaluation of chemicals.
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Summary

The inter-species differences between animals and human and ethical and financial concerns
related to studies with experimental animals provide a strong motivation for a paradigm shift
in toxicity testing of chemicals. This initiated, as also shown in the current thesis, the
development of new approach methodologies (NAMs) that integrate in vitro and in silico
methods, to replace animal or even human studies. An example of such a NAM is the
quantitative in vitro to in vivo extrapolation (QIVIVE) approach, also so-called PBK modeling-
based reverse dosimetry. In this approach, as a starting point, in vitro data can be used to be
translated using PBK modeling-facilitated reverse dosimetry to predict dose-response curves
for the in vivo situation. This approach has already adequately predicted the in vivo toxicity
for various toxicity endpoints in recent years. So far these proofs-of-principle did not relate to
cardiotoxicity and mainly related to toxicity in experimental animals. The present thesis aimed
to provide proofs-of-principle for using PBK modeling-based reverse dosimetry of in vitro data
for the prediction of cardiotoxicity in humans, thereby providing a novel testing strategy for
cardiac safety studies. Methadone and ibogaine, two anti-addiction drugs with known in vivo
cardiotoxicity, were selected as model compounds. The developed QIVIVE approach can

contribute to non-animal based NAMs for risk assessment and safety evaluation of chemicals.

Chapter 1 introduced background information on alternative testing strategies and the aim of
the present thesis. It also provided information on cardiotoxicity, on the toxicokinetic and
toxicodynamic profiles of the two model compounds and their metabolites and on the main
approaches applied in the present thesis, including two in vitro cardiotoxicity assays, PBK

modelling-based reverse dosimetry and Monte Carlo simulation.

Chapter 2 evaluated the applicability domains of two stem cell-based in vitro models for
cardiotoxicity screening of chemicals, namely the mouse embryonic stem cell-derived
cardiomyocyte (mMESC-CM) model that uses beating arrest as a readout and the human induced
pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) multi-electrode array (MEA) assay
that uses multiple electrophysiological parameters as readouts. The cardiotoxicity of eleven
model compounds, including hERG channel blockers, sodium channel blockers, calcium
channel blockers, Na*/K* ATPase inhibitors and a B-adrenergic receptor agonist, were detected
in the two models. The results obtained from the two models were compared to one another
and to in vivo cardiotoxicity data. Results showed that the mESC-CM beating arrest assay was

not responsive to hRERG channel blockers and a Na*/K* ATPase inhibitor. Whereas the hiPSC-
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CM MEA assay was responsive to all model compounds and also resulted in in vitro effective
concentrations that correlated well with in vivo concentrations associated with responses in the
human electrocardiogram. Overall, the results indicated that the mESC-CM beating arrest
assay could be used as the first step in a tiered approach for cardiotoxicity screening to detect
hazards related to cardiotoxicity via effects on for example sodium and calcium ion channels.
The hiPSC-CM MEA assay provided comprehensive cardiotoxicity data and thus could be
used as a second tier to detect cardiotoxicity, and it may also serve as a basis for QIVIVE to

predict human cardiotoxicity.

Chapter 3 demonstrated that the combination of the hiPSC-CM MEA assay and PBK
modeling-based reverse dosimetry adequately predicted methadone-induced cardiotoxicity in
human. The in vitro cardiotoxicity of methadone was detected using the prolongation of the
field potential duration corrected for beat rate (FPDc) in the hiPSC-CM MEA assay. A human
PBK model of methadone was developed using data obtained from in silico predictions, in
vitro microsomal incubations and literature. The in vitro concentration-response curve of
methadone was converted to an in vivo dose-response curve for QTc prolongation using
different unbound fractions in human plasma given the large variation in protein plasma
binding of methadone reported in in vivo human studies. Results revealed that the predictions
using high and low fraction unbound values were well in line with data obtained from
individual case studies and epidemiological population studies, respectively. Altogether, this
chapter provided a proof-of-principle of using PBK modeling-based reverse dosimetry of in

vitro cardiotoxicity data for the prediction of QTc prolongation in humans.

Chapter 4 further investigated the potential of the developed in vitro-in silico approach by
predicting the influence of inter-individual and inter-ethnic kinetic variations on the sensitivity
towards the cardiotoxicity of R- and S-methadone in the Caucasian and the Chinese population.
Two sources of metabolic variation were used to quantify the inter-individual and inter-ethnic
kinetic variability including individual human liver microsomes and recombinant cytochrome
P450 isoforms (rCYPs). Data from these in vitro model systems were incorporated in the PBK
models (and combined with Monte Carlo simulation when rCYPs data were used) to predict
the interindividual and inter-ethnic variability in the kinetics of the methadone enantiomers.
The results obtained showed that both approaches similarly predicted the inter-individual and
inter-ethnic variations in the kinetics of the two enantiomers. The predicted blood kinetics
obtained using rCYPs combined with Monte Carlo simulation were used to derive chemical

specific adjustment factors (CSAFs), which were subsequently applied to define dose-response
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curves for the sensitive individuals within the populations by reverse dosimetry. Benchmark
dose (BMD) analysis of the predicted dose-response curves provided BMDL values that were
used to calculate the Margins of Safety (MOS) to evaluate the inter-ethnic differences in safety
upon use of R- and S-methadone. Results obtained showed that the default uncertainty factor
of 3.16 for kinetic differences appeared to adequately describe the interindividual differences
in kinetics for R- and S-methadone-induced cardiotoxicity in the Caucasian and in the Chinese
population. When considering the combined population, the default CSAF was still protective
for R-methadone while for S-methadone the CSAF for kinetic differences increased to 4.5 and
4.7 for protection of the 95" and 99" percentile of the population, respectively. The results also
revealed that Chinese individuals may be at higher risk towards the cardiotoxicity of
methadone with the predicted BMDL and thus MOS values being 2-fold lower than those for

Caucasians for both methadone enantiomers.

Chapter 5 investigated whether PBK modeling-based reverse dosimetry of in vitro data was
able to adequately predict the human cardiotoxicity of the herbal alkaloid ibogaine and its
metabolite noribogaine. The in vitro cardiotoxicity of ibogaine and noribogaine were quantified
using the hiPSC-CM MEA assay. A human PBK model for ibogaine with a submodel for
noribogaine was developed using parameters obtained from in silico approaches and literature,
and biokinetic data obtained from Caco-2 transport studies and in vitro liver microsomal
incubations. Because the unbound in vitro effective concentration of noribogaine was within
the range of reported unbound internal blood concentrations of noribogaine after ingestion of
clinically relevant doses of ibogaine, the cardiotoxicity of noribogaine was taken into account
in the reverse dosimetry for the prediction of ibogaine-induced cardiotoxicity by using the toxic
equivalency (TEQ) approach. Given that the oral administration of noribogaine is reported to
be associated with QTc prolongation in humans, reverse dosimetry of in vitro cardiotoxicity of
noribogaine was also performed to predict the in vivo noribogaine-induced QTc prolongation.
BMD analysis of the predicted dose-response curves adequately predicted the in vivo
cardiotoxicity upon oral exposure to ibogaine and noribogaine. Additionally, the relative
contribution of ibogaine and noribogaine in ibogaine-induced cardiotoxicity was investigated
by integrating the TEQ approach with the PBK model. The results thus obtained revealed that
noribogaine is predicted to play a substantial role in the in vivo cardiotoxicity upon the oral

administration of ibogaine.

Chapter 6 summarizes the results obtained in the thesis and discusses the applicability

domains of the two in vitro cardiotoxicity assays, different considerations with regard to PBK
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modelling and reverse dosimetry and implications of these NAMs for risk assessment. Future
perspectives outline the possibility of extending the developed PBK modeling-based reverse
dosimetry approach to a broader application area in the field of risk assessment. Altogether,
the present thesis provided proofs-of-principle for using PBK modeling-based reverse
dosimetry of in vitro data for the prediction of cardiotoxicity in humans, demonstrating the
potential applicability of this QIVIVE approach for a broader range of toxic endpoints and for
the human situation, ultimately contributing to non-animal based NAMs for risk assessment

and safety evaluation of chemicals.
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Annex

Overview of completed training activities

Discipline specific activities

Molecular toxicology PET 2017
Pathobiology PET 2017
Cell Toxicology PET 2018
Organ Toxicology PET 2018
Laboratory of animal science PET 2017
Epidemiology PET 2018
Immunotoxicology PET 2018
Neurotoxicology PET 2019
Conferences

39" Annual meeting of the Dutch Society of Toxicology (NVT), poster, Hilversum, the Netherlands,
2018

55™ congress of the European Societies of Toxicology (EUROTOX), poster, Helsinki, Finland, 2019
59" Annual (virtual) meeting Society of Toxicology (SOT), poster, California and online, US, 2020
60™ Annual (virtual) meeting Society of Toxicology (SOT), poster, online, 2021

General courses

VLAG PhD week WUR 2017
Project and time management WUR 2017
Introduction to R WUR 2019
Applied statistics WUR 2019
Philosophy and ethics of food science and technology =~ WUR 2020

Other activities

Preparation of research proposal TOX-WUR 2017
PhD trip to Japan TOX-WUR 2018
I . o . 2017-
Scientific presentation at Division of Toxicology TOX-WUR 5001
Environmental toxicology WUR 2018
General toxicology WUR 2017

Approved by the graduate school VLAG
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